精品课件-不定积分公式大全 (2)
不定积分公式大全

1)∫0dx=c 不定积分的定义2)∫x^udx=(x^(u+1))/(u+1)+c3)∫1/xdx=ln|x|+c4)∫a^xdx=(a^x)/lna+c5)∫e^xdx=e^x+c6)∫sinxdx=-cosx+c7)∫cosxdx=sinx+c8)∫1/(cosx)^2dx=tanx+c9)∫1/(sinx)^2dx=-cotx+c10)∫1/√(1-x^2) dx=arcsinx+c11)∫1/(1+x^2)dx=arctanx+c12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c13)∫secxdx=ln|secx+tanx|+c 基本积分公式14)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c15)∫1/√(a^2-x^2) dx=(1/a)*arcsin(x/a)+c16) ∫sec^2 x dx=tanx+c;17) ∫shx dx=chx+c;18) ∫chx dx=shx+c;19) ∫thx dx=ln(chx)+c;When you are old and grey and full of sleep, And nodding by the fire, take down this book,And slowly read, and dream of the soft lookYour eyes had once, and of their shadows deep; How many loved your moments of glad grace, And loved your beauty with love false or true,But one man loved the pilgrim soul in you,And loved the sorrows of your changing face; And bending down beside the glowing bars, Murmur, a little sadly, how love fledAnd paced upon the mountains overheadAnd hid his face amid a crowd of stars.The furthest distance in the worldIs not between life and deathBut when I stand in front of youYet you don't know thatI love you.The furthest distance in the worldIs not when I stand in front of youYet you can't see my loveBut when undoubtedly knowing the love from both Yet cannot be together.The furthest distance in the worldIs not being apart while being in loveBut when I plainly cannot resist the yearningYet pretending you have never been in my heart. The furthest distance in the worldIs not struggling against the tidesBut using one's indifferent heartTo dig an uncrossable riverFor the one who loves you.When you are old and grey and full of sleep, And nodding by the fire, take down this book, And slowly read, and dream of the soft look Your eyes had once, and of their shadows deep; How many loved your moments of glad grace, And loved your beauty with love false or true, But one man loved the pilgrim soul in you,And loved the sorrows of your changing face; And bending down beside the glowing bars,Murmur, a little sadly, how love fledAnd paced upon the mountains overheadAnd hid his face amid a crowd of stars.The furthest distance in the worldIs not between life and deathBut when I stand in front of youYet you don't know thatI love you.The furthest distance in the worldIs not when I stand in front of youYet you can't see my loveBut when undoubtedly knowing the love from both Yet cannot be together.The furthest distance in the worldIs not being apart while being in loveBut when I plainly cannot resist the yearningYet pretending you have never been in my heart. The furthest distance in the worldIs not struggling against the tidesBut using one's indifferent heartTo dig an uncrossable riverFor the one who loves you.倚窗远眺,目光目光尽处必有一座山,那影影绰绰的黛绿色的影,是春天的颜色。
不定积分 ppt

x11 x11
dx
x 1 t,
则
x1 t
2
,
d x 2 td t
2 t1
,
x11 x11
dx
t1 t1
4t t1
2 td t
(1
)2 td t
4
(2t
2
)d t
(2t 4
t1
)d t
t 4 t 4 ln | t 1 | C 1
101
(1 x )
102
C
(1 x ) 102
(1 x ) 101
C
解二
x (1 x )
100
dx
(1 x 1)(1 x )
(1
101
100
dx
x)
dx
(1
101
100
x)
dx
(1 x ) 102
102
(1 x ) 101
ln
t 1 t 1
C
1 2(ln 3 ln 2)
ln
3 2
x
x x
3 2
x
C.
例2 解一
ln x ln( x 1) x ( x 1)
dx
1 x ( x 1)
注意到 [ln x ln( x 1 ) ]
ln x ln( x 1 ) x ( x 1) dx
dx
1 co s x
dx
dx 2 co s
2
d x 2
《不定积分》ppt课件

2
2
a2 x2 dx x a2 x2 a2 arcsin x C
2
2
a
.
+ 除牢记积分公式外,还需熟练运用几种常 用方法:
+ 〔1〕换元积分法 + 〔2〕分部积分法 + 〔3〕有理函数积分法〔运用分式变形处置
积分函数联络积分根本公式〕
.
+ 关于换元法的问题 不定积分的换元法是在复合函数求导法那 么的根底上得来的,我们应根据详细实例 来选择所用的方法,求不定积分不象求导 那样有规那么可依,因此要想熟练的求出 某函数的不定积分,只需作大量的练习。
ln a
shxdx chx C
chxdx shx C
dx
ln( x
x2 a2
x2 a2 ) C
I n
2
sin n
0
2
xdx cosn
0
xdx
n 1
n
I n2
x 2 a 2 dx x 2
x 2 a 2 a 2 ln( x 2
x2 a2 ) C
x 2 a 2 dx x 2
2
2
2
.
2.第一类换元法 利用复合函数的一阶微分形式的不变性,通过变量代换求不定积分
简记为
g(x) dx = f φ(x) φ‘(x)dx
例 1.求
e x dx
2x
解:令u =
x,原式= e x d x =
eu du = eu + C = e x + C
例 2.求
arcsin x−x2
x
dx
解
:
令
dt
=
1 4
1 t−3
−
高等数学-不定积分课件

