第六章统计热力学初步练习题

第六章统计热力学初步练习题
第六章统计热力学初步练习题

第六章统计热力学初步练习题

一、判断题:

1.当系统的U,V,N一定时,由于粒子可以处于不同的能级上,因而分布数不同,所以系统的总微态数Ω不能确定。

2.当系统的U,V,N一定时,由于各粒子都分布在确定的能级上,且不随时间变化,因而系统的总微态数Ω一定。

3.当系统的U,V,N一定时,系统宏观上处于热力学平衡态,这时从微观上看系统只能处于最概然分布的那些微观状态上。

4.玻尔兹曼分布就是最概然分布,也是平衡分布。

5.分子能量零点的选择不同,各能级的能量值也不同。

6.分子能量零点的选择不同,各能级的玻尔兹曼因子也不同。

7.分子能量零点的选择不同,分子在各能级上的分布数也不同。

8.分子能量零点的选择不同,分子的配分函数值也不同。

9.分子能量零点的选择不同,玻尔兹曼公式也不同。

10.分子能量零点的选择不同,U,H,A,G四个热力学函数的数值因此而改变,但四个函数值变化的差值是相同的。

11.分子能量零点的选择不同,所有热力学函数的值都要改变。

12.对于单原子理想气体在室温下的一般物理化学过程,若要通过配分函数来求过程热力学函数的变化值,只须知道q t这一配分函数值就行了。

13.根据统计热力学的方法可以计算出U、V、N确定的系统熵的绝对值。

14.在计算系统的熵时,用ln W B(W B最可几分布微观状态数)代替1nΩ,因此可以认为W B与Ω大小差不多。

15.在低温下可以用q r = T/σΘr来计算双原子分子的转动配分函数。

二、单选题:

1.下面有关统计热力学的描述,正确的是:

(A) 统计热力学研究的是大量分子的微观平衡体系;

(B) 统计热力学研究的是大量分子的宏观平衡体系;

(C) 统计热力学是热力学的理论基础;

(D) 统计热力学和热力学是相互独立互不相关的两门学科。

2.在统计热力学中,物系的分类常按其组成的粒子能否被辨别来进行,按此原则,下列

说法正确的是:

(A) 晶体属离域物系而气体属定域物系;(B) 气体和晶体皆属离域物系;

(C) 气体和晶体皆属定域物系;(D) 气体属离域物系而晶体属定域物系。

3.在研究N、V、U有确定值的粒子体系的统计分布时,令∑n i = N,∑n iεi = U,这是因为

所研究的体系是:

(A) 体系是封闭的,粒子是独立的;(B) 体系是孤立的,粒子是相依的;

(C) 体系是孤立的,粒子是独立的;(D) 体系是封闭的,粒子是相依的。

4.某种分子的许多可能级是εo、ε1、ε2,简并度为g0 = 1、g1 = 2、g2 = 1。5个可别粒子,

按N0 = 2、N1 = 2、N2 = 1的分布方式分配在三个能级上,则该分布方式的样式为:

(A) 30 ;(B) 120 ;(C) 480 ;(D) 3 。

5.假定某种分子的许可能级是0、ε、2ε和3ε,简并度分别为1、1、2、3。四个这样的

分子构成的定域体系,其总能量为3ε时,体系的微观状态数为:

(A) 40 ;(B) 24 ;(C) 20 ;(D) 28 。

6.对热力学性质(U、V、N)确定的体系,下面描述中不对的是:

(A) 体系中各能级的能量和简并度一定;(B) 体系的微观状态数一定;

(C) 体系中粒子在各能级上的分布数一定;(D) 体系的吉布斯自由能一定。

7.对于定位体系,N个粒子分布方式D所拥有微观状态数W D为:

(A) W D = N!πN i g i/N i!;(B) W D = N!πg i Ni/Ni!;

(C) W D = N!πg i Ni/Ni;(D) W D= πg i Ni/Ni!。

8.设一粒子体系由三个线性谐振子组成,体系的能量为 (11/2) hν,三个谐振子分别在三

个固定点a、b、c上振动,体系总的微观状态数为:

(A) 12 ;(B) 15 ;(C) 9 ;(D) 6 。

9.使用麦克斯韦 - 玻尔兹曼分布定律,要求粒子数N很大,这是因为在推出该定律时:

(A) 假定粒子是可别的;(B) 应用了斯特令近似公式;

(C) 忽略了粒子之间的相互作用;(D) 应用拉氏待定乘因子法。

10.式子∑N i = N和∑N iεi = U的含义是:

(A) 表示在等概率假设条件下,密封的独立粒子平衡体系;

(B) 表示在等概率假设条件下,密封的独立粒子非平衡体系;

(C) 表示密闭的独立粒子平衡体系;

(D) 表示密闭的非独立粒子平衡体系。

11.下面关于排列组合和拉格朗日求极值问题的描述正确的是:

(A) 排列组合都是对可别粒子而言的,排列考虑顺序,组合不考虑顺序;

(B) 排列是对可别粒子而言的,而组合是对不可别粒子而言的;

(C) 拉格朗日未定因子法适用于自变量相互独立的多元函数的求极值问题;

(D) 拉格朗日未定因子法适用于一定限制条件下的不连续多元函数的求极值问题。

12.对于玻尔兹曼分布定律n i=(N/Q)·g n·exp(-εi/kT) 的说法:⑴n i是第i能级上的粒

子分布数;⑵随着能级升高,εi增大,n i总是减少的;⑶它只适用于可区分的独立粒子体系;⑷它适用于任何的大量粒子体系。其中正确的是:

(A) ⑴⑶;(B) ⑶⑷;(C) ⑴⑵;(D) ⑵⑷。

13.玻尔兹曼统计认为:

(A) 玻尔兹曼分布不是最可几分布但却代表平衡分布;

(B) 玻尔兹曼分布只是最可几分布但不代表平衡分布;

(C) 玻尔兹曼分布不是最可几分布也不代表平衡分布;

(D) 玻尔兹曼分布就是最可几分布也代表平衡分布。

14.对于分布在某一能级εi上的粒子数n i,下列说法中正确是:

(A) n i与能级的简并度无关;(B) εi值越小,n i值就越大;

(C) n i称为一种分布;(D) 任何分布的n i都可以用波尔兹曼分布公式求出。

15.在N个独立可别粒子组成体系中,最可几分布的微观状态数t m与配分函数Q之间的

关系为:

(A) t m = 1/N! ·q N;(B) t m = 1/N! ·q N·e U/kT;

(C) t m = q N·e U/kT ;(D) t m = N! q N·e U/kT 。

16.I2分子的振动能级间隔是× 10-20J,则在298K时某一振动能级和其较低能级上分子数之比为:

(A) 1 ;(B) × 10-20;(C) ;(D) 无法计算。

17.在已知温度T时,某种粒子的能级εj = 2εi,简并度g i = 2g j,则εj和εi上分布的粒子

数之比为:

(A) ?exp(εj/2kT) ;(B) 2exp(-εj/2kT) ;

(C) ?exp(-εj/2kT) ;(D) 2exp(-2εj/kT) 。

18.如分子第一激发态的能量为400kJ·mol-1,则体系中10%的分子被激发到第一激发态

时,体系的温度(K)是:

(A) × 104;(B) × 104;(C) × 103 ;(D) × 105。

19.I2的振动特征温度ΘV = 307K,相邻两振动能级上粒子数之n(v + 1)/n(v) = ?的温度是:

(A) 306K ;(B) 443K ;(C) 760K ;(D) 556K 。

20.某一理想气体体系由含N A个A分子与N B个B分子的两个体系组成。分子配分函数分别为q A、q B,若不考虑分子间相互作用,则体系配分函数表示为:

(A) q A N Aq B N B/(N A + N B)!;(B) q A N A·q B N B;

(C) q A N A/N!·q B N B/N B!;(D) (q A·q B)N A + N B 。

21.下面哪组热力学性质的配分函数表达式与体系中粒子的可别与否无关:

(A) S、G、F、C V;(B) U、H、P、C V;

(C) G、F、H、U;(D) S、U、H、G。

22.各种运动形式的配分函数中与压力有关的是:

(A) 电子配分函数;(B) 平动配分函数;

(C) 转动配分函数;(D) 振动配分函数。

23.分子运动的振动特征温度Θv是物质的重要性质之一,下列正确的说法是:

(A) Θv越高,表示温度越高;(B) Θv越高,表示分子振动能越小;

(C) Θv越高,表示分子处于激发态的百分数越小;

