2018年秋高中数学第二章数列2.4等比数列第2课时等比数列的性质学案新人教A版必修5

2018年秋高中数学第二章数列2.4等比数列第2课时等比数列的性质学案新人教A版必修5
2018年秋高中数学第二章数列2.4等比数列第2课时等比数列的性质学案新人教A版必修5

第2课时 等比数列的性质

学习目标:1.掌握等比数列的性质及其应用(重点).2.熟练掌握等比数列与等差数列的综合应用(难点、易错点).3.能用递推公式求通项公式(难点).

[自 主 预 习·探 新 知]

1.推广的等比数列的通项公式

{a n }是等比数列,首项为a 1,公比为q ,则a n =a 1q n -1

,a n =a m ·q

n -m

(m ,n ∈N *

).

2.“子数列”性质

对于无穷等比数列{a n },若将其前k 项去掉,剩余各项仍为等比数列,首项为a k +1,公比为q ;若取出所有的k 的倍数项,组成的数列仍为等比数列,首项为a k ,公比为q k

.

思考:如何推导a n =a m q

n -m?

[提示] 由a n a m =a ·q n -1a ·q m -1

=q n -m ,

∴a n =a m ·q

n -m

.

3.等比数列项的运算性质

在等比数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *

),则a m ·a n =a p ·a q . ①特别地,当m +n =2k (m ,n ,k ∈N *

)时,a m ·a n =a 2k .

②对有穷等比数列,与首末两项“等距离”的两项之积等于首末两项的积,即a 1·a n =a 2·a n

-1

=…=a k ·a n -k +1=….

4.两等比数列合成数列的性质

若数列{a n },{b n }均为等比数列,c 为不等于0的常数,则数列{ca n },{a 2

n }{a n ·b n },????

??a n b n 也

为等比数列.

思考:等比数列{a n }的前4项为1,2,4,8,下列判断正确的是 (1){3a n }是等比数列; (2){3+a n }是等比数列;

(3)????

??

1a n 是等比数列; (4){a 2n }是等比数列.

[提示]由定义可判断出(1),(3),(4)正确.

[基础自测]

1.思考辨析

(1)有穷等比数列中,与首末两项“等距离”的两项之积等于首末两项的积.( ) (2)当q >1时,{a n }为递增数列.( ) (3)当q =1时,{a n }为常数列.( ) [答案] (1) √ (2)× (3)√

提示:(2)当a 1>0且q >1时{a n }为递增数列,故(2)错.

2.等比数列{a n }中,a 1=3,q =2,则a 4=________,a n =________. 24 3×2

n -1

[a 4=a 1q 3=3×23=24,a n =a 1q

n -1

=3×2

n -1

.]

3.在等比数列{a n }中,a 5=4,a 7=6,则a 9=________.

【导学号:91432203】

9 [因为a 7=a 5q 2

, 所以q 2

=32

.

所以a 9=a 5q 4=a 5(q 2)2

=4×94

=9.]

4.在等比数列{a n }中,已知a 7a 12=5,则a 8a 9a 10a 11的值为________. 25 [因为a 7a 12=a 8a 11=a 9a 10=5,所以a 8a 9a 10a 11=25.]

[合 作 探 究·攻 重 难]

灵活设项求解等比数列

已知4个数成等比数列,其乘积为1,第2项与第3项之和为-3

2

,则此4个数为

________.

8,-2,12,-18或-18,12,-2,8 [设此4个数为a ,aq ,aq 2,aq 3

.

则a 4q 6

=1,aq (1+q )=-32

,①

所以a 2q 3=±1,当a 2q 3=1时,q >0,代入①式化简可得q 2

-14q +1=0,此方程无解;

当a 2q 3=-1时,q <0,代入①式化简可得q 2

+174q +1=0,解得q =-4或q =-14.

当q =-4时,a =-1

8;

当q =-1

4

时,a =8.

所以这4个数为8,-2,12,-18或-18,1

2,-2,8.]

1.有四个实数,前三个数依次成等比数列,它们的积是-8,后三个数依次成等差数列,它们的积为-80,求出这四个数.

【导学号:91432204】

[解] 由题意设此四个数为b q

,b ,bq ,a ,

则有????

? b 3

=-8,2bq =a +b ,

ab 2q =-80,

解得????

?

a =10,

b =-2,

q =-2,

或???

??

a =-8,

b =-2,q =52

.

所以这四个数为1,-2,4,10或-4

5

,-2,-5,-8.

等比数列的性质及应用

已知{a n }为等比数列,

(1)等比数列{a n }满足a 2a 4=12,求a 1a 2

3a 5;

(2)若a n >0,a 2a 4+2a 3a 5+a 4a 6=25,求a 3+a 5;

(3)若a n >0,a 5a 6=9,求log 3a 1+log 3a 2+…+log 3a 10的值.

思路探究:利用等比数列的性质,若m +n =p +q ,则a m ·a n =a p ·a q 求解. [解] (1)等比数列{a n }中,因为a 2a 4=12,所以a 23=a 1a 5=a 2a 4=12,所以a 1a 2

3a 5=14.

(2)由等比中项,化简条件得

a 23+2a 3a 5+a 25=25,即(a 3+a 5)2

=25,

∵a n >0,∴a 3+a 5=5.

(3)由等比数列的性质知a 5a 6=a 1a 10=a 2a 9=a 3a 8=a 4a 7=9, ∴log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1a 2…a 10) =log 3[(a 1a 10)(a 2a 9)(a 3a 8)(a 4a 7)(a 5a 6)] =log 395

=10.

2.(1)已知数列{a n }为等比数列,a 3=3,a 11=27,求a 7. (2)已知{a n }为等比数列,a 2·a 8=36,a 3+a 7=15,求公比q .

【导学号:91432205】

[解] (1)法一:?????

a 1q 2

=3,

a 1q 10

=27

相除得q 8

=9.

