高考数学平面解析几何第九节圆锥曲线的综合问题教案含解析
高考数学一轮复习 第九章 平面解析几何 9.9 圆锥曲线

课时1 直线与圆锥曲线题型一 直线与圆锥曲线的位置关系例1 (1)过双曲线C :x 24-y 29=1的左焦点作倾斜角为π6的直线l ,则直线l 与双曲线C 的交点情况是________(填序号). ①没有交点; ②只有一个交点;③有两个交点且都在左支上; ④有两个交点分别在左、右两支上.(2)(2014·湖北改编)设a ,b 是关于t 的方程t 2cos θ+t sin θ=0的两个不等实根,则过A (a ,a 2),B (b ,b 2)两点的直线与双曲线x 2cos 2θ-y 2sin 2θ=1的公共点的个数为________. 答案 (1)④ (2)0解析 (1)直线l 的方程为y =33(x +13),代入C :x 24-y 29=1,整理得23x 2-813x -160=0,Δ=(-813)2+4×23×160>0,所以直线l 与双曲线C 有两个交点,由一元二次方程根与系数的关系得两个交点横坐标符号不同,故两个交点分别在左、右支上.(2)关于t 的方程t 2cos θ+t sin θ=0的两个不等实根为0,-tan θ(tan θ≠0),则过A ,B 两点的直线方程为y =-x tan θ,双曲线x 2cos 2θ-y 2sin 2θ=1的渐近线方程为y =±x tan θ,所以直线y =-x tan θ与双曲线没有公共点.(3)在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上.①求椭圆C 1的方程;②设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.解 ①根据椭圆的左焦点为F 1(-1,0),知a 2-b 2=1,又根据点P (0,1)在椭圆上,知b =1,所以a =2,所以椭圆C 1的方程为x 22+y 2=1.②因为直线l 与椭圆C 1和抛物线C 2都相切, 所以其斜率存在且不为0,设直线l 的方程为y =kx +m (k ≠0), 代入椭圆方程得x 22+(kx +m )2=1,即⎝ ⎛⎭⎪⎫12+k 2x 2+2kmx +m 2-1=0,由题意可知此方程有唯一解,此时Δ=4k 2m 2-4⎝ ⎛⎭⎪⎫12+k 2(m 2-1)=0,即m 2=2k 2+1.①把y =kx +m (k ≠0)代入抛物线方程得k4y 2-y +m =0,由题意可知此方程有唯一解,此时Δ=1-mk =0, 即mk =1.②联立①②得⎩⎪⎨⎪⎧m 2=2k 2+1,mk =1,解得k 2=12,所以⎩⎪⎨⎪⎧k =22,m =2,或⎩⎪⎨⎪⎧k =-22,m =-2,所以直线l 的方程为y =22x +2或y =-22x - 2. 思维升华 研究直线和圆锥曲线的位置关系,一般转化为研究直线方程与圆锥曲线方程组成的方程组解的个数.对于填空题,常充分利用几何条件,利用数形结合的方法求解.已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.解 将直线l 的方程与椭圆C 的方程联立,得方程组⎩⎪⎨⎪⎧y =2x +m , ①x 24+y22=1, ②将①代入②,整理得9x 2+8mx +2m 2-4=0.③方程③根的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144.(1)当Δ>0,即-32<m <32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点. (3)当Δ<0,即m <-32或m >32时,方程③没有实数根,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点. 题型二 弦长问题例2已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (2,0),离心率为22.直线y =k (x -1)与椭圆C交于不同的两点M ,N . (1)求椭圆C 的方程; (2)当△AMN 的面积为103时,求k 的值. 解 (1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,解得b =2,所以椭圆C 的方程为x 24+y 22=1.(2)由⎩⎪⎨⎪⎧y =k x -1,x 24+y22=1,得(1+2k 2)x 2-4k 2x +2k 2-4=0.设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2), 则y 1=k (x 1-1),y 2=k (x 2-1), x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2,所以MN =x 2-x 12+y 2-y 12=1+k2[x 1+x 22-4x 1x 2]=21+k 24+6k21+2k2又因为点A (2,0)到直线y =k (x -1)的距离d =|k |1+k2,所以△AMN 的面积为S =12MN ·d =|k |4+6k21+2k 2, 由|k |4+6k 21+2k 2=103,解得k =±1. 思维升华 有关圆锥曲线弦长问题的求解方法:涉及弦长的问题中, 应熟练的利用根与系数的关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数的关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.(2015·湖南)已知抛物线C 1 :x 2=4y 的焦点F 也是椭圆C 2:y 2a 2+x 2b2=1(a >b >0)的一个焦点.C 1 与C 2的公共弦的长为2 6.过点F 的直线l 与C 1相交于A ,B 两点,与C 2相交于C ,D 两点,且AC →与BD →同向. (1)求C 2的方程;(2)若AC =BD ,求直线l 的斜率.解 (1)由C 1:x 2=4y 知其焦点F 的坐标为(0,1). 因为F 也是椭圆C 2的一个焦点,所以a 2-b 2=1.①又C 1与C 2的公共弦的长为26,C 1与C 2都关于y 轴对称,且C 1的方程为x 2=4y ,由此易知C 1与C 2的公共点的坐标为⎝ ⎛⎭⎪⎫±6,32,所以94a 2+6b 2=1.② 联立①②,得a 2=9,b 2=8. 故C 2的方程为y 29+x 28=1.(2)如图,设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4).因AC →与BD →同向,且AC =BD ,所以AC →=BD →,从而x 3-x 1=x 4-x 2,即x 1-x 2=x 3-x 4, 于是(x 1+x 2)2-4x 1x 2=(x 3+x 4)2-4x 3x 4.③ 设直线l 的斜率为k ,则l 的方程为y =kx +1.由⎩⎪⎨⎪⎧y =kx +1,x 2=4y 得x 2-4kx -4=0.而x 1,x 2是这个方程的两根, 所以x 1+x 2=4k ,x 1x 2=-4.④由⎩⎪⎨⎪⎧y =kx +1,x 28+y29=1得(9+8k 2)x 2+16kx -64=0.而x 3,x 4是这个方程的两根,所以x 3+x 4=-16k 9+8k 2,x 3x 4=-649+8k 2,⑤将④⑤代入③,得16(k 2+1)=162k29+8k22+4×649+8k2, 即16(k 2+1)=162×9k 2+19+8k22, 所以(9+8k 2)2=16×9,解得k =±64, 即直线l 的斜率为±64. 题型三 中点弦问题例3 (1)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为____________.(2)已知双曲线x 2-y 23=1上存在两点M ,N 关于直线y =x +m 对称,且MN 的中点在抛物线y2=18x 上,则实数m 的值为________. 答案 (1)x 218+y 29=1 (2)0或-8解析 (1)因为直线AB 过点F (3,0)和点(1,-1),所以直线AB 的方程为y =12(x -3),代入椭圆方程x 2a 2+y 2b 2=1消去y ,得⎝ ⎛⎭⎪⎫a 24+b 2x 2-32a 2x +94a 2-a 2b 2=0,所以AB 的中点的横坐标为32a 22⎝ ⎛⎭⎪⎫a24+b 2=1,即a 2=2b 2,又a 2=b 2+c 2,所以b =c =3,a =3 2.所以E 的方程为x 218+y 29=1.(2)设M (x 1,y 1),N (x 2,y 2),MN 的中点P (x 0,y 0),则⎩⎪⎨⎪⎧x 21-y 213=1, ①x 22-y223=1, ②x 1+x 2=2x 0, ③y 1+y 2=2y 0, ④由②-①得(x 2-x 1)(x 2+x 1)=13(y 2-y 1)(y 2+y 1),显然x 1≠x 2.∴y 2-y 1x 2-x 1·y 2+y 1x 2+x 1=3,即k MN ·y 0x 0=3,∵M ,N 关于直线y =x +m 对称,∴k MN =-1, ∴y 0=-3x 0.又∵y 0=x 0+m ,∴P ⎝ ⎛⎭⎪⎫-m 4,3m 4, 代入抛物线方程得916m 2=18·⎝ ⎛⎭⎪⎫-m 4, 解得m =0或-8,经检验都符合.思维升华 处理中点弦问题常用的求解方法(1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x 1+x 2,y 1+y 2,y 1-y 2x 1-x 2三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.(2)根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后,由根与系数的关系求解.设抛物线过定点A (-1,0),且以直线x =1为准线.(1)求抛物线顶点的轨迹C 的方程;(2)若直线l 与轨迹C 交于不同的两点M ,N ,且线段MN 恰被直线x =-12平分,设弦MN 的垂直平分线的方程为y =kx +m ,试求m 的取值范围. 解 (1)设抛物线顶点为P (x ,y ),则焦点F (2x -1,y ). 再根据抛物线的定义得AF =2,即(2x )2+y 2=4, 所以轨迹C 的方程为x 2+y 24=1.(2)设弦MN 的中点为P ⎝ ⎛⎭⎪⎫-12,y 0,M (x M ,y M ),N (x N ,y N ),则由点M ,N 为椭圆C 上的点, 可知⎩⎪⎨⎪⎧4x 2M +y 2M =4,4x 2N +y 2N =4.两式相减,得4(x M -x N )(x M +x N )+(y M -y N )(y M +y N )=0,将x M +x N =2×⎝ ⎛⎭⎪⎫-12=-1,y M +y N =2y 0,y M -y N x M -x N =-1k 代入上式得k =-y 02.又点P ⎝ ⎛⎭⎪⎫-12,y 0在弦MN 的垂直平分线上, 所以y 0=-12k +m .所以m =y 0+12k =34y 0.由点P (-12,y 0)在线段BB ′上(B ′,B 为直线x =-12与椭圆的交点,如图所示),所以y B ′<y 0<y B ,也即-3<y 0< 3. 所以-334<m <334,且m ≠0.[方法与技巧] 1.有关弦的三个问题涉及弦长的问题,应熟练地利用根与系数的关系,设而不求计算弦长;涉及垂直关系往往也是利用根与系数的关系设而不求简化运算;涉及过焦点的弦的问题,可考虑利用圆锥曲线的定义求解.2.求解与弦有关问题的两种方法(1)方程组法:联立直线方程和圆锥曲线方程,消元(x 或y )成为二次方程之后,结合根与系数的关系,建立等式关系或不等式关系.(2)点差法:在求解圆锥曲线且题目中已有直线与圆锥曲线相交和被截线段的中点坐标时,设出直线和圆锥曲线的两个交点坐标,代入圆锥曲线的方程并作差,从而求出直线的斜率,然后利用中点求出直线方程.“点差法”的常见题型有:求中点弦方程、求(过定点、平行弦)弦中点轨迹、垂直平分线问题.必须提醒的是“点差法”具有不等价性,即要考虑判别式Δ是否为正数. [失误与防范]判断直线与圆锥曲线位置关系时的注意点(1)直线与双曲线交于一点时,易误认为直线与双曲线相切,事实上不一定相切,当直线与双曲线的渐近线平行时,直线与双曲线相交于一点.(2)直线与抛物线交于一点时,除直线与抛物线相切外,易忽视直线与对称轴平行时也相交于一点.A 组 专项基础训练 (时间:40分钟)1.若直线mx +ny =4与⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是________. 答案 2 解析 由题意知:4m 2+n2>2,即m 2+n 2<2,∴点P (m ,n )在椭圆x 29+y 24=1的内部,故所求交点个数是2.2.直线y =b a x +3与双曲线x 2a 2-y 2b2=1的交点个数是________.答案 1解析 因为直线y =ba x +3与双曲线的渐近线y =b ax 平行,所以它与双曲线只有1个交点.3.已知椭圆C 的方程为x 216+y 2m 2=1(m >0),如果直线y =22x 与椭圆的一个交点M 在x 轴上的射影恰好是椭圆的右焦点F ,则m 的值为________. 