分数裂项与整数裂项

分数裂项与整数裂项
分数裂项与整数裂项

小学计算知识点:分数裂项

裂项综合:

分数列项练习题及答案

计算: 1/(1+12+14)+2/(1+22+24)+…+100/(1+1002

+1004)

=()。

第一:本质上这是小学分数数列计算!何也?因为这种类型的题目(数列求值计算),即使到了高考也会出现。

所以我再三强调:学数学的作用,“撇开单纯的获奖”这一因素,学数学的最大作用就是开拓思路;其次是对高中数学学习会有很大的帮助。

第二:方法——当然是裂项求和。结果只有首项和末项,中间项——正负,恰好互相抵消。

对“分数数列的裂项求和”这应该是“条件反射”下就能想到的。问题是:在不同的年级,它会出现各种变化。但总的思路只能是“裂项求和”。

第三:既然已经知道本题是用小学就已经学过的方法,那么,问题就归结到:如何裂项?

本题需要化简一下。(1+22+24)

看到:(1+n2+n4)形式,应该想到:立方差公式!

n/(1+n2+n4)=n(n2-1)/(n6-1)

=n(n-1)(n+1)/[(n3-1)(n3+1)]

=n/[(1+n2+n4)(1-n2+n4)]

=0.5[1/(1+n2+n4)-1/(1-n2+n4)]

计算:1/1×2+1/2×3+1/3×4+…+1/99×100

1/1×2+1/2×3+1/3×4+…+1/99×100

=1-1/2+1/2-1/3+1/3-1/4+…+1/99-1/100

=1-1/100

=99/100

2、计算:1/(1×2×3)+1/(2×3×4)+1/(3×4×5)+1/(4×5×6)+…+1/(21×22×23)

1/(1×2×3)+1/(2×3×4)+1/(3×4×5)+1/(4×5×6)+…+1/(21 ×22×23)

=(1/2)【1/(1×2)-1/(2×3)+1/(2×3)-1/(3×4)+1/(3×4)-1/(4×5)+1/(4×5)-1/(5×6)+…+1/(21×22)-1/(22×23)】=(1/2)【1(1×2)-1/(22×23)】

=(1/2)(126/253)

=63/253

分数裂项求和方法总结

分数裂项求和方法总结 (一) 用裂项法求1(1) n n +型分数求和 分析:因为111n n -+=11(1)(1)(1) n n n n n n n n +-=+++(n 为自然数) 所以有裂项公式:111(1)1 n n n n =-++ (二) 用裂项法求 1()n n k +型分数求和 分析:1() n n k +型。(n,k 均为自然数) 因为11111()[]()()() n k n k n n k k n n k n n k n n k +-=-=++++ 所以1111()()n n k k n n k =-++ (三) 用裂项法求() k n n k +型分数求和 分析: () k n n k +型(n,k 均为自然数) 11n n k -+=()()n k n n n k n n k +-++=() k n n k + 所以 () k n n k +=11n n k -+

(四) 用裂项法求2()(2) k n n k n k ++型分数求和 分析: 2()(2) k n n k n k ++(n,k 均为自然数) 211()(2)()()(2)k n n k n k n n k n k n k =-+++++ (五) 用裂项法求1()(2)(3) n n k n k n k +++型分数求和 分析:1()(2)(3) n n k n k n k +++(n,k 均为自然数) 1111()()(2)(3)3()(2)()(2)(3) n n k n k n k k n n k n k n k n k n k =-++++++++ (六) 用裂项法求 3()(2)(3)k n n k n k n k +++型分数求和 分析:3()(2)(3) k n n k n k n k +++(n,k 均为自然数) 311()(2)(3)()(2)()(2)(3) k n n k n k n k n n k n k n k n k n k =-++++++++ 记忆方法: 1.看分数分子是否为1; 2.是1时,裂项之后需要整体×首尾之差分之一; 3.不是1时不用再乘; 4.裂项时首尾各领一队分之一相减。