(D) Θv越高,表示分子处于基态的百分数越小。

24.下列哪个体系不具有玻尔兹曼-麦克斯韦统计特点:

(A) 每一个可能的微观状态以相同的几率出现;

(B) 各能级的各量子态上分配的粒子数,受保里不相容原理的限制;

(C) 体系由独立可别的粒子组成,U = ∑n iεi;

(D) 宏观状态参量N、U、V为定值的封闭体系。

25.下列几种运动中哪些运动对热力学函数G与A贡献是不同的:

(A) 转动运动;(B) 电子运动;(C) 振动运动;(D) 平动运动。

26.下面对转动配分函数计算式的对称数σ差别理解不对的是:

(A) 对配分函数的修正;(B) 对粒子等同性的修正;

(C) 对量子态等同性的修正;(D) 对转动量子数的修正。

27.对于下列各个亥姆兹自由能函数公式,哪一公式适用于晶体系统:

(A) A = - kT ln(q N/N! ) ;(B) A = -NkT lnq ;

(C) A = - NkT(lnq/N + 1) ; (D) A = -NkT lnq e/N。

28.三维平动子的平动能为εt = 7h2/(4mv2/3),能级的简并度为:

(A) 1 ;(B) 3 ;(C) 6 ;(D) 2 。

29.HI的转动特征温度Θr = K,300K时HI的摩尔转动熵为:

(A) J·K-l·mol-1;(B) J·K-l·mol-1;

(C) J·K-l·mol-1;(D) J·K-l·mol-1。

30.O2的转动惯量J= × 10-47kg·m2,则O2的转动特征温度是:

(A) 10K ;(B) 5K ;(C) ;(D) 8K 。

31.下面关于分子各种运动形式配分函数计算公式的能量标度零点选取的描述错误的是:

(A) q t的计算公式是近似地以基态能级的能量为能量标度的零点;

(B) q r的计算公式是以基态的能量为能量标度的零点;

(C) q e和q n的计算公式是基态能级的能量标度的零点;

(D) q v的计算公式是以基态能级的能量标度的零点。

32.对于单原子理想气体在室温下的物理过程,若要通过配分函数来求过程中热力学函数的变化:

(A) 必须知道q t、q R、q v、q n各配分函数;(B) 只须知道q t一个配分函数;

(C) 必须知道q t、q n配分函数;(D) 必须知道q t、q R、q v配分函数。

33.对于单原子分子理想气体,当温度升高时,小于分子平均能量的能级上分布的粒子数:

(A) 不变;(B) 增多;(C) 减少;(D) 不能确定。

34.钠原子基态的光谱项符号是1S1/2 ,则钠原子电子基态能级的简并度g e0为:

(A) 1 ;(B) 1/2 ;(C) 3 ;(D)

2 。

35.体积为1cm3,质量为m克的单原子分子气体,在温度为T时,对一般的物理过程,分子的配分函数为:

(A) × 1055(mT)3/2 ;(B) × 1020(mT)3/2;

(C) × 1026(mT)3/2 ;(D) × 1049(mT)3/2。

36.在相同条件下,对于He与Ne单原子分子,近似认为它们的电子配分函数相同且等于1,则He与Ne单原子分子的摩尔熵是:

(A) S m(He) > S m(Ne) ;(B) S m(He) = S m(Ne) ;

(C) S m(He) < S m(Ne) ;(D) 以上答案均不成立。

37.巳知CO和N2分子的质量相同,转动特征温度基本相等,若电子均处于非简并的基

态,且振动对熵的贡献可忽略,那么:

(A) S m(CO) < S m(N2) ;(B) S m(CO) 与S m(N2) 大小无法比较;

(C) S m(CO) = S m(N2) ;(D) S m(CO) > S m(N2) 。

38.对双原子分子理想气体的一般物理过程,下面关于体系熵函数和各运动形式对熵的贡献描述错误的是:

(A) S = S t + S r + S v;(B) S t= k B ln((q t)N/N!) + Nk B T(?ln q/?T) ;

(C) S r = k B ln[(q r)N/N!] + Nk B(?ln q/?T) ;(D) S v = Nk B ln q v + Nk B T(?ln q v/?T)。

39.以下关于理想气体的吉布斯自由能函数的描述错误的是:

(A) 它可以由光谱实验数据算得,并有表可查;

(B) 它用来计算理想气体的平衡常数;

(C) 它的定义是[]

H

T

G)B

,0(

)B

,

(

m

m

-;

(D) 它不是状态函数。

三、多选题:

1.粒子配分函数q中的任一项与q本身之比是表示:

(A) 粒子在某一能级的分布数与分子总数之比;

(B) 是在两个能级上粒子分布数之比;

(C) 粒子在某一能级上出现的几率;

(D) 粒子在某一能级上的分布数;

(E) 粒子在两个能级上出现的几率之比。

2.下面的说法中,错误的是:

(A) 最可几分布可代表巨大数目粒子体系的平衡分布;

(B) 最可几分布随体系中粒子数的增多,出现的几率增大;

(C) 最可几分布随体系中粒子数的增多出现的几率减小;

(D) 最可几分布本身是体系出现几率最大的分布;

(E) 最可几分布微观状态数的对数可代替总微观状态数的对数。

3.某一理想气体分子,仅有三个基频振动,相应的振动特征温度,分别是1000K、3500K 和4500K,下列判定成立的是:

(A) 该分子是三原子直线型分子;

(B) 振动对摩尔热容的总贡献C V(振) = 3R;

(C) 在足够高温度时等容摩尔热容为6R;

(D) 转动配分函数由Q(转) = 8π2I kT/(σh2)计算;

(E) 对称数σ = 1,因为是直线型分子。

4.能级的能量在最低能级时指定为零,此时配分函数以q0表示,如指定最低能级能量值为∈0,此时配分函数以q(∈0)表示,下列何者正确:

(A) q0 = ∑g i exp(-∈i/kT) ; (B) q(∈0) = exp(-∈0/kT)q0;

(C) q0 = q(∈0)exp(-∈0/kT) ; (D) 如令U0 = N0∈0,则 ln q0 = ln q(∈0) + U0/RT;

(E) 选取q(∈0) 或q0只影响熵及热容,不影响其它热力学函数。

5.下边的几种说法,不正确的是:

(A) N个可别粒子分布在同一能级的两个量子态中的微观状态数Ω = 2N;

(B) 此体系最可几分布的微观状态数是t m,P= (2/πN)1/2·2N;

(C) 如N = 1024,则t m,P ≈ 10-12Ω ;

(D) ln t m,P<< ln(Ω/t m,P) ;(E) ln t m,P>> lnΩ 。

6.N个粒子的体系,Ω为总微观状态数,t m为最可几微观状态数,当N很大(例1024)时,

则下列各种关系中,何者不正确:

(A) t m< Ω < Nt m;(B) ln t m ≈lnΩ ;(C) t m≈Ω≈Nt m;

(D) ln N > ln t m;(E) ln N < ln t m。

7.下面关于量热熵和光谱熵的叙述,错误的是:

(A) 量热熵就是规定熵,光谱熵亦称统计熵;

(B) 量热熵由量热实验结果据热力学公式算得;

(C) 光谱熵由光谱实验结果由统计热力学算得;

(D) 量热熵总是比光谱熵更正确;

(E) 量热熵不大于光谱熵。

8.忽略电子和核配分函数的贡献,下列稀薄气体中,哪些气体能用沙克尔-特鲁德公式

计算体系熵函数的是:

(A) Ar ;(B) N2 ;(C) CO2;(D) Na ;(E) NH3。

9.能量零点的不同选择,对下列哪个函数没有影响:

(A) S;(B) C V;(C) U;(D) G;(E) F。

四、主观题:

1.