答案 2 2解析 根据已知条件得c =16-m 2,则点(16-m 2,2216-m 2)在椭圆x 216+y 2m2=1(m >0)上,∴16-m 216+16-m22m2=1,可得m =2 2.4.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则AB 的最大值为________.答案4105解析 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2), 直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 2+4y 2=4,y =x +t 消去y ,得5x 2+8tx +4(t 2-1)=0, 则x 1+x 2=-85t ,x 1x 2=4t 2-15.∴AB =1+k 2|x 1-x 2| =1+k 2·x 1+x 22-4x 1x 2=2·⎝ ⎛⎭⎪⎫-85t 2-4×4t 2-15 =425·5-t 2, 当t =0时,AB max =4105.5.过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A ,B 两点,它们到直线x =-2的距离之和等于5,则这样的直线有________条. 答案 0解析 抛物线y 2=4x 的焦点坐标为(1,0),准线方程为x =-1,设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),则A ,B 到直线x =-1的距离之和为x 1+x 2+2.设直线方程为x =my +1,代入抛物线y 2=4x , 则y 2=4(my +1),即y 2-4my -4=0, ∴x 1+x 2=m (y 1+y 2)+2=4m 2+2. ∴x 1+x 2+2=4m 2+4≥4.∴A ,B 到直线x =-2的距离之和x 1+x 2+2+2≥6>5. ∴满足题意的直线不存在.6.过双曲线x 2-y 22=1的右焦点作直线l 交双曲线于A 、B 两点,若使得AB =λ的直线l 恰有3条,则λ=________. 答案 4解析 ∵使得AB =λ的直线l 恰有3条. ∴根据对称性,其中有一条直线与实轴垂直.此时A ,B 的横坐标为3,代入双曲线方程,可得y =±2,故AB =4. ∵双曲线的两个顶点之间的距离是2,小于4,∴过双曲线的焦点一定有两条直线使得交点之间的距离等于4, 综上可知,AB =4时,有3条直线满足题意. ∴λ=4.7.在抛物线y =x 2上关于直线y =x +3对称的两点M ,N 的坐标分别为______________. 答案 (-2,4),(1,1)解析 设直线MN 的方程为y =-x +b , 代入y =x 2中,整理得x 2+x -b =0,令Δ=1+4b >0, ∴b >-14.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-1,y 1+y 22=-x 1+x 22+b =12+b ,由⎝ ⎛⎭⎪⎫-12,12+b 在直线y =x +3上, 即12+b =-12+3,解得b =2, 联立得⎩⎪⎨⎪⎧y =-x +2,y =x 2,解得⎩⎪⎨⎪⎧x 1=-2,y 1=4,⎩⎪⎨⎪⎧x 2=1,y 2=1.8.过椭圆x 216+y 24=1内一点P (3,1),且被这点平分的弦所在直线的方程是____________.答案 3x +4y -13=0解析 设直线与椭圆交于A (x 1,y 1)、B (x 2,y 2)两点, 由于A 、B 两点均在椭圆上, 故x 2116+y 214=1,x 2216+y 224=1, 两式相减得x 1+x 2x 1-x 216+y 1+y 2y 1-y 24=0.又∵P 是A 、B 的中点,∴x 1+x 2=6,y 1+y 2=2, ∴k AB =y 1-y 2x 1-x 2=-34. ∴直线AB 的方程为y -1=-34(x -3).即3x +4y -13=0. 9.如图,点F 1(-c ,0),F 2(c,0)分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,过点F 1作x 轴的垂线,交椭圆C 的上半部分于点P ,过点F 2作直线PF 2的垂线交直线x =a 2c于点Q ,连结PQ .(1)如果点Q 的坐标为(4,4),求椭圆C 的方程;(2)试判断直线PQ 与椭圆C 的公共点个数,并证明你的结论.解 (1)方法一 由条件知,P ⎝⎛⎭⎪⎫-c ,b 2a ,故直线PF 2的斜率为kPF 2=b 2a -0-c -c =-b 22ac .因为PF 2⊥F 2Q ,所以直线F 2Q 的方程为y =2ac b 2x -2ac 2b2,故Q ⎝ ⎛⎭⎪⎫a 2c ,2a .由题设知,a 2c=4,2a =4,解得a =2,c =1.故椭圆C 的方程为x 24+y 23=1.方法二 设直线x =a 2c 与x 轴交于点M .由条件知,P ⎝⎛⎭⎪⎫-c ,b 2a . 因为△PF 1F 2∽△F 2MQ ,所以PF 1F 2M =F 1F 2MQ, 即b 2aa 2c-c =2cMQ ,解得MQ =2a .所以⎩⎪⎨⎪⎧a 2c=4,2a =4,解得⎩⎪⎨⎪⎧a =2,c =1.故椭圆方程为x 24+y 23=1.(2)∵点Q 的坐标为⎝ ⎛⎭⎪⎫a 2c ,2a ,点P 的坐标为⎝⎛⎭⎪⎫-c ,b 2a ,∴k PQ =2a -b 2a a 2c--c =c 2a 2-b 2a a 2+c 2=c a, ∴PQ 的方程为y -2a =c a ⎝ ⎛⎭⎪⎫x -a 2c ,即y =cax +a .将PQ 的方程代入椭圆C 的方程,得b 2x 2+a 2⎝ ⎛⎭⎪⎫cax +a 2=a 2b 2,∴(b 2+c 2)x 2+2a 2cx +a 4-a 2b 2=0,而a 2=b 2+c 2,上式可化为a 2x 2+2a 2cx +a 2c 2=0, 解得x =-c ,∴直线PQ 与椭圆C 只有一个公共点.10.(2014·湖北)在平面直角坐标系xOy 中,点M 到点F (1,0)的距离比它到y 轴的距离多1.记点M 的轨迹为C . (1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点P (-2,1),求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围. 解 (1)设点M (x ,y ),依题意得MF =|x |+1, 即x -12+y 2=|x |+1,化简整理得y 2=2(|x |+x ). 故点M 的轨迹C 的方程为y2=⎩⎪⎨⎪⎧4x ,x >0,0,x ≤0.(2)在点M 的轨迹C 中,记C 1:y 2=4x (x >0),C 2:y =0(x <0).依题意,可设直线l 的方程为y -1=k (x +2).由方程组⎩⎪⎨⎪⎧y -1=kx +2,y 2=4x ,可得ky 2-4y +4(2k +1)=0.(*1) ①当k =0时,此时y =1.把y =1代入轨迹C 的方程,得x =14.故此时直线l :y =1与轨迹C 恰好有一个公共点(14,1).②当k ≠0时,方程(*1)根的判别式为Δ=-16(2k 2+k -1).(*2) 设直线l 与x 轴的交点为(x 0,0),则由y -1=k (x +2),令y =0,得x 0=-2k +1k.(*3)(ⅰ)若⎩⎪⎨⎪⎧Δ<0,x 0<0,由(*2)(*3)解得k <-1或k >12.即当k ∈(-∞,-1)∪(12,+∞)时,直线l 与C 1没有公共点,与C 2有一个公共点,故此时直线l 与轨迹C 恰好有一个公共点.(ⅱ)若⎩⎪⎨⎪⎧Δ=0,x 0<0,或⎩⎪⎨⎪⎧Δ>0,x 0≥0,由(*2)(*3)解得k ∈{-1,12},或-12≤k <0.即当x ∈{-1,12}时,直线l 与C 1只有一个公共点,与C 2有一个公共点.当k ∈[-12,0)时,直线l 与C 1有两个公共点,与C 2没有公共点.故当k ∈[-12,0)∪{-1,12}时,直线l 与轨迹C 恰好有两个公共点.(ⅲ)若⎩⎪⎨⎪⎧Δ>0,x 0<0,由(*2)(*3)解得-1<k <-12或0<k <12.即当k ∈(-1,-12)∪(0,12)时,直线l 与C 1有两个公共点,与C 2有一个公共点,故此时直线l 与轨迹C 恰好有三个公共点.综合①②可知,当k ∈(-∞,-1)∪(12,+∞)∪{0}时,直线l 与轨迹C 恰好有一个公共点;当k ∈[-12,0)∪{-1,12}时,直线l 与轨迹C 恰好有两个公共点;当k ∈(-1,-12)∪(0,12)时,直线l 与轨迹C 恰好有三个公共点. B 组 专项能力提升 (时间:25分钟)11.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,PA ⊥l ,A 为垂足.如果直线AF 的斜率为-3,那么PF =________.答案 8解析 直线AF 的方程为y =-3(x -2),联立⎩⎨⎧y =-3x +23,x =-2,得y =43,所以P (6,43).由抛物线的性质可知PF =6+2=8.12.已知双曲线C :y 2a 2-x 2b2=1 (a >0,b >0),P 为x 轴上一动点,经过点P 的直线y =2x +m (m ≠0)与双曲线C 有且只有一个交点,则双曲线C 的离心率为________. 答案52解析 由双曲线的方程可知:渐近线方程为y =±abx .∵经过点P 的直线y =2x +m (m ≠0)与双曲线C 有且只有一个交点,∴此直线与渐近线y =a bx 平行,∴a b=2. ∴e =c a=1+⎝ ⎛⎭⎪⎫b a2=52. 13.过抛物线y 2=2px (p >0)焦点F 的直线l 与抛物线交于B ,C 两点,l 与抛物线准线交于点A ,且AF =6,AF →=2FB →,则BC =________.答案 92解析 不妨设直线l 的倾斜角为θ,其中0<θ<π2,点B (x 1,y 1),C (x 2,y 2),则点B 在x 轴的上方,过点B 作该抛物线的准线的垂线,垂足为B 1,于是有BF =BB 1=3,AF AB =pBB 1,由此得p =2,抛物线方程是y 2=4x ,焦点F (1,0),cos θ=p AF =p 6=26=13,sin θ=1-cos 2θ=223,tan θ=sin θcos θ=22,直线l :y =22(x -1).由⎩⎨⎧y =22x -1,y 2=4x消去y ,得2x 2-5x +2=0,x 1+x 2=52,BC =x 1+x 2+p =52+2=92.14.已知F 是抛物线C :y 2=4x 的焦点,直线l :y =k (x +1)与抛物线C 交于A ,B 两点,记直线FA ,FB 的斜率分别为k 1,k 2,则k 1+k 2=________. 答案 0解析 由y 2=4x ,得抛物线焦点F (1,0), 联立⎩⎪⎨⎪⎧y =k x +1,y 2=4x ,得k 2x 2+(2k 2-4)x +k 2=0,设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4-2k2k2,x 1x 2=1.k 1+k 2=y 1x 1-1+y 2x 2-1=k x 1+1x 2-1+k x 2+1x 1-1x 1-1x 2-1=2k x 1x 2-1x 1-1x 2-1=2k 1-1x 1-1x 2-1=0.15.已知椭圆C 1:y 2a 2+x 2b2=1(a >b >0)的右顶点为A (1,0),过C 1的焦点且垂直长轴的弦长为1.(1)求椭圆C 1的方程;(2)设点P 在抛物线C 2:y =x 2+h (h ∈R )上,C 2在点P 处的切线与C 1交于点M ,N .当线段AP 的中点与MN 的中点的横坐标相等时,求h 的最小值.解 (1)由题意,得⎩⎪⎨⎪⎧b =1,2·b 2a=1.从而⎩⎪⎨⎪⎧a =2,b =1.因此,所求的椭圆C 1的方程为y 24+x 2=1.(2)如图,设M (x 1,y 1),N (x 2,y 2),P (t ,t 2+h ),则抛物线C 2在点P 处的切线斜率为y ′| x =t =2t . 直线MN 的方程为y =2tx -t 2+h .将上式代入椭圆C 1的方程中,得4x 2+(2tx -t 2+h )2-4=0, 即4(1+t 2)x 2-4t (t 2-h )x +(t 2-h )2-4=0. ①因为直线MN 与椭圆C 1有两个不同的交点, 所以①式中的Δ1=16[-t 4+2(h +2)t 2-h 2+4]>0.②设线段MN 的中点的横坐标是x 3,则x 3=x 1+x 22=t t 2-h 21+t2. 设线段PA 的中点的横坐标是x 4,则x 4=t +12.由题意,得x3=x4,即t2+(1+h)t+1=0. ③由③式中的Δ2=(1+h)2-4≥0,得h≥1,或h≤-3.当h≤-3时,h+2<0,4-h2<0,则不等式②不成立,所以h≥1.当h=1时,代入方程③得t=-1,将h=1,t=-1代入不等式②,检验成立.所以,h的最小值为1.。
高考数学总复习 第八章第9课时 圆锥曲线的综合问题课件

【解】
(1)由题意知 m=2,椭圆方程
x2 2 为 +y =1,c= 4-1= 3, 4 ∴左、右焦点坐标分别为(- 3,0),( 3,0).