最新分数裂项法解分数计算

分数裂项计算 本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。 本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。 分数裂项 一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。 (1)对于分母可以写作两个因数乘积的分数,即 1a b ?形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b =-?- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即: 1(1)(2)n n n ?+?+,1(1)(2)(3) n n n n ?+?+?+形式的,我们有: 1111[](1)(2)2(1)(1)(2) n n n n n n n =-?+?+?+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3) n n n n n n n n n n =-?+?+?+?+?++?+?+ 裂差型裂项的三大关键特征: (1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。 (2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。 二、“裂和”型运算: 常见的裂和型运算主要有以下两种形式: (1)11a b a b a b a b a b b a +=+=+??? (2)2222a b a b a b a b a b a b b a +=+=+??? 裂和型运算与裂差型运算的对比: 裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。 【例 1】 111111223344556 ++++=????? 。

六年级分数裂项

本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。 本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。 分数裂项 一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。 (1)对于分母可以写作两个因数乘积的分数,即1 a b ?形式的,这里我们把较小的数写在前面,即a b <,那么有 1111()a b b a a b =-?- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即: 1(1)(2)n n n ?+?+,1 (1)(2)(3) n n n n ?+?+?+形式的,我们有: 裂差型裂项的三大关键特征: (1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。 (2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。 二、“裂和”型运算: 常见的裂和型运算主要有以下两种形式: (1)11a b a b a b a b a b b a +=+=+??? (2) 2222a b a b a b a b a b a b b a +=+=+??? 裂和型运算与裂差型运算的对比: 裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。 知识点拨 教学目标 分数裂项计算

分数裂项求和方法总结

分数裂项求和方法总结 (一) 用裂项法求 1 (1) n n +型分数求和 分析:因为 111n n -+=11 (1)(1)(1) n n n n n n n n +-= +++(n 为自然数) 所以有裂项公式: 111 (1)1 n n n n =- ++ 【例1】 求 111 ......101111125960+++???的和。 111111111 ()()......()101111125960106012 =-+-++-= -= (二) 用裂项法求 1 () n n k +型分数求和 分析: 1 () n n k +型。(n,k 均为自然数) 因为 11111()[]()()()n k n k n n k k n n k n n k n n k +-=-=++++ 。所以1111()()n n k k n n k =-++ 【例2】 计算11111577991111131315++++ ????? 111111*********()()()()()25727929112111321315= -+-+-+-+- 111111********* [()()()()()][]2577991111131315251515 =-+-+-+-+-=-= (三) 用裂项法求 () k n n k +型分数求和 分析: () k n n k +型(n,k 均为自然数) 11n n k -+=()()n k n n n k n n k +-++=()k n n k + 所以()k n n k +=11n n k -+ 【例3】 求 2222 (1335579799) ++++????的和 1111111198 (1)()()......( )13355797999999 =-+-+-++-=-= (四) 用裂项法求 2()(2) k n n k n k ++型分数求和 分析: 2()(2)k n n k n k ++(n,k 均为自然数) 则 211 ()(2) ()()(2) k n n k n k n n k n k n k = - +++++ 【例4】 计算: 4444 (135357939597959799) ++++???????? 11111111()()......()()133535579395959795979799 1132001397999603 =-+-++-+-????????=-= ?? (五) 用裂项法求 1 ()(2)(3) n n k n k n k +++型分数求和 分析: 1 ()(2)(3) n n k n k n k +++(n,k 均为自然数) 1111 ()()(2)(3)3()(2)()(2)(3) n n k n k n k k n n k n k n k n k n k =-++++++++ 【例5】 计算:111 ......1234234517181920+++ ????????? 1111111 [()()......()] 3123234 2343451718191819201111139[]312318192020520 =-+-++-????????????=--=???? (六) 用裂项法求 3()(2)(3) k n n k n k n k +++型分数求和 分析: 3()(2)(3) k n n k n k n k +++(n,k 均为自然数)

