数学知识点人教A版高中数学必修三2.2.1《用样本的频率分布估计总体分布》(2课时)教案-总结
【人教A版高中数学说课稿】必修三第二章2.2.1《用样本的频率分布估计总体分布》说课稿

《用样本的频率分布估计总体分布》说课稿---人教A版高中数学必修三第二章2.2.1一、教材分析1.教材所处的地位和作用在学习本节课之前,我们已经学习了随机抽样的三种抽样方法,他们为本节课的学习打下了良好的基础,通过对今天内容的学习,更能让学生们感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系。
2 教学的重点和难点重点:会列频率分布表,画频率分布直方图。
难点:能通过样本的频率分布估计总体的分布。
二、教学目标分析1.知识与技能目标(1)通过实例体会分布的意义和作用。
(2)在表示样本数据的过程中,学会列频率分布表,画频率分布直方图。
(3)通过实例体会频率分布直方图的特征,能准确地做出总体估计。
2、过程与方法目标:通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法。
3、情感态度与价值观目标:通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系。
三、教法与学法分析1、教法:遵循观察、探究、发现、总结式的教学模式。
重点以引导学生为主,让他们能积极、主动的进行探索,获取知识。
由于内容较繁琐,所以要借助多媒体辅助教学。
2、学法:根据本节知识的特点,由于学生已具备一定的基础知识,可采取研究性学习的学习方法。
四、教学过程分析(板书以传统的三块式为主,借助计算机教学)1. 创设情境,引入课题「屏幕显示」在NBA的2004赛季中,甲、乙两名篮球运动员每场比赛得分的原始记录如下甲运动员得分﹕12,15,20,25,31,31,36,36,37,39,44,49,50乙运动员得分﹕8,13,14,16,23,26,28,38,39,51,31,29,33请问从上面的数据中你能否看出甲,乙两名运动员哪一位发挥比较稳定?如何根据这些数据作出正确的判断呢?「设计意图」根据我们目前的知识掌握情况根本无法解决所提出的问题,由此引起学生的思考,激起他们对接下来所要学习内容的兴趣。
人教版高中数学必修三第二章第2节 2.2.1用样本的频率分布估计总体分布 课件(共14张PPT)

思考1:频率分布直方图中各个小长方形面积有何意义? ? 思考2:频率分布直方图中所有小长方形面积之和有何意义?
频率分布直方图
频率/组距
0.50 0.40 0.30 0.20 0.10
0 0.5 1 1.5 2 2.5 布估计总体的分布
一. 情境引入
② 决定组距 确定组数
③分组,列表
频率分布直方图
频率/组距
0.50 0.40 0.30 0.20 0.10
0
0.5 1
1.5 2
2.5 3 3.5 4 4.5 月平均用水量/t
频率/组距
0.08
频率分布直方图
频率/组距
0.50 0.40 0.30 0.20 0.10
思考3:从频率分布直方图中你有何发现? 月平均用水量/t 思考4:根据频率分布直方图,你对该市居民平均用水量有何看法? 思考5:与频率分布表相比,频率分布直方图有何特点?
3 2.3
2 1.3 1.3
1 1.6 1.8 1.9 1.6
3.3 2.7 2.2 2.7 1.7 1.2 0.2 0.4 0.1 0.4
思考:如果经过实际评价,3吨这个标准不能 够保证85%以上的居民用水量不超过标准,那 么哪些环节可能导致结论的偏差?
例题讲解
小结:
谈谈你今天的收获!
不知道自己缺点的人,一辈子都不会想要改善。成功的花,人们只惊慕她现时的明艳!然而当初她的芽儿,浸透了奋斗的泪泉,洒遍了牺牲的血雨。成功的条件在于勇气和 信乃是由健全的思想和健康的体魄而来。成功了自己笑一辈子,不成功被人笑一辈子。成功只有一个理由,失败却有一千种理由。从胜利学得少,从失败学得多。你生而有 前进,形如蝼蚁。你一天的爱心可能带来别人一生的感谢。逆风的方向,更适合飞翔。只有承担起旅途风雨,才能最终守得住彩虹满天只有创造,才是真正的享受,只有拚 活。知识玩转财富。志不立,天下无可成之事。竹笋虽然柔嫩,但它不怕重压,敢于奋斗、敢于冒尖。阻止你前行的,不是人生道路上的一百块石头,而是你鞋子里的那一 爱,不必呼天抢地,只是相顾无言。最值得欣赏的风景,是自己奋斗的足迹。爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。生活不可能像你想 不会像你想的那么糟。时间告诉你什么叫衰老,回忆告诉你什么叫幼稚。不要总在过去的回忆里缠绵,昨天的太阳,晒不干今天的衣裳。实现梦想往往是一个艰苦的坚持的 到位,立竿见影。那些成就卓越的人,几乎都在追求梦想的过程中表现出一种顽强的毅力。世界上唯一不变的字就是“变”字。事实胜于雄辩,百闻不如一见。思路决定出 细节决定成败,性格决定命运虽然你的思维相对于宇宙智慧来说只不过是汪洋中的一滴水,但这滴水却凝聚着海洋的全部财富;是质量上的一而非数量上的一;你的思维拥 所有过不去的都会过去,要对时间有耐心。人总会遇到挫折,总会有低潮,会有不被人理解的时候。如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希 个人不知道他要驶向哪个码头,那么任何风都不会是顺风。沙漠里的脚印很快就消逝了。一支支奋进歌却在跋涉者的心中长久激荡。上天完全是为了坚强你的意志,才在道 碍。拥有资源不能成功,善用资源才能成功。小成功靠自己,大成功靠团队。炫耀什么,缺少什么;掩饰什么,自卑什么。所谓正常人,只是自我防御比较好的人。真正的 防而又不受害。学习必须如蜜蜂一样,采过许多花,这才能酿出蜜来态度决定高度。外在压力增加时,就应增强内在的动力。我不是富二代,不能拼爹,但为了成功,我可 站在万人中央成为别人的光。