x2 2 (2)m=3,椭圆方程为 +y =1, 9 设 P(x,y),则
2 x |PA|2=(x-2)2+y2=(x-2)2+1- 9
8 92 1 = x- + (-3≤x≤3), 9 4 2 9 2 ∴当 x= 时,|PA|min= ;当 x=-3 时, 4 2 |PA|max=5.
【题后感悟】
求范围的方法同求最值及函
数的值域的方法类似.求最值常见的解法有
两种:代数法和几何法.若题目的条件和结
论能明显体现几何特征及意义,则考虑利用 图形性质来解决;若题目的条件和结论能体 现一种明确的函数关系,则可首先建立起目 标函数,再求这个函数的最值.圆锥曲线中
变式训练 1 .已知抛物线的方程为 y2 = 4x ,直线 l 过定 点 P( - 2,1) ,斜率为 k , k为何值时,直线 l 与 抛物线y2=4x只有一个公共点?
解: 由题意, 得直线 l 的方程为 y-1=k(x+2),
y-1=kx+2 由 2 y =4x
,
得 ky2-4y+4(2k+1)=0.(*) (1)当 k=0 时,由方程(*)得 y=1, 方程组有一个解, 此时,直线与抛物线只有一个公共点.
Δ>0⇔直线与圆锥曲线________; 相交 Δ=0⇔直线与圆锥曲线_________; 相切 Δ<0⇔直线与圆锥曲线__________ . 相离 若a=0,则直线与圆锥曲线相交,且有一个交
点.若曲线为双曲线,则直线与双曲线的
____________平行;若曲线为抛物线,则直线 渐近线 ___________平行. 与抛物线的 对称轴
高考数学大一轮复习 第九章 平面解析几何 9.9 圆锥曲线的综合问题 第1课时 直线与圆锥曲线教师用

第九章平面解析几何 9.9 圆锥曲线的综合问题第1课时直线与圆锥曲线教师用书理苏教版1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c =0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0⇔直线与圆锥曲线相交;②Δ=0⇔直线与圆锥曲线相切;③Δ<0⇔直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点.①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;②若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则AB=1+k2|x2-x1|=1+1k2|y2-y1|.【知识拓展】过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上一点总有三条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线;过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线l 与抛物线y 2=2px 只有一个公共点,则l 与抛物线相切.( × ) (2)直线y =kx (k ≠0)与双曲线x 2-y 2=1一定相交.( × )(3)与双曲线的渐近线平行的直线与双曲线有且只有一个交点.( √ ) (4)直线与椭圆只有一个交点⇔直线与椭圆相切.( √ ) (5)过点(2,4)的直线与椭圆x 24+y 2=1只有一条切线.( × )(6)满足“直线y =ax +2与双曲线x 2-y 2=4只有一个公共点”的a 的值有4个.( √ )1.在同一平面直角坐标系中,方程a 2x 2+b 2y 2=1与ax +by 2=0(a >b >0)表示的曲线大致是________.(填序号)答案 ④解析 将方程a 2x 2+b 2y 2=1变形为x 21a 2+y 21b 2=1,∵a >b >0,∴1a 2<1b2,∴椭圆焦点在y 轴上.将方程ax +by 2=0变形为y 2=-a bx ,∵a >b >0,∴-a b<0,∴抛物线焦点在x 轴负半轴上,开口向左. 故④符合题意.2.(2016·常州模拟)直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为________.答案 相交解析 直线y =kx -k +1=k (x -1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.3.若直线y =kx 与双曲线x 29-y 24=1相交,则k 的取值范围是__________________.答案 ⎝ ⎛⎭⎪⎫-23,23 解析 双曲线x 29-y 24=1的渐近线方程为y =±23x ,若直线与双曲线相交,数形结合,得k ∈⎝ ⎛⎭⎪⎫-23,23.4.已知倾斜角为60°的直线l 通过抛物线x 2=4y 的焦点,且与抛物线相交于A ,B 两点,则弦AB =________. 答案 16解析 直线l 的方程为y =3x +1, 由⎩⎨⎧y =3x +1,x 2=4y ,得y 2-14y +1=0.设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=14,∴AB =y 1+y 2+p =14+2=16.5.(教材改编)已知与向量v =(1,0)平行的直线l 与双曲线x 24-y 2=1相交于A ,B 两点,则AB 的最小值为______.答案 4解析 由题意可设直线l 的方程为y =m , 代入x 24-y 2=1,得x 2=4(1+m 2),所以x 1=41+m2=21+m 2,x 2=-21+m 2,所以AB =|x 1-x 2|=41+m 2,所以AB =41+m 2≥4, 即当m =0时,AB 有最小值4.第1课时 直线与圆锥曲线题型一 直线与圆锥曲线的位置关系例1 (2016·无锡模拟)已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.解 将直线l 的方程与椭圆C 的方程联立,得方程组⎩⎪⎨⎪⎧y =2x +m , ①x 24+y22=1, ②将①代入②,整理得9x 2+8mx +2m 2-4=0.③方程③根的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144.(1)当Δ>0,即-32<m <32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点.(3)当Δ<0,即m <-32或m >32时,方程③没有实数根,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点.思维升华 (1)判断直线与圆锥曲线的交点个数时,可直接求解相应方程组得到交点坐标,也可利用消元后的一元二次方程根的判别式来确定,需注意利用判别式的前提是二次项系数不为0.(2)依据直线与圆锥曲线的交点个数求参数时,联立方程并消元,得到一元方程,此时注意观察方程的二次项系数是否为0,若为0,则方程为一次方程;若不为0,则将方程解的个数转化为判别式与0的大小关系求解.(2016·全国乙卷)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (1)求OH ON;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由.解 (1)由已知得M (0,t ),P ⎝ ⎛⎭⎪⎫t 22p ,t , 又N 为M 关于点P 的对称点,故N ⎝ ⎛⎭⎪⎫t 2p ,t ,ON 的方程为y =p t x ,代入y 2=2px 整理,得px2-2t 2x =0,解得x 1=0,x 2=2t2p ,因此H ⎝ ⎛⎭⎪⎫2t 2p ,2t .所以N 为OH 的中点,即OH ON=2.(2)直线MH 与C 除H 以外没有其他公共点,理由如下:直线MH 的方程为y -t =p 2t x ,即x =2tp(y -t ).代入y 2=2px ,得y 2-4ty +4t 2=0,解得y 1=y 2=2t ,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其他公共点. 题型二 弦长问题例2 (2016·全国甲卷)已知A 是椭圆E :x 24+y 23=1的左顶点,斜率为k (k >0)的直线交E于A ,M 两点,点N 在E 上,MA ⊥NA . (1)当AM =AN 时,求△AMN 的面积. (2)当2AM =AN 时,证明:3<k <2.(1)解 设M (x 1,y 1),则由题意知y 1>0,由AM =AN 及椭圆的对称性知,直线AM 的倾斜角为π4. 又A (-2,0),因此直线AM 的方程为y =x +2. 将x =y -2代入x 24+y 23=1,得7y 2-12y =0,解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)证明 设直线AM 的方程为y =k (x +2)(k >0), 代入x 24+y 23=1,得(3+4k 2)x 2+16k 2x +16k 2-12=0,由x 1·(-2)=16k 2-123+4k 2,得x 1=23-4k23+4k 2,故AM =|x 1+2|1+k 2=121+k23+4k2.由题设,直线AN 的方程为y =-1k(x +2),故同理可得AN =12k 1+k23k 2+4. 由2AM =AN ,得23+4k 2=k3k 2+4, 即4k 3-6k 2+3k -8=0,设f (t )=4t 3-6t 2+3t -8,则k 是f (t )的零点,f ′(t )=12t 2-12t +3=3(2t -1)2≥0,所以f (t )在(0,+∞)上单调递增,又f (3)=153-26<0,f (2)=6>0,因此f (t )在(0,+∞)上有唯一的零点,且零点k 在(3,2)内,所以3<k <2. 思维升华 有关圆锥曲线弦长问题的求解方法涉及弦长的问题中, 应熟练的利用根与系数的关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数的关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.(2016·徐州模拟)设椭圆C 1:x 2a 2+y 2b 2=1 (a >b >0)的离心率为32,F 1,F 2是椭圆的两个焦点,P 是椭圆上任意一点,且△PF 1F 2的周长是4+2 3. (1)求椭圆C 1的方程;(2)设椭圆C 1的左,右顶点分别为A ,B ,过椭圆C 1上的一点D 作x 轴的垂线交x 轴于点E (点D 与点A ,B 不重合),若C 点满足AB →⊥BC →,AD →∥OC →,连结AC 交DE 于点P ,求证:PD =PE .(1)解 由e =32,知c a =32,所以c =32a , 因为△PF 1F 2的周长是4+23,所以2a +2c =4+23, 所以a =2,c =3,所以b 2=a 2-c 2=1, 所以椭圆C 1的方程为x 24+y 2=1.(2)证明 由(1)得A (-2,0),B (2,0),设D (x 0,y 0), 所以E (x 0,0),因为AB →⊥BC →,所以可设C (2,y 1), 所以AD →=(x 0+2,y 0),OC →=(2,y 1),由AD →∥OC →可得(x 0+2)y 1=2y 0,即y 1=2y 0x 0+2.所以直线AC 的方程为y 2y 0x 0+2=x +24, 整理得y =y 02x 0+2(x +2).又点P 在DE 上,将x =x 0代入直线AC 的方程可得y =y 02,即点P 的坐标为(x 0,y 02),所以P为DE 的中点, 所以PD =PE . 题型三 中点弦问题命题点1 利用中点弦确定直线或曲线方程例3 (1)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为______________. (2)已知(4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,则l 的方程是________________.答案 (1)x 218+y 29=1 (2)x +2y -8=0解析 (1)因为直线AB 过点F (3,0)和点(1,-1),所以直线AB 的方程为y =12(x -3),代入椭圆方程x 2a 2+y 2b 2=1消去y ,得⎝ ⎛⎭⎪⎫a 24+b 2x 2-32a 2x +94a 2-a 2b 2=0,所以AB 的中点的横坐标为32a 22⎝ ⎛⎭⎪⎫a24+b 2=1,即a 2=2b 2,又a 2=b 2+c 2,所以b =c =3,a =3 2.所以E 的方程为x 218+y 29=1.(2)设直线l 与椭圆相交于A (x 1,y 1),B (x 2,y 2), 则x 2136+y 219=1,且x 2236+y 229=1, 两式相减得y 1-y 2x 1-x 2=-x 1+x 24y 1+y 2. 又x 1+x 2=8,y 1+y 2=4, 所以y 1-y 2x 1-x 2=-12,故直线l 的方程为y -2=-12(x -4),即x +2y -8=0.命题点2 由中点弦解决对称问题例4 (2015·浙江)已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点). 解 (1)由题意知m ≠0,可设直线AB 的方程为y =-1m x +b .由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b ,消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0.因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m2>0,①将AB 中点M ⎝ ⎛⎭⎪⎫2mbm 2+2,m 2b m 2+2代入直线方程y =mx +12,解得b =-m 2+22m 2.