分数裂项练习题1

分数裂项练习题1 1. 11111 1223344556 ++++= ????? 。 2. 111 ...... 101111125960 +++ ??? 3. 2222 109985443 ++++=???? L 4.1111 11212312100 ++++ ++++++ L L L 5. 1111 133******** ++++=???? L 6.计算: 1111 25 1335572325 ?? ?++++= ? ???? ?? L 7.251251251251251 4881212162000200420042008 +++++ ????? L

分数裂项练习题1详解 1. 11111 1223344556 ++++= ????? 。 【解析】原式 111111115 122356166?????? =-+-++-=-= ? ? ? ?????? L 2. 111 ...... 101111125960 +++ ??? 【解析】原式 111111111 ()()......() 101111125960106012 =-+-++-=-= 3. 2222 109985443 ++++=???? L 【解析】原式 11111111 2 910894534 ?? =?-+-++-+- ? ?? L 11 2 310 ?? =?- ? ?? 7 15 = 4.1111 11212312100 ++++ ++++++ L L L 【解析】原式 2222120099 2(1)1 122334100101101101101 =++++=?-==???? L L 5. 1111 133******** ++++=???? L 【解析】 111111111150 (1 13355799101233599101101 ++++=?-+-++-= ???? L…) 6.计算: 1111 25 1335572325 ?? ?++++= ? ???? ?? L 【解析】原式 111111 251 23352325 ?? =??-+-++- ? ?? L 11 251 225 ?? =??- ? ?? 2524 225 =?12 = 7.251251251251251 4881212162000200420042008 +++++ ????? L 【解析】原式 25111111 16122334500501501502??=?+++++ ? ????? ?? L 2511111111 1 1622334501502 ?? =?-+-+-++- ? ?? L 25150150121 15 165023232 =?==

分数裂项求和

学生曹一诺学校年级六年级科目数学 教师陈作谦日期16年4月24日时段15:00-17:00 次数第一次课题 分数裂项求和 教学重点难点重点:清楚掌握几种简单的裂项求和的方法及其解答过程。难点:能判断所处题目的特点,并用其对应的方法进行解答。 教学步骤及教学内容一、作业检查: 平时成绩中上,卓师的小升初模拟试题测试结果,数学为46分二、课前热身: 与学生探讨小升初的意义,互动中令学生明白考试的应对方式。 三、内容讲解: 先做几个题目: (1)+ ? + ? + ?7 5 2 5 3 2 3 1 2……+ 11 9 2 ? , (2)求 2222 ...... 1335579799 ++++ ???? 的和 这种题目就是分数裂项求和的运用。 分数裂项求和,分成减法裂项和加法裂项: 减法裂项就是:分母化成两个数的积,分子化成这两个数的差;加法裂项就是:分母化成两个数的积,分子化成这两个数的和。 (1)+ ? + ? + ?7 5 2 5 3 2 3 1 2……+ 11 9 2 ? ,

解:原式= +?+?+?7 55 -7533-5311-3……+11 99-11? =( + ??+??+??)7 55-757()533-535()311-313 ……+( 11911 ?-11 99?) )11 191()7151()5131()3111(-+??+-+-+-= 11 191715151313111-+??+-+-+-= 11 111-= 11 10= (2)求 2222 (1335579799) ++++????的和 解:原式=+?+?+?7 55-75 33-53 11-3……+99 9797-99? 1111111 (1)()()......() 3355797991 1999899 =-+-+-++-=-= 再看一道例题: 例1:计算:72 17561542133011209127651-+-+-+ - 解:原式=98988787767665655454434332321?+-?++?+-?++?+-?++?+- )()()()()()()(9 1818171716161515141413131211+-+++-+++-+++-= 9 18 18 17 17 16 16 15 15 14 14 13 13 12 11--++--++--++--= 9 11-=

