定积分讲义

合集下载

课件4:3.4 定积分

课件4:3.4 定积分

1 4
x4)
|02=4,故选D.
(3)(2015·贵阳模拟)已知t>1,若1t(2x+1)dx=t2,则t=
.
【解析】1(t 2x+1)dx=(x2+x) |1t=t2+t-2,
从而得方程t2+t-2=t2,解得t=2.
答案:2
考点1 定积分的计算
【典例1】(1)(2014·江西高考)若f(x)=x2+2
其中为区间[-1,1]的正交函数的组数是( )
A.0 B.1 C.2 D.3
【解析】选C.对于①, 1 (sin 1 x cos 1 x)dx 1 (1 sin x)dx
1
2
2
1 2
1 2
cos
x
|11
0,
则f(x),g(x)为区间[-1,1]上的正交函数;
对于②,
1
(x 1)(x 1)dx
f(x)在[a,b] 表示位于x轴上方的曲边梯形的面积减去位于x轴下方 上有正有负 的曲边梯形的面积
③定积分的性质:
(ⅰ)abkf(x)dx=_k__ab_f__x__d_x_(k为常数). (ⅱ)ab[f1(x)±f2(x)]dx=__ab_f_1 _x__d_x___a_b f_2__x__dx__.
1
1 (x2
1
1)dx
(1 3
x3
x)
|11
4 3
0,
则f(x),g(x)不为区间[-1,1]上的正交函数;
对于③,
1 x3dx
1
(1 4
x4)
|11
0,
则f(x),g(x)为区间[-1,1]上的正交函数.
所以满足条件的正交函数有2组.

《定积分定义》课件

《定积分定义》课件
定积分的计算
定积分的计算涉及到将被积函数与区间长度进行乘积,并 对所有这些乘积求和。
定积分的几何意义
面积
定积分可以用来计算平面图形在 某个区间上的面积,特别是当这 些图形由直线、抛物线、圆等基
本图形组成时。
体积
在三维空间中,定积分可以用来计 算旋转体等复杂几何体的体积。
物理意义
在物理学中,定积分常用于计算变 力在某个区间上做的功、曲线运动 的位移等。
物理中的定积分应用
总结词
在物理学中,定积分常用于解决与速度、加 速度、功等相关的物理问题。
详细描述
在物理学中,定积分的应用非常广泛。例如 ,在分析质点的运动时,可以利用定积分计 算质点的速度、加速度和位移;在分析弹性 体的应力分布时,可以利用定积分计算弹性 体内各点的应力值。此外,定积分还在电磁
学、光学等领域有着广泛的应用。
分部积分法
总结词
分部积分法是通过将被积函数分解为两个函数的乘积,然后分别积分,最后求和得到结 果的方法。
详细描述
分部积分法需要掌握分部积分的公式和计算技巧,如u和v的选取、分部积分的步骤等 。通过分部积分,可以将复杂的积分转化为容易计算的积分,或者将不易找到原函数的
积分转化为容易找到原函数的积分。
体积的计算
总结词
定积分在计算三维空间中物体的体积时发挥 了重要作用,可以应用于旋转体体积的计算 。
详细描述
定积分在计算旋转体的体积时非常有用。例 如,利用定积分可以计算圆柱、圆锥、球等 旋转体的体积。这些体积的计算公式都是通 过将旋转体划分为若干个小薄片,然后利用 定积分的性质计算这些小薄片的体积总和得 到的。
04
定积分的应用
平面图形面积的计算
总结词

定积分PPT课件

定积分PPT课件

lim ln n
f 1 f 2 f n
en
n n n
lim
e e n
1 n ln n i1
f
i n
lim
n
n
ln
i 1
f
i n
n1
指数上可理解为:ln f ( x)在[0,1]区间上的一
个积分和.分割是将[0,1]n等分
分点为 xi
i ,(i n
1,2,, n)
因为 f ( x)在区间[0,1]上连续,且 f ( x) 0
)
g(i
)]xi
n
n
lim
0
i 1
f
(i )xi
lim
0
i 1
g(i )xi
b
a
f
(
x)dx
b
a g(
x)dx.
(此性质可以推广到有限多个函数作和的情况)
性质2
abkf
(
x)dx
k
b
a
f
(
x)dx
(k 为常数).

b
kf
a
( x)dx
lim
0
n
kf
i 1
(i )xi
n
n
lim k 0 i1
怎样的分法, 也不论在小区间[ xi1 , xi ]上
点i 怎样的取法, 只要当 0时, 和S 总趋于
确定的极限I , 我们称这个极限I 为函数 f ( x) 在区间[a, b]上的定积分, 记为
积分上限 b
n
f ( x)dx I lim
a
0 i1
f (i )xi
积分和
积分下限

微积分》第二篇第二章讲义定积分

微积分》第二篇第二章讲义定积分

dx
1 e4 1 x4 e 1 3e4 1 4 4 1 16
28
(4) 求定积分 2 xcos2xdx. 0
【解】
2
xcos2xdx
1
2 x(sin2x)dx
0
20
1 2
x
sin
2x
2 0
2 0
1
s
in
2
xdx
1 2
0
1 2
2 0
(c
os2
x)dx
1 2
0
1 cos2x 2
0 excosxdx 0 ex cosxdx
a
a
excosx 0 0 exsinxdx aa
1 eacosa 0 ex sinxdx a
37
即 0 excosxdx a
1 eacosa exsinx 0 0 excosxdx aa
1 eacosa 0 easina 0 excosxdx a
39
21
2 22 1
1 e2 1 4 24
【例7】求定积分 4 1 xex dx. 0
解: 原式
4
1dx
4 xexdx.
0
0
x 4
4
x
ex
dx.
0
0
4
xex
4 0
4 0
x
e
xdx
.
4 4e4 4 exdx 0
4 4e4 ex 4 5 5e4 0
25
课本P-274,题2,(1)—(4)
广义积分 f (x)dx收敛或存在. a 相反,如果极限 lim b f (x)dx不存在, b a
我们就称广义积分 f (x)dx发散或不存在. a 我们的目标:计算一些函数的广义积分

