MATLAB与过程控制系统仿真
控制系统MATLAB仿真基础

系统仿真§ 4.1控制系统的数学模型1、传递函数模型(tranfer function)2、零极点增益模型(zero-pole-gain)3、状态空间模型(state-space)4、动态结构图(Simulink结构图)一、传递函数模型(transfer fcn-----tf)1、传递函数模型的形式传函定义:在零初始条件下,系统输出量的拉氏变换C(S)与输入量的拉氏变换R(S)之比。
C(S) b1S m+b2S m-1+…+b mG(S)=----------- =- --------------------------------R(S) a1S n + a2S n-1 +…+ a nnum(S)= ------------den(S)2、在MATLAB命令中的输入形式在MATLAB环境中,可直接用分子分母多项式系数构成的两个向量num、den表示系统: num = [b1, b2, ..., b m];den = [a1, a2, ..., a n];注:1)将系统的分子分母多项式的系数按降幂的方式以向量的形式输入两个变量,中间缺项的用0补齐,不能遗漏。
2)num、den是任意两个变量名,用户可以用其他任意的变量名来输入系数向量。
3)当系统种含有几个传函时,输入MATLAB命令状态下可用n1,d1;n2,d2…….。
4)给变量num,den赋值时用的是方括号;方括号内每个系数分隔开用空格或逗号;num,den方括号间用的是分号。
3、函数命令tf( )在MATLAB中,用函数命令tf( )来建立控制系统的传函模型,或者将零极点增益模型、状态空间模型转换为传函模型。
tf( )函数命令的调用格式为:圆括号中的逗号不能用空格来代替sys = tf ( num, den ) [G= tf ( num, den )]其中,函数的返回变量sys或G 为连续系统的传函模型;函数输入参量num和den分别为系统的分子分母多项式的系数向量。
控制系统MATLAB仿真2-根轨迹仿真

Gk ( s)
k g ( s 0.5) s( s 1)( s 2)( s 5)
绘制系统的根轨迹,确定当系统稳定时,参数kg 的取值范围。 num=[1 0.5]; den=conv([1 3 2],[1 5 0]); G=tf(num,den); K=0:0.05:200; rlocus(G,K) [K,POLES]= rlocfind(G) figure(2) Kg=95; t=0:0.05:10; G0=feedback(tf(Kg*num,den),1); step(G0,t)
Root Locus 8
8 6 4 2 0 -2 -4 -6 -8 -8 x x x
6
4
2
Imaginary Axis
0
-2
-4
-6
-8 -8
-6
-4
-2
0 Real Axis
2
4
6
8
-6
-4
-2
0
2
4
6
8
(a) 直接绘制根轨迹
(b) 返回参数间接绘制根轨迹
图1 例1系统根轨迹
二、MATLAB根轨迹分析实例
用户可以通过Control Architecture窗口进行系 统模型的修改,如图9。
图9 rltool工具Control Architecture窗口
也可通过System Data窗口为不同环节导入已 有模型,如图10。
图10 rltool工具System Data窗口
可以通过Compensator Editor的快捷菜单进行 校正环节参数的修改,如增加或删除零极点、 增加超前或滞后校正环节等,如图11。
Step Response 2 1.8 1.6 1.4 1.2
matlab系统仿真