分数拆分(裂项法)

2008年10月4日 六年级 基本公式:()111n n+1n n 1-+=; 推广形式:()111n n+d d n n d ??-??+?? 1= 例1、计算:11111122334989999100+++++?????=(1-21)+(21-31)+(31-4 1)+……+(991-100 1)=1-1001=10099。 例2、计算:1111112612203042+++++=7 6; 例3、计算:1111111357911104088154238340+++++=20 336; 例4、计算:=?+++?++?++?+200120002001200043433232212122222222 200120004000 注意:拆分未必拆成两个分数之差,有的时候,需要拆成两个分数之和;可以利用公式: 11m+n m n mn += 例5、计算:1111(1)(1)(1(1)2233441010 -?-?-??-???? (1120) 提示:1n n 1(n 1)(n 1)1n n n n n n ?--+- ==???。 解:原式=1324359112233441010????????????……=111210?=1120 例6、计算:60 59605859586035343602423260131211+??? ??+++??? ??++++??? ??++++??? ??++++ = 解答:因为()2 1211121-=-??=-+++n n n n n n n n ,所以 ()886 59212 112 592221160 59605859586035343602423260131211=+++?+=++++=+??? ??+++??? ??++++??? ??++++??? ??++++ 【课堂练习】 1. 计算:111116425672-+++=9 8;

六年级分数-裂项法

知识要点和基本方法 1.2分数计算(裂项法) 分数计算是小学数学的重要内容,也是数学竞赛的重要内容之一。 分数计算同整数计算一样既有知识要求又有能力要求。法则、定律、性质是进行计算的依据,要使计算快 速、准确,关键是掌握运算技巧。对算式认真观察,剖析算是的特点及个数之间的关系,巧妙、灵活的运用运 算定律,合理改变运算顺序,使计算简便易行,这对启迪思维,培养综合分析、推理能力和灵活的运算能力, 都有很大的帮助。 公式: (1)平方差公式:a2 b2(a b) (a b) (2)等差数列求和公式: a i a2 a3 a n 1 a n 1 a1 2 a n n (3)分数的拆分公式: n(n 1) 1 n(n d) 裂项 法: 例1. 计算: 例2. 计算: 10X 11 1 2 3 _1 +11X 12 1 ..... +—— 3 4 99 1 +……+59X 60 1 100 例7. 例8. 例3. 1111 计算:2 + 6 + / + 20 1 1 + — + — +30 +42 例9. 例4. 计算: —1——+ -—— 10X 11 11X 12 1 +……+19X 20 例10. 例5. 1 1 计算2X 3 + 3X4 + 1 1 +6X7 +7X8 例11. 1 1 1 1 1 1 1 6 + ' —+— +— + 12 + 20 + 30 + 矗+56 + 72 1 1 1 1 1 1 + —+ + —- + —+ 3 15 35 63 99 143 1 1 1 1 1 4 4 7 7 10 10 13 13 2 2 2 2 2 3 15 35 63 99 1 丄丄丄 1 1 8 24 48 80 120 168 计算: 1 计算: 计算: 计算: 计算: 16 例6. 计算: 例12. 计算: 例13. 计算: 112 11 +丄+土+丄+丄+ 1 2 2 1 + — + 1 2 2 3 1 ----------- F 1 2 3 2 3 2 1 + Y +仝+丄 3 3 3 3 1 例14. 计算: 2X( 1 —丄)X 2丿 20052-------------- +……+ 12 3 4 「-亠) 20042 100 +……+ + 100 100 1 旦+……+ 100 1 100 X( 1 2 3 2005 1 1 1 —2) X ......... X( 1 ---------- ) 2003222