高考数学(理)一轮专题讲义:3.4定积分

高考数学(理)一轮专题讲义:3.4定积分

第三章 导数 第03节 定积分 【考纲解读】【知识清单】1. 定积分的概念与微积分基本定理 1.定积分的概念 在()baf x dx ⎰中,,a b 分别叫做积分下限与积分上限,区间[]a b ,叫做积分区间,()f x 叫做被积函数,x 叫做积分变量,()f x dx 叫做被积式. 2.定积分的性质 (1) ()()bba akf x dx k f x dx =⎰⎰ (k 为常数);(2) 12[()()]ba f x f x dx ±=⎰12()()bbaaf x dx f x dx ±⎰⎰;(3)()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰ (其中a <c <b ).3.微积分基本定理一般地,如果()f x 是在区间[]a b ,上的连续函数,且()()F x f x '=,那么()()()dx baF f x b F a =⎰-,这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.其中()F x 叫做()f x 的一个原函数.为了方便,常把()()F b a F -记作()ba F x ,即()()()dx ()bba af x F x b F a F ==⎰-.对点练习:【2017江西4月质检】计算(22x dx -⎰得__________.【答案】2π 【解析】根据定积分的几何意义及定义,可知2222222211|202222xdx x πππ---+=+⨯⨯=+=⎰,故答案为2π. 2.定积分的几何意义(1)由直线x=a ,x=b a b <(),x 轴及一条曲线()y f x =(()0)f x ≥围成的曲边梯形的面积()baS f x dx =⎰,若'()()F X f x =,则(-S F b F =)(a). (2)推广:由直线x=a ,x=b a b <(),()y f x =和y=g(x )(()f x >g(x ))围成的平面图形的面积为[()()]baS f x g x dx =-⎰.对点练习:【2015高考天津,理11】曲线2y x = 与直线y x = 所围成的封闭图形的面积为 . 【答案】163.定积分在物理中的两个应用 定积分在物理中的两个应用(1)求变速直线运动的位移:如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =ba ⎰v (t )d t .(2)变力做功:一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =b a ⎰F (x )d x .对点练习:设01a <≤,函数x x x g xax x f ln )(,)(-=+=,若对任意的12,[1,]x x e ∈,都有12()()f x g x ≥成立,则a 的取值范围为 . 【答案】[2,1]e -【考点深度剖析】近5年新课标卷I,II,III 高考试卷中,没有这方面的题目,其它自主命题的试卷中,多以选择填空题形式考查,主要借助微积分基本定理求定积分或应用于几何图形面积计算或物理知识,偶有与二项式定理等相结合考查的题目.【重点难点突破】考点1 定积分的计算 【1-1】若22a x dx =⎰,23b x dx =⎰,2sin c xdx =⎰,则,,a b c 的大小关系是( ).A .a c b <<B .a b c <<C .c b a <<D .c a b << 【答案】D【解析】由微积分基本定理得:38|)31(20322===⎰x dx x a ,4|)41(204203===⎰x dx x b ,22cos 1|)cos (sin 202<-=-==⎰x dx x c 则b a c <<.【1-2】若12()2(),f x x f x dx =+⎰则1()f x dx =⎰( )A.1-B.13-C.13D.1 【答案】B 【解析】设1()f x dx m =⎰,则2()2,f x x m =+13112001()(2)(2)2,33x m f x dx x m dx mx m ==+=+=+⎰⎰因此1.3m =-【1-3】【2017湖南娄底二模】若()2sin 18aaxx dx -+=⎰,则a =__________.【答案】3 【解析】()23312sin |1833aaa x x dx x cosx a a -⎛⎫+=-== ⎪-⎝⎭⎰,所以3a =.【领悟技法】运用微积分基本定理求定积分的方法: (1)对被积函数要先化简,再求积分.(2)求被积函数为分段函数的定积分,依据定积分“对区间的可加性”,分段积分再求和. (3)对于含有绝对值符号的被积函数,要先去掉绝对值号再求积分. (4)注意用“F ′(x)=f(x)”检验积分的对错. 【触类旁通】【变式一】11)d x x -=⎰( )(A )4π (B )2π (C )3π (D )12π+ 【答案】B 【解析】依题意111022xdx ππ--+=+=⎰⎰,其中y =.【变式二】已知分段函数21,0(),0x x x f x e x -⎧+≤⎪=⎨>⎪⎩,则31(2)f x dx ⎰-等于( )A .13e +B .2e -C .713e -D .12e- 【答案】C考点2 定积分在几何中的应用【2-1】由直线x y e x y 2,,0===及曲线xy 2=所围成的封闭的图形的面积为( )A .3B .2ln 23+C .322-eD .e 【答案】A【解析】如图所示,曲边四边形OABC 的面积为11121212ln 12(ln ln1)1232e edx x e x⨯⨯+=+=+-=+=⎰. 【2-2】101)2x dx ⎰= .【答案】14π+≥0,则221x y +=(y ≥0),∴1dx ⎰表示的是上半圆在第一象限的部分的面积,其值等于4π,1201111)0244x dx x ==⎰,所以11)2x dx ⎰=10dx ⎰+1011)244x dx π=+⎰=14π+.【领悟技法】利用定积分求平面图形面积的四个步骤:(1)画出草图,在直角坐标系中画出曲线或直线的大致图像; (2)借助图形确定出被积函数,求出交点坐标,确定积分的上、下限; (3)把曲边梯形的面积表示成若干个定积分的和; (4)计算定积分,写出答案. 【触类旁通】 【变式一】由曲线x y =,直线2-=x y 及y 轴所围成的封闭图形的面积为( )A .316 B .310C .4D .6 【答案】A 【解析】由2y y x ⎧=⎪⎨=-⎪⎩解得4,2x y ==,故面积为)324420021622323|x x dx x x ⎛⎫+=-+= ⎪⎝⎭⎰.【变式二】在函数]2,2[,cos ππ-∈=x x y 的图象上有一点)cos ,(t t P ,此函数图象与x 轴及直线t x =围成图形(如图阴影部分)的面积为S ,则S 关于t 的函数关系)(t g S =的图象可以是( )A. B. C. D. 【答案】C【解析】根据题意可知函数]2,2[,cos ππ-∈=x x y 的图象上有一点)cos ,(t t P ,此函数图象与x轴及直线t x =围成图形(如图阴影部分)的面积为S 可以用定积分表示并且可知面面线变大在变大,而且变化先快,后慢,选C . 考点3 积分在物理中的应用【3-1】一物体在力⎩⎨⎧>+≤≤=)2(43)20(10)(x x x x F (单位:N)的作用下沿与力F 相同的方向,从x=0处运动到4=x (单位: m )处,则力)(x F 做的功为( ) A .44 B .46 C .48 D .50 【答案】B【解析】由题可得力)(x F 做的功为()()424224020023103410|4|462f x dx dx x dx x x x ⎛⎫=++=++= ⎪⎝⎭⎰⎰⎰.【3-2】在弹性限度内,弹簧所受的压缩力F 与缩短的距离l 按 胡克定律F kl =计算.今有一弹簧原长80cm ,每压缩1cm 需0.049N 的压缩力,若把这根弹簧从70cm 压缩至50cm (在弹性限度内),外力克服弹簧的弹力做了( )功(单位:J ) A.0.196 B.0.294 C.0.686 D.0.98 【答案】A【领悟技法】用定积分解决变速运动的位移与路程问题时,把物理问题转化为数学问题是关键.另外注意变速直线运动的速度函数往往是分段函数,故求积分时要利用积分的性质将其分成几段积分,然后求出积分的和. 【触类旁通】【变式一】一物体在力F (x )=⎩⎪⎨⎪⎧10,0≤x ≤2,3x +4,x >2,(单位:N)的作用下沿与力F (x )相同的方向运动了4米,力F (x )做功为( ) A .44 J B .46 J C .48 J D .50 J【答案】B【解析】力F (x )做功为⎠⎛0210d x +⎠⎛24(3x +4)d x=10x | 20+⎝ ⎛⎭⎪⎫32x 2+4x | 42=20+26=46.【变式二】在某介质内作变速直线运动的物体,经过时间t(单位:s)所走过的路程 s =4t 2(单位:m),若介质阻力F 与物体的运动速度v 成正比,且当v =10 m/s 时,F =5N ,求物体在位移区间[1,4]内克服介质阻力所做的功.【解析】∵物体经过时间t 所走过的路程24s t =,∴速度()8v t s t ='=.设()F kv t =,由“当10 /v m s =时,5F N =”知12k =,∴4F t =,∵[1,4]s ∈,∴1[,1]2t ∈,∴物体在位移区间[1,4]内克服介质阻力所做的功()3121112232t 28W 32t dt |J .33===⎰ 【易错试题常警惕】易错典例:设20lg 0()30a xx f x x t dt x >⎧⎪=⎨+⎪⎩⎰…,若((1))27f f =,则a = .易错分析:积分变量和参数混淆.正确解析:因为23at dt ⎰=33|a t a ==,所以,3lg ,0(),0x x f x x a x >⎧=⎨+⎩…,lg10=,((1))27f f =即3a =27,故a =3.温馨提示:若积分式子中有几个不同的参数,则必须先分清谁是被积变量.【学科素养提升之思想方法篇】化抽象为具体——数形结合思想数形结合是一种重要的数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围. 定积分中数形结合问题,主要是计算定积分时转化成图形的面积计算.【典例】121(x dx -+=⎰.【答案】232π+.。