贰
请在此添加较简洁标题内容
在区间 I 上的一个原函数 .
定义 1 . 若在区间 I 上定义的两个函数 F (x) 及 f (x)
满足
则称 F (x) 为f (x)
问题:
1. 在什么条件下, 一个函数的原函数存在 ?
2. 若原函数存在, 它如何表示 ?
定理.
01
存在原函数 .
02
初等函数在定义区间上连续
则
原式
例19. 求
原式
解: 原式
例20. 求
解: 原式 =
例21. 求
例22. 求
解: 令
得
原式
CONTENTS
思考与练习
壹
下列积分应如何换元才使积分简便 ?
单击此处添加文本具体内容
贰
叁
肆
第三节
由导数公式
积分得:
分部积分公式
或
1) v 容易求得 ;
容易计算 .
分部积分法
第四章
解: 令
03
4.5 1,2,3,4,
05
4.2 1(1,2,4,6,7,9,12,15,16,18) 4 5
02
4.4 1,3,5,7,9,11
04
作业 P218
得 0 = 1
下述运算错在哪里? 应如何改正?
答: 不定积分是原函数族 , 相减不应为 0 .
第四节
有理函数的积分
第四章
一、有理函数的积分
有理函数: 时, 多项式 + 真分 式 分解 若干部分分式之和
其中部分分式的形式为
A
有理函数
B
相除
C
例1. 将下列真分式分解为部分分式 : 解: 用拼凑法
《不定积分概念》课件

欢迎来到本次《不定积分概念》的PPT课件。在本课程中,我们将介绍不定积 分的定义、性质、计算方法、常见公式以及如何使用不定积分解决具体问题。
不定积分的定义
1 概念介绍
不定积分是函数积分的一种形式,表示函数的原函数。它可以用来描述函数与曲线之间 的面积关系。
2 符号表示
不定积分通常使用∫表示,积分变量写在∫号下面。例如,∫f(x) dx表示对函数f(x)进行积分。
1
面积和体积
使用不定积分可以计算曲线与坐标轴之间
速度和位移
2
的面积以及旋转曲线形成的体积。
不定积分可以用于计算运动过程中的速度
和位移,例如计算物体的位移函数或速度
函数。
3
概率和统计
在概率和统计中,不定积分可以用于计算 概率密度函数的面积和期望值。
注意事项与常见错误
积分常数
计算不定积分时,要记住添加积分常数,它表示不定积分的无穷多个解。
不定积分的计算方法
分部积分法
用于计算乘积函数的不定积分, 通过选择合适的两个函数进行积 分运算。
三角函数积分
用于计算三角函数的不定积分, 通过使用特定的三角函数公式进 行简化。
部分分式分解法
用于计算有理函数的不定积分, 将有理函数分解为几个简单的部 分分式进行积分。
常见的不定积分公式
1 基本积分公式
如多项式的积分公式、幂 函数的积分公式等,是计 算不定积分的基础。
2 指数函数和对数函数
的积分
指数函数和对数函数的积 分公式是计算含有指数函 数和对数函数的不定积分 的关键。
3 三角函数和反三角函
数的积分
三角函数和反三角函数的 积分公式是计算含有三角 函数和反三角函数的不定 积分的重要工具。
不定积分基本公式表 ppt课件

当 ae时 , exd xexC ;
ppt课件
2
精品资料
• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
f(x )d x g (x )d x
f(x)g(x).
法则1 可推广到有限多个函数代数和的情况, 即
f1 (x ) f2 (x ) fn (x )d x
f1 (x ) d x f2 (x ) d x fn (x )d x .
ppt课件
11
法则 2 被积函数中的不为零的常数因子可以 提到积分号前面,即
x2(x21)
x2(x21)
dx 1 dx x2 x2 1
1arctaxnC. x
ppt课件
16
例 7 求
x4 dx.
x2 1
解
x 4 dx x2 1
x4 11 dx
x2 1
(x21)x (21)
dx
1 dx
x21
x21
(x21)dx 1 dx 1x2
x3 xarctxanC.
ppt课件
5
(1)1 dx arcxsC in arcxc C o; s 1x2
( 1)2 d x arc x tC a n ac rc o x tC . 1 x 2
ppt课件
6
例1
求不定积分
1 x
dx.
解 被积函 1的 数定义x域 0.为 x
当 x > 0 时,因为(lnx)1, 所以 x
不定积分的计算ppt课件