人一辈子不长不短,走着走着,就进了坟墓,你是要轰轰烈烈地风光下葬,还是一把骨灰撒向河流山川。严于自律:不能成为自己本身之主人 他周围任何事物的主人。自律是完全拥有自己的内心并将其导向他所希望的目标的惟一正确的途径。生活对于智者永远是一首昂扬的歌,它的主旋律永远是奋斗。眼泪的存 伤不是一场幻觉。要不断提高自身的能力,才能益己及他。有能力办实事才不会毕竟空谈何益。故事的结束总是满载而归,就是金榜题名。一个人失败的最大原因,是对自 的信心,甚至以为自己必将失败无疑。一个人炫耀什么,说明内心缺少什么。一个人只有在全力以赴的时候才能发挥最大的潜能。我们的能力是有限的,有很多东西飘然于 之外。过去再优美,我们不能住进去;现在再艰险,我们也要走过去!即使行动导致错误,却也带来了学习与成长;不行动则是停滞与萎缩。你的所有不甘和怨气来源于你 你可以平凡,但不能平庸。懦弱的人只会裹足不前,莽撞的人只能引为烧身,只有真正勇敢的人才能所向披靡。平凡的脚步也可以走完伟大的行程。平静的湖面锻炼不出精 生活打造不出生活的强者。人的生命似洪水在奔流,不遇着岛屿、暗礁,难以激起美丽的浪花人生不怕重来,就怕没有将来。人生的成败往往就在于一念之差。人生就像一 为你在看别人耍猴的时候,却不知自己也是猴子中的一员!人生如天气,可预料,但往往出乎意料。人生最大的改变就是去做自己害怕的事情。如果不想被打倒,只有增加 你向神求助,说明你相信神的能力;如果神没有帮助你,说明神相信你的能力。善待自己,不被别人左右,也不去左右别人,自信优雅。活是欺骗不了的,一个人要生活得 象这杯浓酒,不经三番五次的提炼呵,就不会这样一来可口!生命不止需要长度,更需要宽度。时间就像一张网,你撒在哪里,你的收获就在哪里。世上最累人的事,莫过于 你感到痛苦时,就去学习点什么吧,学习可以使我们减缓痛苦。当世界都在说放弃的时候,轻轻的告诉自己:再试一次。过错是暂时的遗憾,而错过则是永远的遗憾!很多 结果,但是不努力却什么改变也没有。后悔是一种耗费精神的情绪后悔是比损失更大的损失,比错误更大的错误所以不要后悔。环境不会改变,解决之道在于改变自己。积 成功者的最基本要素。激情,这是鼓满船帆的风。风有时会把船帆吹断;但没有风,帆船就不能航行。即使道路坎坷不平,车轮也要前进;即使江河波涛汹涌,船只也航行 粹取出来的。浪费时间等于浪费生命。老要靠别人的鼓励才去奋斗的人不算强者;有别人的鼓励还不去奋斗的人简直就是懦夫。不要问别人为你做了什么,而要问你为别人 遥远的梦想和最朴素的生活,即使明天天寒地冻,金钱没有高贵,低贱之分。金钱在高尚人的手中,就会变得高尚;金钱在庸俗人手中,就会变得低级庸俗。涓涓细流一旦 大海也就终止了呼吸。漫无目的的生活就像出海航行而没有指南针。如果我没有,我就一定要,我一定要,就一定能。上一秒已成过去,曾经的辉煌,仅仅是是曾经。其实 在昨天,而是失败在没有很好利用今天。千万人的失败,都有是失败在做事不彻底,往往做到离成功只差一步就终止不做了。强者征服今天,懦夫哀叹昨天,懒汉坐等明天 只是不来的人,要来,千军万马也是挡不住的。求人不如求己;贫穷志不移;吃得苦中苦;方为人上人;失意不灰心;得意莫忘形。人们总是在努力珍惜未得到的,而遗忘 告诉我,无理取闹的年龄过了,该懂事了。时间是个常数,但也是个变数。勤奋的人无穷多,懒惰的人无穷少。手莫伸,伸手必被捉。党与人民在监督,万目睽睽难逃脱。汝 不伸能自觉,其实想伸不敢伸,人民咫尺手自缩。思考是一件最辛苦的工作,这可能是为什么很少人愿意思考的原因。我们不能成为贵族的后代,但我们可以成为贵族的祖先 年后的自己。自信!开朗!豁达!无论现在的你处于什么状态,是时候对自己说:不为模糊不清的未来担忧,只为清清楚楚的现在努力。无人理睬时,坚定执着。万人羡慕 志者常立志,有志者立常志,咬定一个目标的人最容易成功。心随境转是凡夫,境随心转是圣贤。学会以最简单的方式生活,不要让复杂的思想破坏生活的甜美。要无条件 的时候。一个人能走多远,要看他有谁同行;一个人有多优秀,要看他有谁指点;一个人有多成功,要看他有谁相伴。成功在优点的发挥,失败是缺点的累积。从绝望中寻 辉煌。当你跌到谷底时,那正表示,你只能往上,不能往下!当你决定坚持一件事情,全世界都会为你让路。贫穷本身并不可怕,可怕的是贫穷的思想,以及认为自己命中 了贫穷的思想,就会丢失进取心,也就永远走不出失败的阴影请享受无法回避的痛苦。人的一生就是体道,悟道,最后得道的过程。人生就是一万米长跑,如果有人�
人教版高中数学必修三2.2.1用样本的频率分布估计总体分布

2.2 用样本估计总体2.2.1 用样本的频率分布估计总体分布[读教材·填要点]1.用样本估计总体的两种情况 (1)用样本的频率分布估计总体的分布. (2)用样本的数字特征估计总体的数字特征. 2.绘制频率分布直方图的步骤3.频率分布折线图和总体密度曲线频率分布直方图――――――――→连接各小长方形上端的中点频率分布折线图 ――――――――――――→样本容量不断增大,频率折线图接近于一条光滑曲线总体密度曲线 4.茎叶图的制作步骤 (1)将数据分为茎和叶两部分;(2)将最大茎和最小茎之间数据按大小次序排成一列; (3)将各个数据的“叶”按大小次序写在茎右(左)侧.[小问题·大思维]1.频率分布直方图直观形象地表示了频率分布表,在频率分布直方图中是用哪些量来表示各组频率的?提示:在频率分布直方图中用每个矩形的面积表示相应组的频率,即频率组距×组距=频率,各组频率的和等于1,因此各小矩形的面积的和等于1.2.从甲、乙两个班级中各随机选出15名同学进行测试,成绩的茎叶图如图,你能说出甲、乙两班的最高成绩,以及哪个班的平均成绩较高吗?甲 乙6 4 8 57 9 4 16 2 5 9 87 5 4 2 17 2 5 7 8 9 7 4 48 1 4 4 7 9 692提示:甲、乙两班的最高成绩各是96,92,从图中看,乙班的平均成绩较高.列频率分布表、画频率分布直方图、折线图[例42岁;就任时年纪最大的是里根,他于1981年就任,当时69岁.