) 。

2.已知1000K时,AB双原子分子的振动配分函数Q0,V = ,(Q0,V为振动基态能量规定为零的配分函数 ) 。

(1) 求振动特征温度

(2) 求处于振动基态能级上的分布分数N0/N =

3.对于气体HCN的转动远红外光谱测量结果表明,I= × 10-45kg·m2,试求:

(1) 900K时该分子的转动配分函数q r;

(2) 转动对C V,m的贡献(k= ×10-23J·K - 1,h= ×10-34J·s) 。

4.一个含有N A个独立可别的粒子体系,每一粒子都可处于能量分别为ε0和ε1的两个最

低相邻的能级之一上,若ε0 = 0,计算出两个能级皆为非简并时,

(1) 粒子的配分函数;(2) 体系的能量的表达式;

(3) 讨论在极高温度下和极低温度下,体系能量的极限值。

5.用统计热力学方法证明:1 mol单原子理想气体在等温条件下,体系的压力由p1变到

p2时,其熵变ΔS = R ln(p1/p2) 。

6.根据q = ∑g i exp(β∈i),推证U m = L(?ln q/?β)V (L为阿佛加德罗常数)。

7.从分子配分函数与热力学函数的关系,证明1mol单原子分子理想气体等温膨胀至体

积增大一倍时,ΔS = R ln2 。

8.一个由三个单维谐振子组成的体系,其总能量为(11/2)hv,三个振子分别围绕定点a、

b、c进行振动。

(1) 体系共有多少分布方式每种分布方式的微观状态数是多少体系总的微观状态

数是多少

(2) 若体系是由大量的这样的谐振子组成,在300K时,已知其基态振动波数为

ν~= 2360 cm-1,那么处于第一激发态的粒子数与处于基态的粒子数之比N

1/N0为

多少处于基态的粒子数与体系总的粒子数之比N0/N为多少

9.已知NO分子在振动基态时的平均核间距r= ?,其振动的基态频率的波数

ν~= 1940cm-1,其电子的第一激发态能量ε

1= 1490 J·mol -1(令基态能量为0)电子的

态与第一激发态兼并度都是2。求在300K和标准压力下NO分子的平动、转动、振动、电子的配分函数以及NO的光谱熵。

10.被吸附在固体表面上的单原子理想气体可以在固体表面上进行二维平动,不考虑电子与核自旋两种运动形式的贡献,证明该气体的摩尔熵为:

S m = R(ln M r + ln T+ lnσ + ,式中M r是该气体的相对分子量;σ是每个气体分子进行二维平动时平均占有的面积(单位为cm2)。

第六章统计热力学初步答案

一、判断题:

1.错。U,V,N一定时,系统有多少种分布以及每一种分布的微态数都是确定的。

2.错。U,V,N一定时,粒子可以在不同能级间转移。

3.错。E,V,N一定时系统处于每一个微观状态的概率相等。

4.前半句话对,后半句话不对。玻尔兹曼分布就是最概然分布,但它不是平衡分布,只是能代表平衡分布。

5.对。

6.对。

7.错。

8.对。

9.错。

10.对。

11.错。S、C V与零点选择无关。

12.对。

13.错。

14.错,W B<< Ω。

15.错。g r = T/σΘ适用的条件是T>> Θr,不能用于低温。

二、单选题:

1. B;

2. D;

3. C;

4. B;

5. A;

6. C;

7. B;

8. B;

9. B;;

;;;;;;;;;;

;;;;;;;;;;

;;;;;;;;;。

三、多选题:

1. AC ;

2. B ;

3. BC ;

4. AB ;

5. DE ;

6. CD ;

7. DE ;

8. AD ;

9. AB ;

四、计算题

1.解:氟原子的电子配分函数:

q(电子) = g0exp(-∈0/kT) + g1exp(-∈1/kT) + g2exp(-∈2/kT)

= (2J0 + 1)exp(-∈0/kT) + (2J1 + 1)exp(-∈1/kT) + (2J2 + 1)exp(-∈2/kT)

= 4 × e0+ 2 × exp + 6 × exp =

2.解:(1) q0,V = 1/[1-exp(-Θv/T)] = 1/[1-exp(-Θv/1000)] =

exp(-Θv/1000) = 1-1/ = 所以Θv = 3219K

(2) N0/N = g0exp(-∈0/kT)/q0,V = g0exp(-∈0/kT)/[exp(-∈0/kT)q0,

= 1/q0,V = 1/ =

3.解:(1)写出q R= 8π2I kT/(σh2)

= 8 ×× × 10-46× × 10-23× 900/[1 × × 10-34)2] =

(2)写出U R,m = RT2(?ln q R/?T)N,V = RT2× (1/T) = RT

写出转动对C V,m的贡献

C V,m,R = (?U m,R/?T)V,N = R= J·K-1·mol-1

4.解:(1)q= Σexp(-εi/kT) = 1 + exp(-ε1/kT)

(2)U = N A kT2(?ln q/?T)V = N A kT2{[1/[1 + exp(-ε1/kT)]]exp(-ε1/kT)[ε1/kT]

= N Aε1/[exp(-ε1/kT)] 或 = N Aε1exp(-ε1/kT)/[1 + exp(-ε1/kT)]

(3)在极高的温度时,kT >> ε1,则 exp(-ε1/kT) = 1 ,故U = Nε1

在极低的温度时,kT << ε1,则 exp(-ε1/kT)0 ,所以U = 0

5.证明:q = q(平)q(电)(核) = (2πm kT/h2)3/2(RT/p)q(电)q(核)

依据S = k ln(q N/N!) + U/T等温时,体系的U不随压力变化,

故S2(p2)-S1(p1) = R ln(p1/p2)

6.证明:写出U m= ∑n i∈i,n i= (L/q)g i exp(β∈i),得出U m= (L/q)∑g i exp(β∈i)·∈

i

∵q = ∑g i exp(β∈i) ,∴ (?q/?β)V= Σg i exp(β∈i) ·∈i

故U m = (L/q)( ?q/?β)V = L(?ln q/?β)V。

7.证明:写出对不可别粒子体系S = kN ln q + U/T-k ln N!

写出单原子理想气体q t= (2πm kT/h2)3/2× V

写出等温下V 2V,则q t 2q t

写出ΔS = kN ln2q t-kN ln q t = kN ln2 ,N = L,所以:ΔS = R ln2

8.解:(1)单维谐振子的能级ε = (ν+ ?)hv (ν = 0,1,2,3) 则由三个单维谐振

组成的体系总能量ε = εa + εb + εc = (νa + νa + νc + ?)hv = 11/2 hv ,即 νa + νa + νc = 4。

体系有四种分布:

―*― ν = 4 ―― ν = 4 ―― ν = 4 ―― ν = 4

―― ν = 3 ―*― ν = 3 ―― ν = 3 ―― ν = 3

―― ν = 2 ―― ν = 2 ―**― ν = 2 ―*― ν = 2

―― ν = 1 ―*― ν = 1 ―― ν = 1 ―**― ν = 1

―**― ν = 0 ―*― ν = 0 ―*― ν = 0 ―― ν = 0

体系总的微观状态数Ω = t 1 + t 2 + t 3 + t 4 = 3 + 6 + 3 + 3 = 15

(2) 经典统计认为,平衡分布时,能级i 上分配的粒子数为:

N i = (N g i exp(-εi /kT )/q ,单维谐振子g i = 1 N 1/N 0 = exp[-(εi -ε0)/kT ] = exp(-h c ν~/kT )

= exp × 2360/300) = 0 若以基态能量为零,N 0/N = exp(-ε0/kT )/q = 1/q (v ) = 1-exp(-h c ν~/kT ) = 1-0 = 1

9.解:对双原子NO 在300K 时,V m = RT /p = × 10-2 m 3

I = (m 1m 2/(m 1 + m 2)r 2 = × 10-46 kg·m 2

q (t ) = (2m πkT )3/2V m /h 3 = × 1030

q (r ) = 8π2I kT /σh 2 = q (v ) = [1-exp(-hc ν~/kT )]-1 = 1

q (e ) = g 0 + g 1 exp(-ε1/kT ) = 2 + 2 exp(-1490/ × × 300) =

所以:S (t ) = Lk ln q (t ) + LkT (?ln q (t )/ ?T )-Lk ln L + k = J·K -1·mol -1

S (r ) = = Lk ln q (r ) + LkT (?ln q (r )/?T ) = R [ln q (r ) + 1] = J·K -1·mol -1 S (v ) = Lk ln q (v ) + LkT (?ln q (v )/ ?T ) = × 10-3 J·K -1·mol -1

S (e ) = Lk ln q (e ) + LkT (?ln q (e )/ ?T ) = J·K -1·mol -1

体系的光谱熵 S = S (t ) + S (r ) + S (v ) + S (e ) = + + × 10-3 +

= J·K -1·mol -1

10.证明:设单原子气体分子的质量为m ,在面积A = a × b 的固体表面上进行二维平动,

根据“物质结构”中对波动方程的求解得到该二维平动的能级公式为:

ε(n x ,n y ) = (h 2/8m )[(n x 2/a 2 + n y 2/b 2)

平动配分函数 q (t ) = q x q y ,q x = (2m πkT /h 2)1/2a ,q y = (2m πkT /h 2)1/2b

q = q x q y = (2m πkT /h 2)ab = (2m πkT /h 2)A

S m = Lk ln(q /L !) + LkT (?ln q /?T ) = R ln[(2m πkT /h 2)A /L ] + RT [?ln(2m πkT /h 2)/ ?T ]