所以q 4

=3,所以a 7=a 3·q 4

=9.

法二:因为a 2

7=a 3a 11=81,所以a 7=±9, 又a 7=a 3q 4

=3q 4>0,所以a 7=9.

(2)因为a 2·a 8=36=a 3·a 7,而a 3+a 7=15, 所以a 3=3,a 7=12或a 3=12,a 7=3.

所以q 4

=a 7a 3=4或14,所以q =±2或q =±22

.

由递推公式转化为等比数列求通项

[探究问题]

1.如果数列{a n }满足a 1=1,a n +1=2a n +1,(n ∈N *

),你能判断出{a n }是等差数列,还是等比数列吗?

提示:由等差数列与等比数列的递推关系,可知数列{a n }既不是等差数列,也不是等比数列. 2.在探究1中,若将a n +1=2a n +1两边都加1,再观察等式的特点,你能构造出一个等比数列吗?

提示:在a n +1=2a n +1两边都加1得

a n +1+1=2(a n +1),显然数列{a n +1}是以a 1+1=2为首项,以q =2为公比的等比数列.

3.在探究1中,若将a n +1=2a n +1改为a n +1=3a n +5,又应如何构造出一个等比数列?你能求出a n 吗?

提示:设将a n +1=3a n +5变形为a n +1+x =3(a n +x ).将该式整理为a n +1=3a n +2x 与a n +1=3a n

+5对比可知2x =5,即x =52;所以在a n +1=3a n +5两边都加5

2,可构造出等比数列?

?????a n +52.利用

等比数列求出a n +5

2

即可求出a n .

已知S n 是数列{a n }的前n 项和,且S n =2a n +n -4. (1)求a 1的值.

(2)若b n =a n -1,试证明数列{b n }为等比数列.

思路探究:(1)由n =1代入S n =2a n +n -4求得;(2)先由S n =2a n +n -4,利用S n 和a n 的关系得{a n }的递推关系,然后构造出数列{a n -1}利用定义证明.

[解] (1)因为S n =2a n +n -4,

所以当n =1时,S 1=2a 1+1-4,解得a 1=3. (2)证明:因为S n =2a n +n -4, 所以当n ≥2时,

S n -1=2a n -1+(n -1)-4,

S n -S n -1=(2a n +n -4)-(2a n -1+n -5),即a n =2a n -1-1,

所以a n -1=2(a n -1-1), 又b n =a n -1,所以b n =2b n -1, 且b 1=a 1-1=2≠0,

所以数列{b n }是以b 1=2为首项,2为公比的等比数列.

母题探究:1.将本例条件“S n =2a n +n -4”改为“a 1=1,S n +1=4a n +2”,“b n =a n -1”改为“b n =a n +1-2a n ”,试证明数列{b n }是等比数列,并求{b n }的通项公式.

[证明] a n +2=S n +2-S n +1=4a n +1+2-4a n -2 =4a n +1-4a n .

b n +1b n =a n +2-2a n +1

a n +1-2a n

a n +1-4a n -2a n +1a n +1-2a n =2a n +1-4a n

a n +1-2a n

=2.

所以数列{b n }是公比为2的等比数列, 首项为a 2-2a 1.

因为S 2=a 1+a 2=4a 1+2, 所以a 2=5,所以b 1=a 2-2a 1=3. 所以b n =3·2

n -1

.

2.将本例条件“S n =2a n +n -4”改为“a 1=1,a 2

n +1=2a 2

n +a n a n +1”,试证明数列{a n }是等比数列,并求{a n }的通项公式.

[解] 由已知得a 2

n +1-a n a n +1-2a 2

n =0,所以(a n +1-2a n )(a n +1+a n )=0. 所以a n +1-2a n =0或a n +1+a n =0, (1)当a n +1-2a n =0时,

a n +1

a n

=2.又a 1=1, 所以数列{a n }是首项为1,公比为2的等比数列.所以a n =2

n -1

.

全国高中数学说课大赛获奖优秀说课稿汇编

全国高中数学说课大赛获奖优秀说课稿汇编 一、教学理念 教师的教学方案必须建立在学生的基础之上。新课程标准指出,“数学课程不仅要考虑教学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发……数学教学活动必须建立在学生的认知发展水平和已有知识经验基础之上。” 笔者认为教学中成功的关健在于: 教师的“教”立足于学生的“学”。 1、从学生的思维实际出发,激发探索知识的愿望,不同发展阶段的学生在认知水平、认知风格和发展趋势上存在差异,处于同一阶段的不同学生在认知水平、认知风格和发展趋势上也存在着差异。人的智力结构是多元的,有的人善于形象思维,有的人长于计算,有的人擅长逻辑思维,这就是学生的实际。教学要越贴近学生的实际,就越需要学生自己来探索知识,包括发现问题,分析、解决问题。在引导学生感受算理与算法的过程中,放手让学生尝试,让学生主动、积极地参与新知识的形成过程中,并适时调动学生大胆说出自己的方法,然后让学生自己去比较方法的正确与否,简单与否。这样学生对算理与算法用自己的思维方式,既明于心又说于口。 2、遇到课堂中学生分析问题或解决问题出现错误,特别是一些受思维定势影响的“规律性错误”比如学生在处理商的小数点时受到小数加减法的影响。教师针对这种情况,是批评、简单否定还是鼓励大胆发言、各抒己见,然后让学生发现错误,验证错误?当然应该是鼓励学生大胆地发表自己的意见、看法、想法。学生对自己的方法等于进行了一次自我否定。这样对教学知识的理解就比较深刻,既知其然,又知其所以然。而且学生通过对自己提出的问题,分析或解决的问题提出质疑,自我否定,有利于学生促进反思能力与自我监控能力。 数学教学活动应该是一个从具体问题中抽象出数学问题,并用多种数学语言分析它,用数学方法解决它,从中获得相关的知识与方法,形成良好的思维习惯和应用数学的意识,感受教学创造的乐趣,增进学生学习数学的信心,获