1
1 (ex )2
dex
arctan ex C.
dex exdx
1
1 u
2
du
arctan u C
一般地, 有
ex f (ex )dx f (ex )dex.
13
例9 求
dx 2x ln
x
.
解
dx 2x ln
x
2
1 ln
x
d
(ln
x)
1 ln ln x C. 2
d ln x 1 dx x
解: 令 u ln x , v x
则 du 1 dx , v 1 x2
x
2
原式
=
1 2
x2
ln
x
1 2
x dx
1 x2 ln x 1 x2 C
2
4
30
例2 求积分 x cos xdx . uvdx uv uvdx
分析:被积函数 xcosx 是幂函数与三角函数的乘积,
采用分部积分.d(1x2 Nhomakorabea)
x arccos x 1 x2 C
34
例4 求 x arctan xdx.
解 设 u = arctanx, v′= x, 则
x
arctan
xdx
arctan
xd
(
1 2
x
2
)
du
1 1 x2
dx, v
1 2
x2
1 x2 arctan x 1
2
2
x2 1 x2 dx
1 x2 arctan x 1
不定积分的计算
一、第一换元积分法 二、第二换元积分法 三、分部积分法
1
不定积分公式大全优秀课件

解:tanxdxcsionxxsdx 设u=cosx,则du=-sinxdx
二、 不定积分的几何意义
设F(x)是函数f(x)的一个原函数,则曲线y=F(x) 称为f(x)的一条积分曲线,曲线y=F(x)+C表示把曲 线y=F(x)上下平移所得到的曲线族。因此,不定积分 的几何意义是指由f(x)的全体积分曲线组成的积分曲 线族。 例4 求斜率为2x且经过点(1,0)的曲线。 解:设所求曲线为y=f(x),则f’(x)=2x,
5.2 不定积分的计算 一、 直接积分法
对被积函数进行简单的恒等变形后直接用 不定积分的性质和基本积分公式即可求出不定 积分的方法称为直接积分法。
运用直接积分法可以求出一些简单函数的 不定积分。
例 1 求 x12dx
解 :x12d x(x22x1)d xx2d x2xdxd x
1x3x2xC 3
1
⑸ ∫exdx=ex+C
⑹ ∫sinxdx=-cosx+C ⑺ ∫cosxdx=sinx+C
⑻ ∫sec2xdx=tanx+C ⑼ ∫csc2xdx=-cotx+C
⑽ a2 1x2dxarca txaC n
⑾
1 dxarcsxinC
a2x2
a
例5 求 1 dx
解 : 1 d x2 xxx5 2d x2x2 3C
例10
求
x4 1x2
dx
解 : 1 x4x2d x 1x 4 x1 211x2d x (x21)d x 11x2dx
1x3xarcxt aC n 3
例11 求∫3xexdx
解 : 3 xe xd x(3 e )xd x(3 e )x C 3 xe x C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(x2-1)'=2x
所以 x2、x2+1、x2-1、x2+C (C为任意常数)
都是函数f(x)=2x的原函数。
[定理5.1] 设F(x)是函数f(x)在区间I上的一个原函数,
C是一个任意常数,那么, ⑴ F(x)+C也是f(x) 在该区间I上的原函数 ⑵ f(x)该在区间I上的全体原函数可以表示
为F(x)+C 证明:
解:设u=2x,则du=2dx
∫2sin2xdx=∫sin2x·2dx=∫sinudu
=-cosu+C=-cos2x+C
注意:最后结果中不能有u,一定要还原成x。
例3
求
(x2
x 1)4
dx
解:设u=x2+1,则du=1 x 2u 4 d u 1 6 u 3 C 6 (x 2 1 1 )3 C
求函数f(x)的不定积分就是求它的全体原函数, 因此,∫f(x)dx=F(x)+C
其中C是任意常数,叫做积分常数。
例2 求下列不定积分 ⑴ ∫x5dx ⑵ ∫sinxdx
解: ⑴∵ 1 x 6 是x5的一个原函数
6
∴ x5dx1x6 C
6
⑵∵-cosx是sinx的一个原函数
∴ sixnd xcox sC
故y=x2+C, ∵曲线过点(1,0)∴以x=1、y=0代入得0=12+C, 解得C=-1, 因此,所求曲线为y=x2-1。
三、 基本积分公式
由于积分运算是求导运算的逆运算,所以由基本