+ R

= R [ln(2πk / h 2) + ln m + ln T + ln[(A /L ) + 2]

m = M r /L σ = A /L 数据代入: S m = R (ln M r + ln T + lnσ +

第七章、统计热力学基础习题和答案

统计热力学基础 一、选择题 1. 下面有关统计热力学的描述,正确的是:( ) A. 统计热力学研究的是大量分子的微观平衡体系 B. 统计热力学研究的是大量分子的宏观平衡体系 C. 统计热力学是热力学的理论基础 D. 统计热力学和热力学是相互独立互不相关的两门学科B 2. 在研究N、V、U有确定值的粒子体系的统计分布时,令刀n i = N,刀n i & i = U , 这是因为所研究的体系是:( ) A. 体系是封闭的,粒子是独立的 B 体系是孤立的,粒子是相依的 C. 体系是孤立的,粒子是独立的 D. 体系是封闭的,粒子是相依的C 3. 假定某种分子的许可能级是0、&、2 £和3 &,简并度分别为1、1、2、3四个这样的分子构成的定域体系,其总能量为3£时,体系的微观状态数为:() A. 40 B. 24 C. 20 D. 28 A 4. 使用麦克斯韦-波尔兹曼分布定律,要求粒子数N 很大,这是因为在推出该定律时:( ) . 假定粒子是可别的 B. 应用了斯特林近似公式 C. 忽略了粒子之间的相互作用 D. 应用拉氏待定乘因子法A 5. 对于玻尔兹曼分布定律n i =(N/q) ? g i ? exp( - £ i/kT)的说法:(1) n i是第i能级上的粒子分布数; (2) 随着能级升高,£ i 增大,n i 总是减少的; (3) 它只适用于可区分的独立粒子体系; (4) 它适用于任何的大量粒子体系其中正确的是:( ) A. (1)(3) B. (3)(4) C. (1)(2) D. (2)(4) C 6. 对于分布在某一能级£ i上的粒子数n i,下列说法中正确是:() A. n i 与能级的简并度无关 B. £ i 值越小,n i 值就越大 C. n i 称为一种分布 D. 任何分布的n i 都可以用波尔兹曼分布公式求出B 7. 15?在已知温度T时,某种粒子的能级£ j = 2 £ i,简并度g i = 2g j,则「和£ i上 分布的粒子数之比为:( ) A. 0.5exp( j/2£kT) B. 2exp(- £j/2kT) C. 0.5exp( -£j/kT) D. 2exp( 2 j/k£T) C 8. I2的振动特征温度? v= 307K,相邻两振动能级上粒子数之n(v + 1)/n(v) = 1/2的温度是:( ) A. 306 K B. 443 K C. 760 K D. 556 K B 9. 下面哪组热力学性质的配分函数表达式与体系中粒子的可别与否无关:( ) A. S、G、F、C v B. U、H、P、C v C. G、F、H、U D. S、U、H、G B 10. 分子运动的振动特征温度?v是物质的重要性质之一,下列正确的说法是: ( ) A. ? v越高,表示温度越高 B. ?v越高,表示分子振动能越小 C. ?越高,表示分子处于激发态的百分数越小 D. ?越高,表示分子处于基态的百分数越小 C 11. 下列几种运动中哪些运动对热力学函数G与

第七章、统计热力学基础习题和答案

统计热力学基础 题 择 一、选 1. 下面有关统计热力学的描述,正确的是:( ) A. 统计热力学研究的是大量分子的微观平衡体系 B. 统计热力学研究的是大量分子的宏观平衡体系 C. 统计热力学是热力学的理论基础 D. 统计热力学和热力学是相互独立互不相关的两门学科B 2.在研究N、V、U 有确定值的粒子体系的统计分布时,令∑n i = N,∑n iεi = U, 3.这是因为所研究的体系是:( ) A. 体系是封闭的,粒子是独立的 B 体系是孤立的,粒子是相依的 C. 体系是孤立的,粒子是独立的 D. 体系是封闭的,粒子是相依的 C 4.假定某种分子的许可能级是0、ε、2ε和3ε,简并度分别为1、1、2、3 四个这样的分子构成的定域体系,其总能量为3ε时,体系的微观状态数为:( ) A. 40 B. 24 C. 20 D. 28 A 5. 使用麦克斯韦-波尔兹曼分布定律,要求粒子数N 很大,这是因为在推出该定律 6.时:( ) . 假定粒子是可别的 B. 应用了斯特林近似公式 C. 忽略了粒子之间的相互作用 D. 应用拉氏待定乘因子法 A 7.对于玻尔兹曼分布定律n i =(N/q) ·g i·exp( -εi/kT)的说法:(1) n i 是第i 能级上的 粒子分布数; (2) 随着能级升高,εi 增大,n i 总是减少的; (3) 它只适用于可区分的独 8.立粒子体系; (4) 它适用于任何的大量粒子体系其中正确的是:( ) A. (1)(3) B. (3)(4) C. (1)(2) D. (2)(4) C 9.对于分布在某一能级εi 上的粒子数n i ,下列说法中正确是:( ) 10.A. n i 与能级的简并度无关 B. εi 值越小,n i 值就越大 C. n i 称为一种分布 D.任何分布的n i 都可以用波尔兹曼分布公式求出 B 11. 15.在已知温度T 时,某种粒子的能级εj = 2εi,简并度g i = 2g j,则εj 和εi 上分布的粒子数之比为:( ) A. 0.5exp( j/2εk T) B. 2exp(- εj/2kT) C. 0.5exp( -εj/kT) D. 2exp( 2 j/kεT) C 12. I2 的振动特征温度Θv= 307K,相邻两振动能级上粒子数之n(v + 1)/n(v) = 1/2 的温度 13.是:( ) A. 306 K B. 443 K C. 760 K D. 556 K B 14.下面哪组热力学性质的配分函数表达式与体系中粒子的可别与否无关:( ) A. S、G、F、C v B. U、H、P、C v C. G、F、H、U D. S、U、H、G B 15. 分子运动的振动特征温度Θv 是物质的重要性质之一,下列正确的说法是: ( ) A.Θv 越高,表示温度越高 B.Θv 越高,表示分子振动能越小 C. Θv 越高,表示分子处于激发态的百分数越小 D. Θv 越高,表示分子处于基态的百分数越小 C 16.下列几种运动中哪些运动对热力学函数G 与A 贡献是不同的:( ) A. 转动运动 B. 电子运动 C. 振动运动 D. 平动运动 D 17.三维平动子的平动能为εt = 7h 2 /(4mV2/ 3 ),能级的简并度为:( )

(完整word版)统计热力学--小结与习题

第9章 统计热力学初步小结与练习 核心内容:配分函数(q )及其与热力学函数(U,S …)之间的关系 主要内容:各种运动形式的q 及由q 求U,S …的计算公式 一、内容提要 1、微观粒子的运动形式和能级公式 n e r t εεεεεε++++=v 式中,ε:粒子的总能量,t ε:粒子整体的平动能,r ε:转动能,v ε:振动能, e ε:电子运动能,n ε:核运动能。 (1)三维平动子 )(8222222 2c n b n a n m h z y x t ++=ε 式中,h :普朗克常数;m :粒子的质量;a ,b ,c :容器的三个边长,n x ,n y ,n z 分别为x ,y ,z 轴方向的平动量子数,取值1,2,3……。 对立方容器 )(82 223 22z y x t n n n mV h ++= ε 基态n x = 1,n y = 1,n z = 1,简并度10,=t g ,而其他能级的简并度要具体情况具体分析,如3 2286mV h t =ε的能级,其简并度g = 3。 (2)刚性转子 双原子分子 )1(822+= J J I h r πε

式中,J :转动量子数,取值0,1,2……,I :转动惯量,20R I μ=, μ:分子的折合质量,2 12 1m m m m += μ,0R :分子的平衡键长,能级r ε的 简并度 g r = 2J+1 (3)一维谐振子 νυεh )2 1(v += 式中,ν:分子的振动频率,υ:振动量子数,取值0,1,2……,各能级都是非简并的,g v = 1 对三维谐振子, νυυυεh z y x )2 3 (v +++= 2 )2)(1(v ++=s s g , 其中s=υx + υy + υz (4)运动自由度:描述粒子的空间位置所必须的独立坐标的数目。 2、能级分布的微态数和Boltzmann 分布 (1)能级分布的微态数 能级分布:N 个粒子分布在各个能级上的粒子数,叫做能级 分布数,每一套能级分布数称为一种分布。 微态数:实现一种分布的方式数。 定域子系统能级分布微态数 ∏=i i n i D n g N W i !!