高中数学-等差等比数列经典例题以及详细答案

等差等比数列综合应用 【典型例题】 [例1] 一个等比数列共有三项,如果把第二项加上4所得三个数成等差数列,如果再把这个等差数列的第3项加上32所得三个数成等比数列,求原来的三个数。 解:等差数列为d a a d a +-,, ∴ ?????=++--=+?-2 2 )32)(()4()()(a d a d a a d a d a ∴ ?????=-+-+-=-) 2()(32)()1(168222222a d a d a a a d a ∴ 2 23232168a d a a =-++- 0432=-+d a 代入(1) 16)24(3 1 82+-?-=-d d 0643232=+-d d 0)8)(83(=--d d ① 8=d 10=a ② 38=d 9 26=a ∴ 此三数为2、16、18或92、910-、9 50 [例2] 等差数列}{n a 中,3931-=a ,76832-=+a a ,}{n b 是等比数列,)1,0(∈q ,21=b ,}{n b 所有项和为20,求: (1)求n n b a , (2)解不等式 2211601 b m a a m m -≤++++Λ 解:(1)∵ 768321-=+d a ∴ 6=d ∴ 3996-=n a n 2011=-q b 10 9 =q ∴ 1 )10 9( 2-?=n n b 不等式10 921601) (21 21??-≤++?+m a a m m m

)1(1816)399123936(2 1 +??-≤-+-? m m m m 0)1(181639692≤+??+-m m m 032122≤+-m m 0)8)(4(≤--m m }8,7,6,5,4{∈m [例3] }{n a 等差,}{n b 等比,011>=b a ,022>=b a ,21a a ≠,求证:)3(≥ ),1(+∞∈q 01>-q 01>-n q ∴ 0*> ∴ N n ∈ 3≥n 时,n n a b > [例4] (1)求n T ;(2)n n T T T S +++=Λ21,求n S 。 解:???=-=????=+++-=+++221 04811598 7654d a a a a a a a a Λ n T 中共12-n 个数,依次成等差数列 11~-n T T 共有数1222112-=+++--n n Λ项 ∴ n T 的第一个为2)12(211 21?-+-=--n n a ∴ 2)12()2(2 1 )232(2 111 ?-?+-?=---n n n n n T 122112222232-----+?-=n n n n 2222323+-?-?=n n

数学必修5导学案:1-2 第2课时等比数列的性质

第2课时 等比数列的性质 知能目标解读 1.结合等差数列的性质,了解等比数列的性质和由来. 2.理解等比数列的性质及应用. 3.掌握等比数列的性质并能综合运用. 重点难点点拨 重点:等比数列性质的运用. 难点:等比数列与等差数列的综合应用. 学习方法指导 1.在等比数列中,我们随意取出连续三项及以上的数,把它们重新依次看成一个新的数列,则此数列仍为等比数列,这是因为随意取出连续三项及以上的数,则以取得的第一个数为首项,且仍满足从第2项起,每一项与它的前一项的比都是同一个常数,且这个常数量仍为原数列的公比,所以,新形成的数列仍为等比数列. 2.在等比数列中,我们任取下角标成等差的三项及以上的数,按原数列的先后顺序排列所构成的数列仍是等比数列,简言之:下角标成等差,项成等比.我们不妨设从等比数列{a n }中依次取出的数为a k ,a k +m ,a k +2m ,a k +3m ,…,则 k m k a a 2+= m k m k a a ++2= m k m k a a 23++=…=q m (q 为原等比数列的公比),所以此数列成等比数列. 3.如果数列{a n }是等比数列,公比为q,c 是不等于零的常数,那么数列{ca n }仍是等比数列,且公比仍为q ; {|a n |} 也是等比,且公比为|q |.我们可以设数列{a n }的公比为q ,且满足 n n a a 1+=q ,则 n n ca ca 1+= n n a a 1+=q ,所以数 列{ca n }仍是等比数列,公比为q .同理,可证{|a n |}也是等比数列,公比为|q |. 4.在等比数列{a n }中,若m+n=t+s 且m,n,t,s ∈N +则a m a n =a t a s .理由如下:因为a m a n =a 1q m-1·a 1q n-1 =a 21q m+n-2,a t a s =a 1q t-1·a 1q s-1=a 21q t+s-2,又因为m+n=t+s ,所以m+n -2=t+s -2,所以a m a n =a t a s .从此性质还可得到,项数确定的等比数列,距离首末两端相等的两项之积等于首末两项之积. 5.若{a n },{b n }均为等比数列,公比分别为q 1,q 2,则 (1){a n b n }仍为等比数列,且公比为q 1q 2. (2) { n n b a }仍为等比数列,且公比为2 1q q . 理由如下:(1) n n n n b a b a 11++=q 1q 2,所以{a n b n }仍为等比数列,且公比为q 1q 2;(2) n n n n b a b a 11 ++· n n a b = 2 1q q , 所以{ n n b a }仍为等比数列,且公比为 2 1q q . 知能自主梳理 1.等比数列的项与序号的关系 (1)两项关系 通项公式的推广:

等比数列教学设计(共2课时)

