《材料物理性能》课后习题答案
清华大学出版社无机材料物理性能课后习题答案

清华大学出版社《材料物理性能》第一章材料的力学性能1-1一圆杆的直径为 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解:由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。
若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。
解:令E 1=380GPa,E 2=84GPa,V 1=,V 2=。
则有当该陶瓷含有5%的气孔时,将P=代入经验计算公式E=E 0+可得,其上、下限弹性模量分别变为 GPa 和 GPa 。
0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =⨯==-σ名义应力0851.0100=-=∆=A A l l ε名义应变)(99510524.445006MPa A F T =⨯==-σ真应力)(2.36505.08495.03802211GPa V E V E E H =⨯+⨯=+=上限弹性模量)(1.323)8405.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量1-11一圆柱形Al 2O 3晶体受轴向拉力F ,若其临界抗剪强度τf 为135 MPa,求沿图中所示之方向的滑移系统产生滑移时需要的最小拉力值,并求滑移面的法向应力。
解:1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。
解:Maxwell 模型可以较好地模拟应力松弛过程:V oigt 模型可以较好地模拟应变蠕变过程:以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。
(完整)材料物理性能答案

)(E k →第一章:材料电学性能1 如何评价材料的导电能力?如何界定超导、导体、半导体和绝缘体材料?用电阻率ρ或电阻率σ评价材料的导电能力.按材料的导电能力(电阻率),人们通常将材料划分为:)()超导体()()导体()()半导体()()绝缘体(m .104m .10103m .10102m .1012728-828Ω〈Ω〈〈Ω〈〈Ω〈---ρρρρ2、经典导电理论的主要内容是什么?它如何解释欧姆定律?它有哪些局限性?金属导体中,其原子的所有价电子均脱离原子核的束缚成为自由电子,而原子核及内层束缚电子作为一个整体形成离子实。
所有离子实的库仑场构成一个平均值的等势电场,自由电子就像理想气体一样在这个等势电场中运动.如果没有外部电场或磁场的影响,一定温度下其中的离子实只能在定域作热振动,形成格波,自由电子则可以在较大范围内作随机运动,并不时与离子实发生碰撞或散射,此时定域的离子实不能定向运动,方向随机的自由电子也不能形成电流。
施加外电场后,自由电子的运动就会在随机热运动基础上叠加一个与电场反方向的平均分量,形成定向漂移,形成电流。
自由电子在定向漂移的过程中不断与离子实或其它缺陷碰撞或散射,从而产生电阻。
E J →→=σ,电导率σ= (其中μ= ,为电子的漂移迁移率,表示单位场强下电子的漂移速度),它将外加电场强度和导体内的电流密度联系起来,表示了欧姆定律的微观形式.缺陷:该理论高估了自由电子对金属导电能力的贡献值,实际上并不是所有价电子都参与了导电。
(?把适用于宏观物体的牛顿定律应用到微观的电子运动中,并且承认能量的连续性)3、自由电子近似下的量子导电理论如何看待自由电子的能量和运动行为?自由电子近似下,电子的本证波函数是一种等幅平面行波,即振幅保持为常数;电子本证能量E 随波矢量的变化曲线 是一条连续的抛物线.4、根据自由电子近似下的量子导电理论解释:准连续能级、能级的简并状态、简并度、能态密度、k 空间、等幅平面波和能级密度函数.n 决定,并且其能量值也是不连续的,能级差与材料线度L ²成反比,材料的尺寸越大,其能级差越小,作为宏观尺度的材料,其能级差几乎趋于零,电子能量可以看成是准连续的。
《无机材料物理性能》课后习题答案(2)

《⽆机材料物理性能》课后习题答案(2)《材料物理性能》第⼀章材料的⼒学性能1-1⼀圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉⼒,若直径拉细⾄2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉⼒下的真应⼒、真应变、名义应⼒和名义应变,并⽐较讨论这些计算结果。
解:由计算结果可知:真应⼒⼤于名义应⼒,真应变⼩于名义应变。
1-5⼀陶瓷含体积百分⽐为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。
若该陶瓷含有5 %的⽓孔,再估算其上限和下限弹性模量。
解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。
则有当该陶瓷含有5%的⽓孔时,将P=0.05代⼊经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。