②由①②得m <-63或m >63. (2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62,则AB =t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离为d =t 2+12t 2+1.设△AOB 的面积为S (t ), 所以S (t )=12·AB ·d =12-2⎝⎛⎭⎪⎫t 2-122+2≤22,当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为22. 思维升华 处理中点弦问题常用的求解方法(1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x 1+x 2,y 1+y 2,y 1-y 2x 1-x 2三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.(2)根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后,由根与系数的关系求解.(3)解决对称问题除掌握解决中点弦问题的方法外,还要注意:如果点A ,B 关于直线l 对称,则l 垂直直线AB 且A ,B 的中点在直线l 上的应用.设抛物线过定点A (-1,0),且以直线x =1为准线.(1)求抛物线顶点的轨迹C 的方程;(2)若直线l 与轨迹C 交于不同的两点M ,N ,且线段MN 恰被直线x =-12平分,设弦MN 的垂直平分线的方程为y =kx +m ,试求m 的取值范围. 解 (1)设抛物线顶点为P (x ,y ),则焦点F (2x -1,y ). 再根据抛物线的定义得AF =2,即(2x )2+y 2=4, 所以轨迹C 的方程为x 2+y 24=1.(2)设弦MN 的中点为P ⎝ ⎛⎭⎪⎫-12,y 0,M (x M ,y M ),N (x N ,y N ),则由点M ,N 为椭圆C 上的点, 可知⎩⎪⎨⎪⎧4x 2M +y 2M =4,4x 2N +y 2N =4.两式相减,得4(x M -x N )(x M +x N )+(y M -y N )(y M +y N )=0,将x M +x N =2×⎝ ⎛⎭⎪⎫-12=-1,y M +y N =2y 0,y M -y N x M -x N =-1k 代入上式,得k =-y 02.又点P ⎝ ⎛⎭⎪⎫-12,y 0在弦MN 的垂直平分线上, 所以y 0=-12k +m .所以m =y 0+12k =34y 0.由点P (-12,y 0)在线段BB ′上(B ′,B 为直线x =-12与椭圆的交点,如图所示),所以y B ′<y 0<y B ,也即-3<y 0< 3. 所以-334<m <334,且m ≠0.即m 的取值范围为(-334,0)∪(0,334).1.(2016·南京模拟)已知椭圆x 29+y 22=1的左,右焦点分别为F 1,F 2,点P 在椭圆上,若PF 1=4,则PF 2=______,∠F 1PF 2的大小为________. 答案 2 120°解析 由题意得PF 1+PF 2=2a =6,所以PF 2=2. 又F 1F 2=2c =27,在△PF 1F 2中,由余弦定理可得 cos∠F 1PF 2=4+16-282×2×4=-12,即∠F 1PF 2=120°.2.直线4kx -4y -k =0与抛物线y 2=x 交于A ,B 两点,若AB =4,则弦AB 的中点到直线x +12=0的距离等于________. 答案 94解析 易知直线4kx -4y -k =0过抛物线y 2=x 的焦点(14,0),∴AB 为焦点弦.设A (x 1,y 1),B (x 2,y 2), 则AB 中点N (x 1+x 22,y 1+y 22), ∴AB =x 1+x 2+p =4.∴x 1+x 22=74. ∴AB 中点到直线x +12=0的距离为74+12=94.3.(2016·连云港一模)斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则AB 的最大值为________. 答案4105解析 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2), 直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 2+4y 2=4,y =x +t 消去y ,得5x 2+8tx +4(t 2-1)=0,则x 1+x 2=-85t ,x 1x 2=4t 2-15.∴AB =1+k 2|x 1-x 2| =1+k 2·x 1+x 22-4x 1x 2=2·-85t 2-4×4t 2-15=425·5-t 2,当t =0时,(AB )max =4105.4.(2017·无锡月考)直线y =b a x +3与双曲线x 2a 2-y 2b2=1的交点个数是________.答案 1解析 因为直线y =ba x +3与双曲线的渐近线y =b ax 平行,所以它与双曲线只有1个交点.5.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线与抛物线y =x 2+1只有一个公共点,则双曲线的离心率为______. 答案5解析 双曲线x 2a 2-y 2b 2=1的一条渐近线为y =ba x ,由方程组⎩⎪⎨⎪⎧y =b ax ,y =x 2+1消去y ,得x 2-b ax +1=0有唯一解, 所以Δ=(b a)2-4=0,ba=2,e =c a =a 2+b 2a= 1+ba2= 5.6.已知F 为抛物线y 2=8x 的焦点,过点F 且斜率为1的直线l 交抛物线于A ,B 两点,则|FA -FB |的值为________. 答案 8 2解析 依题意知F (2,0),所以直线l 的方程为y =x -2,联立方程,得⎩⎪⎨⎪⎧y =x -2,y 2=8x ,消去y ,得x 2-12x +4=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1x 2=4,x 1+x 2=12, 则|FA -FB |=|(x 1+2)-(x 2+2)| =|x 1-x 2|=x 1+x 22-4x 1x 2=144-16=8 2.7.在抛物线y =x 2上关于直线y =x +3对称的两点M ,N 的坐标分别为________. 答案 (-2,4),(1,1)解析 设直线MN 的方程为y =-x +b , 代入y =x 2中,整理得x 2+x -b =0, 令Δ=1+4b >0,∴b >-14.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-1,y 1+y 22=-x 1+x 22+b =12+b ,由(-12,12+b )在直线y =x +3上,即12+b =-12+3,解得b =2,联立⎩⎪⎨⎪⎧y =-x +2,y =x 2,解得⎩⎪⎨⎪⎧x 1=-2,y 1=4,⎩⎪⎨⎪⎧x 2=1,y 2=1.8.已知抛物线y 2=4x 的弦AB 的中点的横坐标为2,则AB 的最大值为________. 答案 6解析 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4, 那么AF +BF =x 1+x 2+2,又AF +BF ≥AB ⇒AB ≤6,当AB 过焦点F 时取得最大值6.9.过椭圆x 216+y 24=1内一点P (3,1),且被这点平分的弦所在直线的方程是____________.答案 3x +4y -13=0解析 设直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点, 由于A ,B 两点均在椭圆上, 故x 2116+y 214=1,x 2216+y 224=1, 两式相减得x 1+x 2x 1-x 216+y 1+y 2y 1-y 24=0.又∵P 是A ,B 的中点,∴x 1+x 2=6,y 1+y 2=2, ∴k AB =y 1-y 2x 1-x 2=-34. ∴直线AB 的方程为y -1=-34(x -3).即3x +4y -13=0.10.已知双曲线C :x 2-y 23=1,直线y =-2x +m 与双曲线C 的右支交于A ,B 两点(A 在B的上方),且与y 轴交于点M ,则MBMA的取值范围为________. 答案 (1,7+43)解析 由⎩⎪⎨⎪⎧y =-2x +m ,3x 2-y 2-3=0可得x 2-4mx +m 2+3=0,由题意得方程在[1,+∞)上有两个不相等的实根, 设f (x )=x 2-4mx +m 2+3,则⎩⎪⎨⎪⎧2m >1,f 1≥0,Δ>0,得m >1,设A (x 1,y 1),B (x 2,y 2)(x 1<x 2), 得x 1=2m -3m 2-1,x 2=2m +3m 2-1,所以MBMA=x2x1=2m+3m2-12m-3m2-1=-1+42-31-1m2,由m>1得,MBMA的取值范围为(1,7+43).11.如图,定直线l的方程为x=-4,定点F的坐标为(-1,0),P(x,y)为平面上一动点,作PQ⊥l于Q,若PQ=2PF.(1)求动点P的轨迹E的方程;(2)过定点F作直线交曲线E于A、B两点,若曲线E的中心为O,且AO→+3OF→=2OB→,求三角形OAB的面积.解(1)由|x+4|=2x+12+y2,化简得轨迹E的方程为x24+y23=1.(2)设直线AB的方程为ky=x+1,与椭圆方程联立消去x得(3k2+4)y2-6ky-9=0.设A(x1,y1),B(x2,y2).∵AO→+3OF→=2OB→,O(0,0),F(-1,0),∴y1=-2y2.∴y1=12k3k2+4,y2=-6k3k2+4,∴-72k23k2+42=-93k2+4,∴k2=45.∴AB=1+k2|y1-y2|=18|k|k2+13k2+4,又点O到直线AB的距离d=1k2+1,∴S△OAB=9|k|3k2+4=9516.12. (2016·泰州模拟)设点F1(-c,0),F2(c,0)分别是椭圆C:x2a2+y2=1(a>1)的左,右焦点,P为椭圆C上任意一点,且PF1→·PF2→的最小值为0.(1)求椭圆C 的方程;(2)如图,动直线l :y =kx +m 与椭圆C 有且仅有一个公共点,作F 1M ⊥l ,F 2N ⊥l 分别交直线l 于M ,N 两点,求四边形F 1MNF 2面积S 的最大值.解 (1)设P (x ,y ),则PF 1→=(-c -x ,-y ),PF 2→=(c -x ,-y ),∴PF 1→·PF 2→=x 2+y 2-c 2=a 2-1a2x 2+1-c 2,x ∈[-a ,a ],由题意,得1-c 2=0,c =1,则a 2=2, ∴椭圆C 的方程为x 22+y 2=1.(2)将直线l 的方程l :y =kx +m 代入椭圆C 的方程x 22+y 2=1中,得(2k 2+1)x 2+4kmx +2m2-2=0,则Δ=16k 2m 2-4(2k 2+1)(2m 2-2)=0, 化简得m 2=2k 2+1.设d 1=F 1M =|-k +m |k 2+1,d 2=F 2N =|k +m |k 2+1. ①当k ≠0时,设直线l 的倾斜角为θ, 则|d 1-d 2|=MN ·|tan θ|, ∴MN =1|k |·|d 1-d 2|, ∴S =12·1|k |·|d 1-d 2|·(d 1+d 2)=2|m |k 2+1=4|m |m 2+1=4|m |+1|m |,∵m 2=2k 2+1,∴当k ≠0时,|m |>1,|m |+1|m |>2,即S <2. ②当k =0时,四边形F 1MNF 2是矩形,此时S =2. ∴四边形F 1MNF 2面积S 的最大值为2.13. (2015·江苏)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b2=1(a >b >0)的离心率为22,且右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程.解 (1)由题意,得c a =22且c +a 2c=3,解得a =2,c =1,则b =1, 所以椭圆的标准方程为x 22+y 2=1.(2)当AB ⊥x 轴时,AB =2,又CP =3,不合题意.当AB 与x 轴不垂直时,设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2), 将AB 的方程代入椭圆方程, 得(1+2k 2)x 2-4k 2x +2(k 2-1)=0, 则x 1,2=2k 2±21+k21+2k2,故C 的坐标为⎝ ⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2,且AB =x 2-x 12+y 2-y 12=1+k2x 2-x 12=221+k 21+2k2.若k =0,则线段AB 的垂直平分线为y 轴,与左准线平行,不合题意. 从而k ≠0,故直线PC 的方程为 y +k1+2k 2=-1k ⎝ ⎛⎭⎪⎫x -2k 21+2k 2, 则P 点的坐标为⎝ ⎛⎭⎪⎫-2,5k 2+2k 1+2k 2, 从而PC =23k 2+1 1+k2|k |1+2k2. 因为PC =2AB ,所以23k 2+1 1+k 2|k |1+2k 2=421+k21+2k2,解得k =±1.此时直线AB 的方程为y =x -1或y =-x +1.。
高三数学一轮复习第九章平面解析几何第九节圆锥曲线的

x2
= 3kt
1 3k
2
,
y0=kx0+t= 1 t3k 2 ,
所以H
3kt 1 3k
2
,t 1 3k
2
,
由于| DP
|=| DQ
|,
所以DH⊥PQ,则kDH=- 1k ,
即
t
1 3k 2 3kt
1 3k
2 2 0
=- 1 ,
k
化简得t=1+3k2, ② 所以t>1,将②代入①得,t2<4t,故1<t<4. 所以t的范围是(1,4). 综上可得t∈(-2,4).