六年级+分数裂项

本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。 本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。 分数裂项 一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。 (1)对于分母可以写作两个因数乘积的分数,即1a b ?形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b =-?- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即: 1(1)(2)n n n ?+?+,1(1)(2)(3) n n n n ?+?+?+形式的,我们有: 1111[](1)(2)2(1)(1)(2) n n n n n n n =-?+?+?+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3) n n n n n n n n n n =-?+?+?+?+?++?+?+ 分数裂项计算 教学目标 知识点拨

裂差型裂项的三大关键特征: (1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。 (2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。 二、“裂和”型运算: 常见的裂和型运算主要有以下两种形式: (1)11a b a b a b a b a b b a +=+=+??? (2)2222a b a b a b a b a b a b b a +=+=+??? 裂和型运算与裂差型运算的对比: 裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。 【例 1】 111111223344556++++=????? 。 【考点】分数裂项 【难度】2星 【题型】计算 【关键词】美国长岛,小学数学竞赛 【解析】 原式111111115122356166??????=-+-++-=-= ? ? ??????? 提醒学生注意要乘以(分母差)分之一,如改为: 111113355779+++????,计算过程就要变为: 111111113355779192 ??+++=-? ???????. 【答案】56 【巩固】 111 (101111125960) +++??? 【考点】分数裂项 【难度】2星 【题型】计算 【解析】 原式111111111()()......()101111125960106012 =-+-++-=-= 【答案】112 例题精讲

分数乘法与分数裂项法

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 分数乘法与分数裂项法 分数乘法与分数裂项法【专题解析】我们知道,分数乘法的运算是这样的:分数乘分数,应该分子乘分子,分母乘分母(当然能约分的最好先约分在计算)。 分数乘法中有许多十分有趣的现象与技巧,它主要通过些运算定律、性质和一些技巧性的方法,达到计算正确而迅速的目的。 1、运用运算定律:这里主要指乘法分配律的应用。 对于乘法算式中有因数可以凑整时,一定要仔细分析另一个因数的特点,尽量进行变换拆分,从而使用乘法分配律进行简便计算。 2、充分约分:除了把公因数约简外,对于分子、分母中含有的公因式,也可直接约简为 1。 进行分数的乘法运算时,要认真审题,仔细观察运算符号和数字特点,合理进行简算。 需要注意的是参加运算的数必须变形而不变质,当变成符合运算定律的形式时,才能使计算既对又快。 【典型例题】——乘法分配律的妙用 44 例 1.计算:(1)×37 4567 2003 44 44 44 分析与解:观察这两道题的数字特点,第(1)题中的与 1 只相差 1 个分数单位,如果把写成(1-) 45 45 45 67 的差与 37 相乘,再运用乘法分配律可以使计算简便。 同样,第(2)题中可以把整数 2004 写成(2003+1)的和与 2003(2)2004× 相乘,再运用乘法分配律计算比较简便。 1/ 10

【举一反三】43 56 56 ×37 (2)×37 (3)×56 44 57 57 17 1 4 1 例 2.计算:(1)72 × (2)73 × 17 24 15 8 4 4 1 分析与解:(1)72 把改写成(72 + ),再运用乘法分配律计算比常规方法计算要简便得多。 (2)73 把 17 17 15 16 改写成(72 + ),再运用乘法分配律计算比常规方法计算要简便得多。 15计算:(1)【举一反三】4 7 计算:(1)20 × 7 10(2)166 13 × 13 32(3)573 1 × 13 8(4)641 1 × 17 9【小试牛刀】

分数裂项计算

分数裂项计算 本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。 本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。 分数裂项 一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。 (1)对于分母可以写作两个因数乘积的分数,即 1a b ?形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b =-?- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即: 1(1)(2) n n n ?+?+,1(1)(2)(3)n n n n ?+?+?+形式的,我们有: 1111[](1)(2)2(1)(1)(2) n n n n n n n =-?+?+?+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3) n n n n n n n n n n =-?+?+?+?+?++?+?+ 裂差型裂项的三大关键特征: (1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。 (2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。 二、“裂和”型运算: 常见的裂和型运算主要有以下两种形式: 知识点拨 教学目标

