超离心技术简介

超离心技术简介
超离心技术简介

超离心技术简介

超速离心机的离心速度为每分钟60000转或更多,离心力约为重力加速度的500000倍。在操作技术上,最常用的是差速离心和密度梯度离心。前者是交替使用低速和高速离心,用不同强度的离心力使具有不同质量的物质分级分离的方法。此法适用于混合样品中各沉降系数差别较大组分的分离。欲分离沉降系数接近的物质,则广泛使用密度梯度离心法。这种方法使用一种密度能形成梯度(在离心管中,其密度从上到下连续增高)又不会使所分离的生物活性物质凝聚或失活的溶剂系统,离心后各物质颗粒能按其各自的比重平衡在相应的溶剂密度中形成区带。

一、差速离心

差速离心是交替使用低速和高速离心,用不同强度的离心力使具有不同质量的物质分级分离的方法。此法适用于混合样品中各沉降系数差别较大组分的分离。离心速度较低,较大的颗粒沉降到管底,小的颗粒仍然悬浮在上清液中。收集沉淀,改用较高的离心速度离心悬浮液,将较小的颗粒沉降,以此类推,达到分离不同大小颗粒的目的。

原理:不同沉降系数的组分在不同的离心速度下沉降的速度不同,以此用来分离亚细胞组份。物体围绕中心轴旋转时会受到离心力的作用,离心力越大,被离心物质沉降得越快。

应用:此法多用于分离细胞匀浆中的各种亚细胞组分,用低渗匀

浆、超声破碎或研磨等方法可使细胞质膜破损,形成细胞核、线粒体、叶绿体、内质网、高尔基体、溶酶体等细胞器和细胞组分组成的混合匀浆,再通过差速离心将各种质量和密度不同的亚细胞组分和各种颗粒分开。

二、密度梯度离心

密度梯度离心使用一种密度能形成梯度(在离心管中,其密度从上到下连续增高)又不会使所分离的生物活性物质凝聚或失活的溶剂系统,离心后各物质颗粒能按其各自的比重平衡在相应的溶剂密度中形成区带。常用的密度梯度溶剂是蔗糖或氯化铯(CsCl)溶液。用蔗糖时,先将蔗糖溶液制成密度梯度溶液,再在其顶端加样品。离心后,如欲收集所分离的组分,可在离心管的下端刺一小洞,然后分部收集。如用CsCl这种密度大又扩散迅速的溶剂系统时,可将样品均匀地混合于溶剂中。离心达到平衡后,CsCl溶液形成密度梯度,样品中各组分也在相应密度处形成区带。

原理:离心介质以连续密度梯度分布,通过离心、每种物种悬浮到与自己密度相当的介质区。当不同颗粒存在浮力密度差时,在离心力场下,在密度梯度介质中,颗粒或向下沉降,或向上浮起,一直移动到与它们各自的密度恰好相等的位置,在这里颗粒没有重量,不管离心多长时间,它们再也不移动了,形成一系列密度区。从而使不同浮力密度的物质得到分离。

应用:此法常用CsCl、蔗糖、甘油等做介质,一般应用于物质的大小相近,而密度差异较大时。常用来分离提取核酸、富含AT和富

含GC的DNA、亚细胞器和质粒等。

发展前景:超离心技术是研究细胞及其组分最常用的分析方法,随着学科的交叉与融合,当今几乎没有那些生物学问题与细胞生物学无关。细胞生物学的研究与发展离不开对单个细胞的研究,因此,超离心技术队研究细胞生物学有着举足轻重的地位,其发展前景也十分广阔。