统计热力学

第六章 统计热力学初步 单项选择 1.设N 个不同的球分配在两个盒子中,分配到A 盒中的球数为M ,则错误的是( D.E ) A .体系的总微观状态数为 ∑∑==-== ΩN M N M M N M N t 0 0)!(!! B .体系的总微观状态数为N 2=Ω C .最可几分布的微观状态数为mp t =?? ? ????? ??2!2!!N N N D .t mp

统计热力学基础复习整理版汇总

统计热力学基础 一、单选题 1) 统计热力学主要研究(A )。 (A) 平衡体系(B) 近平衡体系(C) 非平衡体系(D) 耗散结构(E) 单个粒子的行为 2) 体系的微观性质和宏观性质是通过( C)联系起来的。 (A) 热力学(B) 化学动力学(C) 统计力学(D) 经典力学(E) 量子力学 3) 统计热力学研究的主要对象是:( D) (A) 微观粒子的各种变化规律(B) 宏观体系的各种性质 (C) 微观粒子的运动规律(D) 宏观系统的平衡性质 (E) 体系的宏观性质与微观结构的关系 4) 下述诸体系中,属独粒子体系的是:(D ) (A) 纯液体(B) 理想液态溶液(C) 理想的原子晶体(D) 理想气体(E) 真实气体 5) 对于一个U,N,V确定的体系,其微观状态数最大的分布就是最可几分布,得出这一结论的理论依据是:(B ) (A) 玻兹曼分布定律(B) 等几率假设(C) 分子运动论(D) 统计学原理(E) 能量均分原理 6) 在台称上有7个砝码,质量分别为1g、2g、5g、10g、50g、100g,则能够称量的质量共有:(B ) (A) 5040 种(B) 127 种(C) 106 种(D) 126 种 7) 在节目单上共有20个节目序号,只知其中独唱节目和独舞节目各占10个,每人可以在节目单上任意挑选两个不同的节目序号,则两次都选上独唱节目的几率是:(A ) (A) 9/38 (B) 1/4 (C) 1/180 (D) 10/38 8) 以0到9这十个数字组成不重复的三位数共有(A ) (A) 648个(B) 720个(C) 504个(D) 495个 9) 各种不同运动状态的能级间隔是不同的,对于同一种气体分子,其平动、转动、振动和电子运动的能级间隔的大小顺序是:(B ) (A)?ε t > ?ε r > ?ε v > ?ε e(B)?ε t < ?ε r < ?ε v < ?ε e (C) ?ε e > ?ε v > ?ε t > ?ε r(D)?ε v > ?ε e > ?ε t > ?ε r (E)?ε r > ?ε t > ?ε e > ?ε v 10) 在统计热力学中,对物系的分类按其组成的粒子能否被分辨来进行,按此原则:(C ) (A) 气体和晶体皆属定域子体系(B) 气体和晶体皆属离域子体系 (C) 气体属离域子体系而晶体属定域子体系(D) 气体属定域子体系而晶体属离域子体系 11) 对于定域子体系分布X所拥有的微观状态t x为:( B)

物理化学答案——第六章-统计热力学

第六章 统计热力学基础 内容提要: 1、 系集最终构型: 其中“n*”代表最可几分布的粒子数目 2.玻耳兹曼关系式: 玻耳兹曼分布定律: 其中,令 为粒子的配分函数。玻耳兹曼分布定律描述了微观粒子能量分布中最可几的分布方式。 3、 系集的热力学性质: (1)热力学能U : (2)焓H : **ln ln ln ! i n i m i i g t t n ≈=∏ 总2,ln ( )N V Q U NkT T ?=?i i i Q g e βε-=∑ *i i i i i i i i n g e g e N g e Q βεβεβε---==∑ m ln ln S k t k t ==总

(3)熵S : (4)功函A : (5)Gibbs 函数G : (6)其他热力学函数: 4、粒子配分函数的计算 (1)粒子配分函数的析因子性质 粒子的配分函数可写为: ,ln ln ln ()m N V S k t Q Q Nk NkT Nk N T =?=++? (i) t v e n r kT i i kT kT kT kT kT t r v e n t r v e n t r v e n Q g e g e g e g e g e g e Q Q Q Q Q εεεεεε------===∑∑∑∑∑∑2,ln N V Q H U pV NkT NkT T ??? =+=+ ????ln Q A NkT NkT N =--ln Q G NkT N =-() 22 ln ln ln ln V V U Q Q C Nk Nk T T T ????? ==+ ??????

第七章 统计热力学基础

第七章统计热力学基础 一、选择题 1、统计热力学主要研究()。 (A) 平衡体系(B)单个粒子的行为案(C) 非平衡体系(D) 耗散结构 2、能量零点的不同选择,在下面诸结论中哪一种说法是错误的:( ) (A) 影响配分函数的计算数值(B) 影响U,H,F,G 的数值 (C) 影响Boltzmann分布数N 的数值(D) 影响能级能量εi的计算数值 3、最低能量零点选择不同,对哪些热力学函数值无影响:( ) (A) U (B) S (C) G (D) H 4、统计热力学研究的主要对象是:() (A) 微观粒子的各种变化规律 (B) 宏观体系的各种性质 (C) 微观粒子的运动规律 (D) 宏观系统的平衡性质 5、对于一个U,N,V确定的体系,其微观状态数最大的分布就是最可几分布,得出这一结论的理论依据是:() (A) 玻兹曼分布定律(B) 等几率假设(C) 分子运动论(D) 统计学原理 6、以0到9这十个数字组成不重复的三位数共有() (A) 648个(B) 720个(C) 504个(D) 495个 7、各种不同运动状态的能级间隔是不同的,对于同一种气体分子,其平动、转动、振动和电子运动的能级间隔的大小顺序是:() (A) t > r > v > e(B) t < r < v < e (C) e > v > t > r(D) v > e > t > r 8、在统计热力学中,对物系的分类按其组成的粒子能否被分辨来进行,按此原则:() (A) 气体和晶体皆属定域子体系 (B) 气体和晶体皆属离域子体系 (C) 气体属离域子体系而晶体属定域子体系 (D) 气体属定域子体系而晶体属离域子体系 9、对于定域子体系分布X所拥有的微观状态t x为:() (A) (B)

物理化学答案 第九章 统计热力学初步

第九章统计热力学初步 1.按照能量均分定律,每摩尔气体分子在各平动自由度上的平均动能为。现有1 mol CO气体于0 oC、101.325 kPa条件下置于立方容器中,试求: (1)每个CO分子的平动能; (2)能量与此相当的CO分子的平动量子数平方和 解:(1)CO分子有三个自由度,因此, (2)由三维势箱中粒子的能级公式 2.某平动能级的,使球该能级的统计权重。 解:根据计算可知,、和只有分别取2,4,5时上式成立。因此,该能级的统计权重为g = 3! = 6,对应于状态。 3.气体CO分子的转动惯量,试求转动量子数J为4与3两能级的 能量差,并求时的。 解:假设该分子可用刚性转子描述,其能级公式为 4.三维谐振子的能级公式为,式中s为量子数,即

。试证明能级的统计权重为 解:方法1,该问题相当于将s个无区别的球放在x,y,z三个不同盒子中,每个盒子容纳的球数不受限制的放置方式数。 x盒中放置球数0,y, z中的放置数s + 1 x盒中放置球数1,y, z中的放置数s ………………………………………. x盒中放置球数s,y, z中的放置数1 方法二,用构成一三维空间,为该空间的一个平面,其与三个轴均相交于s。该平面上为整数的点的总数即为所求问题的解。这些点为平面在平面上的交点: 由图可知, 5.某系统由3个一维谐振子组成,分别围绕着 A, B, C三个定点做振动,总能量为。试 列出该系统各种可能的能级分布方式。 解:由题意可知方程组 的解即为系统可能的分布方式。 方程组化简为,其解为 3

6 3 3 6.计算上题中各种能级分布拥有的微态数及系统的总微态数。 解:对应于分布的微态数为 所以 3 6 3 3 15 10.在体积为V的立方形容器中有极大数目的三维平动子,其,式计算该系统在平衡情况下,的平动能级上粒子的分布数n与基态能级 的分布数之比。 解:根据Boltzmann分布 基态的统计权重,能级的统计权重(量子数1,2,3),因此 11.若将双原子分子看作一维谐振子,则气体HCl分子与I2分子的振动能级间隔分别是 和。试分别计算上述两种分子在相邻振动能级上分布数之比。 解:谐振子的能级为非简并的,且为等间隔分布的 12.试证明离域子系统的平衡分布与定域子系统同样符合波尔兹曼分布,即