六年级分数裂项

六年级分数裂项 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。 本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。 分数裂项 一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。 (1)对于分母可以写作两个因数乘积的分数,即1 a b ?形式的,这里我们把较小的数写在前面,即a b <,那么有 1111()a b b a a b =-?- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即: 1(1)(2)n n n ?+?+,1 (1)(2)(3) n n n n ?+?+?+形式的,我们有: 知识点拨 教学目标 分数裂项计算

裂差型裂项的三大关键特征: (1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。 (2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。 二、“裂和”型运算: 常见的裂和型运算主要有以下两种形式: (1)11a b a b a b a b a b b a +=+=+??? (2) 2222a b a b a b a b a b a b b a +=+=+??? 裂和型运算与裂差型运算的对比: 裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。 【例 1】 11111 1223344556 ++++=????? 。 【考点】分数裂项 【难度】2星 【题型】计算 【关键词】美国长岛,小学数学竞赛 【解析】 原式111111115122356166 ???? ??=-+-+ +-=-= ? ? ????? ?? 提醒学生注意要乘以(分母差)分之一,如改为:1111 13355779 +++ ????,计算过程就要变为: 111111113355779192??+++=-? ???????. 【答案】5 6 【考点】分数裂项 【难度】2星 【题型】计算 【解析】 原式111111111 ()()......()101111125960106012=-+-++-=-= 【答案】1 12 例题精讲

分数裂项求和标准个性化教案

分数裂项求和标准个性 化教案 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

变形裂项:先变形为直接裂项。 【典型例题】 例1 计算: 观察:直接裂项2 11121121-=?= 31 2132161-=?= 41 31431121-=?= ............. = 201 ( )()=?1( )-( ) ( )()=?= 1 301( )-( ) 解:原式 = 651 541431321211?+ ?+?+?+? = 1-61 5151414131312121-+-+-+-+ = 1-61 = 65 例2 计算:7217 561542133011209127651-+-+-+- 观察:直接裂项3121323265+=?+= 41 314343127+=?+= 920= =?+545451 41+ ............... ()() 115630+==?( )+( ) ()( ) 136742+==?( )+( ) 解:原式) ()()()()()()(9 18 18 17 17 16 16 15 151414131312 11+-+++-+++-+++-= 例3.+?+?+?7 52532312……+ 1192 ? 变形裂项: .............. 解:原式)11 1 91()7 15 1()5 13 13 1 11-++-+-+-= ()( 例4 1111111 248163264128 +++ +++ 观察前一个数是后一个数的2倍,“补一退一”

解:原式128 1 12811281641321161814121 - +++++++=)( 例5 1 101 1811611411212 2222-+-+-+-+- 由)()(2 2 b a b a b a +?-=-知,可以将原式变形为: 解:原式11 91 971751531311?+ ?+?+?+?= 牛刀小试: 【我能行】 1. +?+?+?1999 19981199819971199719961……+ 200220011 ?+20021 2.521?+851?+1181?+……+29 261? 分数裂项求和方法总结 (一) 用裂项法求 1 (1)n n +型分数求和 分析:因为11 1n n -+=11(1)(1)(1) n n n n n n n n +-=+++(n 为自然数) 所以有裂项公式:111 (1)1 n n n n =-++ 【例1】 求111 (101111125960) +++ ???的和。 (二) 用裂项法求1 () n n k +型分数求和 分析:1 ()n n k +型。(n,k 均为自然数) 因为11111 ()[]()()()n k n k n n k k n n k n n k n n k +-=-=++++ 所以1111 () ()n n k k n n k =-++ 【例2】 计算11111577991111131315++++ ????? (三) 用裂项法求 () k n n k +型分数求和 分析: () k n n k +型(n,k 均为自然数) 11 n n k -+=()()n k n n n k n n k +-++=()k n n k +