文数
课标版
第九节 圆锥曲线的综合问题
考点突破
考点一 圆锥曲线中的范围、最值问题
典例1 已知点A(0,-2),椭圆E: ax22 + by22 =1(a>b>0)的离心率为 23 ,F是椭圆 E的右焦点,直线AF的斜率为 2 3 ,O为坐标原点.
3
(1)求E的方程; (2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的 方程.
2-1 已知椭圆C: ax22 +y2=1(a>1)的上顶点为A,右焦点为F,直线AF与圆M:
(x-3)2+(y-1)2=3相切.
(1)求椭圆C的标准方程;
(2)若不过点A的动直线l与椭圆C交于P,Q两点,且 AP
· AQ
=0,求证:直线l
考点二 圆锥曲线中的定点、定值问题
典例2 (2016北京,19,14分)已知椭圆C: ax22 + by22 =1过A(2,0),B(0,1)两点.
(1)求椭圆C的方程及离心率;
2020版高考数学一轮复习第九章平面解析几何第9讲直线与圆锥曲线的位置关系教案理(含解析)新人教A版

第9讲直线与圆锥曲线的位置关系基础知识整合1.直线与圆锥曲线的位置关系要解决直线与圆锥曲线的位置关系问题,可把直线方程与圆锥曲线方程联立,消去y(或消去x)得到关于x(或关于y)的一元二次方程.如联立后得到以下方程:Ax2+Bx+C=0(A≠0),Δ=B2-4AC.若Δ<0,则直线与圆锥曲线□01没有公共点;若Δ=0,则直线与圆锥曲线□02有且只有一个公共点;若Δ>0,则直线与圆锥曲线□03有两个不同的公共点.2.弦长公式直线与圆锥曲线相交时,常常借助根与系数的关系解决弦长问题.直线方程与圆锥曲线方程联立,消去y后得到关于x的一元二次方程.当Δ>0时,直线与圆锥曲线相交,设交点为A(x1,y1),B(x2,y2),直线AB的斜率为k,则直线被圆锥曲线截得的弦长|AB|=□04x1-x22+y1-y22=□05+k2x1-x2|=□061+k2·x1+x22-4x1x2.再利用根与系数的关系得出x1+x2,x1x2的值,代入上式计算即可.3.直线与圆锥曲线相交弦的中点问题中点弦问题常用“根与系数的关系”或“点差法”求解.(1)利用根与系数的关系:将直线方程代入圆锥曲线的方程,消元后得到一个一元二次方程,利用根与系数的关系和中点坐标公式建立等式求解,注意不能忽视对判别式的讨论.(2)点差法:若直线l与圆锥曲线C有两个交点A,B,一般地,首先设出A(x1,y1),B(x2,y2),代入曲线方程,通过作差,构造出x1+x2,y1+y2,x1-x2,y1-y2,从而建立中点坐标和斜率的关系.解决直线与圆锥曲线关系问题的一般方法(1)解决焦点弦(过圆锥曲线焦点的弦)的长的有关问题,注意应用圆锥曲线的定义.(2)已知直线与圆锥曲线的某些关系求圆锥曲线的方程时,通常利用待定系数法.(3)圆锥曲线上的点关于某一直线的对称问题,解此类题的方法是利用圆锥曲线上的两点所在的直线与对称直线垂直,圆锥曲线上两点的中点一定在对称直线上,再利用根的判别式或中点与曲线的位置关系求解.1.直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( )A .相交B .相切C .相离D .不确定答案 A解析 直线y =kx -k +1=k (x -1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.2.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)与直线y =2x 有交点,则双曲线离心率的取值范围为( )A .(1,5)B .(1,5]C .(5,+∞)D .[5,+∞)答案 C解析 因为双曲线的一条渐近线方程为y =b a x ,则由题意得b a >2,所以e =c a=1+⎝ ⎛⎭⎪⎫b a2>1+4= 5.3.过抛物线y 2=2x 的焦点作一条直线与抛物线交于A ,B 两点,它们的横坐标之和等于2,则这样的直线( )A .有且只有一条B .有且只有两条C .有且只有三条D .有且只有四条答案 B解析 若直线AB 的斜率不存在时,则横坐标之和为1,不符合题意.若直线AB 的斜率存在,设直线AB 的斜率为k ,则直线AB 为y =k ⎝ ⎛⎭⎪⎫x -12,代入抛物线y 2=2x ,得k 2x 2-(k2+2)x +14k 2=0,因为A ,B 两点的横坐标之和为2.所以k =± 2.所以这样的直线有两条.4.(2018·全国卷Ⅰ)设抛物线C :y 2=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM →·FN →=( )A .5B .6C .7D .8 答案 D解析 根据题意,过点(-2,0)且斜率为23的直线方程为y =23(x +2),与抛物线方程联立⎩⎪⎨⎪⎧y =23x +,y 2=4x ,消去x 并整理,得y 2-6y +8=0,解得M (1,2),N (4,4),又F (1,0),所以FM →=(0,2),FN →=(3,4),从而可以求得FM →·FN →=0×3+2×4=8,故选D.5.(2018·山西阳泉质检)椭圆mx 2+ny 2=1与直线x +y -1=0相交于A ,B 两点,过AB 中点M 与坐标原点的直线的斜率为22,则mn的值为________. 答案22解析 解法一:设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),所以k OM =y 0x 0=22,k AB =y 2-y 1x 2-x 1=-1,由AB 的中点为M 可得x 1+x 2=2x 0,y 1+y 2=2y 0.由A ,B 在椭圆上,可得⎩⎪⎨⎪⎧mx 21+ny 21=1,mx 22+ny 22=1,两式相减可得m (x 1-x 2)(x 1+x 2)+n (y 1-y 2)(y 1+y 2)=0,则m (x 1-x 2)·2x 0-n (x 1-x 2)·2y 0=0,整理可得mn =22. 解法二:设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),联立方程⎩⎪⎨⎪⎧mx 2+ny 2=1,x +y -1=0,可得(m +n )x 2-2nx +n -1=0,所以x 1+x 2=2nm +n,y 1+y 2=2-(x 1+x 2)=2m m +n .由中点坐标公式可得,x 0=x 1+x 22=n m +n ,y 0=y 1+y 22=m m +n.因为M 与坐标原点的直线的斜率为22,所以y 0x 0=mm +n n m +n=m n =22. 6.(2018·太原模拟)已知抛物线y 2=4x 的焦点为F ,过焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点,若|AB |=6,则△AOB 的面积为________.答案6解析 因为抛物线y 2=4x 的焦点F 的坐标为(1,0),当直线AB 垂直于x 轴时,|AB |=4,不满足题意,所以设直线AB 的方程为y =k (x -1),与y 2=4x 联立,消去x 得ky 2-4y -4k =0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4k,y 1y 2=-4,所以|y 1-y 2|=16k2+16,因为|AB |=1+1k2|y 1-y 2|=6,所以4⎝ ⎛⎭⎪⎫1+1k 2=6,解和k =±2,所以|y 1-y 2|=16k 2+16=26,所以△AOB 的面积为12×1×26= 6.核心考向突破考向一 直线与圆锥曲线的位置关系例1 已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.。
高考数学复习考点知识讲解课件58 圆锥曲线的综合问题

无实数解
l与C1的交点 无__公__共__点__
一__个__交__点__
_两__个__交__点_ 一__个__交__点__ _无__交__点___
(2)几何法:在同一直角坐标系中画出圆锥曲线和直线,利用图象和性质可判定 直线与圆锥曲线的位置关系.
必备知识—基础落实
一、必记2个知识点 1.直线与圆锥曲线的位置关系的判定 (1)代数法:把圆锥曲线方程与直线方程联立消去y,整理得到关于x 的方程ax2+bx+c=0.
a=0 a≠0
方程ax2+bx+c=0的解
b=0
b≠0
Δ>0 Δ=0 Δ<0
无解(含l是双曲线的渐近线) 有一解(含l与抛物线的对称轴平
A.1
B. 2
C. 3
D.2 2
答案:D
解析:由题意可知焦点F(1,0),设A(xA,yA),B(xB,yB),由|AF|=3=xA+1, 得xA=2,又点A在第一象限,故A(2,2 2),故直线l的斜率为2 2,选D.