离心技术

离心技术 离心技术是根据颗粒在匀迷圆周运动时受到一个外向的离心力的行为发展起来的一种分离分析技术。 1.用于工业生产的,如化工、制药、食品等工业大型制备用的离心技术,转速都在每分钟5000转以下。 2.用于生物、医学、化学等实验室分析研究的,转速从每分钟几千到几万转以上,此类技术的使用目的在于分离和纯化样品,以及对纯化样品的有关性能进行研究。 一、基本原理 1.离心力Centrifugal force (F) F=mω2r ω:旋转角速度(弧度/秒) r:旋转体离旋转轴的距离(cm) m:颗粒质量 2.相对离心力Relative centrifugal force (RCF) RCF 就是实际离心力转化为重力加速度的倍数 RCF=F离心力/F重力 = mω2r/mg= ω2r/g g为重力加速度(980.70g/sec2) 同为转于旋转一周等于2π弧度,因此转子的角速度以每分钟旋转的次数(每分钟转数n 或r/min)表示: 一般情况下,低速离心时常以r/min来表示,高速离心时则以g(或数字Xg)表示。 用“X g”表示每分钟转速可以真实反映颗粒在离心管不同位置的离心力。Dole&Cotzias 制作了转子速度和半径相对应的离心力列线图(图2—15)。 3.沉降系数Sedimentation coefficient (S) 当转子内样品绕着旋转轴离心时,样品沉降率是由样品颗粒的大小、形状、密度和溶剂的粘度、密度以及离心加速度决定的,在一般情况下,样品的沉降特征可以用沉降系数来表示: S:是指单位离心场中粒子移动的速度。 S的物理意义是颗粒在离心力作用下从静止状态到达等速运动所经过的时间。 S在实际应用时常在10-13秒左右,故把沉降系数10-13秒称为一个Svedberg单位,简写S,单位为秒,1S二1×10-13秒。对一定的样品,在一定的介质中,样品沉降系数S 也常保持不变。文献中常用沉降系数以描述某些生物大分子或亚细胞器大小。 二、离心设备 离心技术所使用的设备是由离心转子、离心管及附件等组成。 (一)离心机 1. 低速离心机 一般最高转速在6000r/min以下。实验室中常用于分离制备。 2.高速离心机带有能够冷却的离心腔制冷设备,这类离心机的速度控制比上述的低速离心机来得准确,工作时的实际速度和温度可通过仪表显示;配有一定类型及规格的转子,可根据需要选用。此类离心机的最高转速在25000r/min以下,常用于生物大分子的分离制备。

超超临界燃煤发电技术的发展历程

超超临界燃煤发电技术的发展历程 从上个世纪50年代开始,世界上以美国和德国等为主的工业化国家就已经开始了对超临界和超超临界发电技术的研究。经过近半个世纪的不断进步、完善和发展,目前超临界和超超临界发电技术已经进入了成熟和商业化运行的阶段。 世界上超临界和超超临界发电技术的发展过程大致可以分成三个阶段: 第一个阶段,是从上个世纪50年代开始,以美国和德国等为代表。当时的起步参数就是超超临界参数,但随后由于电厂可靠性的问题,在经历了初期超超临界参数后,从60年代后期开始美国超临界机组大规模发展时期所采用的参数均降低到常规超临界参数。直至80年代,美国超临界机组的参数基本稳定在这个水平。第二个阶段,大约是从上个世纪80年代初期开始。由于材料技术的发展,尤其是锅炉和汽轮机材料性能的大幅度改进,及对电厂水化学方面的认识的深入,克服了早期超临界机组所遇到的可靠性问题。同时,美国对已投运的机组进行了大规模的优化及改造,可靠性和可用率指标已经达到甚至超过了相应的亚临界机组。通过改造实践,形成了新的结构和新的设计方法,大大提高了机组的经济性、可靠性、运行灵活性。其间,美国又将超临界技术转让给日本(GE向东芝、日立,西屋向三菱),联合进行了一系列新超临界电厂的开发设计。这样,超临界机组的市场逐步转移到了欧洲及日本,涌现出了一批新的超临界机组。 第三个阶段,大约是从20世纪九十年代开始进入了新一轮的发展阶段。这也是世界上超超临界机组快速发展的阶段,即在保证机组高可靠性、高可用率的前提下采用更高的蒸汽温度和压力。其主要原因在于国际上环保要求日益严格,同时新材料的开发成功和和常规超临界技术的成熟也为超超临界机组的发展提供了条件。主要以日本(三菱、东芝、日立)、欧洲(西门子、阿尔斯通)的技术为主。这个阶段超超临界机组的发展有以下三方面的趋势:

离心技术的应用

离心技术的应用 离心技术(centrifugal technique)是根据颗粒在作匀速圆周运动时受到一个外向的离心力的行为而发展起来的一种分离技术。这项技术应用很广,诸如分离出化学反应后的沉淀物,天然的生物大分子、无机物、有机物,在生物化学以及其它的生物学领域常用来收集细胞、细胞器及生物大分子物质。 一、基本原理的分类 (一)基本原理 ⒈离心力(centrifugal force,Fc)离心作用是根据在一定角度速度下作圆周运动的任何物体都受到一个向外的离心力进行的。离心力(Fc)的大小等于离心加速度ω2X与颗粒质量m的乘积,即: 其中ω是旋转角速度,以弧度/秒为单位;X是颗粒离开旋转中心的距离,以cm为单位;m是质量,以克为单位。 ⒉相对离心力(relative centrifugal force,RCF)由于各种离心机转子的半径或者离心管至旋转轴中心的距离不同,离心力而受变化,因此在文献中常用“相对离心力”或“数字×g”表示离心力,只要RCF值不变,一个样品可以在不同的离心机上获得相同的结果。 RCF就是实际离心场转化为重力加速度的倍数。 式中X为离心转子的半径距离,以cm为单位;g为地球重力加速度 (980cm/sec2);n为转子每分钟的转数(rpm)。 在上式的基础上,Dole和Cotzias制作了与转子速度和半径相对应的离心力的转换列线图,见图16-4,在用图16-4将离心机转数换成相对离心力时,先在离心机半径标尺上取已知的离心机半径和在转数标尺上取已知的离心机转数,然后将这两点间划一条直线,在图中间RCF标尺上的交叉点,即为相应的离心力数值。例已知离心机转数为2500rpm,离心机的半径为7.7cm,将两点连接起来交于RCF标尺,此交点500×g即是RCF值。

700℃超超临界燃煤发电机组发展情况概述

700℃超超临界燃煤发电机组发展情况概述(一) 目前,在整个电网中,燃煤火力发电占70%左右,电力工业以燃煤发电为主的格局在很长一段时期内难以改变。但是,燃煤发电在创造优质清洁电力的同时,又产生大量的排放污染。为实现2008年G8(八国首脑高峰会议)确定的2050年CO2排放降低50%的目标,提高效率和降低排放的发电技术成为欧盟、日本和美国重点关注的领域。洁净燃煤发电技有几种方法,如整体煤气化联合循环(IGCC)、增压流化床联合循环(PFBC)及超超临界技术(USC)。目前,超超临界燃煤发电技术比较容易实现大规模产业化。 超超临界燃煤发电技术经过几十年的发展,目前已经是世界上先进、成熟达到商业化规模应用的洁净煤发电技术,在不少国家推广应用并取得了显著的节能和改善环境的效果。据统计,目前全世界已投入运行的超临界及以上参数的发电机组大约有600余台,其中美国约有170台,日本和欧洲各约60台,俄罗斯及原东欧国家280余台。目前发展700℃超超临界发电技术领先的国家主要是欧盟、日本和美国等。700℃超超临界机组作为超超临界机组未来发展方向,本文对其发展情况进行概述,供参考。 一、概念 燃煤发电机组是将煤燃烧产生的热能通过发电动力装置(电厂锅炉、汽轮机和发电机及其辅助装置等)转换成电能。燃煤发电机组主要由燃烧系统(以锅炉为核心)、汽水系统(主要由各类泵、给水加热器、凝汽器、管道、水冷壁等组成)、发电系统(汽轮机、汽轮发电机)和控制系统等组成。燃烧系统和汽水系统产生高温高压蒸汽,发电系统实现由热能、机械能到电能的转变,控制系统保证各系统安全、合理、经济运行。 燃煤发电机组运行过程中,锅炉内工质都是水,水的临界点压力为22.12MPa,温度374.15℃;在这个压力和温度时,水和蒸汽的密度是相同的,就叫水的临界点。超临界机组是指主蒸汽压力大于水的临界压力22.12 MPa的机组,而亚临界机组是指主蒸汽压力低于这个临界压力的机组,通常出口压力在15.7~19.6 MPa。习惯上,又将超临界机组分为两个类型:一是常规超临界燃煤发电机组,其主蒸汽压力一般为24兆帕左右,主蒸汽和再热蒸汽温度为566~593℃;二是超超临界燃煤发电机组,其主蒸汽压力为25~35 MPa及以上,主蒸汽和再热蒸汽温度一般600℃以上,700℃超超临界燃煤发电机组是超超临界发电技术发展前沿。在超临界与超超临界状态,水由液态直接成为汽态,即由湿蒸汽直接成