《等比数列》教学设计(共2课时) 一、教材分析: 1、内容简析: 本节主要内容是等比数列的概念及通项公式,它是继等差数列后有一个特殊数列,是研究数列的重要载体,与实际生活有密切的联系,如细胞分裂、银行贷款问题等都要用等比数列的知识来解决,在研究过程中体现了由特殊到一般的数学思想、函数思想和方程思想,在高考中占有重要地位。 2、教学目标确定: 从知识结构来看,本节核心内容是等比数列的概念及通项公式,可从等比数列的“等比”的特点入手,结合具体的例子来学习等比数列的概念,同时,还要注意“比”的特性。在学习等比数列的定义的基础上,导出等比数列的通项公式以及一些常用的性质。从而可以确定如下教学目标(三维目标): 第一课时: (1)理解等比数列的概念,掌握等比数列的通项公式及公式的推导 (2)在教学过程中渗透方程、函数、特殊到一般等数学思想,提高学生观察、归纳、猜想、证明等逻辑思维能力 (3)通过对等比数列通项公式的推导,培养学生发现意识、创新意识 第二课时: (1)加深对等比数列概念理解,灵活运用等比数列的定义及通项公式,了解等比中项概念,掌握等比数列的性质 (2)运用等比数列的定义及通项公式解决问题,增强学生的应用 3、教学重点与难点: 第一课时: 重点:等比数列的定义及通项公式 难点:应用等比数列的定义及通项公式,解决相关简单问题 第二课时: 重点:等比中项的理解与运用,及等比数列定义及通项公式的应用 难点:灵活应用等比数列的定义及通项公式、性质解决相关问题 二、学情分析: 从整个中学数学教材体系安排分析,前面已安排了函数知识的学习,以及等差数列的有关知识的学习,但是对于国际象棋故事中的问题,学生还是不能解决,存在疑问。本课正是由此入手来引发学生的认知冲突,产生求知的欲望。而矛盾解决的关键依然依赖于学生原有的认知结构──在研究等差数列中用到的思想方法,于是从几个特殊的对应观察、分析、归纳、概括得出等比数列的定义及通项公式。 高一学生正处于从初中到高中的过度阶段,对数学思想和方法的认识还不够,思维能力比较欠缺,他们重视具体问题的运算而轻视对问题的抽象分析。同时,高一阶段又是学生形成良好的思维能力的关键时期。因此,本节教学设计一方面遵循从特殊到一般的认知规律,另一方面也加强观察、分析、归纳、概括能力培养。 多数学生愿意积极参与,积极思考,表现自我。所以教师可以把尽可能多的时间、空间让给学生,让学生在参与的过程中,学习的自信心和学习热情等个性心理品质得到很好的培养。这也体现了教学工作中学生的主体作用。 三、教法选择与学法指导: 由于等比数列与等差数列仅一字之差,在知识内容上是平行的,可用比较法来学习等比

高中数学必修五导学案-第二课时 等比数列的性质

第2课时 等比数列的性质 1.掌握等比数列的性质及其应用.(重点) 2.熟练掌握等比数列与等差数列的综合应用.(难点、易错点) 3.能用递推公式求通项公式.(难点) [基础·初探] 教材整理 等比数列的性质 阅读教材P 51例4~P 53,完成下列问题. 1.“子数列”性质 对于无穷等比数列{a n },若将其前k 项去掉,剩余各项仍为等比数列,首项为a k +1,公比为q ;若取出所有的k 的倍数项,组成的数列仍为等比数列,首项为a k ,公比为q k . 2.等比数列项的运算性质 在等比数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m ·a n =a p ·a q . ①特别地,当m +n =2k (m ,n ,k ∈N *)时,a m ·a n =a 2k . ②对有穷等比数列,与首末两项“等距离”的两项之积等于首末两项的积,即a 1·a n =a 2·a n -1=…=a k ·a n -k +1=…. 3.两等比数列合成数列的性质 若数列{a n },{b n }均为等比数列,c 为不等于0的常数,则数列{ca n }, {a 2 n }{a n ·b n },? ??? ??????a n b n 也为等比数列. 1.等比数列{a n }中,a 4=4,则a 2·a 6=________. 【解析】 ∵{a n }是等比数列, ∴a 2a 6=a 24=42 =16. 【答案】 16 2.若a ,b ,c 既成等差数列,又成等比数列,则它们的公比为________.

【解析】 只有非零常数列才满足题意,∴公比q =1. 【答案】 1 3.正项等比数列{a n }中,a 2a 5=10,则lg a 3+lg a 4=___________________. 【解析】 lg a 3+lg a 4=lg(a 3a 4) =lg(a 2a 5) =lg 10=1. 【答案】 1 4.在等比数列{a n }中,a 2=2,a 6=16,则a 10=________. 【解析】 ∵数列{a n }是等比数列,∴a 10·a 2=a 26, 即a 10=a 26 a 2=1622 =128. 【答案】 128 [小组合作型] 等比数列性质的应 用 已知{a n }为等比数列, (1)等比数列{a n }满足a 2a 4=1 2 ,求a 1a 23a 5; (2)若a n >0,a 2a 4+2a 3a 5+a 4a 6=25,求a 3+a 5; (3)若a n >0,a 5a 6=9,求log 3a 1+log 3a 2+…+log 3a 10的值. 【精彩点拨】 利用等比数列的性质,若m +n =p +q ,则a m ·a n =a p ·a q 求解. 【自主解答】 (1)等比数列{a n }中,因为a 2a 4=12,所以a 23=a 1a 5=a 2a 4=1 2, 所以a 1a 2 3a 5=14 . (2)由等比中项,化简条件得 a 23+2a 3a 5+a 25=25,即(a 3+a 5)2 =25, ∵a n >0,∴a 3+a 5=5. (3)由等比数列的性质知a 5a 6=a 1a 10=a 2a 9=a 3a 8=a 4a 7=9, ∴log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1a 2…a 10)