下面按时间顺序(从1789年的华盛顿到2009年的奥巴马,共44任)给出了历届美国总统就任时的年龄:57,61,57,57,58,57,61,54,68,51,49,64,50,48,65,52,56,46,54,49,51,47,55,55,54,42,51,56,55,51,54,51,60,62,43,55,56,61,52,69,64,46,54,48(1)将数据进行适当的分组,并画出相应的频率分布直方图和频率分布折线图. (2)用自己的语言描述一下历届美国总统就任时年龄的分布情况. [自主解答] (1)以4为组距,列表如下:分组 频数 频率 [41.5,45.5) 2 0.045 5 [45.5,49.5) 7 0.159 1 [49.5,53.5) 8 0.181 8 [53.5,57.5) 16 0.363 6 [57.5,61.5) 5 0.113 6 [61.5,65.5) 4 0.090 9 [65.5,69.5]20.045 5合计44 1.00(2)从频率分布表中可以看出60%左右的美国总统就任时的年龄在50岁至60岁之间,45岁以下以及65岁以上就任的总统所占的比例相对较小.根据频率分布表,求美国总统就任时年龄落在区间[61.5,69.5)人数占总人数的比例.解:区间[61.5,69.5)包含了[61.5,65.5),[65.5,69.5),两个组,两小组的频率和为0.090 9+0.045 5=0.136 4,故而所占比例为13.64%.——————————————————1.在列频率分布表时,极差、组距、组数有如下关系:(1)若极差组距为整数,则极差组距=组数.(2)若极差组距不为整数,则极差组距的整数部分+1=组数.2.组距和组数的确定没有固定的标准,将数据分组时,组数力求合适,使数据的分布规律能较清楚地呈现出来,组数太多或太少都会影响了解数据的分布情况,若样本容量不超过100,按照数据的多少常分为5~12组,一般样本容量越大,所分组数越多.——————————————————————————————————————1.一个农技站为了考察某种麦穗长的分布情况,在一块试验地里抽取了100个麦穗,量得长度如下(单位:cm):6.5 6.4 6.7 5.8 5.9 5.9 5.2 4.05.4 4.6 5.8 5.5 6.0 6.5 5.1 6.55.3 5.9 5.5 5.8 6.2 5.4 5.0 5.06.8 6.0 5.0 5.7 6.0 5.5 6.8 6.06.3 5.5 5.0 6.3 5.2 6.07.0 6.46.4 5.8 5.9 5.7 6.8 6.6 6.0 6.45.77.4 6.0 5.4 6.5 6.0 6.8 5.86.3 6.0 6.3 5.6 5.3 6.4 5.7 6.76.2 5.6 6.0 6.7 6.7 6.0 5.6 6.2 6.1 5.3 6.2 6.8 6.6 4.7 5.7 5.7 5.8 5.3 7.0 6.0 6.0 5.9 5.4 6.0 5.2 6.0 6.3 5.7 6.8 6.1 4.5 5.6 6.3 6.0 5.8 6.3根据上面的数据列出频率分布表、绘出频率分布直方图,并估计长度在5.75~6.05 cm 之间的麦穗在这批麦穗中所占的百分比.解:步骤是:(1)计算极差:7.4-4.0=3.4(cm). (2)决定组距与组数若取组距为0.3 cm ,由于3.40.3=1113,需分成12组,组数合适.于是取定组距为0.3 cm ,组数为12.(3)将数据分组使分点比数据多一位小数,并且把第1小组的起点稍微减小一点,那么所分的12个小组可以是:3.95~4.25,4.25~4.55,4.55~4.85,…,7.25~7.55.(4)列频率分布表对各个小组作频数累计,然后数频数,算频率,列频率分布表,如下表所示:分组 频数累计频数 频率 3.95~4.25 1 0.01 4.25~4.55 1 0.01 4.55~4.85 2 0.02 4.85~5.15 正 5 0.05 5.15~5.45 正正 11 0.11 5.45~5.75 正正正 15 0.15 5.75~6.05 正正正正正28 0.28 6.05~6.35 正正 13 0.13 6.35~6.65正正110.116.65~6.95正正100.106.95~7.2520.027.25~7.5510.01合计100 1.00(5)画频率分布直方图.如图所示.从表中看到,样本数据落在5.75~6.05之间的频率是0.28,于是可以估计,在这块地里,长度在5.75 ~6.05 cm之间的麦穗约占28%.茎叶图及应用[例2]某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其质量,分别记下抽查记录如下(单位:千克):甲:52514948534849乙:60654035256560画出茎叶图,并说明哪个车间的产品质量比较稳定.[自主解答]茎叶图如图所示(茎为十位上的数字):甲乙2 53 599884032156005 5所以甲车间的产品质量比较稳定.——————————————————画茎叶图时,用中间的数表示数据的十位和百位数,两边的数分别表示两组数据的个位数.要先确定中间的数取数据的哪几位,填写数据时边读边填.比较数据时从数据分布的对称性、中位数、稳定性等几方面来比较.绘制茎叶图的关键是分清茎和叶,一般地说数据是两位数时,十位数字为“茎”,个位数字为“叶”;如果是小数的,通常把整数部分作为“茎”,小数部分作为“叶”,解题时要根据数据的特点合理选择茎和叶.——————————————————————————————————————2.在某电脑杂志的一篇文章中,每个句子中所含字数如下:10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,21,24,27,17,29.