第六章统计热力学初步练习题

第六章统计热力学初步练习题 一、判断题: 1.当系统的U,V,N一定时,由于粒子可以处于不同的能级上,因而分布数不同,所以系统的总微态数Ω不能确定。 2.当系统的U,V,N一定时,由于各粒子都分布在确定的能级上,且不随时间变化,因而系统的总微态数Ω一定。 3.当系统的U,V,N一定时,系统宏观上处于热力学平衡态,这时从微观上看系统只能处于最概然分布的那些微观状态上。 4.玻尔兹曼分布就是最概然分布,也是平衡分布。 5.分子能量零点的选择不同,各能级的能量值也不同。 6.分子能量零点的选择不同,各能级的玻尔兹曼因子也不同。 7.分子能量零点的选择不同,分子在各能级上的分布数也不同。 8.分子能量零点的选择不同,分子的配分函数值也不同。 9.分子能量零点的选择不同,玻尔兹曼公式也不同。 10.分子能量零点的选择不同,U,H,A,G四个热力学函数的数值因此而改变,但四个函数值变化的差值是相同的。 11.分子能量零点的选择不同,所有热力学函数的值都要改变。 12.对于单原子理想气体在室温下的一般物理化学过程,若要通过配分函数来求过程热力学函数的变化值,只须知道q t这一配分函数值就行了。 13.根据统计热力学的方法可以计算出U、V、N确定的系统熵的绝对值。 14.在计算系统的熵时,用ln W B(W B最可几分布微观状态数)代替1nΩ,因此可以认为W B与Ω大小差不多。 15.在低温下可以用q r = T/σΘr来计算双原子分子的转动配分函数。 二、单选题: 1.下面有关统计热力学的描述,正确的是: (A) 统计热力学研究的是大量分子的微观平衡体系; (B) 统计热力学研究的是大量分子的宏观平衡体系; (C) 统计热力学是热力学的理论基础; (D) 统计热力学和热力学是相互独立互不相关的两门学科。 2.在统计热力学中,物系的分类常按其组成的粒子能否被辨别来进行,按此原则,下列 说法正确的是: (A) 晶体属离域物系而气体属定域物系;(B) 气体和晶体皆属离域物系; (C) 气体和晶体皆属定域物系;(D) 气体属离域物系而晶体属定域物系。 3.在研究N、V、U有确定值的粒子体系的统计分布时,令∑n i = N,∑n iεi = U,这是因为 所研究的体系是: (A) 体系是封闭的,粒子是独立的;(B) 体系是孤立的,粒子是相依的; (C) 体系是孤立的,粒子是独立的;(D) 体系是封闭的,粒子是相依的。

07章统计热力学基础(1)

第七章统计热力学基础 1. 设有一个体系,由三个定位的单维简谐振子所组成,体系能量为11/2 hν,这三个振子在三个固定的位置上振动,试求体系全部的微观状态数。 2. 当热力学体系的熵函数S增加0.418 J/K时,则体系的微观状态数增加多少?用ΔΩ/Ω1表示。 3. 对于双原子分子,证明: U r=NkT U v=NkT 设基态振动能为零,≈1+x 。 4.将N2气在电弧中加热,从光谱中观察到处于第一激发态的相对分子数 N(v=1)/N(v=0)=0.26,式中ν为振动量子数N(v=0)为基态占有的分子数,N(v=1)为第一激发振动态占有的分子数,已知N2的振动频率ν= 6.99×, (1) 计算气体温度。 (2) 计算振动能量在总能量(包括平动,转动和振动)中所占的百分数。 5.设某理想气体A,其分子的最低能级是非简并的,取分子的基态作为能量零点,相邻能级的能量为ε,其简并度为2,忽略更高能级。 (1)写出A分子的总配分函数的表达式。 (2)设ε=kT,求出相邻两能级上最概然分子数之比n1/n0。 (3)设ε=kT,试计算1 摩尔该气体的平均能量是多少? 6.某气体的第一电子激发态比基态能量高400 kJ/mol,试计算 (1)在300 K时,第一激发态分子所占的百分数? (2)若要使激发态的分子数占10%,则需多少温度? 7.零族元素氩(Ar)可看作理想气体,相对分子量为40,取分子的基态(设其简并度为1)作为能量零点,第一激发态(设其简并度为2)与基态能量差为ε,忽略其它高能级。 (1)写出氩分子的总的配分函数表达式。 (2)设ε=5kT,求在第一激发态上最可几分布的分子数占总分子数的百分数。

第三章 统计热力学基础 (2)

第三章统计热力学基础 返回上一页 1. 设有一个体系,由三个定位的单维简谐振子所组成,体系能量为11/2 hν,这三个振子在三个固定的位置上振动,试求体系全部的微观状态数。 2. 当热力学体系的熵函数S增加0.418 J/K时,则体系的微观状态数增加多少?用ΔΩ/Ω1表示。 3. 对于双原子分子,证明:U r=NkT U v=NkT 设基态振动能为零,≈1+x 。 4.将N2气在电弧中加热,从光谱中观察到处于第一激发态的相对分子数 N(v=1)/N(v=0)=0.26,式中ν为振动量子数N(v=0)为基态占有的分子数,N(v=1)为第一激发振动态占有的分子数,已知N2的振动频率ν= 6.99×,

(1) 计算气体温度。 (2) 计算振动能量在总能量(包括平动,转动和振动)中所占的百分数。 5.设某理想气体A,其分子的最低能级是非简并的,取分子的基态作为能量零点,相邻能级的能量为ε,其简并度为2,忽略更高能级。 (1)写出A分子的总配分函数的表达式。 (2)设ε=kT,求出相邻两能级上最概然分子数之比n1/n0。 (3)设ε=kT,试计算1 摩尔该气体的平均能量是多少? 6.某气体的第一电子激发态比基态能量高400 kJ/mol,试计算 (1)在300 K时,第一激发态分子所占的百分数? (2)若要使激发态的分子数占10%,则需多少温度?

7.零族元素氩(Ar)可看作理想气体,相对分子量为40,取分子的基态(设其简并度为1)作为能量零点,第一激发态(设其简并度为2)与基态能量差为ε,忽略其它高能级。 (1)写出氩分子的总的配分函数表达式。 (2)设ε=5kT,求在第一激发态上最可几分布的分子数占总分子数的百分数。(3)计算1 mol Ar气在标准状态下的统计熵值。设Ar 的核和电子的简并度均等于1。 8. Na原子气体(设为理想气体)凝聚成一表面膜 (1)若Na原子在膜内可自由运动(即二维平动),试写出此凝聚过程的摩尔平动熵变的统计表达式。 (2)若 Na原子在膜内不动,其凝聚过程的摩尔平动熵变的统计表达式又将如何? (要用相对原子质量Ar,体积V,表面积A,温度T等表示的表达式)

统计热力学初步

第九章 统计热力学初步 引言: 统计热力学:研究微观粒子运动规律与热力学宏观性质(体系中大量微观粒子行为的统计结果或总体表现)之间联系的科学。因为在研究中运用了普遍的力学运动定律,也称“统计力学”。 Boltzmann 统计:适用粒子间相互作用可以忽略的体系 经典统计 Gibbs 统计:考虑粒子间的相互作用 统计方法 Bose-Einstein 统计 量子统计 Fermi-Dirac 统计 (1)统计物系分类 1、独立子物系与相依子物系 独立子物系:粒子的相互作用可以忽略的物系,也称“独立子系”,如理想 气体。 内能: ∑==N j j U 1 ε N — 物系中粒子的个数 j ε — 第j 个粒子的各种运动能 相依子物系:粒子的相互作用不能忽略的物系,也称“非独立子系”,如真 实气体、液体。 内能: p N j j U U +∑==1 ε P U — 粒子相互作用的总位能 注意:以上是根据粒子的相互作用情况不同来划分粒子物系。 2、离域子物系与定域子物系 离域子物系:粒子运动状态混乱,无固定位置,也称“等同粒子物系”。由 于各粒子彼此无法分辨,可视为“等同”。理想气体可视为“独立离域子物系”。 定域子物系:粒子运动定域化的物系,也称“可别粒子物系”,因为粒子由 于定域而可分辨。如晶体中的各粒子是在固定的点阵点附近振动,可以认为晶体就是“定域子物系”。 若将晶体中各粒子看成彼此独立作简谐运动,则晶体就属于