0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =?==-σ名义应⼒0851.0100=-=?=A A l l ε名义应变)(99510524.445006MPa A F T =?==-σ真应⼒)(2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量)(1.323)8405.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量1-11⼀圆柱形Al 2O 3晶体受轴向拉⼒F ,若其临界抗剪强度τf 为135 MPa,求沿图中所⽰之⽅向的滑移系统产⽣滑移时需要的最⼩拉⼒值,并求滑移⾯的法向应⼒。
解:1-6试分别画出应⼒松弛和应变蠕变与时间的关系⽰意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。
解:Maxwell 模型可以较好地模拟应⼒松弛过程:V oigt 模型可以较好地模拟应变蠕变过程:以上两种模型所描述的是最简单的情况,事实上由于材料⼒学性能的复杂性,我们会⽤到⽤多个弹簧和多个黏壶通过串并联组合⽽成的复杂模型。
《无机材料物理性能》课后习题答案

《材料的理俊能》第一章材料的力学性能1- 1 一圆杆的直径为2 • 5 mmx 长度为2 5 cm 并受到450 0 N 的轴向拉力,若直 径拉细至2.4mm,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、 名义应力和名义应变,并比较讨论这些计算结果。
解:F 4500真应力帀=—= ---------- ---- -7- = 995 (MPa)A 4.524 xlO -6I A 9 52真应变= In 丄=In ―- = In ' = 0.0816l 0 A 2.4' F 4500名义应力b =——=——: --------- =917(MPa)A) 4.909 xlO"6名义应变 £ = — = ^-\ = 0.0851/o A由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1・5—陶瓷含体积百分比为95%的AMA (E 二38 0 GPa)和5 %的玻璃相(E 二 34 GP0试计算其上限和下限弾性模量。
若该陶瓷含有5 %的气孔,再估算其上限和下限弾性模量。
解:令 Ei=3 8 0GPa, E :=8 4GPa, Vx^O.95, V 2=0. 0 5。
则有上限弹性模量 E H =EM+ E 2V 2 =380X 0.95 +84x 0.05 = 365.2{GPa) = 323・l(GPa) 当该陶瓷含有5%的气孔时,将P 二0・05代入经验计算公式E=E 0 (1-1. 9P +0.9P 2)可得,其上.下限弹性模量分别变为331.3 GP&和293. 1 GPa o下限弹性模量£厶=世+哎]38084此拉力下的法向应力为 b J" 7小)」竺6(尸=]12% 1 o'(內)=112(MPo)0.00152^/COS 60°1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t =0, t =oo fU t = r 时的纵坐标表达式。
无机材料物理性能习题答案

无机材料物理性能习题答案1材料的力学性能1-1一圆杆的直径为2.5 mm、长度为25cm 并受到4500N的轴向拉力若直径拉细至2.4mm且拉伸变形后圆杆的体积不变求在此拉力下的真应力、真应变、名义应力和名义应变并比较讨论这些计算结果。
解根据题意可得下表由计算结果可知真应力大于名义应力真应变小于名义应变。
1-4一陶瓷含体积百分比为95的Al2O3 E 380 GPa 和5的玻璃相E 84 GPa试计算其上限和下限弹性模量。
若该陶瓷含有5 的气孔再估算其上限和下限弹性模量。
解令E1380GPaE284GPaV10.95V20.05。
则有当该陶瓷含有5的气孔时将P0.05代入经验计算公式EE01-1.9P0.9P2可得其上、下限弹性模量分别变为331.3 GPa和293.1 GPa。
1-5试分别画出应力松弛和应变蠕变与时间的关系示意图并算出t 0t 和t 时的纵坐标表达式。
解Maxwell模型可以较好地模拟应力松弛过程Voigt模型可以较好地模拟应变蠕变过程拉伸前后圆杆相关参数表体积V/mm3 直径d/mm 圆面积S/mm2 拉伸前1227.2 2.5 4.909 拉伸后1227.2 2.4 4.524 0816.04.25.2lnlnln22001AAllT真应变91710909.4450060MPaAF名义应力0851.0100AAll名义应变99510524.445006MPaAFT真应力2.36505.08495.03802211GPaVEVEEH上限弹性模量1.3238405.038095.0112211GPaEVEVEL下限弹性模量.10011100//0eEEeeEttt则有其蠕变曲线方程为./00000et-t/e则有其应力松弛曲线方程为 1 以上两种模型所描述的是最简单的情况事实上由于材料力学性能的复杂性我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。