(完整版)等比数列前n项和公式的性质导学案

等比数列前n 项和的性质导学案 知识目标:掌握等比数列前n 项和的性质,灵活的应用等比数列前n 项和公式的性质解决问题。 方法与过程:通过自主探究的方式,培养学生团队精神,勇于探索的精神。 教学过程: 复习: 1、 等比数列前n 项和公式: (1) (2) 2.数学思想: 课前练习: 1.数列()项和的前n a a a a n 13 2............,,,1- a a A n --11. B a a n --+111 C a a n ---111 D.以上答案都不对。 2.求和()() )(.......212n a a a n -++-+- 新课探究: 探究一: 性质1。数列{}n a 的前n 项和A Aq S n n -=()1,0,0≠≠≠q q A 探究{}n a 是否为等比数 列。 例题1:若等比数列{}n a 的前n 项和,4a S n n +=求a 的值。 变式:若等比数列{}n a 的前n 项和13-=n n S +a 2,求a 的值。 探究二: 我们知道,等差数列有这样的性质: 数列{}n a 是等差数列,则K K K K K S S S S S 232,,--................也成等差数列; 则新的等差数列的首项是K S ,公差为d k 2 。 那么,在等比数列中,也有类似的性质吗? 等比数列前n 项和的性质二: 数列{}n a 是等比数列,则K K K K K S S S S S 232,,--...............是否也构成成等比数列; 则新的等比数列的首项是K S ,公比( ) 例题2 :已知等比数列{}n a 中,前10项和10S =10,前20项和20S =30,求30S 变式训练: 1. 等比数列{}n a 10S =20,20S =80,求30S =?.

高中数学说课稿范文

尊敬的各位专家、评委: 下午好! 我的抽签序号是___,今天我说课的课题是《______》第__课时。 我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、教法学法分析、教学过程分析和评价分析四方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。 一、教材分析 (一)地位与作用 数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面数列作为一种特殊的函数与函数思想密不可分;另一方面学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。 (二)学情分析 (1)学生已熟练掌握_________________。 (2)学生的知识经验较丰富,具备了教强的抽象思维能力和演绎推理能力。 (3)学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。 (4)学生层次参次不齐,个体差异比较明显。 二、目标分析 新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程,同时成为学会学习和正确价值观。这要求我们在教学中以知识技能的培养为主线,透情感态度与价值观,并把这两者充分体现在教学过程中,新课标指出教学的主体是学生,因此目标的制定和设计必须从学生的角度出发,根据__在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标: (一)教学目标 (1)知识与技能 使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;。 (2)过程与方法

高考数学复习专题 等比数列性质(含等差等比数列综合题)

第50炼 等比数列性质 一、基础知识 1、定义:数列{}n a 从第二项开始,后项与前一项的比值为同一个常数()0q q ≠,则称{}n a 为等比数列,这个常数q 称为数列的公比 注:非零常数列既可视为等差数列,也可视为1q =的等比数列,而常数列0,0,0,L 只是等差数列 2、等比数列通项公式:11n n a a q -=?,也可以为:n m n m a a q -=? 3、等比中项:若,,a b c 成等比数列,则b 称为,a c 的等比中项 (1)若b 为,a c 的等比中项,则有 2a b b a c b c =?= (2)若{}n a 为等比数列,则n N * ?∈,1n a +均为2,n n a a +的等比中项 (3)若{}n a 为等比数列,则有m n p q m n p q a a a a +=+?= 4、等比数列前n 项和公式:设数列{}n a 的前n 项和为n S 当1q =时,则{}n a 为常数列,所以1n S na = 当1q ≠时,则()111n n a q S q -= - 可变形为:()1111111 n n n a q a a S q q q q -= = ----,设11a k q =-,可得:n n S k q k =?- 5、由等比数列生成的新等比数列 (1)在等比数列{}n a 中,等间距的抽取一些项组成的新数列仍为等比数列 (2)已知等比数列{}{},n n a b ,则有 ① 数列{}n ka (k 为常数)为等比数列 ② 数列{}n a λ (λ为常数)为等比数列,特别的,当1λ=-时,即1n a ?? ???? 为等比数列 ③ 数列{}n n a b 为等比数列 ④ 数列{} n a 为等比数列

等比数列的概念及通项公式导学案

1 等比数列的概念及通项公式 基本概念 新知: 1. 等比数列定义:一般地,如果一个数列从第 项起, 一项与它的 一项的 等于 常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的 ,通常用字母 表示(q ≠0),即:1 n n a a -= (q ≠0) 2. 等比数列的通项公式: 21a a = ; 3211()a a q a q q a === ;24311()a a q a q q a === ; … … ∴ 11n n a a q a -==? 等式成立的条件 3. 等比数列中任意两项n a 与m a 的关系是: 3、等比数列的性质:对于等比数列}{n a ,若.,n m q p a a a a n m q p =+=+则 4、等比数列的}{n a 的单调性————————与首项和公比都有关 11-=n n q a a 例题 例一:判断数列是否为等比数列,若是请指出公比 (1)1,-1,1,-1,1,…(2)0,1,2,4,8,…(3)13 181-4121-1,,, 例二、指出下列等比数列中的未知项 (1)2,a ,8 (2)-4,b ,c ,2 1 问题1:如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则2G b G ab G a G =?=?= 新知1:等比中项定义 如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么称这个数G 称为a 与b 的等比中项. 即G = (a , b 同号). 试试:数4和6的等比中项是 . 例三、(1)在等比数列}{n a 中,是否有)2(112 ≥=+-n a a a n n n ? (2)如果数列}{n a 中,对于任意的正整数),2(,2112 ≥=≥+-n a a a n n n n n 都有) (那么}{n a 一定是等比数列 吗?

高中数学 等差数列与等比数列 课件

第1讲等差数列与等比数列 高考定位 1.等差、等比数列基本运算和性质的考查是高考热点,经常以选择题、填空题的形式出现;2.数列的通项也是高考热点,常在解答题中的第(1)问出现,难度中档以下. 真题感悟 1.(2019·全国Ⅰ卷)记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则() A.a n=2n-5 B.a n=3n-10 C.S n=2n2-8n D.S n=1 2n 2-2n

2.(2018·北京卷)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于 122.若第一个单音的频率为f ,则第八个单音 的频率为( ) A.32f B.3 22f C.1225f D.1227f 3.(2019·全国Ⅰ卷)记S n 为等比数列{a n }的前n 项和,若a 1=1,S 3=34,则S 4= ________. 4.(2019·全国Ⅱ卷)已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16. (1)求{a n }的通项公式; (2)设b n =log 2a n ,求数列{b n }的前n 项和. 考 点 整 合 1.等差数列 (1)通项公式:a n =a 1+(n -1)d ; (2)求和公式:S n = n (a 1+a n )2=na 1+n (n -1)2 d ; (3)性质: ①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q ; ②a n =a m +(n -m )d ; ③S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列. 2.等比数列 (1)通项公式:a n =a 1q n -1(q ≠0); (2)求和公式:q =1,S n =na 1;q ≠1,S n =a 1(1-q n )1-q =a 1-a n q 1-q ; (3)性质: ①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m ·a n =a p ·a q ; ②a n =a m ·q n -m ; ③S m ,S 2m -S m ,S 3m -S 2m ,…(S m ≠0)成等比数列.