求导公式反推,可得基本积分公式
⑴ ∫dx=x+C
⑵ ∫xα dx= 1 x1 C (α ≠-1)
⑶ ⑷
1axxddxxlna| xx |CC lna
提到积分号的前面 ⑷ ∫[f(x)±g(x)]dx=∫f(x)dx±∫g(x)dx
该性质表明,两个函数的和或差的不定积分等于 这两个函数的不定积分的和或差
五、 基本积分公式的应用 例7 求∫(9x2+8x)dx 解:∫(9x2+8x)dx=∫9x2dx+∫8xdx
=3∫3x2dx+4∫2xdx=3x3+4x2+C
1
⑸ ∫exdx=ex+C
⑹ ∫sinxdx=-cosx+C ⑺ ∫cosxdx=sinx+C
⑻ ∫sec2xdx=tanx+C ⑼ ∫csc2xdx=-cotx+C
⑽ a2 1x2dxarca txaC n
⑾
1 dxarcsxinC
a2x2
a
例5 求 1 dx
解 : 1 d x2 xxx5 2d x2x2 3C
二、 不定积分的几何意义
设F(x)是函数f(x)的一个原函数,则曲线y=F(x) 称为f(x)的一条积分曲线,曲线y=F(x)+C表示把曲 线y=F(x)上下平移所得到的曲线族。因此,不定积分 的几何意义是指由f(x)的全体积分曲线组成的积分曲 线族。 例4 求斜率为2x且经过点(1,0)的曲线。 解:设所求曲线为y=f(x),则f’(x)=2x,
的关系是 arcsinx=π /2-arccosx
四、 不定积分的性质 ⑴ [∫f(x)dx]'=f(x) 该性质表明,如果函数f(x)先求不定积分再求导,
所得结果仍为f(x) ⑵ ∫F'(x)dx=F(x)+C 该性质表明,如果函数F(x)先求导再求不定积分,
所得结果与F(x)相差一个常数C ⑶ ∫kf(x)dx=k∫f(x)dx (k为常数) 该性质表明,被积函数中不为零的常数因子可以
⑴∵[F(X)+C]'=F'(x)+(C)'=f(x) ∴F(x)+C也是f(x)的原函数
⑵略
这说明函数f(x)如果有一个原函数F(x),那么它
就有无穷多个原函数,它们都可以表示为F(x)+C的
形式。
[定义5.2]
函数f(x)的全体原函数叫做函数f(x)的不定积分, 记作∫f(x)dx,
其中∫叫做积分号,f(x)叫做被积函数,x叫做积 分变量。
ln 3 e )( 1 ln 3
5.2 不定积分的计算 一、 直接积分法
对被积函数进行简单的恒等变形后直接用 不定积分的性质和基本积分公式即可求出不定 积分的方法称为直接积分法。
运用直接积分法可以求出一些简单函数的 不定积分。
例 1 求 x12dx
解 :x12d x(x22x1)d xx2d x2xdxd x
不定积分公式大全 (2)
例1 求下列函数的一个原函数:
⑴ f(x)=2x
⑵ f(x)=cosx
解:⑴∵(x2)'=2x
∴x2是函数2x的一个原函数
⑵∵(sinx)'=cosx
∴sinx是函数cosx的一个原函数
这里为什么要强调是一个原函数呢?因为一个函数
的原函数不是唯一的。
例如在上面的⑴中,还有(x2+1)'=2x,
1x3x2xC 3
再如 求(x13)x(x223)dx
解: (x13)x(x223)dx
x3x23x3
3x2
dx
(1 3x1 31xx12)dx1 6x23 xln|x|1xC
一、第一换元法(凑微分法)
如果被积函数的自变量与积分变量不相同, 就不能用直接积分法。
例10
求
x4 1x2
dx
解 : 1 x4x2d
x
1x 4 x1 211x2d x
(x21)d x
1 1x2dx
1x3xarcxt aC n 3
例11 求∫3xexdx
解 : 3 xe xd x(3 e )xd x(3 e )x C 3 xe x C
x2 x
3
说明:冪函数的积分结果可以这样求,先将被积函数
的指数加1,再把指数的倒数放在前面做系数。
例6
求
1 dx
1x2
解:
1 dxarcsixnC 1x2
又
1 1x2
dx(
1 )dxarccoxsC 1x2
两式都是本题的解
[注意] 不能认为 arcsinx=-arccosx,他们之间
例如求∫cos2xdx,被积函数的自变量是2x, 积分变量是x。
这时,我们可以设被积函数的自变量为u, 如果能从被积式中分离出一个因子u’(x)来, 那么根据∫f(u)u'(x)dx=∫f(u)du=F(u)+C 就可以求出不定积分。
这种积分方法叫做凑微分法。
[讲解例题]
例2 求∫2sin2xdx