非常好的定积分与微积分基本定理复习讲义

非常好的定积分与微积分基本定理复习讲义

定积分与微积分基本定理复习讲义备考方向要明了考什么怎么考1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.2.了解微积分基本定理的含义.1.考查形式多为选择题或填空题.2.考查简单定积分的求解.3.考查曲边梯形面积的求解.4.与几何概型相结合考查.归纳·知识整合1.定积分1 定积分的相关概念:在错误!错误!f x d x中,a,b分别叫做积分下限与积分上限,区间a,b叫做积分区间,f x叫做被积函数,x叫做积分变量,f x d x叫做被积式.2 定积分的几何意义①当函数f x在区间a,b上恒为正时,定积分错误!错误!f x d x的几何意义是由直线x=a,x=b a≠b,y=0和曲线y=f x所围成的曲边梯形的面积左图中阴影部分.②一般情况下,定积分错误!错误!f x d x的几何意义是介于x轴、曲线f x以及直线x=a,x=b之间的曲边梯形面积的代数和右上图中阴影所示 ,其中在x轴上方的面积等于该区间上的积分值,在x轴下方的面积等于该区间上积分值的相反数.3 定积分的基本性质:①错误!错误!kf x d x=k错误!错误!f x d x.②错误!错误!f1x±f2x d x=错误!错误!f1x d x±错误!错误!f2x d x.③错误!错误!f x d x=错误!错误!f x d x+错误!错误!f x d x.探究 1.若积分变量为t,则错误!错误!f x d x与错误!错误!f t d t是否相等提示:相等.2.一个函数的导数是唯一的,反过来导函数的原函数唯一吗提示:一个函数的导数是唯一的,而导函数的原函数则有无穷多个,这些原函数之间都相差一个常数,在利用微积分基本定理求定积分时,只要找到被积函数的一个原函数即可,并且一般使用不含常数的原函数,这样有利于计算.3.定积分错误!错误!f x-g x d x f x >g x的几何意义是什么提示:由直线x=a,x=b和曲线y=f x ,y=g x所围成的曲边梯形的面积.2.微积分基本定理:如果f x是区间a,b上的连续函数,并且F′ x=f x ,那么错误!错误!f x d x=F b-F a ,这个结论叫做微积分基本定理,又叫做牛顿—莱布尼兹公式.为了方便,常把F b-F a记成F x错误!错误!,即错误!错误!f x d x=F x错误!错误!=F b-F a.课前预测:错误!错误!d x等于A.2ln 2 B.-2ln 2 C.-ln 2 D.ln 22.教材习题改编一质点运动时速度和时间的关系为V t=t2-t+2,质点作直线运动,则此物体在时间 1,2 内的位移为3.教材习题改编直线x=0,x=2,y=0与曲线y=x2所围成的曲边梯形的面积为________.4.教材改编题错误!错误!错误!d x=________.5.由y=错误!,直线y=-x+错误!所围成的封闭图形的面积为________考点一利用微积分基本定理求定积分例1 利用微积分基本定理求下列定积分:1 错误!错误! x 2+2x +1 d x ;2 错误!错误! sin x -cos x d x ;3 错误!错误!x x +1 d x ;4 错误!错误!错误!d x ;5 20π⎰ sin 2错误!d x . ——————————————————— 求定积分的一般步骤:1 把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差;2 把定积分用定积分性质变形为求被积函数为上述函数的定积分;3 分别用求导公式找到一个相应的原函数;4 利用牛顿—莱布尼兹公式求出各个定积分的值;5 计算原始定积分的值.强化训练:1.求下列定积分: 1 错误!错误!|x -1|d x ; 2 20π⎰错误!d x .考点二 利用定积分的几何意义求定积分例2 错误!错误!错误!d x =________.变式:在本例中,改变积分上限,求错误!错误!错误!d x 的值.———————————————————利用几何意义求定积分的方法1 当被积函数较为复杂,定积分很难直接求出时,可考虑用定积分的几何意义求定积分.2 利用定积分的几何意义,可通过图形中面积的大小关系来比较定积分值的大小.强化训练:2. 2014·福建模拟 已知函数f x =错误!错误! cos t -sin t d t x >0 ,则f x 的最大值为________.考点三:利用定积分求平面图形的面积例3 2014·山东高考由曲线y=错误!,直线y=x-2及y轴所围成的图形的面积为A.错误!B.4 D.6变式训练:若将“y=x-2”改为“y=-x+2”,将“y轴”改为“x轴”,如何求解———————————————————利用定积分求曲边梯形面积的步骤1 画出曲线的草图.2 借助图形,确定被积函数,求出交点坐标,确定积分的上、下限.3 将“曲边梯形”的面积表示成若干个定积分的和或差.4 计算定积分,写出答案.强化训练:3. 2014·郑州模拟如图,曲线y=x2和直线x=0,x=1,y=错误!所围成的图形阴影部分的面积为考点四:定积分在物理中的应用例4 列车以72 km/h的速度行驶,当制动时列车获得加速度a=- m/s2,问列车应在进站前多长时间,以及离车站多远处开始制动———————————————————1.变速直线运动问题如果做变速直线运动的物体的速度v关于时间t的函数是v=v t v t ≥0 ,那么物体从时刻t=a到t=b所经过的路程为错误!错误!v t d t;如果做变速直线运动的物体的速度v关于时间t的函数是v=v t v t≤0 ,那么物体从时刻t=a到t=b所经过的路程为-错误!错误!v t d t.2.变力做功问题物体在变力F x的作用下,沿与力F x相同方向从x=a到x=b所做的功为错误!错误!F x d x.强化训练:4.一物体在力F x=错误!单位:N 的作用下沿与力F x相同的方向运动了4米,力F x做功为A.44 J B.46 J C.48 J D.50 J1个定理——微积分基本定理由微积分基本定理可知求定积分的关键是求导函数的原函数,由此可知,求导与积分是互为逆运算.3条性质——定积分的性质1 常数可提到积分号外;2 和差的积分等于积分的和差;3 积分可分段进行.3个注意——定积分的计算应注意的问题1 若积分式子中有几个不同的参数,则必须分清谁是积分变量;2 定积分式子中隐含的条件是积分上限不小于积分下限;3 面积非负, 而定积分的结果可以为负.易误警示——利用定积分求平面图形的面积的易错点典例 2013·上海高考已知函数y=f x的图象是折线段ABC,其中A 0,0 ,B错误!,C 1,0 .函数y=xf x0≤x≤1 的图象与x轴围成的图形的面积为________.1.本题易写错图形面积与定积分间的关系而导致解题错误.2.本题易弄错积分上、下限而导致解题错误,实质是解析几何的相关知识和运算能力不够致错.3.解决利用定积分求平面图形的面积问题时,应处理好以下两个问题:1 熟悉常见曲线,能够正确作出图形,求出曲线交点,必要时能正确分割图形;2 准确确定被积函数和积分变量.变式训练:1.由曲线y=x2,y=x3围成的封闭图形面积为2. 2014·山东高考设a>0.若曲线y=错误!与直线x=a,y=0所围成封闭图形的面积为a2,则a=________.