“独立定域子物系”。 注意:以上是根据粒子运动情况不同来划分粒子物系。 (2)粒子的运动形式及能级公式 1、粒子的运动形式(分子视为粒子) 移动(称平动) 分子围绕通过质心的轴的转动 粒子运动 原子在平衡位置附近的振动 原子内部的电子运动 核运动等等 假定粒子只有以上五种运动形式,且彼此独立,则: 核电振转平εεεεεε++++=j 即:n e v r t j εεεεεε++++= 这里只介绍Boltzmann 统计方法。 §9.1 粒子各种运动形式的能级及能级的简并度 1.分子的平动 根据量子理论,粒子的各运动形式的能量都是量子化的,即能量是不连续的。由量子力学可得到: 长度为a 的直线区间内自由运动的“一维平动子”,有 m a h n x t 82 2 2=ε 长、宽各为a 、b 的平面上自由运动的“二维平动子”,有 m h b n a n y x t 822222?? ?? ??+=ε 长、宽、高各为a 、b 、c 空间内自由运动的“三维平动子”,有 m h c n b n a n z y x t 82222222??? ? ??++=ε m — 粒子(分子)的质量 h — 普朗克(Plank )常数,h = 6.626×10-34 J.s -1 z y x n n n 、、 — 平动量子数,可取1,2,3,… 等整数。 注意:量子数不是粒子的个数

第七章 统计热力学基础

第七章统计热力学基础 一、单选题 1.统计热力学主要研究()。 (A) 平衡体系(B) 近平衡体系(C) 非平衡体系 (D) 耗散结构(E) 单个粒子的行为 2.体系的微观性质和宏观性质是通过()联系起来的。 (A) 热力学(B) 化学动力学(C) 统计力学(D) 经典力学(E) 量子力学 3.统计热力学研究的主要对象是:() (A) 微观粒子的各种变化规律(B) 宏观体系的各种性质 (C) 微观粒子的运动规律(D) 宏观系统的平衡性质 (E) 体系的宏观性质与微观结构的关系 4.下述诸体系中,属独粒子体系的是:() (A) 纯液体(B) 理想液态溶液(C) 理想的原子晶体 (D) 理想气体(E) 真实气体 5.对于一个U,N,V确定的体系,其微观状态数最大的分布就是最可几分布,得出这一结论的理论依据是:() (A) 玻兹曼分布定律(B) 等几率假设(C) 分子运动论 (D) 统计学原理(E) 能量均分原理

6.在台称上有7个砝码,质量分别为1g、2g、5g、10g、50g、100g,则能够称量的质量共有:() (A) 5040 种(B) 127 种(C) 106 种(D) 126 种 7.在节目单上共有20个节目序号,只知其中独唱节目和独舞节目各占10个,每人可以在节目单上任意挑选两个不同的节目序号,则两次都选上独唱节目的几率是:() (A) 9/38 (B) 1/4 (C) 1/180 (D) 10/38 8.以0到9这十个数字组成不重复的三位数共有() (A) 648个(B) 720个(C) 504个(D) 495个 9.各种不同运动状态的能级间隔是不同的,对于同一种气体分子,其平动、转动、振动和电子运动的能级间隔的大小顺序是:() (A)△e t >△e r >△e v >△e e(B)△e t <△e r <△e v <△e e (C) △e e >△e v >△e t >△e r(D)△e v >△e e >△e t >△e r (E)△e r >△e t >△e e >△e v 10.在统计热力学中,对物系的分类按其组成的粒子能否被分辨来进行,按此原则:() (A) 气体和晶体皆属定域子体系(C) 气体属离域子体系而晶体属定域子体系 (B) 气体和晶体皆属离域子体系(D) 气体属定域子体系而晶体属离域子体系 11.对于定位系统分布X所拥有的微观状态t x为:(B) (A)(B)

第9章 统计热力学初步习题答案

第9章 统计热力学初步 9.2 某平动能级的()45222 =++z y x n n n ,试求该能级的统计权重。 解:根据计算可知,x n 、y n 和z n 只有分别取2,4,5时上式成立。 因此,该能级的统计权重为g = 3! = 6,对应于状态452245425254245,,,,ψψψψψ542ψ。 9.5 某系统由3个一维谐振子组成,分别围绕着A , B , C 三个定点做振动,总能量为211νh 。试列出该系统各种可能的能级分布方式。 解:由题意可知方程组 n j ≤3 其解即为系统可能的分布方式。 已知一维谐振子的能级公式为:ε =(ν+1/2)h ν,可能的分布方式如下: 9.8 若将双原子分子看作一维谐振子,则气体HCl 分子与I 2分子的振动能级间隔分别是J 1094.520-?和J 10426.020-?。试分别计算上述两种分子在相邻振动能级上分布数之比。 解:谐振子的能级为非简并的,且为等间隔分布的.根据玻耳兹曼分布,有 ()????=?-=-+271 I for 0.3553 HCl for 10409.5exp kT n n j j ε 对于HCl : 对于I 2:

9.23 试由p V A T -=??? ????导出理想气体服从NkT pV = 解:正则系综特征函数()T V N Q kT A ,,ln -=,对理想气体 ()()!ln ln ln !ln ln ! ln ,,ln N k q q q q NkT q NkT N kT q NkT N q kT T V N Q kT A n e v r t N +--=+-=-=-= 只有平动配分函数与体积有关,且与体积的一次方程正比,因此: NkT pV V NkT V q NkT V A T t T =∴-=??? ????-=??? ???? ln 9.24 试证明:含有N 个粒子的离域子系统于平衡时, (1)! ln N q kT A N -= (2))ln (!ln V q NkTV N q k G N ??+-= 证:(1)A 的定义式为TS U A -= 离域子系统 Nk T U N q Nk S ++=ln 代入定义式,得 NkT N q NkT A --=ln 根据斯特林公式的近似式: N N N N -=ln !ln 有 ! ln N q kT A N -= (2)已知 pV A G += 将!ln N q kT A N -=及T T N T V q NkT N N q kT p V A )ln (])!/ln([)(??-=??-=-=??代入上式,得 )ln (!ln V q NkTV N q k G N ??+-=

热力学与统计物理课后习题答案第六章

第六章 近独立粒子的最概然分布 6.1 试根据式(6.2.13)证明:在体积V 内,在ε到d ε+ε的能量范围内,三维自由粒子的量子态数为 ()()13 2232d 2d .V D m h πεεεε= 解: 式(6.2.13)给出,在体积3V L =内,在x p 到d ,x x y p p p +到 d ,y y x p p p +到d x x p p +的动量范围内,自由粒子可能的量子态数为 3 d d d .x y z V p p p h (1) 用动量空间的球坐标描述自由粒子的动量,并对动量方向积分,可得在体积V 内,动量大小在p 到d p p +范围内三维自由粒子可能的量子态数为 2 34πd .V p p h (2) 上式可以理解为将μ空间体积元24d Vp p π(体积V ,动量球壳24πd p p )除以相格大小3h 而得到的状态数. 自由粒子的能量动量关系为 2 .2p m ε= 因此 d . p p p md ε== 将上式代入式(2),即得在体积V 内,在ε到d εε+的能量范围内,三维自由粒子的量子态数为 ()13 2232π()d 2d .V D m h εεεε= (3) 6.2 试证明,对于一维自由粒子,在长度L 内,在ε到d εε+的能量范围内,量子态数为 ()1 2 2d d .2L m D h εεεε?? = ???

解: 根据式(6.2.14),一维自由粒子在μ空间体积元d d x x p 内可能的量子态数为 d d .x x p h 在长度L 内,动量大小在p 到d p p +范围内(注意动量可以有正负两个可能的方向)的量子态数为 2d .L p h (1) 将能量动量关系 2 2p m ε= 代入,即得 ()1 2 2d d .2L m D h εεεε?? = ??? (2) 6.3 试证明,对于二维的自由粒子,在面积2L 内,在ε到d εε+的能量范围内,量子态数为 ()2 22π.L D d md h εεε= 解: 根据式(6.2.14),二维自由粒子在μ空间体积元d d d d x y x y p p 内的量子态数为 21 d d d d .x y x y p p h (1) 用二维动量空间的极坐标,p θ描述粒子的动量,,p θ与,x y p p 的关系为 cos ,sin . x y p p p p θθ== 用极坐标描述时,二维动量空间的体积元为 d d .p p θ 在面积2L 内,动量大小在p 到d p p +范围内,动量方向在θ到d θθ+范围内,二维自由粒子可能的状态数为 22 d d .L p p h θ (2)

第三章 统计热力学基础.