在某报纸的一篇文章中,每个句子中所含字数如下:27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22,18,32.(1)分别用茎叶图表示上述两组数据;(2)将这两组数据进行比较分析,你能得到什么结论?解:(1)茎叶图如图所示:电脑杂志报纸9 8 7 7 5 5 4 1 01 2 3 8 8 99 8 7 7 7 6 5 4 4 3 2 1 02 2 2 3 4 7 7 7 86 13 2 2 2 3 3 5 6 94 1 1 6(2)从茎叶图可看出:电脑杂志的文章中每个句子所含字数集中在10~30之间;报纸的文章中每个句子所含字数集中在20~40之间,且电脑杂志的文章中每个句子所含字的平均个数比报纸的文章中每个句子所含字的平均个数要少,因此电脑杂志的文章较简明.频率分布直方图的应用[例3]5月1日至31日,评委会把同学们上交作品的件数按5天一组统计,绘制了频率分布直方图(如图所示),已知从左到右各长方形的高的比为2∶3∶4∶6∶4∶1,第三组的频数为12.(1)本次活动中一共有多少件作品参评?(2)上交作品数量最多的一组有多少件?(3)经过评比,第四组和第六组分别有10件,2件作品获奖,这两组获奖率较高的是第几组?[自主解答] 在频率分布直方图中各小长方形的面积=组距×频率组距=频率,即各小长方形的面积等于相应各组的频率,且它们的面积和等于1.(1)依题意知第三组的频率为42+3+4+6+4+1=15.又因为第三组的频数为12,所以本次活动的参评作品数为12÷15=60(件).(2)根据频率分布直方图,可以看出第四组上交的作品数量最多,共有:60×62+3+4+6+4+1=18(件).(3)第四组的获奖率是1018=59;第六组上交的作品数量为60×12+3+4+6+4+1=3(件),所以第六组的获奖率是23=69>59,故第六组的获奖率较高. ——————————————————频率分布直方图的性质 (1)因为小矩形的面积=组距×频率组距=频率,所以各小矩形面积表示相应各组的频率,这样,频率分布直方图就以面积的形式反映了数据落在各个小组内的频率大小.(2)在频率分布直方图中,各小矩形的面积之和等于1. (3)频数/相应的频率=样本容量.——————————————————————————————————————3.(2012·济宁高一检测)为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该校全体高一学生的达标率是多少? 解:(1)由于频率分布直方图以面积的形式反映了数据落在各个小组内的频率大小,因此第二小组的频率为42+4+17+15+9+3=0.08.又因为第二小组频率=第二小组频数样本容量,所以样本容量=第二小组频数第二小组频率=120.08=150.故第二小组的频率是0.08,样本容量是150. (2)由图可估计该校高一学生的达标率约为 17+15+9+32+4+17+15+9+3×100%=88%.故高一学生达标率是88%.某校为了了解高三学生的身体状况,抽取了100名女生的体重.将所得的数据整理后,画出了如图的频率分布直方图,则所抽取的女生中体重在40~45 kg 的人数是( )A .10B .2C .5D .15[错解] 0.02×100=2人.选B. [错因] 误认为纵轴表示频率. [正解] 由图可知频率=频率组距×组距,知频率=0.02×5=0.1. ∴0.1×100=10人. [答案] A1.(2012·湖北高考)容量为20的样本数据,分组后的频数如下表:分组[10,20)[20,30)[30,40)[40,50)[50,60)[60,70)频数23454 2A.0.35B.0.45C.0.55 D.0.65解析:求出样本数据落在区间[10,40)中的频数,再除以样本容量得频率.求得该频数为2+3+4=9,样本容量是20,所以频率为920=0.45.答案:B2.100辆汽车通过某一段公路时的时速的频率分布直方图如图所示,则时速在[60,70)的汽车大约有()A.30辆B.40辆C.60辆D.80辆解析:0.04×10×100=40.答案:B3.从甲、乙两种玉米苗中各抽6株,分别测得它们的株高如图所示(单位:cm),根据数据估计()A.甲种玉米比乙种玉米不仅长得高而且长得整齐B.乙种玉米比甲种玉米不仅长得高而且长得整齐C.甲种玉米比乙种玉米长得高但长势没有乙整齐D.乙种玉米比甲种玉米长得高但长势没有甲整齐解析:乙的平均株高为14+27+36+38+44+456=2046=34 cm.甲乙61 45 2 1277 53 6 84 4 5甲的平均株高为16+21+22+25+35+376=1566=26 cm.答案:D4.为了帮助班上的两名贫困生解决经济困难,班上的20名同学捐出了自己的零花钱,他们捐款数如下:(单位:元)19,20,25,30,24,23,25,29,27,27,28,28,26,27,21,30,20,19,22,20.班主任老师准备将这组数据制成频率分布直方图,以表彰他们的爱心.制图时先计算最大值与最小值的差是________,若取组距为2,则应分成________组;若第一组的起点定为18.5,则在[26.5,28.5]范围内的频数为________.解析:30-19=11 112=5.5,∴分6组. 在[26.5,28.5]之间的数有5个. 答案:11 6 55.将一个容量为n 的样本分成若干组,已知某组的频数和频率分别是30和0.25,则n =________.解析:30n =0.25,∴n =30×4=120.答案:1206.为了了解学校高一年级男生的身高情况,选取一个容量为60的样本(60名男生的身高),分组情况如下(单位:cm):(1)求出表中a ,m 的值; (2)画出频率分布直方图.解:(1)由题意得:6+21+27+m =60 ∴m =6. a =2760=0.45 ∴a =0.45. (2)如图所示:一、选择题1.