定积分与微积分基本定理检测题一、选择题本大题共6小题,每小题5分,共30分错误!错误!d x=A.ln x+错误!ln2x-12.2012·湖北高考已知二次函数y=f x的图象如图所示,则它与x 轴所围图形的面积为3.设函数f x=ax2+b a≠0 ,若错误!错误!f x d x=3f x0 ,则x0等于A.±1 C.±错误!D.24.设f x=错误!则错误!错误!f x d x=D.不存在5.以初速度40 m/s竖直向上抛一物体,t秒时刻的速度v=40-10t2,则此物体达到最高时的高度为m m m m6.2013·青岛模拟由直线x=-错误!,x=错误!,y=0与曲线y=cos x所围成的封闭图形的面积为B.1二、填空题本大题共3小题,每小题5分,共15分7.设a =错误!错误!sin x d x ,则曲线y =f x =xa x +ax -2在点 1,f 1 处的切线的斜率为________.8.在等比数列{a n }中,首项a 1=错误!,a 4=错误!错误! 1+2x d x ,则该数列的前5项之和S 5等于________.9. 2013·孝感模拟 已知a ∈错误!,则当错误!错误! cos x -sin x d x 取最大值时,a =________.三、解答题 本大题共3小题,每小题12分,共36分10.计算下列定积分: 1 20π⎰ sin 2x d x ; 2 错误!错误!错误!2d x ; 3 120⎰e 2x d x . 11.如图所示,直线y =kx 分抛物线y =x -x 2与x 轴所围图形为面积相等的两部分,求k 的值.12.如图,设点P 从原点沿曲线y =x 2向点A 2,4 移动,直线OP 与曲线y =x 2围成图形的面积为S 1,直线OP 与曲线y =x 2及直线x =2围成图形的面积为S 2,若S 1=S 2,求点P的坐标.备选习题1.一物体做变速直线运动,其v -t 曲线如图所示,则该物体在错误! s ~6 s 间的运动路程为________.2.计算下列定积分:1 31-⎰ 3x 2-2x +1 d x ;2 错误!错误!错误!d x . 3.求曲线y =错误!,y =2-x ,y =-错误!x 所围成图形的面积.4.某技术监督局对一家颗粒输送仪生产厂进行产品质量检测时,得到了下面的资料:这家颗粒输送仪生产厂生产的颗粒输送仪,其运动规律属于变速直线运动,且速度v 单位:m/s 与时间t 单位:s 满足函数关系式v t =错误!某公司拟购买一台颗粒输送仪,要求1 min 行驶的路程超过7 673 m,问这家颗粒输送仪生产厂生产的颗粒输送仪能否被列入拟挑选的对象之一 定积分与微积分基本定理复习讲义答案前测:1.D 2.A 3.错误! 4.错误!π 5.错误!-2ln 2 例1: 1 错误!. 2 2. 3 错误!. 4 错误!e 4-错误!e 2+ln 2. 5 错误!.变式1:解: 1 |x -1|=错误!故错误!错误!|x -1|d x =错误!错误! 1-x d x +错误!错误! x -1 d x =错误!错误!错误!+错误!错误!错误!=错误!+错误!=1. 2 20π⎰错误!d x =20π⎰|sin x -cos x |d x =40π⎰ cos x -sin x d x +24ππ⎰ sin x -cos x d x = sin x +cos x 40π+ -cos x -sin x 24ππ=错误!-1+ -1+错误! =2错误!-2.例2: 自主解答 错误!错误!错误!d x 表示y =错误!与x =0,x =1及y =0所围成的图形的面积由y =错误!得 x -1 2+y 2=1 y ≥0 ,又∵0≤x ≤1,∴y =错误!与x =0,x =1及y =0所围成的图形为错误!个圆,其面积为错误!. ∴错误!错误!错误!d x =错误!.互动:解:错误!错误!错误!d x 表示圆 x -1 2+y 2=1在第一象限内部分的面积,即半圆的面积,所以 错误!错误!错误!d x =错误!.变式2. 错误!-1 例3.C 互动:错误!. 变式3.D 例4: 自主解答 a =- m/s 2,v 0=72 km/h =20 m/s.设t s 后的速度为v ,则v =20-.令v =0,即20- t =0得t =50 s .设列车由开始制动到停止所走过的路程为s ,则s =错误!错误!v d t =错误!错误! 20-d t = 20t -错误!错误!=20×50-×502=500 m ,即列车应在进站前50 s 和进站前500 m 处开始制动.变式4.46典例: 解析 由题意可得f x =错误!所以y =xf x =错误!与x 轴围成图形的面积为120⎰10x 2d x +112⎰ 10x -10x 2 d x =错误!x 3120+错误!112错误!=错误!. 答案 错误! 变式5. 1.A 2. 错误!检测题答案 CBCCAD 7.4+2ln 2 8.错误! 9.错误!10.解: 1 错误!. 2 错误!+ln 错误!. 3 错误!e -错误!.11.解:抛物线y =x -x 2与x 轴两交点的横坐标为x 1=0,x 2=1,所以,抛物线与x 轴所围图形的面积S =错误!错误! x -x 2 d x =错误!错误!错误!=错误!. 又错误! 由此可得,抛物线y =x -x 2与y =kx 两交点的横坐标为x 3=0,x 4=1-k ,所以,错误!=错误!错误! x -x 2-kx d x =错误!错误!错误!=错误! 1-k 3.又知S =错误!,所以 1-k 3=错误!,于是k =1- 错误!=1-错误!.12.解:设直线OP 的方程为y =kx ,点P 的坐标为 x ,y ,则错误!错误! kx -x 2 d x =错误!错误! x 2-kx d x ,即错误!错误!错误!=错误!错误!错误!,解得错误!kx 2-错误!x 3=错误!-2k -错误!,解得k =错误!,即直线OP 的方程为y =错误!x ,所以点P 的坐标为错误!. 备选题:1.解析:由题图可知,v t =错误!因此该物体在错误! s ~6 s 间运动的路程为s =612⎰v t d t =112⎰2t d t +错误!错误!2d t +错误!错误!错误!d t =t 2112+2t |错误!+错误!错误!错误!=错误! m . 答案:错误! m 2.解: 1 31-⎰ 3x 2-2x +1 d x = x 3-x 2+x 31-=24.2 错误!错误!错误!d x =错误!错误!x d x +错误!错误!错误!d x +错误!错误!错误!d x=错误!x2错误!错误!+ln x错误!错误!-错误!错误!错误!=错误! e2-1 + ln e-ln 1 -错误!=错误!e2-错误!+错误!.3.解:由错误!得交点A 1,1 由错误!得交点B 3,-1 .故所求面积S=错误!错误!错误!d x+错误!错误!错误!d x =错误!错误!错误!+错误!错误!错误!=错误!+错误!+错误!=错误!.4.解:由变速直线运动的路程公式,可得s=错误!错误!t2d t+错误!错误! 4t+60 d t+错误!错误!140d t=错误!t3错误!错误!+ 2t2+60t错误!错误!+140t错误!错误!=7 133 错误! m <7 676 m .∴这家颗粒输送仪生产厂生产的颗粒输送仪不能被列入拟挑选的对象之一.。