第三章 统计热力学基础 思考题: 1.当系统的U ,V ,N 一定时,由于粒子可以处于不同的能级上,因而分布数不同所以系统总微观数不能确定,这句话是否正确? 2.由离域子系统和定域子系统熵与配分函数的关系可以看出,定域子系统熵比离域子系统的熵大S=klnN!,但是一般说来晶体总比同温度下气体的熵小,为什么? 3.分子能量零点的选择不同,所有热力学函数的值都要改变,对吗? 4.三维平动子第一激发态的简并度是多少?一维谐振子第一激发态的简并度是多少? 5.对于单原子理想气体在室温下的一般物理化学过程,若要通过配分函数来求过程热力学函数的变化值,只须知道g t 这一配分函数值就行了,对吗? 选择题: 1.1mol 双原子理想气体常温下热力学能为: (A)RT 23 (B) RT 25 (C) RT 2 7 (D) 无法确定 2.下列化合物中,298.15K 时标准摩尔熵ΔS 0最大的是: (A) He (B) N 2 (C) CO (D) 一样大 3.在作N 、V 、U 有确定值的粒子体系的统计分布时,令∑n i = N ,∑n i εi = U ,这是因为所研究的体系是: (A) 体系是封闭的,粒子是独立的 (B) 体系是孤立的,粒子是相依的 (C) 体系是孤立的,粒子是独立的 (D) 体系是封闭的,粒子是相依的 4.下列哪个体系不具有玻尔兹曼-麦克斯韦统计特点 : (A) 每一个可能的微观状态以相同的几率出现 (B) 各能级的各量子态上分配的粒子数,受保里不相容原理的限制 (C) 体系由独立可别的粒子组成,U = ∑n i εi (D) 宏观状态参量 N 、U 、V 为定值的封闭体系 5. HI 的转动特征温度Θr =9.0K ,300K 时HI 的摩尔转动熵为: (A) 37.45J ·K -1·mol -1 (B) 31.70J ·K -1·mol -1 (C) 29.15J ·K -1·mol -1 (D) 都不正确 6. 对于单原子分子理想气体,当温度升高时,小于分子平均能量的能级上分布的粒子数: (A) 不变 (B) 增多 (C) 减少 (D) 不能确定 7. O 2的转动惯量J = 19.3 × 10-47 kg ·m 2,则O 2的转动特征温度是: (A) 10K (B) 5K (C) 2.07K (D) 8K 8. 各种运动形式的配分函数中与压力有关的是: (A) 电子配分函数 ; (B) 平动配分函数 ; (C) 转动配分函数 ; (D) 振动配分函数 。

统计热力学初步

第九章 统计热力学初步 主要内容 1.粒子(子) 聚集在气体、液体、固体中的分子、原子、离子等。 按粒子运动情况不同,可分为: 定域子系统 (或称为可别粒子系统) 粒子是可以区分的(固体),例如,在晶体中,粒子在固定的晶格位置上作振动,每个位置可以想象给予编号而加以区分,所以定位体系的微观态数是很大的。 离域子系统(或称为等同粒子系统) 粒子是不可区分的(气体、液体)。例如,气体的分子,总是处于混乱运动之中,彼此无法分辨,所以气体是非定位体系,它的微观状态数在粒子数相同的情况下要比定位体系少得多。 按粒子间相互作用情况不同,可分为; 独立子系统 粒子之间除弹性碰撞之外,无其它相互作用(理想气体)。 ∑=i i n U ε 相依(倚)子系统 粒子之间存在相互作用(实际气体、液体、固体)。 ∑+= p i i E n U ε 2.能级和简并度 (1)能级 根据量子力学的理论,微观粒子各种运动形式的能量是不连续的,只能是一些分离的数值,即能量是量子化的,每一个量子态具有一定的能级,象台阶一样,每一个台阶称为一个能级。各种运动形式的能量最低的那个能级为各自的基态能级。 (2)简并度 量子力学中把能级可能有的微观状态数称为该能级的简并度,用符号g 表示。简并度亦称为退化度或统计权重。 3. 三维平动子 (822222b n a n m h y x t ++=ε )(8222322 z y x t n n n mV h ++=ε 4.刚性转子 I h J J r 22 8)1(πε+=2R I μ= , 立方箱

式中,R = r 1 + r 2, 2121m m m m +?= μ——折合质量 5.一维谐振子 ν εh v v )21(+= 3. 能级分布 分布数——任一能级i 上的粒子数目n i 称为能级i 上的分布数。 能级分布——N 个粒子在各个能级上的分布,称为能级分布,简称分布。 4. 状态分布 状态分布——粒子在各量子态上的分布。 一般又将粒子的量子态称为微观状态,简称微态。 显然,一种能级分布D 有一定的微态数W D ,全部能级分布的微态数之和即为系统的总微态数Ω。 Ω = ΣW D 5.概率 指某一件事A 或某一种状态出现的机会大小。(数学几率) m n P m A ∞→=lim 6.等概率定理 若某宏观体系的总微态数为Ω,则每一种微观状态P 出现的数学概率都相等,即 Ω=1 P 7.最可几(概然)分布 若某种分布的微态数是W D ,则该分布出现的几率是: P D = W D /Ω 那么,在指定NUV 条件下,微态数最大的分布出现的几率最大。 所以,微态数最大的分布——最可几分布在NUV 确定的系统达平衡时,粒子的分布方式虽然千变万化,但仍然集中在紧靠最可几分布的一个极小范围内,可以认为粒子的分布方式几乎不随时间而变,这种分布被称为平衡分布。 8.Boltzmann 分布 kT i kT i i i i e g q N e g n εελ--== 9.配分函数

第六章 统计热力学

第六章统计热力学初步 教学目的及要求 掌握玻兹曼统计的基本原理,能从微观角度解释体系的一些热力学性质,一般掌握从分子配分函数和自由能函数表计算简单气相反应的平衡常数、理想气体及晶体热力学函数的方法。 6-1 引言 经典热力学(宏观热力学) 热力学以三个定律为基础,利用热力学数据,研究平衡系统各宏观性质之间的相互关系,揭示变化过程的方向和限度。它不涉及粒子的微观性质。 研究对象:大量粒子构成的集合体。 研究方法:热力学方法。 优点:结论具有普遍性,不受对物质微观结构认识的影响。 缺点:不能阐明体系性质的内在原因,不能给出微观性质与宏观性质之间的联系,不能对热力学性质进行直接的计算。要克服这些缺点必须从分子的微观结构和内部运动去认识体系及其变化。 统计热力学 统计热力学从粒子的微观性质及结构数据出发,以粒子遵循的力学定律为理论基础;用统计的方法推求大量粒运动的统计平均结果,以得出平衡系统各种宏观性质的值。 ?研究对象:大量粒子构成的集合体。 ?研究方法:统计力学的方法,应用几率规律和力学定律求出大量粒子运动的统计规律。 ?优点:揭示了体系宏观现象的微观本质,可以从分子或原子的光谱数据直接计算体系平衡态的热力学性质。

?缺点:受对物质微观结构和运动规律认识程度的限制。 ?统计热力学是统计物理学的一个分支,也是化学热力学的补充和提高。 经典统计力学 以经典力学为基础处理粒子运动,建立了经典统计力学,即Maxwell-Boltzmann 统计。 ?量子统计力学 以量子力学为基础处理粒子运动,建立了两种量子统计力学,分别适用于不同的量子体系,即Bose-Einstein统计和Fermi-Dirac统计。 本章主要介绍Maxwell-Boltzmann统计,简称麦-玻统计 1. 麦-玻统计比较简单。 2. 现在的麦-玻统计已渗入不少量子力学的成果。 3. 在一定条件下,通过适当的近似,三种统计方法得出几乎相同的统计结果。 4. 麦-玻统计基本上可以说明化学中所遇到的一般问题。 6-2 玻兹曼分布 1、体系的状态 用宏观性质描述的体系状态叫体系的宏观状态,是由体系各个宏观性质所确定。 用微观性质描述的体系状态叫体系的微观状态,是由各个粒子微观状态所确定。 S=k ln Ω(6-1)本章考虑的是V,U,N一定的体系,Ω也是在V,U,N一定的平衡状态下的总微观状态数。 2、粒子微观状态的描述 经典力学描述 不考虑粒子的内部结构,以空间坐标、质量、速度或动量来描述粒子整体的运动状况。 量子力学描述 粒子具有波粒二相性,具体位置无法准确确定,能量是量子化的,以波函数ψ和能量ε来描述粒子的量子状态。

相关文档
最新文档