第七章系统仿真的MATLAB实现由于计算机技术的高速发展,我们可以借助计算机完成系统的数字仿真。
综前所述,数字仿真实质上是根据被研究的真实系统的模型,利用计算机进行实验研究的一种方法。
仿真的主要过程是:建立模型、仿真运行和分析研究仿真结果。
仿真运行就是借助一定的算法,获得系统的有关信息。
MATLAB是一种面向科学与工程计算的高级语言,它集科学计算、自动控制、信号处理、神经网络和图像处理等学科的处理功能于一体,具有极高的编程效率。
MATLAB是一个高度集成的系统,MATLAB提供的Simulink是一个用来对动态系统进行建模、仿真和分析的软件包,它支持线性和非线性系统,能够在连续时间域、离散时间域或者两者的混合时间域里进行建模,它同样支持具有多种采样速率的系统。
在过去几年里,Simulink已经成为数学和工业应用中对动态系统进行建模时使用得最为广泛的软件包。
MATLAB仿真有两种途径:(1)MATLAB可以在SIMULINK窗口上进行面向系统结构方框图的系统仿真;(2)用户可以在MATLAB的COMMAND窗口下,用运行m文件,调用指令和各种用于系统仿真的函数,进行系统仿真。
这两种方式可解决任意复杂系统的动态仿真问题,前者编辑灵活,而后者直观性强,实现可视化编辑。
下面介绍在MATLAB上实现几类基本仿真。
7.1 计算机仿真的步骤在学习计算机仿真以前,让我们先总结一下计算机仿真的步骤。
计算机仿真,概括地说是一个“建模—实验—分析”的过程,即仿真不单纯是对模型的实验,还包括从建模到实验再到分析的全过程。
因此进行一次完整的计算机仿真应包括以下步骤:(1)列举并列项目每一项研究都应从说明问题开始,问题由决策者提供或由熟悉问题的分析者提供。
(2)设置目标及完整的项目计划目标表示仿真要回答的问题、系统方案的说明。
项目计划包括人数、研究费用以及每一阶段工作所需时间。
(3)建立模型和收集数据模型和实际系统没有必要一一对应,模型只需描述实际系统的本质或者描述系统中所研究部分的本质。
MATLAB自动控制系统仿真simulink

目录1 绪论 (1)1.1 题目背景、研究意义 (1)1.2 国内外相关研究情况 (1)2 自动控制概述 (3)2.1 自动控制概念 (3)2.2 自动控制系统的分类 (4)2.3 对控制系统的性能要求 (5)2.4 典型环节 (6)3 MATLAB仿真软件的应用 (10)3.1 MATLAB的基本介绍 (10)3.2 MATLAB的仿真 (10)3.3 控制系统的动态仿真 (11)4 自动控制系统仿真 (14)4.1 直线一级倒立摆系统的建模及仿真 (14)4.1.1 系统组成 (14)4.1.2 模型的建立 (14)4.1.3 PID控制器的设计 (20)4.1.4 PID控制器MATLAB仿真 (22)4.2 三容水箱的建模及仿真 (24)4.2.1 建立三容水箱的数学模型 (24)4.2.2 系统校正 (25)总结 (28)致谢 (29)参考文献 (30)1 绪论1.1 题目背景、研究意义MATLAB语言是当今国际控制界最为流行的控制系统计算机辅助设计语言,它的出现为控制系统的计算机辅助分析和设计带来了全新的手段。
其中图形交互式的模型输入计算机仿真环境SIMULINK,为MATLAB应用的进一步推广起到了积极的推动作用。
现在,MATLAB语言已经风靡全世界,成为控制系统CAD领域最普及、也是最受欢迎的软件环境。
随着计算机技术的发展和应用,自动控制理论和技术在宇航、机器人控制、导弹制导及核动力等高新技术领域中的应用也愈来愈深入广泛。
不仅如此,自动控制技术的应用范围现在已扩展到生物、医学、环境、经济管理和其它许多社会生活领域中,成为现代社会生活中不可缺少的一部分。
随着时代进步和人们生活水平的提高,在人类探知未来,认识和改造自然,建设高度文明和发达社会的活动中,自动控制理论和技术必将进一步发挥更加重要的作用。
作为一个工程技术人员,了解和掌握自动控制的有关知识是十分必要的。
自动控制技术的应用不仅使生产过程实现了自动化,极大地提高了劳动生产率,而且减轻了人的劳动强度。
如何利用Matlab进行模拟和仿真实验