定积分与微积分基本定理讲义

定积分与微积分基本定理讲义

定积分与微积分基本定理讲义一、知识梳理1.定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b ,将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑n i =1f (ξi )Δx =∑n i =1b -a n f (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作ʃb a f (x )d x ,即ʃb a f (x )d x =lim n →∞∑n i =1 b -a nf (ξi ).在ʃb a f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.2.定积分的性质(1)ʃb a kf (x )d x =k ʃb a f (x )d x (k 为常数);(2)ʃb a [f 1(x )±f 2(x )]d x =ʃb a f 1(x )d x ±ʃb a f 2(x )d x ;(3)ʃb a f (x )d x =ʃc a f (x )d x +ʃb c f (x )d x (其中a <c <b ). 3.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么ʃb a f (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.为了方便,常把F (b )-F (a )记作F (x )|b a ,即ʃb a f (x )d x =F (x )|b a =F (b )-F (a ).注意:1.定积分应用的常用结论当曲边梯形位于x 轴上方时,定积分的值为正;当曲边梯形位于x 轴下方时,定积分的值为负;当位于x 轴上方的曲边梯形与位于x 轴下方的曲边梯形面积相等时,定积分的值为零.2.若函数f (x )在闭区间[-a ,a ]上连续,则有(1)若f (x )为偶函数,则ʃa -a f (x )d x =2ʃa 0f (x )d x .(2)若f (x )为奇函数,则ʃa -a f (x )d x =0.题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)设函数y =f (x )在区间[a ,b ]上连续,则ʃb a f (x )d x =ʃb a f (t )d t .( )(2)若函数y =f (x )在区间[a ,b ]上连续且恒正,则ʃb a f (x )d x >0.( )(3)若ʃb a f (x )d x <0,那么由y =f (x ),x =a ,x =b 以及x 轴所围成的图形一定在x 轴下方.( )(4)曲线y =x 2与y =x 所围成图形的面积是ʃ10(x 2-x )d x .( )题组二:教材改编2.ʃe +121x -1d x =________.3.ʃ0-11-x 2d x =________. 4.[汽车以v =(3t +2)m/s 作变速直线运动时,在第1 s 至第2 s 间的1 s 内经过的位移是________ m. 题组三:易错自纠5.直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( )A .2 2B .4 2C .2D .46.若ʃT 0x 2d x =9,则常数T 的值为________.7.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤0,1,0<x ≤1,则ʃ1-1f (x )d x 的值为________. 三、典型例题题型一:定积分的计算1.定积分ʃ1-1(x 2+sin x )d x =______.2.ʃ1-1e |x |d x 的值为( )A .2B .2eC .2e -2D .2e +23.设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],2-x ,x ∈(1,2],则ʃ20f (x )d x 等于( ) A.34B.45C.56 D .不存在思维升华:运用微积分基本定理求定积分时要注意以下几点:(1)对被积函数要先化简,再求积分.(2)若被积函数为分段函数的定积分,依据定积分“对区间的可加性”,先分段积分再求和.(3)对于含有绝对值符号的被积函数,要先去掉绝对值符号再求积分.题型二:定积分的几何意义命题点1:利用定积分的几何意义计算定积分典例 (1)计算:ʃ313+2x -x 2 d x =________.(2)若ʃm -2-x 2-2x d x =π4,则m =________. 命题点2:求平面图形的面积典例由曲线xy =1,直线y =x ,y =3所围成的封闭平面图形的面积为________.思维升华:(1)根据定积分的几何意义可计算定积分.(2)利用定积分求平面图形面积的四个步骤①画出草图,在直角坐标系中画出曲线或直线的大致图象;②借助图形确定出被积函数,求出交点坐标,确定积分的上、下限;③把曲边梯形的面积表示成若干个定积分的和;④计算定积分,写出答案.跟踪训练 (1)定积分ʃ309-x 2d x 的值为________. (2)如图所示,由抛物线y =-x 2+4x -3及其在点A (0,-3)和点B (3,0)处的切线所围成图形的面积为______.题型三:定积分在物理中的应用典例 一物体作变速直线运动,其v -t 曲线如图所示,则该物体在12s ~6 s 间的运动路程为____ m.思维升华:定积分在物理中的两个应用(1)变速直线运动的位移:如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =ʃb a v (t )d t .(2)变力做功:一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =ʃb a F (x )d x .跟踪训练 一物体在变力F (x )=5-x 2(力单位:N ,位移单位:m)作用下,沿与F (x )成30°方向作直线运动,则由x =1运动到x =2时,F (x )做的功为( )A. 3 JB.233 JC.433J D .2 3 J答案 C 四、反馈练习1.π220sin d 2x x 等于( ) A .0 B.π4-12C.π4-14D.π2-1 2.ʃ1-1(1-x 2+x )d x 等于( )A .πB.π2 C .π+1 D .π-13.已知函数y =f (x )的图象为如图所示的折线ABC ,则ʃ1-1[(x +1)f (x )]d x 等于( )A .2B .-2C .1D .-1 5.设f (x )=⎩⎪⎨⎪⎧ x 2,x ∈[0,1],1x ,x ∈(1,e](其中e 为自然对数的底数),则ʃe 0f (x )d x 的值为( ) A.43B.54C.65D.76 6.设a =ʃ10cos x d x ,b =ʃ10sin x d x ,则下列关系式成立的是( )A .a >bB .a +b <1C .a <bD .a +b =17.定积分ʃ20|x -1|d x 等于( ) A .1 B .-1 C .0 D .28.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t (t 的单位:s ,v 的单位:m/s)行驶至停止,则在此期间汽车继续行驶的距离(单位:m)是( )A .1+25ln 5B .8+25ln 113C .4+25ln 5D .4+50ln 2 9.π20π2sin()d 4x x +=⎰ ________. 10.由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为________. 11.设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________.12.已知二次函数y =f (x )的图象如图所示,则它与x 轴所围成的面积为________.13.由曲线y =x 2和曲线y =x 围成的一个叶形图如图所示,则图中阴影部分的面积为( ) A.13B.310C.14D.1514.若S 1=ʃ21x 2d x ,S 2=ʃ211xd x ,S 3=ʃ21e x d x ,则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 115.ʃ1-1(1-x 2+e x -1)d x =______. 16.若函数f (x )在R 上可导,f (x )=x 3+x 2f ′(1),则ʃ20f (x )d x =________.。