2019高考数学二轮复习专题三数列与不等式第1讲等差数列与等比数列学案

第1讲 等差数列与等比数列 [考情考向分析] 1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.等差、等比数列的判定及综合应用也是高考考查的重点,注意基本量及定义的使用,考查分析问题、解决问题的综合能力. 热点一 等差数列、等比数列的运算 1.通项公式 等差数列:a n =a 1+(n -1)d ; 等比数列:a n =a 1·q n -1 . 2.求和公式 等差数列:S n = n (a 1+a n ) 2 =na 1+ n (n -1) 2 d ; 等比数列:S n =????? a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1),na 1(q =1). 3.性质 若m +n =p +q , 在等差数列中a m +a n =a p +a q ; 在等比数列中a m ·a n =a p ·a q . 例1 (1)(2018·全国Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5等于( ) A .-12 B .-10 C .10 D .12 答案 B 解析 设等差数列{a n }的公差为d ,由3S 3=S 2+S 4, 得3???? ??3a 1+3×(3-1)2×d =2a 1+2×(2-1)2×d +4a 1+4×(4-1)2×d ,将a 1=2代入上式,解得d =-3, 故a 5=a 1+(5-1)d =2+4×(-3)=-10.故选B. (2)(2018·杭州质检)设各项均为正数的等比数列{a n }中,若S 4=80,S 2=8,则公比q =________,a 5=________. 答案 3 162

2018年秋高中数学第二章数列2.4等比数列第2课时等比数列的性质学案新人教A版必修5

第2课时 等比数列的性质 学习目标:1.掌握等比数列的性质及其应用(重点).2.熟练掌握等比数列与等差数列的综合应用(难点、易错点).3.能用递推公式求通项公式(难点). [自 主 预 习·探 新 知] 1.推广的等比数列的通项公式 {a n }是等比数列,首项为a 1,公比为q ,则a n =a 1q n -1 ,a n =a m ·q n -m (m ,n ∈N * ). 2.“子数列”性质 对于无穷等比数列{a n },若将其前k 项去掉,剩余各项仍为等比数列,首项为a k +1,公比为q ;若取出所有的k 的倍数项,组成的数列仍为等比数列,首项为a k ,公比为q k . 思考:如何推导a n =a m q n -m? [提示] 由a n a m =a ·q n -1a ·q m -1 =q n -m , ∴a n =a m ·q n -m . 3.等比数列项的运算性质 在等比数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N * ),则a m ·a n =a p ·a q . ①特别地,当m +n =2k (m ,n ,k ∈N * )时,a m ·a n =a 2k . ②对有穷等比数列,与首末两项“等距离”的两项之积等于首末两项的积,即a 1·a n =a 2·a n -1 =…=a k ·a n -k +1=…. 4.两等比数列合成数列的性质 若数列{a n },{b n }均为等比数列,c 为不等于0的常数,则数列{ca n },{a 2 n }{a n ·b n },???? ??a n b n 也 为等比数列. 思考:等比数列{a n }的前4项为1,2,4,8,下列判断正确的是 (1){3a n }是等比数列; (2){3+a n }是等比数列; (3)???? ?? 1a n 是等比数列; (4){a 2n }是等比数列. [提示]由定义可判断出(1),(3),(4)正确. [基础自测] 1.思考辨析 (1)有穷等比数列中,与首末两项“等距离”的两项之积等于首末两项的积.( ) (2)当q >1时,{a n }为递增数列.( ) (3)当q =1时,{a n }为常数列.( ) [答案] (1) √ (2)× (3)√

高三数学章节专题基础梳理导学案42(等差数列等比数列的性质)

高考要求 等差、等比数列的性质是等差、等比数列的概念,通项公式,前n 项和公式的引申 应用等差、等比数列的性质解题,往往可以回避求其首项和公差或公比,使问题得到整体地解决,能够在运算时达到运算灵活,方便快捷的目的,故一直受到重视 高考中也一直重点考查这部分内容 重难点归纳 1 等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题的既快捷又方便的工具,应有意识去应用 2 在应用性质时要注意性质的前提条件,有时需要进行适当变形 3 “巧用性质、减少运算量”在等差、等比数列的计算中非常重要,但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条件,又要时刻注意题的目标,往往能取得与“巧用性质”解题相同的效果 典型题例示范讲解 例1已知函数f (x )= 4 12 -x (x <-2) (1)求f (x )的反函数f --1(x ); (2)设a 1=1, 1 1+n a =-f --1(a n )(n ∈N *),求a n ; (3)设S n =a 12+a 22+…+a n 2,b n =S n +1-S n 是否存在最小正整数m ,使得对任意n ∈N *,有b n <25 m 成立?若存在,求出m 的值;若不存在,说明理由 命题意图 本题是一道与函数、数列有关的综合性题目,着重考查学生的逻辑分析能力 知识依托 本题融合了反函数,数列递推公式,等差数列基本问题、数列的和、函数单调性等知识于一炉,结构巧妙,形式新颖,是一道精致的综合题 错解分析 本题首问考查反函数,反函数的定义域是原函数的值域,这是一个易错点,(2)问以数列{ 2 1n a }为桥梁求a n ,不易突破 技巧与方法 (2)问由式子4112 1 += +n n a a 得 2 2 1 11n n a a - +=4,构造等差数列{ 2 1n a },从 而求得a n ,即“借鸡生蛋”是求数列通项的常用技巧;(3)问运用了函数的思想 解 (1)设y = 412 -x ,∵x <-2,∴x =- 2 14y + , 即y =f --1(x )=-2 14y + (x >0) (2)∵411 ,1412 2 1 2 1 =- ∴+ =++n n n n a a a a , ∴{ 2 1 n a }是公差为4的等差数列, ∵a 1=1, 2 1n a =2 1 1a +4(n -1)=4n -3,∵a n >0,∴a n = 3 41-n