如何利用Matlab进行模拟和仿真实验Matlab是一种功能强大的数学计算和数据可视化软件。
它不仅可以进行数学模拟和仿真实验,还可以处理数据、绘制图表和实施算法。
在工程、物理学、生物学等领域,Matlab被广泛用于解决各种实际问题。
本文将介绍如何利用Matlab进行模拟和仿真实验,并探讨其在实验设计和结果分析中的应用。
一. Matlab的基本功能Matlab具有很多基本功能,如矩阵操作、数值计算、符号计算等。
这些功能使得Matlab成为进行模拟和仿真实验的理想选择。
在Matlab中,可以定义和操作矩阵,进行线性代数运算,如求解方程组、矩阵求逆等。
此外,Matlab还提供了许多内置函数,可以进行数值计算和符号计算,如求解微分方程、积分、数值优化等。
二. 模拟实验的设计在进行模拟实验之前,首先需要设计实验方案。
实验设计包括选择合适的模型和参数设置,确定实验变量和观测指标等。
在Matlab中,可以使用函数或脚本来定义模型和参数,通过修改参数值来观察实验结果的变化。
比如,可以使用Matlab的模型库来选择合适的模型,然后使用函数传入参数值进行求解。
此外,Matlab还提供了绘图功能,可以绘制实验结果的图表,以便更直观地分析数据。
三. 仿真实验的实施在设计好实验方案后,就可以开始进行仿真实验了。
在Matlab中,可以使用已定义的模型和参数进行仿真计算。
可以通过Matlab的编程功能来实现计算过程的自动化。
比如,可以使用循环语句来迭代计算,以观察参数变化对结果的影响。
此外,Matlab还提供了随机数生成和统计分析函数,可以用于生成随机变量和分析实验数据。
四. 实验结果的分析在完成仿真实验后,需要对实验结果进行分析。
Matlab提供了丰富的数据处理和分析工具,可以对实验数据进行统计分析、绘图和可视化展示。
可以使用Matlab的数据处理函数来计算均值、标准差、相关系数等统计指标。
此外,Matlab还可以通过绘图函数来绘制直方图、散点图、线图等图形,以便更好地理解和展示数据。
现代控制系统分析与设计——基于matlab的仿真与实现

现代控制系统分析与设计——基于matlab的仿真与实现随着现代科技的发展,越来越多的系统需要被控制。
现代控制系统分析和设计是构建有效的控制系统的关键,而基于Matlab的仿真和实现技术可以为系统分析和设计提供有效的支持。
本文将从以下几个方面介绍基于Matlab的现代控制系统分析、设计、仿真和实现:
一、现代控制系统分析和设计
现代控制系统分析和设计是设计有效控制系统的关键,通过分析和设计把被控系统的模型建立出来,以及构建控制系统的控制参数、策略、信号和算法,最终完成控制系统的开发。
二、仿真和实现
仿真和实现是完成控制系统的重要环节,通过详细的分析和精确的仿真,找出控制系统的局限性,并对其进行改进以达到设计的要求,最终实现最优的控制效果。
三、基于Matlab的仿真和实现
基于Matlab的仿真和实现技术是构建有效现代控制系统的重要手段,它可以提供强大的数学运算与图形处理功能,并可以满足大多数系统分析、设计、仿真和实现的需求。
四、Matlab的应用
Matlab广泛应用在控制系统分析、设计、仿真和实现的各个方面,可以有效辅助系统分析,建立模型,优化模型参数,仿真系统行为和进行实际实现,可以说,Matlab是控制系统分析设计中不可或缺的重要支撑。
五、总结
本文介绍了现代控制系统分析和设计,并分析了基于Matlab的仿真和实现技术,Matlab在控制系统分析设计中的重要作用。
通过基于Matlab的现代控制系统分析和设计,可以有效的构建有效的控制系统,实现最优的控制效果。
自动控制原理MATLAB仿真实验(于海春)

自动控制原理MATLAB仿真实验(于海春)实验一典型环节的MATLAB仿真一、实验目的1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、SIMULINK 的使用MATLAB中SIMULINK是一个用来对动态系统进行建模、仿真和分析的软件包。
利用SIMULINK功能模块可以快速的建立控制系统的模型,进行仿真和调试。
1.运行MATLAB软件,在命令窗口栏“>>”提示符下键入imulink命令,按Enter键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK仿真环境下。
2.选择File菜单下New下的Model命令,新建一个imulink仿真环境常规模板。
图1-1SIMULINK仿真界面图1-2系统方框图3.在imulink仿真环境下,创建所需要的系统。
以图1-2所示的系统为例,说明基本设计步骤如下:1)进入线性系统模块库,构建传递函数。
点击imulink下的“Continuou”,再将右边窗口中“TranferFen”的图标用左键拖至新建的“untitled”窗口。
2)改变模块参数。
在imulink仿真环境“untitled”窗口中双击该图标,即可改变传递函数。
其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK,即完成该模块的设置。
3)建立其它传递函数模块。
按照上述方法,在不同的imulink的模块库中,建立系统所需的传递函数模块。
例:比例环节用“Math”右边窗口“Gain”的图标。
4)选取阶跃信号输入函数。
用鼠标点击imulink下的“Source”,将右边窗口中“Step”图标用左键拖至新建的“untitled”窗口,形成一个阶跃函数输入模块。
5)选择输出方式。
《MATLAB Simulink与控制系统仿真(第3版)》的课件 第2章 MATLAB计算基础