人教版数学高二选修2-2讲义1.5.3定积分的概念

人教版数学高二选修2-2讲义1.5.3定积分的概念

1.5.3定积分的概念1.了解定积分的概念.(难点)2.理解定积分的几何意义.(重点、易混点)3.掌握定积分的几何性质.(重点、难点)[基础·初探]教材整理1 定积分的概念阅读教材P45内容,完成下列问题.如果函数f(x)在区间[a,b]上连续,用分点a=x0<x1<…<x i-1<x i<…<x n=b将区间[a,b]等分成n个小区间,在每个小区间[x i-1,x i]上任取一点ξi(i=1,2,…,n),作和式∑i=1nf(ξi)Δx=________________,当n→∞时,上述和式无限接近某个常数,这个常数叫做函数f(x)在区间[a,b]上的定积分,记作⎠⎛ab f(x)d x,即⎠⎛ab f(x)d x=__________.其中a与b分别叫做__________与__________,区间[a,b]叫做______,函数f(x)叫做____________,x叫做__________,f(x)d x叫做__________.【答案】∑i=1n b-an f(ξi)limn→∞∑i=1n b-an f(ξi)积分下限积分上限积分区间被积函数积分变量被积式⎠⎛12(x+1)d x的值与直线x=1,x=2,y=0,f(x)=x+1围成的梯形的面积有什么关系?【解析】由定积分的概念知:二者相等.教材整理2 定积分的几何意义阅读教材P46的内容,完成下列问题.从几何上看,如果在区间[a,b]上函数f(x)连续且恒有f(x)≥0,那么定积分⎠⎛ab f(x)d x表示由__________________所围成的曲边梯形的面积.这就是定积分⎠⎛ab f(x)d x的几何意义.【答案】直线x=a,x=b,y=0和曲线y=f(x)判断(正确的打“√”,错误的打“×”)(1)⎠⎛ab f(x)d x=⎠⎛ab f(t)d t.()(2)⎠⎛ab f(x)d x的值一定是一个正数.()(3)⎠⎛12x d x<⎠⎛22x d x()【答案】(1)√(2)×(3)√教材整理3定积分的性质阅读教材P47的内容,完成下列问题.1.⎠⎛ab kf(x)d x=________________________(k为常数).2.⎠⎛ab[f1(x)±f2(x)]d x=⎠⎛abf1(x)d x±__________________.3.⎠⎛ab f(x)d x=______________(其中a<c<b).【答案】 1.k⎠⎛ab f(x)d x 2.⎠⎛ab f2(x)d x 3.⎠⎛ac f(x)d x+⎠⎛cb f(x)d x填空:(1)由y=0,y=cos x,x=0,x=π2围成的图形的面积用定积分的形式表示为__________.(2)⎠⎛-11f(x)d x=⎠⎛-10f(x)d x+__________.(3)⎠⎛ab(x2+2x)d x=⎠⎛ab2x d x+________.【答案】(1)⎠⎜⎛π2cos x d x(2)⎠⎛1f(x)d x(3)⎠⎛ab x2d x[小组合作型]利用定义求定积分利用定积分的定义,计算⎠⎛12(3x+2)d x的值.【精彩点拨】根据定积分的意义,分四步求解,即分割、近似代替、求和、取极限.【自主解答】令f(x)=3x+2.(1)分割在区间[1,2]上等间隔地插入n-1个分点,将区间[1,2]等分成n个小区间⎣⎢⎡⎦⎥⎤n+i-1n,n+in(i=1,2,…,n),每个小区间的长度为Δx=n+in-n+i-1n=1n.(2)近似代替、作和取ξi=n+i-1n(i=1,2,…,n),则S n=∑i=1nf⎝⎛⎭⎪⎫n+i-1n·Δx=∑i=1n⎣⎢⎡⎦⎥⎤3(n+i-1)n+2·1n=∑i=1n⎣⎢⎡⎦⎥⎤3(i-1)n2+5n=3n2[0+1+2+…+(n-1)]+5=32×n2-nn2+5=132-32n.(3)取极限⎠⎛12(3x+2)d x=limn→∞S n=limn→∞⎝⎛⎭⎪⎫132-32n=132.利用定义求定积分的步骤[再练一题]1.利用定积分的定义计算⎠⎛12(-x 2+2x )d x 的值.【解】 令f (x )=-x 2+2x . (1)分割在区间[1,2]上等间隔地插入n -1个分点,把区间[1,2]等分为n 个小区间⎣⎢⎡⎦⎥⎤1+i -1n ,1+i n (i =1,2,…,n ),每个小区间的长度为Δx =i n -i -1n =1n . (2)近似代替、作和取ξi =1+in (i =1,2,…,n ),则 S n =∑i =1nf ⎝ ⎛⎭⎪⎫1+i n ·Δx=∑i =1n⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫1+i n 2+2⎝ ⎛⎭⎪⎫1+i n ·1n =-1n 3[(n +1)2+(n +2)2+(n +3)2+…+(2n )2]+2n 2[(n +1)+(n +2)+(n +3)+…+2n ]=-1n 3⎣⎢⎡⎦⎥⎤2n (2n +1)(4n +1)6-n (n +1)(2n +1)6+2n 2·n (n +1+2n )2 =-13⎝ ⎛⎭⎪⎫2+1n ⎝ ⎛⎭⎪⎫4+1n +16⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n +3+1n . (3)取极限⎠⎛12(-x 2+2x )d x =lim n →∞S n =lim n →∞ ⎣⎢⎡-13⎝ ⎛⎭⎪⎫2+1n ⎝ ⎛⎭⎪⎫4+1n +16⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n +⎦⎥⎤3+1n=23.定积分的几何意义利用定积分的几何意义求下列定积分. (1)⎠⎛-33-39-x 2d x ;(2)⎠⎛03(2x +1)d x ; (3)⎠⎛-11-1(x 3+3x )d x . 【导学号:62952046】【精彩点拨】 对于本题(1)、(2)可先确定被积函数、积分区间,画出图形,然后用几何法求出图形面积,从而确定定积分的值;对于(3)可根据被积函数的奇偶性求解.【自主解答】 (1)曲线y =9-x 2表示的几何图形为以原点为圆心以3为半径的上半圆如图(1)所示.其面积为S =12·π·32=92π.由定积分的几何意义知⎠⎛-339-x 2d x =92π.(2)曲线f (x )=2x +1为一条直线.⎠⎛03(2x +1)d x 表示直线f (x )=2x +1,x =0,x=3围成的直角梯形OABC 的面积,如图(2).其面积为S =12(1+7)×3=12.根据定积分的几何意义知⎠⎛03(2x +1)d x =12.(3)∵y=x3+3x在区间[-1,1]上为奇函数,图象关于原点对称,∴曲边梯形在x轴上方部分面积与x轴下方部分面积相等.由定积分的几何意义知⎠⎛-11(x3+3x)d x=0.定积分的几何意义的应用(1)利用定积分的几何意义求⎠⎛ab f(x)d x的值的关键是确定由曲线y=f(x),直线x=a,x=b及y=0所围成的平面图形的形状.常见的图形有三角形、直角梯形、矩形、圆等可求面积的平面图形.(关键词:平面图形的形状)(2)不规则的图形常利用分割法将图形分割成几个容易求定积分的图形求面积,要注意分割点要确定准确.(关键词:分割)[再练一题]2.上例(1)中变为⎠⎜⎛-32329-x2d x,如何求解?【解】由y=9-x2,知x2+y2=9(y≥0),x∈⎣⎢⎡⎦⎥⎤-32,32,其图象如图所示:由定积分的几何意义,知⎠⎜⎛-32329-x2d x等于圆心角为60°的弓形C ED的面积与矩形ABC D的面积之和.S弓形=12×π3×32-12×3×332=6π-934,S矩形=|AB|×|BC|=2×32×9-⎝⎛⎭⎪⎫322=932,∴⎠⎜⎛-32329-x2d x=6π-934+932=6π+934.