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n 的样本,其频率分布直方图如图所示,其中支出在[50,60]元的同学有30人,则n 的值为( )A .90B .100C .900D .1 000解析:n ×0.030×10=30. n =100. 答案:B2.在抽查某产品尺寸的过程中,将其尺寸分成若干组,[a ,b )是其中一组,抽查出的个体数在该组内的频率为m ,该组直方图的高为h ,则|a -b |的值等于( )A .h ·m B.m hC.h mD .与m ,h 无关 解析:小长方形的高=频率组距,∴|a -b |=频率小长方形的高=mh.答案:B3.(2012·陕西高考)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A.46,45,56 B.46,45,53C.47,45,56 D.45,47,53解析:从茎叶图中可以看出样本数据的中位数为中间两个数的平均数,即45+472=46,众数为45,极差为68-12=56.答案:A4.为了解电视对生活的影响,一个社会调查机构就平均每天看电视的时间调查了某地10 000位居民,并根据所得数据画出样本的频率分布直方图(如图),为了分析该地居民平均每天看电视的时间与年龄、学历、职业等方面的关系,要从这10 000位居民中再用分层抽样抽出100位居民做进一步调查,则在[2.5,3)(小时)时间段内应抽出的人数是()A.25 B.30C.50 D.75解析:0.5×0.5×100=25人答案:A二、填空题5.青年歌手大奖赛共有10名选手参赛,并请了7名评委,如图所示的茎叶图是7名评委给参加最后决赛的两位选手甲、乙评定的成绩,去掉一个最高分和一个最低分后,甲、乙选手剩余数据的平均成绩分别为________.解析:甲=78+84+85+86+885=84.2乙=84+84+84+86+875=85.答案:84.2856.(2011·浙江高考)某中学为了解学生数学课程的学习情况,在3 000名学生中随机抽甲乙8 5798 6 5 48 4 4 4 6 729 3取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3 000名学生在该次数学考试中成绩小于60分的学生数是________.解析:由题意知,在该次数学考试中成绩小于60分的频率为(0.002+0.006+0.012)×10=0.2,故这3 000名学生在该次数学考试中成绩小于60分的学生数是3 000×0.2=600.答案:6007.10个小球分别编号1,2,3,4,其中1号球4个,2号球2个,3号球3个,4号球1个,则0.4是指1号球占总体分布的________.解析:0.4=410为1号球占总体分布的频率.答案:频率8.某校开展“爱我海西,爱我家乡”摄影比赛,9位评委为参赛作品A给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是______.作品A88 9 99 2 3 x 2 1 4解析:当x≤4时,89+89+92+93+(90+x)+92+917=91,解之得x=1.当x>4时,易证不合题意.答案:1三、解答题9.某中学高二(2)班甲、乙两名学生自进入高中以来,每次数学考试成绩情况如下:甲:95,81,75,91,86,89,71,65,76,88,94,110,107,;乙:83,86,93,99,88,103,98,114,98,79,78,106,101.画出两人数学成绩的茎叶图,并根据茎叶图对两人的成绩进行比较.解:甲、乙两人数学成绩的茎叶图如图所示.甲乙5 6615798896183684159398871036 1011 4从这个茎叶图上可以看出,乙同学的得分情况是大致对称的,中位数是98;甲同学的得分情况;也大致对称,中位数是88.乙同学的成绩比较稳定,总体情况比甲同学好.10.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛,为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:分组频数频率[50,60)40.08[60,70)0.16[70,80)10[80,90)160.32[90,100]合计50(1)填充频率分布表的空格(将答案直接填在表格内);(2)补全频率分布直方图;(3)若成绩在[70,90)分的学生为二等奖,问获得二等奖的学生约为多少人?解:(1)分组频数频率[50,60)40.08[60,70)80.16[70,80)100.20[80,90)160.32[90,100]120.24合计50 1.00 (2)频率分布直方图如图所示:(3)∵成绩在[70,80)间的学生频率为0.20;成绩在[80,90)间的学生频率为0.32.∴在[70,90)之间的频率为0.20+0.32=0.52.又∵900名学生参加竟赛,∴该校获二等奖的学生为900×0.52=468(人).。
人教版高中数学必修三第二章第2节 2.2.1用样本的频率分布估计总体分布 课件

(人教版必修3)
频率分布
样本中所有数据(或数据组)的频数和 样本容量的比,叫做该数据的频率。
所有数据(或数据组)的频数的分布 变化规①样本频率分布表 ②样本频率分布图
样本频率分布条形图 样本频率分布直方图 ③样本频率分布折线图
一.频率分布直方图
小
1、求极差
2、决定组距与组数
结
3、 将数据分组(如8.2取整,分为9组)
4、列出频率分布表.(填写频率/组距一栏)
频率 5、画出频率分布直方图。(注意)纵坐标为:组距
各小长方形的面积=频率
各小长方形的面积之和=1
二.总体密度曲线
作业: 1.练习册基础演练 2.预习茎叶图
3.5 4
月均用水量 /t
4.5
频率分布直方图的特征:
(1)从频率分布直方图可以清楚的 看出数据分布的总体趋势.