350MW超临界汽轮机技术介绍

350MW超临界汽轮机 技术介绍 北京北重汽轮电机有限责任公司 2009年12月

目录 1、前言 (1) 2、机型系列 (2) 3、机组介绍 (3) 3.1、总体方案 (3) 3.2、本体结构 (4) 3.2.1、汽缸 (7) 3.2.2、转子及动叶片 (7) 3.2.3、喷嘴组、静叶及隔板 (9) 3.2.4、高中压阀门 (10) 3.2.5、轴承及轴承箱 (11) 3.2.6、滑销系统 (12) 3.3、主要部件材质 (13) 3.4、汽轮机附属系统 (14) 3.4.1、汽封、本体疏水系统 (14) 3.4.2、润滑、顶轴及盘车系统 (14) 3.4.3、控制及保护系统 (14) 3.5、汽轮机辅助设备 (15) 3.5.1、凝汽器 (15) 3.5.2、低压加热器 (15) 4、关于超临界机组的主要问题 (15) 4.1、高温材料的使用 (15) 4.2、防颗粒侵蚀措施 (15) 4.3、中压第一级冷却措施 (15) 5、机组特点 (16) 5.1、机型定型合理 (16) 5.2、采用成熟可靠的设计 (16) 5.3、功率高 (17) 5.4、良好的结构设计 (17) 5.5、材料等级高 (17) 5.6、灵活快捷的中压缸启动 (17) 6、300MW-360MW汽轮机业绩表 (18)

350MW超临界汽轮机技术介绍 1、前言 超临界350MW汽轮机是我公司在引进ALSTOM公司亚临界330MW凝汽式汽轮机的基础上,通过近几年与ALSTOM在600MW超临界机组方面的合作以及与其他国外公司的技术交流,结合目前国内对超临界汽轮机要求的基础上设计开发的机型。机组设计采用先进的通流技术,保证具有较高的经济性;在结构设计上充分采用成熟可靠的技术,确保机组的安全可靠性,以及快速启、停及变负荷的能力。 我公司从1986年开始引进ALSTOM亚临界330MW湿冷机组,在引进纯凝湿冷机组的基础上,完成了亚临界330MW汽轮机的系列化工作,机组系列在功率方面涵盖了300MW~360MW(其中空冷300MW~330MW、湿冷330MW~360MW),在冷却方式方面涵盖了湿冷、直接空冷、间接空冷,在功能方面涵盖了纯凝、单级抽汽(0.3~0.6Mpa.a、0.98~1.27Mpa.a、3.92~5.88Mpa.a)、两级抽汽(三种单抽的组合)、三级抽汽(三种单抽的组合),目前各种机型的机组已经生产80多台。机组系列如下: ——纯凝系列:

超临界、超超临界燃煤发电技术

1.工程热力学将水的临界状态点的参数定义为:2 2.115MPa,374.15℃。当水蒸气参数值大于上述临界状态点的压力和温度时,则称其为超临界参数。超超临界设定在蒸汽压力大于25MPa、或蒸汽温度高于593℃的范围。 2.提高机组热效率:提高蒸汽参数(压力、温度)、采用再热系统、增加再热次数。 3.常规亚临界机组参数为16.7MPa/538℃/538℃,发电效率约38%;超临界机组主汽压力一般为24MPa左右,主蒸汽和再热蒸汽温度为538—560℃,典型参数为2 4.1MPa/538℃/538℃,发电效率约41%;超超临界追压力25—31MPa及以上,主蒸汽和再热蒸汽温度为580—600℃及以上。超临界机组热效率比亚临界机组的高2%—3%,超超临界机组的热效率比超临界机组高4%以上。 4.在超超临界机组参数条件下,主蒸汽压力提高1MPa,机组的热效率就可下降0.13—0.15%;主蒸汽温度每提高10℃,机组的热效率就可下降0.25%—0.30%。再热蒸汽温度每提高10℃,机组的热耗率就可下降0.15%—0.20%。如果增加再热参数,采用二次再热,则其热耗率可下降1.4%—1.6%。当压力低于30MPa时,机组热效率随压力的提高上升很快;当压力高于30MPa时,机组热效率随压力的提高上升幅度较小。 5.锅炉布置主要采用Ⅱ型布置、塔式布置、T型布置。超超临界机组可采用四角单切圆塔式布置、墙式对冲塔式布置、单炉膛双切圆Ⅱ型布置及墙式对冲Ⅱ型布置。Ⅱ型布置适用于切向燃烧方式和旋流对冲燃烧方式;塔式炉适用于切向燃烧方式和旋流对冲燃烧方式;T型布置适用于切向燃烧方式和旋流对冲燃烧方式。 6.水冷壁型式:变压运行超临界直流锅炉水冷壁:炉膛上部用垂直管,下部用螺旋管圈及内螺纹垂直管屏。 7.我国超超临界技术参数:一次再热、蒸汽参数(25—28)MPa/600℃/600℃,相应发电效率预计为44.63%—44.99%,发电煤耗率预计为275—273g/kWh。 8.煤粉燃烧方式:切向燃烧方式(四角、六角、八角、墙式)、墙式燃烧方式(前墙燃烧、对冲燃烧)、W型火焰燃烧方式(拱式燃烧)。切向燃烧指煤粉气流从布置在炉膛四角的直流式燃烧器切向引入炉膛进行燃烧。对冲燃烧是将一定数量的旋流式燃烧器布置在两面相对的炉墙上,形成对冲火焰的燃烧方式。W型火焰燃烧是将直流或弱旋流式燃烧器布置在燃烧室两侧炉墙拱上,使火焰开始向下,再折回向上,在炉内形成W状火焰。 9.空冷机组的水耗率比同等容量的常规湿冷机组约低65%,但其供电煤耗率同比高3%—5%,电厂总投资同比高10%—15%。因此,空冷机组尤其适合在缺水或水价昂贵而燃烧便宜的的地区建设。 10.常规火电湿冷循环冷却系统系统采用自然通风冷却塔形式,循环水损失约占电厂耗水量的80%。而空冷几乎没有循环水损失。 11.直接空冷系统是指汽轮机的排汽直接用空气来冷凝,蒸汽与空气进行热交换,冷却所需的空气由机械通风方式供应。