5.[2022·石家庄摸底考试]已知抛物线C:y2=2px(p>0),直线l:y = 3(x-1),l与C交于A,B两点,若|AB|=136,则p=__2__.
高考数学复习考点知识讲解课件
第九节 圆锥曲线的综合问题
必备知识—基础落实
·最新考纲· 1.了解圆锥曲线的简单应用. 2.理解数形结合的思想. 3.掌握解决直线和圆锥曲线位置关系的方法.
·考向预测· 考情分析:直线与圆锥曲线的综合应用问题(特别是一些经典问题, 如:定值与定点、最值与取值范围、探索性问题)是高考热点,常常 与向量、圆等知识交汇在一起命题,多以解答题形式出现,近年试题 难度有所降低. 学科素养:通过最值、定点问题考查了学生的数学素养,直线与圆 锥曲线等问题考查了学生的数学运算、数学抽象.
2022届高考数学一轮复习第八章平面解析几何第九节圆锥曲线的综合问题第2课时最值范围证明问题课件理北
[解析] (1)法一:由yy= 2=k8xx-4,得 k2x2-8(k+1)x+16=0, 由 k≠0 及 Δ=64(k+1)2-64k2=0,得 k=-12, 所以直线 l 的方程为 y=-12x-4. 法二:由 y2=8x 得 y=± 8x,直线 l 恒过点(0,-4),则 y=- 8x, 设切点为(x0,y0)(y0<0),由于 y=- 8x,所以
∵Δ=16(m2-12)>0,∴m2>12.
y1+y2=m-2+8m4,y1y2=m21+2 4.
∵kP′Q=xy22-+xy11=m(yy2+2-yy11), ∴直线 P′Q 的方程为 y+y1=m(yy2+2-yy11)(x-x1), 令 y=0,可得 x=m(yy21- +yy12)y1+my1+4.
为 F1(-
3,0),F2(
3,0),且经过点 A
3,21.
(1)求椭圆 C 的标准方程;
(2)过点 B(4,0)作一条斜率不为 0 的直线 l 与椭圆 C 相交于 P,Q 两点,
记点 P 关于 x 轴对称的点为 P′,若直线 P′Q 与 x 轴相交于点 D,求△DPQ
面积的最大值.
[解析] (1)由椭圆的定义,可知 2a=|AF1|+|AF2|=
第八章 平面解析几何 第九节 圆锥曲线的综合问题 第二课时 最值、范围、证明问题
题型一 圆锥曲线中的最值问题 圆锥曲线中的最值问题大致可分为两类 (1)涉及距离、面积的最值以及与之相关的一些问题; (2)求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与 之有关的一些问题.
[例] (2021·成都摸底)已知椭圆 C:xa22+yb22=1(a>b>0)的左、右焦点分别
∵|AQ|=|BQ|,∴AB⊥QM,又 Q14,0,M 为 AB 的中点,∴k≠0,直线 3m
高考数学大一轮复习 第九章 平面解析几何 9.9 圆锥曲线的综合问题 第1课时 直线与圆锥曲线教师用
第九章平面解析几何 9.9 圆锥曲线的综合问题第1课时直线与圆锥曲线教师用书理苏教版1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c =0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0⇔直线与圆锥曲线相交;②Δ=0⇔直线与圆锥曲线相切;③Δ<0⇔直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点.①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;②若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则AB=1+k2|x2-x1|=1+1k2|y2-y1|.【知识拓展】过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上一点总有三条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线;过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线l 与抛物线y 2=2px 只有一个公共点,则l 与抛物线相切.( × ) (2)直线y =kx (k ≠0)与双曲线x 2-y 2=1一定相交.( × )(3)与双曲线的渐近线平行的直线与双曲线有且只有一个交点.( √ ) (4)直线与椭圆只有一个交点⇔直线与椭圆相切.( √ ) (5)过点(2,4)的直线与椭圆x 24+y 2=1只有一条切线.( × )(6)满足“直线y =ax +2与双曲线x 2-y 2=4只有一个公共点”的a 的值有4个.( √ )1.在同一平面直角坐标系中,方程a 2x 2+b 2y 2=1与ax +by 2=0(a >b >0)表示的曲线大致是________.(填序号)答案 ④解析 将方程a 2x 2+b 2y 2=1变形为x 21a 2+y 21b 2=1,∵a >b >0,∴1a 2<1b2,∴椭圆焦点在y 轴上.将方程ax +by 2=0变形为y 2=-a bx ,∵a >b >0,∴-a b<0,∴抛物线焦点在x 轴负半轴上,开口向左. 故④符合题意.2.(2016·常州模拟)直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为________.答案 相交解析 直线y =kx -k +1=k (x -1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.3.若直线y =kx 与双曲线x 29-y 24=1相交,则k 的取值范围是__________________.答案 ⎝ ⎛⎭⎪⎫-23,23 解析 双曲线x 29-y 24=1的渐近线方程为y =±23x ,若直线与双曲线相交,数形结合,得k ∈⎝ ⎛⎭⎪⎫-23,23.4.已知倾斜角为60°的直线l 通过抛物线x 2=4y 的焦点,且与抛物线相交于A ,B 两点,则弦AB =________. 答案 16解析 直线l 的方程为y =3x +1, 由⎩⎨⎧y =3x +1,x 2=4y ,得y 2-14y +1=0.设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=14,∴AB =y 1+y 2+p =14+2=16.5.(教材改编)已知与向量v =(1,0)平行的直线l 与双曲线x 24-y 2=1相交于A ,B 两点,则AB 的最小值为______.答案 4解析 由题意可设直线l 的方程为y =m , 代入x 24-y 2=1,得x 2=4(1+m 2),所以x 1=+m2=21+m 2,x 2=-21+m 2,所以AB =|x 1-x 2|=41+m 2,所以AB =41+m 2≥4, 即当m =0时,AB 有最小值4.第1课时 直线与圆锥曲线题型一 直线与圆锥曲线的位置关系例1 (2016·无锡模拟)已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.解 将直线l 的方程与椭圆C 的方程联立,得方程组⎩⎪⎨⎪⎧y =2x +m , ①x 24+y22=1, ②将①代入②,整理得9x 2+8mx +2m 2-4=0.③方程③根的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144.(1)当Δ>0,即-32<m <32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点.(3)当Δ<0,即m <-32或m >32时,方程③没有实数根,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点.思维升华 (1)判断直线与圆锥曲线的交点个数时,可直接求解相应方程组得到交点坐标,也可利用消元后的一元二次方程根的判别式来确定,需注意利用判别式的前提是二次项系数不为0.(2)依据直线与圆锥曲线的交点个数求参数时,联立方程并消元,得到一元方程,此时注意观察方程的二次项系数是否为0,若为0,则方程为一次方程;若不为0,则将方程解的个数转化为判别式与0的大小关系求解.(2016·全国乙卷)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (1)求OH ON;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由.解 (1)由已知得M (0,t ),P ⎝ ⎛⎭⎪⎫t 22p ,t , 又N 为M 关于点P 的对称点,故N ⎝ ⎛⎭⎪⎫t 2p ,t ,ON 的方程为y =p t x ,代入y 2=2px 整理,得px2-2t 2x =0,解得x 1=0,x 2=2t2p ,因此H ⎝ ⎛⎭⎪⎫2t 2p ,2t .所以N 为OH 的中点,即OH ON=2.(2)直线MH 与C 除H 以外没有其他公共点,理由如下:直线MH 的方程为y -t =p 2t x ,即x =2tp(y -t ).代入y 2=2px ,得y 2-4ty +4t 2=0,解得y 1=y 2=2t ,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其他公共点. 题型二 弦长问题例2 (2016·全国甲卷)已知A 是椭圆E :x 24+y 23=1的左顶点,斜率为k (k >0)的直线交E于A ,M 两点,点N 在E 上,MA ⊥NA . (1)当AM =AN 时,求△AMN 的面积. (2)当2AM =AN 时,证明:3<k <2.(1)解 设M (x 1,y 1),则由题意知y 1>0,由AM =AN 及椭圆的对称性知,直线AM 的倾斜角为π4. 又A (-2,0),因此直线AM 的方程为y =x +2. 将x =y -2代入x 24+y 23=1,得7y 2-12y =0,解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)证明 设直线AM 的方程为y =k (x +2)(k >0), 代入x 24+y 23=1,得(3+4k 2)x 2+16k 2x +16k 2-12=0,由x 1·(-2)=16k 2-123+4k2,得x 1=-4k23+4k2,故AM =|x 1+2|1+k 2=121+k23+4k 2.由题设,直线AN 的方程为y =-1k(x +2),故同理可得AN =12k 1+k23k 2+4. 由2AM =AN ,得23+4k 2=k3k 2+4, 即4k 3-6k 2+3k -8=0,设f (t )=4t 3-6t 2+3t -8,则k 是f (t )的零点,f ′(t )=12t 2-12t +3=3(2t -1)2≥0,所以f (t )在(0,+∞)上单调递增,又f (3)=153-26<0,f (2)=6>0,因此f (t )在(0,+∞)上有唯一的零点,且零点k 在(3,2)内,所以3<k <2. 思维升华 有关圆锥曲线弦长问题的求解方法涉及弦长的问题中, 应熟练的利用根与系数的关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数的关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.(2016·徐州模拟)设椭圆C 1:x 2a 2+y 2b 2=1 (a >b >0)的离心率为32,F 1,F 2是椭圆的两个焦点,P 是椭圆上任意一点,且△PF 1F 2的周长是4+2 3. (1)求椭圆C 1的方程;(2)设椭圆C 1的左,右顶点分别为A ,B ,过椭圆C 1上的一点D 作x 轴的垂线交x 轴于点E (点D 与点A ,B 不重合),若C 点满足AB →⊥BC →,AD →∥OC →,连结AC 交DE 于点P ,求证:PD =PE .(1)解 由e =32,知c a =32,所以c =32a , 因为△PF 1F 2的周长是4+23,所以2a +2c =4+23, 所以a =2,c =3,所以b 2=a 2-c 2=1, 所以椭圆C 1的方程为x 24+y 2=1.(2)证明 由(1)得A (-2,0),B (2,0),设D (x 0,y 0), 所以E (x 0,0),因为AB →⊥BC →,所以可设C (2,y 1), 所以AD →=(x 0+2,y 0),OC →=(2,y 1),由AD →∥OC →可得(x 0+2)y 1=2y 0,即y 1=2y 0x 0+2.所以直线AC 的方程为y 2y 0x 0+2=x +24, 整理得y =y 0x 0+(x +2).又点P 在DE 上,将x =x 0代入直线AC 的方程可得y =y 02,即点P 的坐标为(x 0,y 02),所以P为DE 的中点, 所以PD =PE . 题型三 中点弦问题命题点1 利用中点弦确定直线或曲线方程例3 (1)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为______________. (2)已知(4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,则l 的方程是________________.答案 (1)x 218+y 29=1 (2)x +2y -8=0解析 (1)因为直线AB 过点F (3,0)和点(1,-1),所以直线AB 的方程为y =12(x -3),代入椭圆方程x 2a 2+y 2b 2=1消去y ,得⎝ ⎛⎭⎪⎫a 24+b 2x 2-32a 2x +94a 2-a 2b 2=0,所以AB 的中点的横坐标为32a 22⎝ ⎛⎭⎪⎫a24+b 2=1,即a 2=2b 2,又a 2=b 2+c 2,所以b =c =3,a =3 2.所以E 的方程为x 218+y 29=1.(2)设直线l 与椭圆相交于A (x 1,y 1),B (x 2,y 2), 则x 2136+y 219=1,且x 2236+y 229=1, 两式相减得y 1-y 2x 1-x 2=-x 1+x 2y 1+y 2.又x 1+x 2=8,y 1+y 2=4, 所以y 1-y 2x 1-x 2=-12,故直线l 的方程为y -2=-12(x -4),即x +2y -8=0.命题点2 由中点弦解决对称问题例4 (2015·浙江)已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点). 解 (1)由题意知m ≠0,可设直线AB 的方程为y =-1m x +b .