(2)从频率分布直方图得不出原始 的数据内容,把数据表示成直方图后, 原有的具体数据信息就被抹掉了.
练习1:
已知样本10, 8, 6, 10, 8,13,11,10,12,7,8,9,12,9, 11,12,9,10,11,11, 那么频率为0.2范围的是( D)
组距
中各小长方形上端的
中点,得到频率分布折
线图
0.50
0.40
0.30
0.20
0.10
月均用水量
/t
0.5 1 1.5 2 2.5 3 3.5 4 4.5
当样本容量无限增大,分组的组距无限缩小,那么频率分 布折线图就会无限接近一条光滑曲线——总体密度曲线.
频率 组距
月均用 水量/t
ab
(图中阴影部分的面积,表示总体在 某个区间 (a, b) 内取值的百分比)。
2.用样本的频率分布估计总体分布人教A版高中数学必修三PPT课件

0.10
区间的面积表示;
0
0.5 1 1.5 2 2.5 3 3.5 4 4.5
月平均用水量/t
小长方形的面积 =
频率 组距× 组距 =
频率
2.用样本的频率分布估计总体分布人 教A版高 中数学 必修三 PPT课 件
思考:所有小长方形的面积之和等于?
一般地,作频率分布直方图的方法为: 把横轴分成若干段,每一段对应一个 组的组距,以此线段为底作矩形,高 等于该组的频率/组距, 这样得到一系
课堂练习:
2、为检测某种产品的质量,抽取了一个容量为30 的样本,检测结果为一级品5件,二级品8件,三级品 13件,次品4件.
(1) 列出样本的频率分布表;
(2)根据上述结果,估计此种产品为二级品或三级
品的概率约是多少.
解:
产品 频数 频率
一级品 5
0.17
(1)样本的频率分布 二级品 8 0.27
15
[1.5-2)
22
[2-2.5)
25
[2.5-3)
15
[3-3.5)
5
[3.5-4)
4
[4-4.5) 合计
2.用样本的频率分布估计总体分布人 教A版高 中数学 必修三 PPT课 件
2 100
频率
0.04 0.08 0.15 0.22 0.25 0.15 0.05 0.04 0.02 1
组距=0.5
表为:
三级品 13 0.43
次品
4
0.13
(2)此种产品为二级品或三级品的概率约为 0.27+0.43=0.7.
练习:2 .投掷一枚均匀骰子44次的记录是:
2.用样本的频率分布估计总体分布人 教A版高 中数学 必修三 PPT课 件
高中数学人教A版必修三第二章2.用样本的频率分布估计总体分布(2)课件

高中数学人教A版必修三第二章2.用样 本的频 率分布 估计总 体分布 (2)课 件(公 开课课 件) 高中数学人教A版必修三第二章2.用样 本的频 率分布 估计总 体分布 (2)课 件(公 开课课 件)
3.茎叶图中数据的茎和叶的划分,可根据样本数据的特点灵活 决定.
高中数学人教A版必修三第二章2.用样 本的频 率分布 估计总 体分布 (2)课 件(公 开课课 件)
高中数学人教A版必修三第二章2.用样 本的频 率分布 估计总 体分布 (2)课 件(公 开大量数据 频率分布直方图 ②直观地表明分布地 情况
频率/组距
连接频率分布直方图中各 小长方形上端的中点,得到 频率分布折线图
0.50 0.40 0.30 0.20 0.10
0.5 1 1.5 2 2.5 3 3.5 4 4.5
当样本容量无限增大,分组的组距无限 缩小,相应的频率分布折线图就会无限接近 一条光滑曲线,统计中称这条光滑曲线为总 体密度曲线.
频率/组距
思考:可以用样本 的频率分布折线图 得到准确的总体密 度曲线吗?
S
月均用水量/t
阅读69页下面文字
高中数学人教A版必修三第二章2.用样 本的频 率分布 估计总 体分布 (2)课 件(公 开课课 件)
茎叶图
某赛季甲、乙两名篮球运动员每场比赛得分的原始记录如下: (1)甲运动员得分: 13 ,51, 23, 8, 26, 38, 16, 33, 14, 28, 39 (2)乙运动员得分: 49, 24, 12, 31, 50, 31, 44, 36, 15, 37, 25, 36, 39
49, 24, 12, 31, 50, 31, 44, 36, 15, 37, 25, 36, 39
甲
人教版高中数学必修三第二章第2节 2.2.1用样本的频率分布估计总体分布 课件共18张PP
②为了较合理地确定这个标准,你认为需要做哪些工作?
通过抽样,我们获得了100位居民某年的月平均用水量,如下表: 思考:由上表,大家可以得到什么信息?