2.9 MATLAB程序设计
MATLAB程序类型包括三种:一种是在命令窗口下执行的脚本 M文件;另外一种是可以存取的M文件,即程序文件;最后一 种是函数(function)文件。脚本M文件和程序文件中的变量都 将保存在工作区中,这一点与函数文件是截然不同的。
laplace变换函数的格式为:
L=laplace(F) ilaplace拉氏反变换函数的常用格式为:
F=ilaplace(L) MATLAB提供了符号运算工具箱(Symbolic Math Toolbox),
可方便地进行Z变换和Z反变换,进行Z变换的函数是ztrans,进 行Z反变换的函数是iztrans。
2.3.3 MATLAB命令窗口
2.3.4 MATLAB工作空间
2.3.5 MATLAB文件管理
2.3.6 MATLAB帮助使用
2.4 MATLAB数值计算
控制系统仿真是系统仿真的一个重要分支,它是一门涉及自 动控制理论、计算数学、计算机技术、系统辨识、控制工程 以及系统科学的综合性新型学科。它为控制系统的分析、计 算、研究、综合设计以及控制系统的计算机辅助教学等提供 了快速、经济、科学及有效的手段。
控制系统仿真就是以控制系统模型为基础,采用数学模型替 代实际控制系统,以计算机为工具,对控制系统进行实验、 分析、评估及预测研究的一种技术与方法。
控制系统仿真通过控制系统的数学模型和计算方法,编写程 序运算语句,使之能自动求解各环节变量的动态变化情况, 从而得到关于系统输出和所需要的中间各变量的有关数据、 曲线等,以实现对控制系统性能指标的分析与设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MATLAB与过程控制系统仿真
MATLAB是一种非常强大的科学计算软件,它不仅可以用于数学计算
和数据分析,还可以用于过程控制系统的仿真。
过程控制系统是指控制工
业过程中的物理或化学变化的系统,如化工、电力、制造等领域的控制系统。
在这些系统中,MATLAB可以用于建立模型、仿真系统的动态响应,
并进行控制器设计和性能评估。
首先,MATLAB可以用于建立过程控制系统的模型。
模型是对真实系
统行为的数学描述,可以用于预测系统的响应和优化控制器设计。
MATLAB
提供了丰富的工具,如符号计算、系统建模工具箱和Simulink,可以帮
助用户方便地建立和修改模型。
通过建立准确的过程模型,可以更好地理
解系统行为,优化控制器,提高系统的稳定性和性能。
其次,MATLAB可以用于系统仿真。
在系统建模之后,可以使用MATLAB对系统进行仿真,以获得系统在不同条件下的动态响应。
MATLAB
提供了一系列的仿真工具和函数,如ode45、lsim等,可以用于求解微分
方程和差分方程,模拟系统的时间响应。
仿真可以帮助研究人员观察系统
的动态特性,如过渡过程、稳态误差等,并优化控制器的设计。
另外,MATLAB还可以用于控制器的设计和性能评估。
MATLAB提供了
多种控制器设计方法和工具,如PID控制器、频域设计工具箱和最优控制
工具箱等。
可以根据系统的需求,使用这些工具进行控制器的设计和调整,并评估控制器的性能。
MATLAB还可以进行系统的稳定性分析和频域性能
分析,以帮助用户理解和优化控制器。
最后,MATLAB还可以用于实时仿真和硬件连接。
Simulink是MATLAB
的一个附加工具箱,可以帮助用户进行系统级仿真和硬件连接。
Simulink
提供了丰富的模块和工具,可以用于建立系统级模型,进行实时仿真和与硬件连接。
这对于过程控制系统来说非常重要,因为可以通过实时仿真和硬件连接来验证系统的控制策略,并进行实时调整和优化。
总结起来,MATLAB在过程控制系统仿真方面具有很大的优势。
它提供了建模、仿真、控制器设计和实时仿真等功能,帮助用户建立准确的过程模型,仿真系统的动态响应,并优化控制器的设计和性能。
无论是对于研究人员还是工程师来说,MATLAB都是一个非常强大的工具,可以用于解决过程控制系统的挑战,提高系统的控制性能和稳定性。