如采用四元件模型来表示线性高聚物的蠕变过程等。
材料物理性能课后答案

材料物理性能课后答案【篇一:《材料物理性能》王振廷版课后答案106页】磁化强度、磁导率、磁化率、剩余磁感应强度、磁各向异性常数、饱和磁致伸缩系数。
a、磁化强度:一个物体在外磁场中被磁化的程度,用单位体积内磁矩的多少来衡量,成为磁化强度mc、饱和磁化强度:磁化曲线中随着磁化场的增加,磁化强度m或磁感强度b开始增加较缓慢,然后迅速增加,再转而缓慢地增加,最后磁化至饱和。
ms成为饱和磁化强度,bs成为饱和磁感应强度。
e、磁化率:从宏观上来看,物体在磁场中被磁化的程度与磁化场的磁场强度有关。
h、磁晶各向异性常数:磁化强度矢量沿不同晶轴方向的能量差代表磁晶各向异性能,用ek表示。
磁晶各向异性能是磁化矢量方向的函数。
2、计算gd3+和cr3+的自由离子磁矩?gd3+的离子磁矩比cr3+离子磁矩高的原因是什么?gd3+有7个未成对电子, cr3+ 3个未成对电子.3、过渡族金属晶体中的原子(或离子)磁矩比它们各自的自由离子磁矩低的原因是什么?4、试绘图说明抗磁性、顺磁性、铁磁性物质在外场b=0的磁行为。
5、分析物质的抗磁性、顺磁性、反铁磁性及亚铁磁性与温度之间的关系?答:(1) 抗磁性是由外磁场作用下电子循轨运动产生的附加磁矩所造成的,与温度无关,或随温度变化很小。
(2) 根据顺磁磁化率与温度的关系,可以把顺磁体分为三类,一是正常顺磁体,其原子磁化率与温度成反比;二是磁化率与温度无关的顺磁体;三是存在反铁磁体转变的顺磁体,当温度高于一定的转变温度tn时,它们和正常顺磁体一样服从局里-外斯定律,当温度低于tn时,它们的原子磁化率随着温度下降而减小,当t→0k时,磁化率趋于常数。
(3) 反铁磁性物质的原子磁化率在温度很高时很小,随着温度逐渐降低,磁化率逐渐增大,温度降至某一温度tn时,磁化率升至最大值;再降低温度,磁化率又减小。
(4 ) 亚铁磁性物质的原子磁化率随温度的升高而逐渐降低。
6、什么是自发磁化?铁磁体形成的条件是什么?有人说“铁磁性金属没有抗磁性”,对吗?为什么?a、组成铁磁性材料的原子或离子有未满壳层的电子,因此有固有原子磁矩。
材料物理性能习题解答

材料物理性能习题与解答目录1 材料的力学性能 (2)2 材料的热学性能 (12)3 材料的光学性能 (17)4 材料的电导性能 (20)5 材料的磁学性能 (29)6 材料的功能转换性能 (37)1材料的力学性能1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解:根据题意可得下表由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1-2一试样长40cm,宽10cm,厚1cm ,受到应力为1000N 拉力,其杨氏模量为3.5×109 N/m 2,能伸长多少厘米?解:拉伸前后圆杆相关参数表 )(0114.0105.310101401000940000cm E A l F l El l =⨯⨯⨯⨯⨯=⋅⋅=⋅=⋅=∆-σε0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =⨯==-σ名义应力0851.0100=-=∆=A A l l ε名义应变)(99510524.445006MPa A F T =⨯==-σ真应力1-3一材料在室温时的杨氏模量为3.5×108 N/m 2,泊松比为0.35,计算其剪切模量和体积模量。
解:根据可知:1-4试证明应力-应变曲线下的面积正比于拉伸试样所做的功。
证:1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。
若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。
解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。
则有当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。
材料物理性能习题解答

Load Load
解:
1-3一材料在室温时的杨氏模量为3.5×108 N/m2,泊松比为0.35,计算
其剪切模量和体积模量。
解:根据
可知:
1-4试证明应力-应变曲线下的面积正比于拉伸试样所做的功。
证:
1-5一陶瓷含体积百分比为95%的Al2O3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气 孔,再估算其上限和下限弹性模量。 解:令E1=380GPa,E2=84GPa,V1=0.95,V2=0.05。则有
解:根据题意可得下表 拉伸前后圆杆相关参数表
体积V/mm3 直径d/mm 圆面积S/mm2 拉伸前 1227.2
2.5 4.909 拉伸后 1227.2 2.4 4.524
由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1-2一试样长40cm,宽10cm,厚1cm,受到应力为1000N拉力,其杨氏模量 为3.5×109 N/m2,能伸长多少厘米?