六年级分数裂项作业

分数裂项 校区 班级 姓名 本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。 本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。 一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。 (1)对于分母可以写作两个因数乘积的分数,即 1a b ?形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b =-?- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即: 1(1)(2)n n n ?+?+,1(1)(2)(3) n n n n ?+?+?+形式的,我们有: 1111[](1)(2)2(1)(1)(2) n n n n n n n =-?+?+?+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3) n n n n n n n n n n =-?+?+?+?+?++?+?+ 裂差型裂项的三大关键特征: (1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。 (2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。 二、“裂和”型运算: 常见的裂和型运算主要有以下两种形式: (1)11a b a b a b a b a b b a +=+=+??? (2)2222a b a b a b a b a b a b b a +=+=+??? 裂和型运算与裂差型运算的对比: 裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。 【例 1】 111111223344556 ++++=????? 。 习题练习 知识点拨 学习目标

小学奥数分数求和专题总结

分数求和 分数求和的常用方法: 1、公式法,直接运用一些公式来计算,如等差数列求和公式等。 2、图解法,将算式或算式中的某些部分的意思,用图表示出来,从而找出简便方法。 3、裂项法,在计算分数加、减法时,先将其中的一些分数做适当的拆分,使得其中一部分分数可以互相抵消,从而使计算简便。 4、分组法,运用运算定律,将原式重新分组组合,把能凑整或约分化简的部分结合在一起简算。 5、代入法,将算式中的某些部分用字母代替并化简,然后再计算出结果。 典型例题 一、公式法: 计算: 20081+20082+20083+20084+…+20082006+2008 2007 分析:这道题中相邻两个加数之间相差20081,成等差数列,我们可以运用等差数列求和公式:(首项+末项)×项数÷2来计算。 20081+20082+20083+20084+…+20082006+2008 2007 =(20081+2008 2007)×2007÷2 =2 11003 二、图解法: 计算:21 +41+81+161+321+64 1 分析:解法一,先画出线段图: 从图中可以看出:21 +41+81+161+321+641=1-641=64 63 解法二:观察算式,可以发现后一个加数总是前一个加数的一半。因此,只要添上一个加数641,就能凑成32 1,依次向前类推,可以求出算式之和。 21 +41+81+161+321+64 1 =21 +41+81+161+321+(641+641)-64 1 =21 +41+81+161+(321+32 1)-641

…… = 21 ×2-64 1 =6463 解法三:由于题中后一个加数总是前一个加数的一半,根据这一特点,我们可以把原式扩大2倍,然后两式相减,消去一部分。 设x= 21 +41+81+161+321+64 1 ① 那么,2x=(21 +41+81+161+321+64 1)×2 =1+21 +41+81+161+321 ② 用②-①得 2x -x=1+ 21 +41+81+161+321-(21 +41+81+161+321+64 1) x=64 63 所以,21 +41+81+161+321+641=6463 三、裂项法 1、计算:21+61+121+201+301+……+901+110 1 分析:由于每个分数的分子均为1,先分解分母去找规律:2=1×2,6=2×3,12=3×4,20=4×5,30=5×6,……110=10×11,这些分母均为两个连续自然数的乘积。 再变数型:因为 21=211?=1-21,61=321?=21-31,121=431?=31-4 1,……,1101=11101?=101-111。这样将连加运算变成加减混合运算,中间分数互相抵消,只留下头和尾两个分数,给计算带来方便。 21+61+121+201+301+……+901+110 1 =1-21+21-31+31-41+……+91-101+101-11 1 =1-11 1 =11 10 2、计算:511?+951?+13 91?+……+33291?+37331?