[探究共研型]定积分性质的应用探究1 【提示】 可先把每一段函数的定积分求出后再相加. 探究2 怎样求奇(偶)函数在区间[a ,b ]上的定积分?【提示】 ①若奇函数y =f (x )的图象在[-a ,a ]上连续,则⎠⎛-a a f (x )d x =0;②若偶函数y =g (x )的图象在[-a ,a ]上连续,则⎠⎛-aa g (x )d x =2⎠⎛0a g (x )d x .(1)f (x )=⎩⎨⎧x +1,0≤x <1,2x 2,1≤x ≤2,则⎠⎛02f (x )d x =( )A.⎠⎛02(x +1)d xB.⎠⎛022x 2d x C.⎠⎛01(x +1)d x +⎠⎛122x 2d x D.⎠⎛122x d x +⎠⎛02(x +1)d x (2)已知⎠⎛02f (x )d x =8,则⎠⎛02[f (x )-2x ]d x =________.【自主解答】 (1)∵f (x )在[0,2]上是连续的,由定积分的性质(3)得⎠⎛02f (x )d x=⎠⎛01f (x )d x +⎠⎛12f (x )d x =⎠⎛01(x +1)d x +⎠⎛122x 2d x . (2)由定积分的性质(2)可得⎠⎛02[f (x )-2x ]d x =⎠⎛02f (x )d x -⎠⎛022x d x =⎠⎛02f (x )d x -2⎠⎛02x d x . 又∵⎠⎛02f (x )d x =8,⎠⎛02x d x =12×2×2=2,∴⎠⎛2[f(x)-2x]d x=⎠⎛2f(x)d x-2⎠⎛2x d x=8-2×2=4.【答案】(1)C(2)4利用定积分的性质求定积分的技巧灵活应用定积分的性质解题,可以把比较复杂的函数拆成几个简单函数,把积分区间分割成可以求积分的几段,进而把未知的问题转化为已知的问题,在运算方面更加简洁.应用时注意性质的推广:(1)⎠⎛ab[f1(x)±f2(x)±…±f n(x)]d x=⎠⎛ab f1(x)d x±⎠⎛ab f2(x)d x±…±⎠⎛ab f n(x)d x;(2)⎠⎛ab f(x)d x=⎠⎜⎛ac1f(x)d x+⎠⎜⎛c1c2f(x)d x+…+⎠⎜⎛c nb f(x)d x(其中a<c1<c2<…<c n<b,n∈N*).[再练一题]3.已知⎠⎛e x d x=e22,⎠⎛e x2d x=e33,求下列定积分的值.(1)⎠⎛e(2x+x2)d x;(2)⎠⎛e(2x2-x+1)d x.【解】(1)⎠⎛e(2x+x2)d x=2⎠⎛e x d x+⎠⎛e x2d x=2×e22+e33=e2+e33.(2)⎠⎛e(2x2-x+1)d x=2⎠⎛e x2d x-⎠⎛e x d x+⎠⎛e1d x,因为已知⎠⎛e x d x=e22,⎠⎛e x2d x=e33,又由定积分的几何意义知:⎠⎛0e 1d x 等于直线x =0,x =e ,y =0,y =1所围成的图形的面积,所以⎠⎛0e 1d x =1×e =e ,故⎠⎛0e (2x 2-x +1)d x =2×e 33-e 22+e =23e 3-12e 2+e.1.下列等式不成立的是( )A.⎠⎛a b [mf (x )+ng (x )]d x =m ⎠⎛a b f (x )d x +n ⎠⎛a b g (x )d xB.⎠⎛a b [f (x )+1]d x =⎠⎛ab f (x )d x +b -a C.⎠⎛a b f (x )g (x )d x =⎠⎛a b f (x )d x ·⎠⎛ab g (x )d x D.⎠⎛-2π2πsin x d x =⎠⎛-2π0sin x d x +⎠⎛02πsin x d x【解析】 利用定积分的性质可判断A ,B ,D 成立,C 不成立. 例如⎠⎛02x d x =2,⎠⎛022d x =4,⎠⎛022x d x =4,即⎠⎛022x d x ≠⎠⎛02x d x ·⎠⎛022d x . 【答案】 C2.图1-5-3中阴影部分的面积用定积分表示为( )图1-5-3A.⎠⎛012x dxB.⎠⎛01(2x -1)d xC.⎠⎛01(2x +1)d xD.⎠⎛01(1-2x )d x 【解析】 根据定积分的几何意义,阴影部分的面积为⎠⎛012x d x -⎠⎛011d x =⎠⎛01(2x-1)d x.【答案】 B3.由y=sin x,x=0,x=π2,y=0所围成图形的面积写成定积分的形式是________.【导学号:62952047】【解析】∵0<x<π2,∴sin x>0.∴y=sin x,x=0,x=π2,y=0所围成图形的面积写成定积分的形式为⎠⎜⎛π2sin x d x.【答案】⎠⎜⎛π2sin x d x4.若⎠⎛ab[f(x)+g(x)]d x=3,⎠⎛ab[f(x)-g(x)]d x=1,则⎠⎛ab[2g(x)]d x=________.【解析】⎠⎛ab[2g(x)]d x=⎠⎛ab[(f(x)+g(x))-(f(x)-g(x))]d x=⎠⎛ab[f(x)+g(x)]d x-⎠⎛ab[f(x)-g(x)]d x=3-1=2.【答案】 25.用定积分的几何意义求⎠⎛-114-x2d x.【解】由y=4-x2可知x2+y2=4(y≥0),其图象如图.⎠⎛-114-x2d x等于圆心角为60°的弓形C E D的面积与矩形ABCD的面积之和.S弓形=12×π3×22-12×2×2sinπ3=2π3- 3.S矩形=|AB|·|BC|=2 3.高中数学-打印版 精心校对完整版 ∴⎠⎛-114-x 2d x =23+2π3-3=2π3+ 3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)取极限:
设 ,
.
三、定积分定义
1.定义设函数 在 上有界,在 中任意插入若干个分点 把区间 分成 个小区间,各小区间的长度依次记为 , ,在各小区间上任取一点 ( ),作乘积 , ,并作和 ,
记 ,如果不论对 怎样的分法,也不论在小区间 上点 怎样的取法,只要当 时,和 总趋于确定的极限 ,我们称这个极限 为函数 在区间 上的定积分,记为
课程安排:2学期,周学时 4 , 共 96 学时.
主要内容:定积分的计算
要求:听课 、复习 、 作业
本次课题(或教材章节题目):第五章 定积分 第一节 定积分的概念与性质
教学要求:
1.了解定积分的概念
2.掌握定积分的性质
重 点:定积分的性质
难 点:
1.定积分的概念
2.定积分的性质
教学手段及教具:讲授为主
要求:听课 、复习 、 作业
本次课题(或教材章节题目):第六章 定积分的应用 第一节 定积分的元素法
第二节 定积分在几何学上的应用
教学要求:
1.了解定积分的元素法
2.会用元素法求解平面图形面积
重 点:
元素法求解平面图形面积
难 点:
元素法求解平面图形面积
教学手段及教具:讲授为主
讲授内容及时间分配:
1 复习定积分的概念 10分钟
本次课题(或教材章节题目):第五章 定积分 第三节 定积分的换元积分法及分部积分法
教学要求:
利用分部积分法求解多种形式积分
重 点:
分部积分法
难 点:
分部积分法
教学手段及教具:讲授为主
讲授内容及时间分配:
1 复习 15分钟
2 分部积分法 25分钟
3 例题及练习 50分钟
课后作业
参考资料
一、复习分部积分法
教学要求:
会用换元积分法求解多种形式的积分
重 点:
换元积分法
难 点:
换元积分法求解积分
教学手段及教具:讲授为主
讲授内容及时间分配:
1 复习 15分钟
2例题及练习65分钟
3 小结 10分钟
课后作业
参考资料
一、复习
1.13个常见积分式
2.换元积分法
二、例题
例1.计算