材料物理性能 习题与解答
吴其胜 盐城工学院材料工程学院
2007,3
1 材料的力学性能 2 材料的热学性能 3 材料的光学性能 4 材料的电导性能 5 材料的磁学性能 6 材料的功能转换性能
目录
1材料的力学性能
1-1一圆杆的直径为2.5 mm、长度为25cm并受到4500N的轴向拉力,若 直径拉细至2.4mm,且拉伸变形后圆杆的体积不变,求在此拉力下的真 应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
据杜隆-珀替定律:(3Al2O3.2SiO4) Cp=21*24。94=523.74 J/mol.K
2-2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《材料物理性能》第一章材料的力学性能1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解:由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。
若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。
解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。
则有当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。
0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =⨯==-σ名义应力0851.0100=-=∆=AA l l ε名义应变)(99510524.445006MPa A F T =⨯==-σ真应力)(2.36505.08495.03802211GPa V E V E E H =⨯+⨯=+=上限弹性模量)(1.323)8405.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量1 / 101-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。
解:Maxwell 模型可以较好地模拟应力松弛过程:V oigt 模型可以较好地模拟应变蠕变过程:以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。
如采用四元件模型来表示线性高聚物的蠕变过程等。
1-11一圆柱形Al 2O 3晶体受轴向拉力F ,若其临界抗剪强度τf 为135 MPa,求沿图中所示之方向的滑移系统产生滑移时需要的最小拉力值,并求滑移面的法向应力。
解:Fτ N60°53° Ф3mm)(112)(1012.160cos /0015.060cos 1017.3)(1017.360cos 53cos 0015.060cos 0015.053cos 82332min 2MPa Pa N F F f =⨯=︒︒⨯⨯=⨯=︒⨯︒⨯=⇒︒⨯︒=πσπτπτ:此拉力下的法向应力为为:系统的剪切强度可表示由题意得图示方向滑移).1()()(0)0()1)(()1()(10//0----==∞=-∞=-=e EEe e Et t t στεσεεεσεττ;;则有:其蠕变曲线方程为:./)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为0123450.00.20.40.60.81.0σ(t )/σ(0)t/τ应力松弛曲线123450.00.20.40.60.81.0ε(t )/ε(∞)t/τ应变蠕变曲线2第二章 脆性断裂和强度2-1 求融熔石英的结合强度,设估计的表面能力为1.75J/m 2; Si-O 的平衡原子间距为1.6*10-8cm;弹性模量从60到75Gpaa E th γσ==GPa 64.28~62.2510*6.175.1*10*)75~60(109=-2-2 融熔石英玻璃的性能参数为:E=73 Gpa ;γ=1.56 J/m 2;理论强度σth=28 Gpa 。
如材料中存在最大长度为2μm 的内裂,且此内裂垂直于作用力方向,计算由此导致的强度折减系数。
2c=2μm c=1*10-6mc E c πγσ2==GPa 269.010*1*14.356.1*10*73*269=- 强度折减系数=1-0.269/28=0.992-5 一钢板受有长向拉应力350MPa ,如在材料中有一垂直于拉应力方向的中心穿透缺陷,长8mm(=2c)。
此钢材的屈服强度为1400 MPa ,计算塑性区尺寸r 0及其裂缝半长c 的比值。
讨论用此试件来求K IC 值的可能性。
c Y K σ=I =c .σπ=39.23Mpa.m 1/2mm K r ys125.0)(2120==I σπ =>==π151031.04/125.0/0c r >0.021 用此试件来求K IC 值的不可能。
2-6 一陶瓷零件上有一垂直于拉应力的边裂,如边裂长度为:(1)2mm;(2)0.049mm;(3)2 um, 分别求上述三种情况下的临界应力。
设此材料的断裂韧性课后习题3 / 10为1.62MPa.m 2。
讨论讲结果。
解:c Y K I σ= Y=1.12π=1.98cK I 98.1=σ=2/1818.0-c(1)c=2mm, MPa c 25.1810*2/818.03==-σ(2)c=0.049mm, MPa c 58.11610*049.0/818.03==-σ (3)(3)c=2um, MPa c 04.57710*2/818.06==-σ2-4 一陶瓷三点弯曲试件,在受拉面上于跨度中间有一竖向切口如图。