(完整版)小学六年级奥数裂项第一讲

小学六年级奥数裂项第一讲 一、教学目标:1.掌握分数裂项的基本原理。 2 .掌握裂差和裂和的联系与区别 二、重点难点:裂项的技巧去分数运算 三、教学内容:知识梳理 1、常见的裂项一般是将一项拆分成两项或多项的和或差,使拆分后的项可前后 抵消或凑整,这种题目看似结构复杂,但一般无需进行复杂的计算。一般裂项分为分数裂项和整数裂项,其中分数裂项是重要考点。 2、分数裂项的技巧 分数裂项实质是异分母分数加减法的逆运算,关键是找分母上的数和分子上的数 的和差倍关系。 第一类:“裂差”型运算。 当分母是两数相乘的形式,分子表示为分母上两数的差(基本型),则可以进行o b — a b a 1 1 a x b a x b a x b a b 两项的裂差非常重要,一定要掌握。 第二类:“裂和”型运算。 当分母是两数相乘形式,分子可表示分母上两数的和(基本型),则可以进行裂项和。 b + a b a 1 1 ------ =--------- H -------- = — -\— a x b a x b a x b a b

四、归纳总结 1、裂差型基本形式: b — a b a 11 ---------------------- —— — a x b a x b a x b a b 1 111 —()x —n(n + d) n n + d y d a 1 1 —------- =( -------------- )x a n(n + 1) n n + 1 2、裂项和基本形式: b + a b a 1 1 ------- = --------- H -------- = — ~\— a x b a x b a x b a b 3、裂项的实质和意义 裂项的实质:实质是异分母分数的逆运算,关键是要找到分母上几个乘数和分子上数的和差倍关系; 裂项的意义:裂差与裂和都是为了简便运算,摆脱繁琐的计算。

分数裂项求和标准个性化教案

分数裂项求和标准个性化 教案 This manuscript was revised on November 28, 2020

两数之差。 直接裂项 加法裂项:分母分成两数之积,分子为两数之和。 变形裂项:先变形为直接裂项。 【典型例题】 例1 计算: 观察:直接裂项2 11121121-=?= 312132161-=?= 4131431121-=?= ............. =201()()=?1 ( )-( ) ( )()=?= 1 301( )-( ) 解:原式 = 651 541431321211?+ ?+?+?+? = 1-61 5151414131312121-+-+-+-+ = 1-61 = 6 5 例2 计算:72 17561542133011209127651-+-+-+- 观察:直接裂项3121323265+=?+= 4 1314343127+=?+= 920==?+54545141+ ............... ()() 1156 30+==?( )+( ) ( )( ) 1367 42 += =?( )+( ) 解:原式)()()()()()()(9 18 18 17 17 16 16 15 15 14 14 13 13 12 11+-+++-+++-+++-= 例3. +?+?+?7 52532312 (1192) 变形裂项: ..............

解:原式)11 1 91 ()715 1()5 13 13 111- ++-+-+-= ()( 例4 1111111 248163264128 +++ +++ 观察前一个数是后一个数的2倍,“补一退一” 解:原式128 1 1281128164132116181 4 12 1- +++++ ++=)( 例5 1 101 18116114112122222-+ -+-+-+- 由)()(22b a b a b a +?-=-知,可以将原式变形为: 解:原式11 91 971751531311?+ ?+?+?+?= 牛刀小试: 【我能行】 1. +?+?+?1999 19981199819971199719961……+ 200220011 ?+20021 2.521?+851?+1181?+……+29 261? 分数裂项求和方法总结 (一) 用裂项法求 1 (1)n n +型分数求和 分析:因为11 1n n -+=11(1)(1)(1) n n n n n n n n +-=+++(n 为自然数) 所以有裂项公式:111 (1)1 n n n n =-++ 【例1】 求111 (101111125960) +++ ???的和。 (二) 用裂项法求1 () n n k +型分数求和 分析:1 ()n n k +型。(n,k 均为自然数) 因为11111 ()[]()()()n k n k n n k k n n k n n k n n k +-=-=++++ 所以1111 () ()n n k k n n k =-++ 【例2】 计算11111577991111131315++++ ?????

相关文档
最新文档