超宽带UWB无线通信技术

超宽带(UWB)无线通信技术 摘要本文介绍了UWB的概念、主要技术特点,并把UWB与目前较为广泛使用的IEEE802.11、Bluetooth等短距离无线通信技术进行了比较,最后对UWB的应用前景进行了分析与展望。 UWB(Ultra Wide Band,超宽带)是一种以极低功率在短距离内高速传输数据的无线技术。这种原来专属军方使用的技术随着2002年2月美国联邦通信委员会(FCC)正式批准民用而备受世人的关注。UWB具有一系列优良独特的技术特性,是一种极具竞争力的短距无线传输技术。 1、UWB的概念 超宽带技术UWB(Ultra Wideband)是一种无线载波通信技术,即不采用正弦载波,而是利用纳秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很宽。UWB是利用纳秒级窄脉冲发射无线信号的技术,适用于高速、近距离的无线个人通信。按照FCC的规定,从3.1GHz到10.6GHz之间的7.5GHz的带宽频率为UWB 所使用的频率范围。 从频域来看,超宽带有别于传统的窄带和宽带,它的频带更宽。窄带是指相对带宽(信号带宽与中心频率之比)小于1%,相对带宽在1%到25%之间的被称为宽带,相对带宽大于25%,而且中心频率大于500MHz的被称为超宽带。 从时域上讲,超宽带系统有别于传统的通信系统。一般的通信系统是通过发送射频载波进行信号调制,而UWB是利用起、落点的时域脉冲(几十纳秒)直接实现调制,超宽带的传输把调制信息过程放在一个非常宽的频带上进行,而且以这一过程中所持续的时间,来决定带宽所占据的频率范围。 2、UWB的主要技术特点 UWB是一种“特立独行”的无线通信技术,它将会为无线局域网LAN和个人局域网PAN的接口卡和接入技术带来低功耗、高带宽并且相对简单的无线通信技术。UWB解决了困扰传统无线技术多年的有关传播方面的重大难题,具有对信道衰落不敏感、发射信号功率谱密度低、被截获的可能性低、系统复杂度低、厘米级的定位精度等优点。 UWB具有以下特点: 2.1抗干扰性能强 UWB采用跳时扩频信号,系统具有较大的处理增益,在发射时将微弱的无线电脉冲信号分散在宽阔的频带中,输出功率甚至低于普通设备产生的噪声。接收时将信号能量还原出来,在解扩过程中产生扩频增益。因此,与IEEE 802.11a、IEEE 802.11b和蓝牙相比,在同等码速条件下,UWB具有更强的抗干扰性。 2.2传输速率高

超离心技术简介

超离心技术简介 超速离心机的离心速度为每分钟60000转或更多,离心力约为重力加速度的500000倍。在操作技术上,最常用的是差速离心和密度梯度离心。前者是交替使用低速和高速离心,用不同强度的离心力使具有不同质量的物质分级分离的方法。此法适用于混合样品中各沉降系数差别较大组分的分离。欲分离沉降系数接近的物质,则广泛使用密度梯度离心法。这种方法使用一种密度能形成梯度(在离心管中,其密度从上到下连续增高)又不会使所分离的生物活性物质凝聚或失活的溶剂系统,离心后各物质颗粒能按其各自的比重平衡在相应的溶剂密度中形成区带。 一、差速离心 差速离心是交替使用低速和高速离心,用不同强度的离心力使具有不同质量的物质分级分离的方法。此法适用于混合样品中各沉降系数差别较大组分的分离。离心速度较低,较大的颗粒沉降到管底,小的颗粒仍然悬浮在上清液中。收集沉淀,改用较高的离心速度离心悬浮液,将较小的颗粒沉降,以此类推,达到分离不同大小颗粒的目的。 原理:不同沉降系数的组分在不同的离心速度下沉降的速度不同,以此用来分离亚细胞组份。物体围绕中心轴旋转时会受到离心力的作用,离心力越大,被离心物质沉降得越快。 应用:此法多用于分离细胞匀浆中的各种亚细胞组分,用低渗匀浆、超声破碎或研磨等方法可使细胞质膜破损,形成细胞核、线粒体、叶绿体、内质网、高尔基体、溶酶体等细胞器和细胞组分组成的混合