最新高中数学优秀说课稿

精品文档 高中数学优秀说课稿等差数列 等差数列(第一课时)的内容。3.2本节课讲述的是人教版高一数学(上)§一、教材分析 1、教材的地位和作用: 数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。 2、教学目标 根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标 a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。 b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。 c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。 3、教学重点和难点 根据教学大纲的要求我确定本节课的教学重点为: ①等差数列的概念。 ②等差数列的通项公式的推导过程及应用。 由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点 二、教法分析 针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。 三、 四、学法指导在引导分析 精品文档. 精品文档 留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。 四、教学程序 本节课的教学过程由(一)复习引入(二)新课探究(三)应用举例(四)反馈练习(五)归纳小结(六)布置作业,

高中数学必修5:等差数列与等比数列知识对比表

高中数学必修5:等差数列与等比数列知识比较一览表等差数列等比数列 定义一般地,如果一个数列{} n a从第2项起,每一项与它 的前一项的差等于同一个常数d,那么这个数列就叫 做等差数列.这个常数d叫公差. 等差数列的单调性: 数列{} n a为等差数列,则 当公差0 d>,则为递增等差数列, 当公差0 d<,则为递减等差数列, 当公差0 d=,则为常数列. 一般地,如果一个数列{} n a从第2项起,每一项 与它的前一项的比等于同一个常数q,那么这个数 列就叫等比数列.这个常数q叫公比. 等比数列的单调性: 数列{} n a为等比数列,则 当1 q>时,1 1 0{} 0{} {n n a a a a > < ,则为递增数列 ,则为递减数列; 当1 q< 0<时,1 1 0{} 0{} {n n a a a a > < ,则为递减数列 ,则为递增数列 当q=1时,该数列为常数列,也为等差数列; 当q<0时,该数列为摆动数列. 判定方法等差数列的判定方法 (1)定义法:若d a a n n = - -1 或 d a a n n = - +1 (常数* ∈N n)?{}n a是等差数列. (2)等差中项:数列{}n a是等差数列 )2 ( 2 1 1- ≥ + = ? + n a a a n n n2 1 2 + + + = ? n n n a a a (3)通项公式:b kn a n + =(b k,是常数) ?数列{}n a是等差数列 (4)前n项和公式:数列{}n a是等差数列 ?2 n S An Bn =+,(其中A、B是常数)。 等比数列的判定方法 (1)用定义:对任意n,都有 1 1 (0) n n n n n a a qa q q a a + + ==≠ 或为常数, ?{} n a为等比数列 (2)等比中项:2 11 n n n a a a +- =( 11 n n a a +- ≠0) ?{} n a为等比数列 (3)通项公式:()0 n n a A B A B =??≠ ?{} n a为等比数列 (4)前n项和公式: () '',,',' n n n n S A A B S A B A A B A B =-?=- 或为常数 ?{} n a为等比数列 证明方法等差数列的证明方法:只能依据定义: 定义法:若d a a n n = - -1 或d a a n n = - +1 (常数* ∈N n)?{}n a是等差数列. 等比数列的证明方法:只能依据定义: 若()()* 1 2, n n a q q n n N a - =≠≥∈ 0且或1 n n a qa + = ?{} n a为等比数列 递推关系① 121 n n a a a a + -=-(* n N ∈) ② 1 n n a a d + -=(* n N ∈) ③ 11 n n n n a a a a +- -=-(* 2, n n N ≥∈) ①12 1 n n a a a a +=( * n N ∈) ②1n n a q a +=(* 0, q n N ≠∈) ③1 1 n n n n a a a a + - =(* 2, n n N ≥∈) 通项公式① 11 (1) n a a n d dn a d =+-=+-=b kn+ 推广:()d m n a a m n - + =(m、* n N ∈) 特别的,当m=1时,便得到等差数列的通项公式. 此公式比等差数列的通项公式更具有一般性. m n a a d m n - - =, 1 1 - - = n a a d n,()d n a a n 1 1 - - = ② n a pn q =+(* ,, p q n N ∈ 为常数) 是关于n的一次函数,且斜率为公差d ③由 n S的定义, n a= ? ? ? ≥ - = - )2 ( )1 ( 1 1 n S S n S n n (* n N ∈) ①() 11 1 n n n n a a a q q A B A B q - ===??≠ 推广:m n m n q a a- ? =(m、* n N ∈) 特别的,当m=1时,便得到等比数列的通项公式., 此公式比等比数列的通项公式更具有一般性. n m n m a q a -=, 1 1 a a q n n= -,n n q a a- ? =1 1 ②n n q p a? =(* ,,0,0, p q q p n N ≠≠∈ 是常数) ③由 n S的定义, () () ? ? ? ? ? ≥ = = - 2 1 1 1 n S S n S a n n n (* n N ∈)