如果E=380 Gpa ,μ=0.24,求K Ic 值,设极限荷载达50Kg 。
计算此材料的断裂表面能。
解 c/W=0.1, Pc=50*9.8N ,B=10, W=10,S=40 代入下式:])/(7.38)/(6.37)/(8.21)/(6.4)/(9.2[2/92/72/52/32/12/3W c W c W c W c W c BWSP K c IC +-+-==]1.0*7.381.0*6.371.0*8.211.0*6.41.0*9.2[010.0*1040*8.9*502/92/72/52/32/12/3+-+-=62*(0.917-0.145+0.069-0.012+0.0012) =1.96*0.83==1.63Pam 1/2212μγ-=E K IC 28.3)10*380*2/(94.0*)10*63.1(2)1(92622==-=EK IC μγ J/m 2第三章 材料的热学性能2-1 计算室温(298K )及高温(1273K )时莫来石瓷的摩尔热容值,并请和按杜龙-伯蒂规律计算的结果比较。
(1) 当T=298K ,Cp=a+bT+cT -2=87.55+14.96*10-3*298-26.68*105/2982=87.55+4.46-30.04 =61.97 *4.18J/mol.K(2) 当T=1273K ,Cp=a+bT+cT -2=87.55+14.96*10-3*1293-26.68*105/127324=87.55+19.34-1.65=105.24*4.18J/mol.K=438.9 J/mol.K据杜隆-珀替定律:(3Al 2O 3.2SiO 4) Cp=21*24。
94=523.74 J/mol.K2-2 康宁1723玻璃(硅酸铝玻璃)具有下列性能参数:λ=0.021J/(cm.s.℃); α=4.6*10-6/℃;σp=7.0Kg/mm 2.E=6700Kg/mm 2,μ=0.25.求第一及第二热冲击断裂抵抗因子。
第一冲击断裂抵抗因子:ER f αμσ)1(-==66610*8.9*6700*10*6.475.0*10*8.9*7- =170℃ 第二冲击断裂抵抗因子:ER f αμλσ)1(-='=170*0.021=3.57 J/(cm.s)2-3 一热机部件由反应烧结氮化硅制成,其热导率λ=0.184J/(cm.s.℃),最大厚度=120mm.如果表面热传递系数h=0.05 J/(cm 2.s.℃),假定形状因子S=1,估算可兹应用的热冲击最大允许温差。
解:hr S R T m m 31.01⨯'=∆=226*0.18405.0*6*31.01==447℃第四章 材料的光学性能3-1.一入射光以较小的入射角i 和折射角r 通过一透明明玻璃板,若玻璃对光的衰定律所得的计算值。
趋近按,可见,随着温度的升高Petit Dulong C m P -,课后习题5 / 10减可忽略不计,试证明明透过后的光强为(1-m)2解:rin sin sin 21=W = W’ + W’’ m WW W W m n n W W -=-=∴=⎪⎪⎭⎫⎝⎛+-=1'1"11'22121其折射光又从玻璃与空气的另一界面射入空气 则()21'"1"'"m WW m W W -=∴-= 3-2 光通过一块厚度为1mm 的透明Al 2O 3板后强度降低了15%,试计算其吸收和散射系数的总和。
解:11.0)()(0)(0625.185.0ln 1085.0-⨯+-+-+-=-=+∴=∴=∴=cm s e e I Ie I I s x s x s αααα第五章 材料的电导性能4-1 实验测出离子型电导体的电导率与温度的相关数据,经数学回归分析得出关系式为:TBA 1lg +=σ (1) 试求在测量温度范围内的电导活化能表达式。
(2) 若给定T1=500K ,σ1=10-9(1).-ΩcmT2=1000K ,σ2=10-6(1).-Ωcm计算电导活化能的值。
解:(1))/(10T B A +=σ 10ln )/(ln T B A +=σ10ln )/(T B A e +=σ=)/.10(ln 10ln T B A e e =)/(1kT W e A - W=k B ..10ln - 式中k=)/(10*84.04K eV -6(2) 500/10lg 9B A +=- 1000/10lg 6B A +=- B=-3000W=-ln10.(-3)*0.86*10-4*500=5.94*10-4*500=0.594eV4-3本征半导体中,从价带激发至导带的电子和价带产生的空穴参与电导。
激发的电子数n 可近似表示为:)2/exp(kT E N n g -=,式中N 为状态密度,k 为波尔兹曼常数,T 为绝对温度。
试回答以下问题:(1)设N=1023cm -3,k=8.6”*10-5eV.K -1时, Si(Eg=1.1eV),TiO 2(Eg=3.0eV)在室温(20℃)和500℃时所激发的电子数(cm -3)各是多少:(2)半导体的电导率σ(Ω-1.cm -1)可表示为μσne =,式中n 为载流子浓度(cm -3),e 为载流子电荷(电荷1.6*10-19C ),μ为迁移率(cm 2.V -1.s -1)当电子(e )和空穴(h )同时为载流子时,h h e e e n e n μμσ+=。