匀浆,再通过差速离心将各种质量和密度不同的亚细胞组分和各种颗粒分开。

二、密度梯度离心 密度梯度离心使用一种密度能形成梯度(在离心管中,其密度从上到下连续增高)又不会使所分离的生物活性物质凝聚或失活的溶剂系统,离心后各物质颗粒能按其各自的比重平衡在相应的溶剂密度中形成区带。常用的密度梯度溶剂是蔗糖或氯化铯(CsCl)溶液。用蔗糖时,先将蔗糖溶液制成密度梯度溶液,再在其顶端加样品。离心后,如欲收集所分离的组分,可在离心管的下端刺一小洞,然后分部收集。如用CsCl这种密度大又扩散迅速的溶剂系统时,可将样品均匀地混合于溶剂中。离心达到平衡后, CsCl溶液形成密度梯度,样品中各组分也在相应密度处形成区带。 原理:离心介质以连续密度梯度分布,通过离心、每种物种悬浮到与自己密度相当的介质区。当不同颗粒存在浮力密度差时,在离心力场下,在密度梯度介质中,颗粒或向下沉降,或向上浮起,一直移动到与它们各自的密度恰好相等的位置,在这里颗粒没有重量,不管离心多长时间,它们再也不移动了,形成一系列密度区。从而使不同浮力密度的物质得到分离。 应用:此法常用CsCl、蔗糖、甘油等做介质,一般应用于物质的大小相近,而密度差异较大时。常用来分离提取核酸、富含AT和富含GC的DNA、亚细胞器和质粒等。

超宽带技术的应用与发展解析

超宽带技术的应用与发展 一、引言 随着计算机通信技术的不断发展,无线传输技术得到了广泛的应用,而超带宽(UWB)技术作为一种新型短距离高速无线通信技术正占据主导地位,超带宽技术又被称为脉冲无线发射技术,是指占用带宽大于中心频率的1/4或带宽大于1.5GHz的无线发射方案,超带宽技术在2002年以前主要应用于雷达和遥感等军事领域,UWB技术不需载波,能直接调制脉冲信号,产生带宽高达几兆赫兹的窄脉冲波形,其带宽远远大于目前任何商业无线通信技术所占用的带宽,UWB信号的宽频带、低功率谱密度的特性,决定了UWB无线传输技术具有以下优势:易于与现有的窄带系统(如全球定位系统(GPS)、蜂窝通信系统、地面电视等)公用频段,大大提高了频谱利用率。易于实现多用户的短距离高速数据通信;目前,UWB技术在商业多媒体设备、家庭和个人网络方面的应用正在不断发展。 二超宽带技术的特点应用 1、超宽带技术解决了困扰无线技术多年的有关传播方面的问题,如发射信号功率谱密度低、低截获大问题,具有对信道衰落不敏感的问题,又具有能力、系统复杂程度低、能提供厘米级的定位精度等优点;它在无线局域网、城域网和个人局域网的应用中,可提供低功耗、超带宽及相对简捷的通信技术,尤其适用于室内等密集多径场所的高速无线接入,可实现PC与移动设备、消费电子等信息终端的小范围智能化互联,从而组建个人化的办公或家用信息化网络。超带宽(UWB)无线通信技术以它高速率、高性能、低成本、低功耗等特点成为最具有竞争力的WPAN实现技术,并已成功应用于多个方面。 2、超宽带技术特点 (1)体积小、成本低、系统结构实现简单、 UWB不使用载波,直接发射脉冲序列,不需要传统收发器所需要的上、下变频,从而不需要功用放大器与混频器,因此UWB设备集成更为简化。脉冲发射机和接收机前端可集成在一个芯片上,再加上时间基和一个微控制器,就可构成一部超宽带通信设备。 (2)传输速率高数字化、综合化、宽带化、智能化和个人化是通信发展的主要趋势。为确保提供高质量的多媒体业务的无线网络,其信息速率不能低于50Mbit/s。在用商品中,一般要求UWB信号的传输范围为10m以内,