画一组数据的频率分布直方图,可以按以下的步骤进行:
一、求极差,即数据中最大值与最小值的差 二、决定组距与组数 :组距=极差/组数 三、分组,通常对组内数值所在区间,
2.2 用样本估计总体
2.2.1 用样本的频率分布估计总体分布
1、用样本去估计总体是研究统计问题的一基本思想;
2、前面我们学过的抽样方法有: 简单随机抽样、系统抽样、 分层抽样;【要注意这几种抽样方法的联系与区别】
3、初中时我们学习过样本的频率分布,包括频数、频率的 概念,频数分布表和频数分布直方图的制作;
74.5
根据上图可得这100名学生中体重在[56.5,64.5]的学生人数是(C )
A. 20
B. 30
C. 40
D. 50
7.一个容量为100的样本,数据的分组和各组的相关信息如下表, 试完成表中每一行的两个空格;
8.有一个容量为50的样本数据的分组的频数如下:
[12.5, 15.5) 3
[15.5, 18.5) 8 [18.5, 21.5) 9 [21.5, 24.5) 11
[01.057.05, 18.5) 8 [0.10860.5, 21.5) 9 [0.20150.5, 24.5) 11 [0.20440.5, 27.5) 10
[0.20730.5, 30.5) 5
[0.30020.5, 33.5) 4
0.06 0.16 0.18 0.22 0.20 0.10 0.08
人教A版高中数学必修3第2章 2.2.1 用样本的频率分布估计总体分布
(2)频率分布直方图和频率分布折线图如图所示:
(3)样本数据不足 0 的频率为: 0.035+0.055+0.075+0.2=0.365.
频率分布直方图的应用
某校在 5 月份开展了科技月活动.在活动中某班举行了小制作评比, 规定作品上交的时间为 5 月 1 日到 31 日,逾期不得参加评比.评委会把同学们 上交作品的件数按 5 天一组分组统计,绘制了频率分布直方图(如图 2-2-2).已 知从左到右各长方形的高的比为 2∶3∶4∶6∶4∶1,第三组的频数为 12,请解 答下列问题:
1.在列频率分布表时,极差、组距、组数有如下关系:
极差
极差
(1)若组距为整数,则组距=组数;
极差
极差
(2)若组距不为整数,则组距的整数部分+1=组数.
2.组距和组数的确定没有固定的标准,将数据分组时,组
数力求合适,使数据的分布规律能较清楚地呈现出来,组数太多
或太少都会影响了解数据的分布情况,若样本容量不超过 100, 按照数据的多少常分为 5~12 组,一般样本容量越大,所分组数
[再练一题]
2.某工厂对一批产品进行了抽样检测.如图
2-2-3 是根据抽样检测后的产品净重(单位:克)数据
绘制的频率分布直方图,其中产品净重的范围是
[96,106] , 样 本 数 据 分 组 为 [96,98) , [98,100) ,
[100,102),[102,104),[104,106].已知样本中产品净
阶
阶
段
段
一
三
2.2 用样本估计总体
2.2.1 用样本的频率分布估计总体分布
学
业
阶 段 二
分 层
测
评
1.理解用样本的频率分布估计总体分布的方法. 2.会列频率分布表,画频率分布直方图、频率分布折线图、茎叶图.(重 点) 3.能够利用图形解决实际问题.(难点)
高中数学人教A必修3第二章-2.2.1 用样本的频率分布估计总体分布 课件
72 64
73 65
62 70
58 75
69 64 56 73 67 68 76 61 60 68
57 70 74 65 59 62 67 68 64 58
59 66 63 70 72 65 61 69 64 62
66 59 68 71 65 66 67 70 64 60
3、节点
[54.5,56.5) [56.5,58.5)
知识回顾
系统抽样
分层抽样
简单随机抽样
讲授新课
抽样
样
本
估计
为了解高三学生 的身体发育情况,对 我校100名男同学进 行体重统计:
用样本的频率分布估计总体
步骤
极差
分组
节点
频率 分布 表
频率 分布 直方 图
1、极差
极差
最大值-最小值
55 76 21
2、分组与组距
组距常选1,2,5
分组与组距
组距 2 5
分组
频数 频率
[54.5,56.5) 丁
2 0.02
[56.5,58.5) 正一 [58.5,60.5) 正正
6 0.06 10 0.1
[60.5,62.5) 一正正
10 0.1
[62.5,64.5) 正正正一 16 0.16
[64.5,66.5) 正一正止 14 0.14
[66.5,68.5) 正正下 13 0.13
57 63 66 64
65 61
69 60
72 64
73 65
62 70
58 75
频率 = 样本容量
69 64 56 73 67 68 76 61 60 68
57 70 74 65 59 62 67 68 64 58
人教版高中数学必修三第二章第2节 2.2.1用样本的频率分布估计总体分布 课件(共14张PPT)
一. 情境引入
② 决定组距 确定组数
③分组,列表
频率分布直方图
频率/组距
0.50 0.40 0.30 0.20 0.10
0
0.5 1
1.5 2
2.5 3 3.5 4 4.5 月平均用水量/t
频率/组距
0.08
频率分布直方图
频率/组距
0.50 0.40 0.30 0.20 0.10
2.7 2.9 2.6 2.1 1.7 1.4 1.2 1.5 0.5 2.3
2.4 2.5 2.4 2.4 1.6
1
1 1.7 1.6 2.4
2.8 2.8 2.8 1.8 1.5
1 1.2 1.8 0.6 2.2
频率分布直方图
左图为以1为组距所作频率直方图,右图为以0.1 为组距所作频率直方图,观察以上两图,你有什 么发现?
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量/t
思考1:频率分布直方图中各个小长方形面积有何意义? ? 思考2:频率分布直方图中所有小长方形面积之和有何意义?