等比数列的性质教学设计

3.1.2等比数列性质 【课程分析】等数列是又一特殊数列,它与前面我们刚刚所探讨过的等差数列仅有一字之差,所以我们可用比较法来学习等比数列的相关知识。在深刻理解等差数列与等比数列的区别与联系的基础上,牢固掌握等比数列的性质。 【学情分析】学生已经学习了等差数列,对于等比数列学生对比等差数列学习较容易接受。 【学习目标】掌握等比数列的性质 一.导入新课 (一)回顾等比数列的有关概念 (1) 定义式:32121 (0)n n a a a q q a a a -====≠ (2) 通项公式:11n n a a q -= 导入本课题意:与等差数列类似,等比数列也是特殊的数列,它还有一些规律性质,本节课,就让我们一起来探寻一下它到底有一些怎样的性质。 二.推进新课 题:就任一等差数列{a n },计算a 7+a 10和a 8+a 9,a 10+a 40和a 20+a 30,你发现了什么一般规律,能把你发现的规律作一般化的推广吗?类比猜想一下,在等比数列中会有怎样的类似结论? 引导探:… 性质1(板书):在等比数列中,若m+n =p+q ,有a m a n =a p a q 探究二. (引导学生通过类比联想发现进而推证出性质2) 已知{a n }是等比数列. (1)2537a a a =?是否成立?2519a a a =?成立吗?为什么? (2)211(1)n n n a a a n -+=?>是否成立?你据此能得到什么结论?2()n n k n k a a a n k -+=?>是否成立?你又能得到什么结论?) 合作探:… 性质2(板书):在等比数列中2()n n k n k a a a n k -+=?>(本质上就是等比中项) 探究三:一位同学发现:若n S 是等差数列{}n a 的前n 项和,则232,,k k k k k S S S S S --也是等差数列。在等比数列中是否也有这样的结论?为什么? 性质 数列{}n a 是公比为q )0(>q 的等比数列,n S 为{}n a 的前n 项之和,则新构成的数列,......,...,,,)1(232n k kn n n n n n S S S S S S S ----仍为等比数列,且公比为n q 证明 ①当1=q 时,1na S n =, 则1)2()1()1(1 11111)2()1()1(==-----=-----na na na k na k na k kna S S S S n k n k n k kn (常数),所以数列}{)1(n k kn S S --是

高中数学经典的解题技巧和方法等差数列、等比数列

高中数学经典的解题技巧和方法(等差数列、等比数列) 跟踪训练题 一、选择题(本大题共6个小题,每小题6分,总分36分) 1.已知等差数列{a n }的前n 项和为S n ,若a 2=1,a 3=3,则S 4=( ) (A)12 (B)10 (C)8 (D)6 2.设数列{x n }满足log 2x n+1=1+log 2x n ,且x 1+x 2+x 3+…+x 10=10,则x 11+x 12+x 13+…+x 20的值为( ) (A)10×211 (B)10×210 (C)11×211 (D)11×210 3.已知正数组成的等差数列{a n },前20项和为100,则a 7·a 14的最大值是( ) (A)25 (B)50 (C)100 (D)不存在 4.已知{}n a 为等比数列,S n 是它的前n 项和。若2312a a a ?=, 且4a 与27a 的等差中项为5 4,则5S =( ) A .35 B.33 C.31 D.29 5. 设{}n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为,,X Y Z ,则下列等式中恒成立 的是( ) A 、2X Z Y += B 、()() Y Y X Z Z X -=- C 、2Y XZ = D 、()() Y Y X X Z X -=- 6.(2010·潍坊模拟)已知数列{a n }是公差为d 的等差数列,S n 是其前n 项和,且有S 9

等比数列前n项和导学案

等比数列前n项和导 学案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

§3.2等比数列前n 项和导学案 【学习要求】 1.掌握等比数列前n 项公式;(重点) 2.等比数列前n 项公式的推导方法;(难点) 2.会用等比数列前n 项和公式解决一些简单问题.(拓展) 【知识要点】 1.等比数列前n 项和公式: (1)公式:S n =????? = q ≠1 q =1. (2)注意:应用该公式时,一定不要忽略q =1的情况. 2.若{a n }是等比数列,且公比q ≠1,则前n 项和S n = a 11-q (1-q n )=A (q n -1).其中A = . 3.等比数列1,x ,x 2,x 3,…的前n 项和S n 为 ( ) A .1-x n 1-x B .1-x n -1 1-x C .??? 1-x n 1-x ,x ≠1n ,x =1 D .??? 1-x n -11-x ,x ≠1n ,x =1 【问题探究】 国际象棋起源于古代印度,相传有位数学家带着画有64个方格的木盘,和32个雕刻成六种立体形状,分涂黑白两色的木制小玩具,去见波斯国王并向国王介绍这种游戏的玩法.国王对这种新奇的游戏很快就产生了浓厚的兴趣,一天到晚兴致勃勃地要那位数学家或者大臣陪他玩.高兴之余,他便问那位数学家,作为对他忠心的奖赏,他需要得到什么赏赐呢数学家开口说道:“请您在棋盘上的第一个格子上放1粒麦子,第二个格子上放2粒,第三个格子上放4粒,第四个格子上放8粒……即每一个次序在后的格子中放的麦粒都必须是前一个格子麦粒数目的2倍,直到最后一个格子第64格放满为止,这样我就十分满足了.”“好吧!”国王挥挥手,慷慨地答应了数学家的这个谦卑的请求.国王觉得,这个要求太低了,问他:“你怎么只要这么一点东西呢”数学家笑着恳求道:“陛下还是叫管理国家粮仓的大臣算一算!”第二天,管理粮仓的大臣满面愁容地向国王报告了一个数字,国王大吃一惊:“我的天!我哪来这么多的麦子”这个玩具也随着这个故事传遍全世界,这就是今日的国际象棋.假定一千粒麦的质量为40 g ,那么,数学家要求的麦粒数的总质量究竟是多少呢(将超过7 000亿吨)这实际上是求数列1,2,4,…,263的和.据查,目前世界年度小麦产量约6亿吨,显然国王无法满足数学家的要求. 这个传说中的计算是一个等比数列的求和问题,那么等比数列的求和公式是怎样的呢怎样的等比数列才能应用这个公式呢这一节我们就来学习等比数列的求和公式.

相关文档
最新文档