由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b ,消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0.因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m2>0,①将AB 中点M ⎝ ⎛⎭⎪⎫2mbm 2+2,m 2b m 2+2代入直线方程y =mx +12,解得b =-m 2+22m 2.②由①②得m <-63或m >63. (2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62,则AB =t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离为d =t 2+12t 2+1.设△AOB 的面积为S (t ), 所以S (t )=12·AB ·d =12-2⎝⎛⎭⎪⎫t 2-122+2≤22,当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为22. 思维升华 处理中点弦问题常用的求解方法(1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x 1+x 2,y 1+y 2,y 1-y 2x 1-x 2三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.(2)根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后,由根与系数的关系求解.(3)解决对称问题除掌握解决中点弦问题的方法外,还要注意:如果点A ,B 关于直线l 对称,则l 垂直直线AB 且A ,B 的中点在直线l 上的应用.设抛物线过定点A (-1,0),且以直线x =1为准线.(1)求抛物线顶点的轨迹C 的方程;(2)若直线l 与轨迹C 交于不同的两点M ,N ,且线段MN 恰被直线x =-12平分,设弦MN 的垂直平分线的方程为y =kx +m ,试求m 的取值范围. 解 (1)设抛物线顶点为P (x ,y ),则焦点F (2x -1,y ). 再根据抛物线的定义得AF =2,即(2x )2+y 2=4, 所以轨迹C 的方程为x 2+y 24=1.(2)设弦MN 的中点为P ⎝ ⎛⎭⎪⎫-12,y 0,M (x M ,y M ),N (x N ,y N ),则由点M ,N 为椭圆C 上的点, 可知⎩⎪⎨⎪⎧4x 2M +y 2M =4,4x 2N +y 2N =4.两式相减,得4(x M -x N )(x M +x N )+(y M -y N )(y M +y N )=0,将x M +x N =2×⎝ ⎛⎭⎪⎫-12=-1,y M +y N =2y 0,y M -y N x M -x N =-1k 代入上式,得k =-y 02.又点P ⎝ ⎛⎭⎪⎫-12,y 0在弦MN 的垂直平分线上, 所以y 0=-12k +m .所以m =y 0+12k =34y 0.由点P (-12,y 0)在线段BB ′上(B ′,B 为直线x =-12与椭圆的交点,如图所示),所以y B ′<y 0<y B ,也即-3<y 0< 3. 所以-334<m <334,且m ≠0.即m 的取值范围为(-334,0)∪(0,334).1.(2016·南京模拟)已知椭圆x 29+y 22=1的左,右焦点分别为F 1,F 2,点P 在椭圆上,若PF 1=4,则PF 2=______,∠F 1PF 2的大小为________. 答案 2 120°解析 由题意得PF 1+PF 2=2a =6,所以PF 2=2. 又F 1F 2=2c =27,在△PF 1F 2中,由余弦定理可得 cos∠F 1PF 2=4+16-282×2×4=-12,即∠F 1PF 2=120°.2.直线4kx -4y -k =0与抛物线y 2=x 交于A ,B 两点,若AB =4,则弦AB 的中点到直线x +12=0的距离等于________. 答案 94解析 易知直线4kx -4y -k =0过抛物线y 2=x 的焦点(14,0),∴AB 为焦点弦.设A (x 1,y 1),B (x 2,y 2), 则AB 中点N (x 1+x 22,y 1+y 22), ∴AB =x 1+x 2+p =4.∴x 1+x 22=74. ∴AB 中点到直线x +12=0的距离为74+12=94.3.(2016·连云港一模)斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则AB 的最大值为________. 答案4105解析 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2), 直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 2+4y 2=4,y =x +t 消去y ,得5x 2+8tx +4(t 2-1)=0,则x 1+x 2=-85t ,x 1x 2=t 2-5.∴AB =1+k 2|x 1-x 2| =1+k 2·x 1+x 22-4x 1x 2=2·-85t 2-4×t 2-5=425·5-t 2,当t =0时,(AB )max =4105.4.(2017·无锡月考)直线y =b a x +3与双曲线x 2a 2-y 2b2=1的交点个数是________.答案 1解析 因为直线y =ba x +3与双曲线的渐近线y =b ax 平行,所以它与双曲线只有1个交点.5.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线与抛物线y =x 2+1只有一个公共点,则双曲线的离心率为______. 答案5解析 双曲线x 2a 2-y 2b 2=1的一条渐近线为y =ba x ,由方程组⎩⎪⎨⎪⎧y =b ax ,y =x 2+1消去y ,得x 2-b ax +1=0有唯一解, 所以Δ=(b a)2-4=0,ba=2,e =c a =a 2+b 2a= 1+ba2= 5.6.已知F 为抛物线y 2=8x 的焦点,过点F 且斜率为1的直线l 交抛物线于A ,B 两点,则|FA -FB |的值为________. 答案 8 2解析 依题意知F (2,0),所以直线l 的方程为y =x -2,联立方程,得⎩⎪⎨⎪⎧y =x -2,y 2=8x ,消去y ,得x 2-12x +4=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1x 2=4,x 1+x 2=12, 则|FA -FB |=|(x 1+2)-(x 2+2)| =|x 1-x 2|=x 1+x 22-4x 1x 2=144-16=8 2.7.在抛物线y =x 2上关于直线y =x +3对称的两点M ,N 的坐标分别为________. 答案 (-2,4),(1,1)解析 设直线MN 的方程为y =-x +b , 代入y =x 2中,整理得x 2+x -b =0, 令Δ=1+4b >0,∴b >-14.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-1,y 1+y 22=-x 1+x 22+b =12+b ,由(-12,12+b )在直线y =x +3上,即12+b =-12+3,解得b =2,联立⎩⎪⎨⎪⎧y =-x +2,y =x 2,解得⎩⎪⎨⎪⎧x 1=-2,y 1=4,⎩⎪⎨⎪⎧x 2=1,y 2=1.8.已知抛物线y 2=4x 的弦AB 的中点的横坐标为2,则AB 的最大值为________. 答案 6解析 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4, 那么AF +BF =x 1+x 2+2,又AF +BF ≥AB ⇒AB ≤6,当AB 过焦点F 时取得最大值6.9.过椭圆x 216+y 24=1内一点P (3,1),且被这点平分的弦所在直线的方程是____________.答案 3x +4y -13=0解析 设直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点, 由于A ,B 两点均在椭圆上, 故x 2116+y 214=1,x 2216+y 224=1, 两式相减得x 1+x 2x 1-x 216+y 1+y 2y 1-y 24=0.又∵P 是A ,B 的中点,∴x 1+x 2=6,y 1+y 2=2, ∴k AB =y 1-y 2x 1-x 2=-34. ∴直线AB 的方程为y -1=-34(x -3).即3x +4y -13=0.10.已知双曲线C :x 2-y 23=1,直线y =-2x +m 与双曲线C 的右支交于A ,B 两点(A 在B的上方),且与y 轴交于点M ,则MBMA的取值范围为________. 答案 (1,7+43)解析 由⎩⎪⎨⎪⎧y =-2x +m ,3x 2-y 2-3=0可得x 2-4mx +m 2+3=0,由题意得方程在[1,+∞)上有两个不相等的实根, 设f (x )=x 2-4mx +m 2+3,则⎩⎪⎨⎪⎧2m >1,f,Δ>0,得m >1,设A (x 1,y 1),B (x 2,y 2)(x 1<x 2), 得x 1=2m -m 2-,x 2=2m +m 2-,所以MB MA =x 2x 1=2m +m 2-2m -m 2-=-1+42--1m 2,由m >1得,MB MA的取值范围为(1,7+43).11.如图,定直线l 的方程为x =-4,定点F 的坐标为(-1,0),P (x ,y )为平面上一动点,作PQ ⊥l 于Q ,若PQ =2PF .(1)求动点P 的轨迹E 的方程;(2)过定点F 作直线交曲线E 于A 、B 两点,若曲线E 的中心为O ,且AO →+3OF →=2OB →,求三角形OAB 的面积. 解 (1)由|x +4|=2x +2+y 2,化简得轨迹E 的方程为x 24+y 23=1.(2)设直线AB 的方程为ky =x +1,与椭圆方程联立消去x 得(3k 2+4)y 2-6ky -9=0. 设A (x 1,y 1),B (x 2,y 2).∵AO →+3OF →=2OB →,O (0,0),F (-1,0),∴y 1=-2y 2. ∴y 1=12k 3k 2+4,y 2=-6k3k 2+4,∴-72k 2k 2+2=-93k 2+4,∴k 2=45. ∴AB =1+k 2|y 1-y 2|=18|k |k 2+13k 2+4, 又点O 到直线AB 的距离d =1k 2+1,∴S △OAB =9|k |3k 2+4=9516.12. (2016·泰州模拟)设点F 1(-c,0),F 2(c,0)分别是椭圆C :x 2a 2+y 2=1(a >1)的左,右焦点,P 为椭圆C 上任意一点,且PF 1→·PF 2→的最小值为0.(1)求椭圆C 的方程;(2)如图,动直线l :y =kx +m 与椭圆C 有且仅有一个公共点,作F 1M ⊥l ,F 2N ⊥l 分别交直线l 于M ,N 两点,求四边形F 1MNF 2面积S 的最大值.解 (1)设P (x ,y ),则PF 1→=(-c -x ,-y ),PF 2→=(c -x ,-y ),∴PF 1→·PF 2→=x 2+y 2-c 2=a 2-1a2x 2+1-c 2,x ∈[-a ,a ],由题意,得1-c 2=0,c =1,则a 2=2, ∴椭圆C 的方程为x 22+y 2=1.(2)将直线l 的方程l :y =kx +m 代入椭圆C 的方程x 22+y 2=1中,得(2k 2+1)x 2+4kmx +2m2-2=0,则Δ=16k 2m 2-4(2k 2+1)(2m 2-2)=0, 化简得m 2=2k 2+1.设d 1=F 1M =|-k +m |k 2+1,d 2=F 2N =|k +m |k 2+1. ①当k ≠0时,设直线l 的倾斜角为θ, 则|d 1-d 2|=MN ·|tan θ|, ∴MN =1|k |·|d 1-d 2|, ∴S =12·1|k |·|d 1-d 2|·(d 1+d 2)=2|m |k 2+1=4|m |m 2+1=4|m |+1|m |,∵m 2=2k 2+1,∴当k ≠0时,|m |>1,|m |+1|m |>2,即S <2. ②当k =0时,四边形F 1MNF 2是矩形,此时S =2. ∴四边形F 1MNF 2面积S 的最大值为2.13. (2015·江苏)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b2=1(a >b >0)的离心率为22,且右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程.解 (1)由题意,得c a =22且c +a 2c=3,解得a =2,c =1,则b =1, 所以椭圆的标准方程为x 22+y 2=1.(2)当AB ⊥x 轴时,AB =2,又CP =3,不合题意.当AB 与x 轴不垂直时,设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2), 将AB 的方程代入椭圆方程, 得(1+2k 2)x 2-4k 2x +2(k 2-1)=0, 则x 1,2=2k 2±+k 21+2k2,故C 的坐标为⎝ ⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2,且AB =x 2-x 12+y 2-y 12=+k2x 2-x 12=22+k 21+2k2.若k =0,则线段AB 的垂直平分线为y 轴,与左准线平行,不合题意. 从而k ≠0,故直线PC 的方程为 y +k1+2k 2=-1k ⎝ ⎛⎭⎪⎫x -2k 21+2k 2, 则P 点的坐标为⎝ ⎛⎭⎪⎫-2,5k 2+2k +2k 2, 从而PC =k 2+1+k2|k +2k2. 因为PC =2AB ,所以k 2+1+k 2|k +2k 2=42+k21+2k2, 解得k =±1.此时直线AB 的方程为y =x -1或y =-x +1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 第九节 圆锥曲线的综合问题 1.直线与圆锥曲线的位置关系 判断直线l与圆锥曲线C的位置关系时,通常将直线l的方程Ax+By+C=0(A,B不同时为0)代入圆锥曲线C的方程F(x,y)=0,消去y(也可以消去x)得到一个关于变量x(或变量y)的一元方程.