频率分布直方图
频率/组距
0.50 0.40 0.30 0.20 0.10
0 0.5 1 1.5 2 2.5 3 3.5பைடு நூலகம்4 4.5
3.3 2.5 2.1 2.6 1.6 1.3 3.9 1.5 0.3 3.7
3.4 2.9 2.5
2 1.9 1.3 3.4 1.7 0.6 4.1
3.1 3.1 2.3 2.1 1.8 1.6 3.5
2 0.8 4.4
3 2.4 2.2 2.7 1.9 1.3 1.4 1.8 0.5
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学、数学课件、数学综合练习题、数学教学教案、试卷数学 初中数学、数学课件、数学综合练习题、数学教学教案、试卷数学 福建省长乐第一中学高中数学必修三《2.2.1用样本的频率分布估计总体分布(2课时)》教案
一、三维目标: 1、知识与技能 (1) 通过实例体会分布的意义和作用。 (2)在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图。 (3)通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计。 2、过程与方法 通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法。 3、情感态度与价值观 通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系。 二、重点与难点 重点:会列频率分布表,画频率分布直方图、频率折线图和茎叶图。 难点:能通过样本的频率分布估计总体的分布。 三、教学设想 【创设情境】 在NBA的2004赛季中,甲、乙两名篮球运动员每场比赛得分的原始记录如下﹕ 甲运动员得分﹕12,15,20,25,31,31,36,36,37,39,44,49,50 乙运动员得分﹕8,13,14,16,23,26,28,38,39,51,31,29,33 请问从上面的数据中你能否看出甲,乙两名运动员哪一位发挥比较稳定? 如何根据这些数据作出正确的判断呢?这就是我们这堂课要研究、学习的主要内容——用样本的频率分布估计总体分布(板出课题)。 【探究新知】 〖探究〗:P55 我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费。如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢 ?你认为,为了了较为合理地确定出这个标准,需要做哪些工作?(让学生展开讨论) 为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等。因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况。(如课本P56) 分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息。表格则是通过改变数据的构成形式,为我们提供解释数据的新方式。 下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律。可以让我们更清楚的看到整个样本数据的频率分布情况。 〈一〉频率分布的概念: 频率分布是指一个样本数据在各个小范围内所占比例的大小。一般用频率分布直方图反映样本的频率分布。其一般步骤为: (1) 计算一组数据中最大值与最小值的差,即求极差 (2) 决定组距与组数 (3) 将数据分组 初中数学、数学课件、数学综合练习题、数学教学教案、试卷数学 初中数学、数学课件、数学综合练习题、数学教学教案、试卷数学 (4) 列频率分布表 (5) 画频率分布直方图 以课本P56制定居民用水标准问题为例,经过以上几个步骤画出频率分布直方图。(让学生自己动手作图) 频率分布直方图的特征: (1) 从频率分布直方图可以清楚的看出数据分布的总体趋势。 (2) 从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了。 〖探究〗:同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的图和形状也会不同。不同的形状给人以不同的印象,这种印象有时会影响我们对总体的判断,分别以0.1和1为组距重新作图,然后谈谈你对图的印象?(把学生分成两大组进行,分别作出两种组距的图,然后组织同学们对所作图不同的看法进行交流……) 接下来请同学们思考下面这个问题: 〖思考〗:如果当地政府希望使85%以上的居民每月的用水量不超出标准,根据频率分布表2-2和频率分布直方图2.2-1,(见课本P57)你能对制定月用水量标准提出建议吗?(让学生仔细观察表和图) 〈二〉频率分布折线图、总体密度曲线 1.频率分布折线图的定义: 连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图。 2.总体密度曲线的定义: 在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线。它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息。(见课本P60) 〖思考〗: 1.对于任何一个总体,它的密度曲线是不是一定存在?为什么? 2.对于任何一个总体,它的密度曲线是否可以被非常准确地画出来?为什么? 实际上,尽管有些总体密度曲线是饿、客观存在的,但一般很难想函数图象那样准确地画出来,我们只能用样本的频率分布对它进行估计,一般来说,样本容量越大,这种估计就越精确. 〈三〉茎叶图 1.茎叶图的概念: 当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图。(见课本P61例子) 2.茎叶图的特征: (1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示。 (2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰。 【例题精析】 〖例1〗:下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高 (单位cm) 区间界限[122,126)[126,130)[130,134)[134,138)[138,142)[142,146)人数5810223320区间界限[146,150)[150,154)[154,158)人数1165(
1)列出样本频率分布表﹔ 初中数学、数学课件、数学综合练习题、数学教学教案、试卷数学 初中数学、数学课件、数学综合练习题、数学教学教案、试卷数学 (2)一画出频率分布直方图; (3)估计身高小于134cm的人数占总人数的百分比.。 分析:根据样本频率分布表、频率分布直方图的一般步骤解题。 解:(1)样本频率分布表如下:
(2)其频率分布直方图如下: (3)由样本频率分布表可知身高小于134cm 的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134cm的人数占总人数的19%. 〖例2〗:为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12. (1) 第二小组的频率是多少?样本容量是多少? (2) 若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?
分组频数频率[122,126)50.04[126,130)80.07[130,134)100.08[134,138)220.18[138,142)330.28[142,146)200.17[146,150)110.09[150,154)60.05[154,158)50.04合计1201
122 126 130 134 138 142 146 150 158 154 身高
o
0.01 0.02 0.03 0.04 0.05 0.06 0.07 频率/组距
90 100 110 120 130 140 150 次数 o 0.004 0.008 0.012 0.016 0.020 0.024 0.028 频率/组距 0.032 0.036 初中数学、数学课件、数学综合练习题、数学教学教案、试卷数学
初中数学、数学课件、数学综合练习题、数学教学教案、试卷数学 (3) 在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由。 分析:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和等于1。 解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,
因此第二小组的频率为:40.0824171593
又因为频率=第二小组频数样本容量 所以 121500.08第二小组频数样本容量第二小组频率 (2)由图可估计该学校高一学生的达标率约为 171593100%88%24171593
(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内。 【课堂精练】 P61 练习 1. 2. 3 【课堂小结】 1.总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布。 2.总体的分布分两种情况:当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图。 【课后作业】 1.P72 习题2.2 A组 1、 2