例2.
解:令 ,则
原式=
例3.计算
解:解法一设 ,则
例1.计算
解设 ,则
当 时, ;当 时,
例2. 计算
解:设 ,则
当 时, ;当 时,
例3. 计算
解:设 ,则
当 时, , 时, .
=
四、练习
计算下列定积分
1、 2、
3、 4、
课程安排:2学期,周学时 4 , 共 96 学时.
主要内容:定积分的计算
要求:听课 、复习 、 作业
本次课题(或教材章节题目):第五章 定积分 第三节定积分的换元积分法及分部积分法
(1)分割:
用分点 把区间 分成 个小区间 ,各小区间的长度依次为: , ,在各分点处做 轴的平行线,就把曲边梯形的面积分成 个小的曲边梯形
(2)近似:
在各小区间 上任取一点 ,以 为高, 为底的矩形面积近似代替该区间上的小曲边梯形的面积 ,即

(3)求和:
整个大的曲边梯形的面积等于 个小曲边梯形的面积之和,即
假设 ,
.
推广:不论 的相对位置如何,下式总成立.
.
性质4
性质5(不等式性质)——比较性质
如果在区间 上 ,则 .
推论:如果在区间 上 ,则 .
性质6设M及m分别是函数 在区间 上的最大值及最小值则
性质7(定积分中值定理)
如果函数 在闭区间 上连续,则在积分区间 上至少存在一个点 ,使
.
例1.?用定积分的几何意义求 .
(1) 与
解:当 时, ,
从而
(2) 的几何意义求:
(1)
(2)
(3)
2.比较下列各对积分的大小
(1) 与
(2) 与
(3) 与
课程安排:2学期,周学时 4 , 共 96 学时.
主要内容:定积分的计算
要求:听课 、复习 、 作业
本次课题(或教材章节题目):第五章 定积分 第二节 微积分基本公式
2 定积分的微元法 15分钟
3 平面图形面积问题 20分钟
4 例题及练习 45分钟
课后作业
参考资料
一、复习定积分的定义
二、定积分的元素法
步骤:
1、在区间划分的基础上找出能够很大程度上取代局部部分量的线性近似值,即寻找微分表达式
2、计算
三、定积分的应用——求平面图形的面积
1、由曲线 及直线 与 ( )与 轴所围成的曲边梯形面积
其中 叫做被积函数 叫做被积表达式 叫做积分变量 叫做积分下限 叫做积分上限 叫做积分区间
说明:
(1)积分值仅与被积函数及积分区间有关,而与积分变量的字母无关.
(2)定义中区间的分法和 的取法是任意的
(3)当函数 在区间 上的定积分存在时,称 在区间 上可积.
(4)
2.定积分存在定理
定理1当函数 在区间 上连续时,则 在区间 上可积.
提出问题:求解
二、分部积分法
定理:设 , 在 上可导, 且 , ),则有分部积分公式

这就是定积分的分部积分公式
三、例题
例1.计算
解 设 ,
=
例2.计算

四、练习
1、计算下列定积分
(1) (2)
(3) (4)
(5)
课程安排:2学期,周学时 4 , 共 96 学时.
主要内容:定积分的计算
要求:听课 、复习 、 作业
例2.求 , 所围成的图形的面积.
解 , , ,
当 时 ,于是
五、练习
1、求由抛物线 与直线 所围成的平面图形的面积.
2、求由抛物线 与直线 所围成的平面图形的面积.
当 时, ;当 时,
解法二
注:如并不明显写出新变量 ,则定积分的上下限就不用变。
例4. 计算
解:原式=
三、练习
计算下列定积分
(1) (2)
(3) (4)
四、小结
掌握定积分的换元积分法,要特别注意换元要换限,换限时要对应.
课程安排:2学期,周学时 4 , 共 96 学时.
主要内容:定积分的计算
要求:听课 、复习 、 作业
二、换元积分法
定理假设函数 在区间[ab]上连续函数 满足条件
(1)
(2) 在[](或[])上具有连续导数且其值域不越出[ab]
则有
(1)
这个公式叫做定积分的换元公式
注:若将(1)式反过来使用,即交换等号两边式子的位置,按照使用习惯改变积分变量,得到不定积分的第一类换元积分法的定积分形式:
(2)
三、例题
讲授内容及时间分配:
1复习5分钟
2定积分问题举例15分钟
3定积分定义15分钟
4定积分的性质30分钟
5 例题及练习25分钟
课后作业
参考资料
定积分的概念与性质
一、复习不定积分的概念
二、定积分问题举例
曲边梯形的面积
曲边梯形由连续曲线 、 、 所围成(如图1).
图1
提问:怎样求曲边梯形的面积?
方法:分割 近似 求和 取极限

二、例题
例1.计算

例2.计算
解令 则
三、练习
1、计算下列定积分
(1) (2)
(3)
四、小结
分部积分法的关键是 的选取,选取口诀“反对幂三指”按照顺序,谁在左谁就是 ,剩下的就是 ,其中:
反—反三角函数
对—对数函数
幂—幂函数
指—指数函数
课程安排:2学期,周学时 4 , 共 96 学时.
主要内容:定积分的计算
由 得 即
为了方便起见可把 记成 于是
进一步揭示了定积分与被积函数的原函数或不定积分之间的联系
四、例题
例1.求下列函数的导数:
(1) ; (2)
解(1)
(2)
例2.计算
解由于 是 的一个原函数所以
例3. 计算
解 由于 是 的一个原函数所以
例4.计算
解 ln 1ln 2ln 2
例5. 计算
解:原式=
例6.计算正弦曲线 在[0π]上与 轴所围成的平面图形的面积
一、复习定积分的概念及性质
设函数 f(x)在区间[ab]上连续并且设x为[ab]上的一点我们把函数 在部分区间[ax]上的定积分 称为积分上限的函数它是区间[ab]上的函数记为(x) 或
定理1如果函数 在区间[ab]上连续则函数 在[ab]上具有导数并且它的导数为 (ax<b)
定理2如果函数 在区间[ab]上连续则函数 就是 在[ab]上的一个原函数
教学要求:
1.了解变上限函数及导数的概念
2.掌握牛顿莱布尼兹公式
重 点:牛顿莱布尼兹公式
难 点:
1.变上限函数及导数
2.牛顿莱布尼兹公式的应用
教学手段及教具:讲授为主
讲授内容及时间分配:
1 复习10分钟
2 积分上限函数及其导数25分钟
3牛顿莱布尼兹公式25分钟
4 例题及练习 30分钟
课后作业
参考资料
教学要求:
1.理解换元积分法
2.会用换元积分法求解积分
重 点:
换元积分法
难 点:
换元积分法求解积分
教学手段及教具:讲授为主
讲授内容及时间分配:
1 复习 15分钟
2换元积分法15分钟
3 例题及练习 60分钟
课后作业
参考资料
一、复习微积分基本定理及13个常见积分式
相关文档
最新文档