即 Ax+By+C=0,Fx,y=0消去y,得ax2+bx+c=0. (1)当a≠0时,设一元二次方程ax2+bx+c=0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C相交; Δ=0⇔直线与圆锥曲线C相切; Δ<0⇔直线与圆锥曲线C相离. (2)当a=0,b≠0时,即得到一个一次方程,则直线l与圆锥曲线C相交,且只有一个交点,此时, 若C为双曲线,则直线l与双曲线的渐近线的位置关系是平行; 若C为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合. 2.弦长公式 设斜率为k(k≠0)的直线l与圆锥曲线C相交于A,B两点,A(x1,y1),B(x2,y2),则 |AB|=1+k2|x1-x2| =1+k2·x1+x22-4x1x2
= 1+1k2·|y1-y2|
=1+1k2·y1+y22-4y1y2. [小题体验] 1.(教材习题改编)直线y=kx-k+1与椭圆x29+y24=1的位置关系为( ) A.相交 B.相切 C.相离 D.不确定 解析:选A 直线y=kx-k+1=k(x-1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交. 2.顶点在坐标原点,焦点在x轴上的抛物线截得直线y=2x+1所得的弦AB的长为15, 2
则该抛物线的标准方程为____________. 解析:设抛物线的方程为y2=mx(m≠0),A(x1,y1),B(x2,y2).
由方程组 y2=mx,y=2x+1可得4x2+(4-m)x+1=0. 所以x1+x2=-4-m4,x1x2=14. 所以|AB|=+22x1+x22-4x1x2] = 51-m42-1=15, 解得m=12或m=-4. 所以抛物线的标准方程为y2=12x或y2=-4x. 答案:y2=12x或y2=-4x
1.直线与双曲线交于一点时,易误认为直线与双曲线相切,事实上不一定相切,当直线与双曲线的渐近线平行时,直线与双曲线相交于一点. 2.直线与抛物线交于一点时,除直线与抛物线相切外易忽视直线与对称轴平行时也相交于一点. [小题纠偏] 1.过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有( ) A.1条 B.2条 C.3条 D.4条 解析:选C 结合图形分析可知,满足题意的直线共有3条:直线x=0,过点(0,1)且平行于x轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x=0).
2.直线y=bax+3与双曲线x2a2-y2b2=1的交点个数是( ) A.1 B.2 C.1或2 D.0
解析:选A 因为直线y=bax+3与双曲线的渐近线y=bax平行,所以它与双曲线只有1个交点.
考点一 直线与圆锥曲线的位置关系重点保分型考点——师生共研 [典例引领] 在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1.记点M的轨 3
迹为C. (1)求轨迹C的方程; (2)设斜率为k的直线l过定点P(-2,1),若直线l与轨迹C恰好有一个公共点,求实数k的取值范围. 解:(1)设点M(x,y),依题意|MF|=|x|+1, ∴x-2+y2=|x|+1,化简得y2=2(|x|+x),
故轨迹C的方程为y2= 4x,x≥0,0,x<0. (2)在点M的轨迹C中,记C1:y2=4x(x≥0),C2:y=0(x<0). 依题意,可设直线l的方程为y-1=k(x+2).
联立 y-1=kx+,y2=4x消去x, 可得ky2-4y+4(2k+1)=0.① 当k=0时,此时y=1.把y=1代入轨迹C的方程,得x=14.
故此时直线l:y=1与轨迹C恰好有一个公共点14,1. 当k≠0时,方程①的Δ=-16(2k2+k-1)=-16(2k-1)(k+1),② 设直线l与x轴的交点为(x0,0),则
由y-1=k(x+2),令y=0,得x0=-2k+1k.③
(ⅰ)若 Δ<0,x0<0,由②③解得k<-1或k>12. 所以当k<-1或k>12时,直线l与曲线C1没有公共点,与曲线C2有一个公共点,故此时直线l与轨迹C恰好有一个公共点.
(ⅱ)若 Δ=0,x0≥0,即 2k2+k-1=0,2k+1k<0,解集为∅. 综上可知,当k<-1或k>12或k=0时,直线l与轨迹C恰好有一个公共点. 故实数k的取值范围为(-∞,-1)∪{0}∪12,+∞. [由题悟法] 1.直线与圆锥曲线位置关系的判定方法 4
(1)代数法:即联立直线与圆锥曲线方程可得到一个关于x,y的方程组,消去y(或x)得一元方程,此方程根的个数即为交点个数,方程组的解即为交点坐标. (2)几何法:即画出直线与圆锥曲线的图象,根据图象判断公共点个数. 2.判定直线与圆锥曲线位置关系的注意点 (1)联立直线与圆锥曲线的方程消元后,应注意讨论二次项系数是否为零的情况. (2)判断直线与圆锥曲线位置关系时,判别式Δ起着关键性的作用,第一:可以限定所给参数的范围;第二:可以取舍某些解以免产生增根. [即时应用] 1.直线y=kx+2与抛物线y2=8x有且只有一个公共点,则k的值为( ) A.1 B.1或3 C.0 D.1或0
解析:选D 由 y=kx+2,y2=8x,得k2x2+(4k-8)x+4=0, 若k=0,则y=2,符合题意. 若k≠0,则Δ=0,即64-64k=0,解得k=1, 所以直线y=kx+2与抛物线y2=8x有且只有一个公共点时,k=0或1.
2.已知双曲线x2a2-y2b2=1与直线y=2x有交点,则双曲线离心率的取值范围为( ) A.(1,5) B.(1,5] C.(5,+∞) D.[5,+∞)
解析:选C 因为双曲线的一条渐近线方程为y=bax,
则由题意得ba>2,所以e=ca= 1+ba2>1+4=5. 考点二 弦长问题重点保分型考点——师生共研 [典例引领]
(2018·浙江六校联考)如图,椭圆C1:x2a2+y2b2=1(a>b>0)和圆C2:x2+y2=b2,已知圆C2将椭圆C1的长轴三等分,且圆C2的面积为π.椭圆C1的下顶点为E,过坐标原点O且与坐标轴不重合的任意直线l与圆C2相交于点A,B,直线EA,EB与椭圆C1的另一个交点分别是点P,M. (1)求椭圆C1的方程; (2)求△EPM面积最大时直线l的方程. 解:(1)由题意得:b=1,则a=3b, 5
所以椭圆C1的方程为:x29+y2=1. (2)由题意得:直线PE,ME的斜率存在且不为0,PE⊥EM, 不妨设直线PE的斜率为k(k>0),则PE:y=kx-1,
由 y=kx-1,x29+y2=1得 x=18k9k2+1,y=9k2-19k2+1或 x=0,y=-1. 所以P18k9k2+1,9k2-19k2+1,同理得M-18kk2+9,9-k2k2+9, 则kPM=k2-110k, 由 y=kx-1,x2+y2=1,得A2k1+k2,k2-11+k2,所以kAB=k2-12k,
所以S△EPM=12|PE|·|EM|=k+k39k4+82k2+9=162k+1k9k2+82+9k2.设t=k+1k,则S△EPM=162t9t2+64=1629t+64t≤278,当且仅当t=k+1k=83时取等号,所以k-1k=±237,则直线AB:y=k2-12kx
=12k-1kx, 所以所求直线l方程为:y=±73x. [由题悟法] 弦长的3种常用计算方法 (1)定义法:过圆锥曲线的焦点的弦长问题,利用圆锥曲线的定义,可优化解题. (2)点距法:将直线的方程和圆锥曲线的方程联立,求出两交点的坐标,再运用两点间距离公式求弦长. (3)弦长公式法:它体现了解析几何中设而不求的思想,其实质是利用两点之间的距离公式以及一元二次方程根与系数的关系得到的. [提醒] 直线与圆锥曲线的对称轴平行或垂直的特殊情况. [即时应用]
(2018·温州二模)已知椭圆C:x2a2+y2b2=1(a>b>0)的长轴长为4,离心率为12,过右焦点的直线l与椭圆相交于M,N两点,点P的坐标为(4,3),记直线PM,PN的斜率分别为 6
k1,k2.
(1)求椭圆C的方程;
(2)当|MN|=247时,求直线l的斜率. 解:(1)∵2a=4,∴a=2, 又e=ca=12,∴c=1,∴b2=3.
∴椭圆C的方程为x24+y23=1. (2)椭圆右焦点(1,0), 当l斜率不存在时,|MN|=3,不合题意; 当l斜率k存在时, 设直线l的方程为y=k(x-1),M(x1,y1),N(x2,y2),
由 x24+y23=1,y=kx-, 得(3+4k2)x2-8k2x+4(k2-3)=0,Δ=144(k2+1)>0成立, ∴x1+x2=8k23+4k2,x1x2=k2-3+4k2, ∴|MN|=1+k2·x1+x22-4x1x2 =1+k2·8k23+4k22-4×k2-3+4k2=247, 解得k=±1. 故直线l的斜率为±1. 考点三 定点、定值问题重点保分型考点——师生共研 [典例引领] 已知抛物线C:y2=2px(p>0)的焦点F(1,0),O为坐标原点,A,B是抛物线C上异于O的两点. (1)求抛物线C的方程;
(2)若直线OA,OB的斜率之积为-12,求证:直线AB过x轴上一定点. 解:(1)因为抛物线y2=2px(p>0)的焦点坐标为(1,0), 所以p2=1,即p=2. 所以抛物线C的方程为y2=4x. (2)证明:①当直线AB的斜率不存在时,