空间光通信技术简介

空间光通信技术简介 空间光通信又称为激光无线通信或无线光通信。根据用途又可分为卫星光通信和大气光通信两大类。自从60年代激光器问世开始,人们就开研究激光通信,这时的研究也主要集中在地面大气的传输中,但因各种困难未能进入实际应用。低损耗光纤波导和实用化半导体激光器的诞生为激光通信的实际应用打开了大门,目前光纤通信已经遍布世界各国的各个城市。由于对无线通信的需求的增长,再有卫星激光通信的快速发展,自从90年代开始,人们又开始重新对地面无线光通信感兴趣,进行了大量的研究,并且开发出可以实用的商业化产品。 一、开展空间光通信研究的意义及应用前景 1.作为卫星光通信链路地面模拟系统的技术组成部分 卫星光通信链路系统在上卫星前必须有地面模拟演示系统,以保障电子系统、光学系统、机械自动化控制系统等各子系统的良好工作。在链路捕捉完成以后,与以太网相连的无线光通信系统借助于光链路的桥梁,源源不断地输送以太网上的信息,这是考验光链路稳定性能的重要指标。 2.为低轨道卫星与地面站间的卫星光通信打下良好的技术基础 低轨道卫星与地面站的通信会受到天气的影响,选择干旱少雨地区建立地面站在相当程度上缓解了这一矛盾,再通过地面站之间的光纤网可以把卫星上信息送到所需地点,这从技术上牵涉到空间光通信网与光纤网连接问题,这方面问题已经基本得到解决。 3.空间光通信具有巨大的潜在市场和商业价值 ●可以克服一些通常容易碰到的自然因素障碍 当河流、湖泊、港湾、马路、立交桥和其它自然因素阻碍铺设光纤时,无线光通信系统可跨越宽阔的河谷,繁华的街道,将两岸或者岛屿与陆地连接起来。 ●提供大容量多媒体宽带网接入 用无线光通信系统作为接入解决方案,不需耗资、耗时地铺设光纤就能满足对办公大楼或商业集中区大容量接入的需要。 ●可为大企业、大机关提供内部大容量宽带网 无线光通信系统能在企业、机关范围内为建筑物与建筑物之间的大容量连接提供一种开放空间传送的解决方案。 ●为公安、军队等重要部门提供高速宽带保密通信。 ●支持灾难抢救的应急系统 无线光通信系统可为灾难抢救提供一种大容量的临时通信解决方案 ●为一时性大规模的重要活动提供临时的大规模通信系统 例如,奥运会和其他体育运动会、音乐会、大型会议以及贸易展览会等专门活动往往需要大容量宽带媒体覆盖。无线光通信系统能提供一种迅速、经济而有效的解决方案,不受原有通信系统的带宽限制,也不用再去办理光纤铺设许可证。 二、空间光通信的优势 1.组网机动灵活 无线光通信设备将来可广泛适用于数据网(Ethernet,Token Ring,Fast Ethernet,FDDI,ATM,STM-x等)、电话网、微蜂窝及微微蜂窝(E1/T1—E3/T3,OC-3等)、多媒体(图像)通信等领域。可以把这些网上信息加载在光波上,在空气中直接传输出去,这种简便的通信方式对于频率拥挤的环境是非常理想的,例如:城市、大型公司、大学、政府机构、办公楼群等。 2.克服天气对激光传输的影响,实现全天候通信

超超临界1000MW技术介绍(汽轮)

技术介绍 IP Turbine HP Turbine 汽轮机有

东方超超临界 1000MW汽轮机技术介绍 汽轮机技术介绍 东方超超临界1000MW 目录 1东方对日立超超临界汽轮机技术全面引进 概貌 机组概貌 2东方超超临界 1000MW机组 东方超超临界1000MW 机组主要技术特点 1000MW机组 主要技术特点 东方超超临界1000MW 3 3 东方超超临界 可靠性高 3.1 可 3.1 3.2经济性好 3.2 经 3.2 调峰性能好 3.3 3.3 调 先进可靠的辅助系统 4 先进可靠的辅助系统 44 汽轮机运行情况 1000MW汽轮机运行情况 5 5 邹县 邹县1000MW

?东汽超临界、超超临界技术引进历程 1997年开始超临界技术谈判 1999年完成超临界600MW技术引进协议谈判 2001年完成对600MW技术引进协议的修改(包括亚临界、超临界) 年依托邹县项目完成超超临界技术全面引进2004年依托邹县1000MW项目,完成1000MW超超临界技术全面引进 2005年依托芜湖660MW项目,完成660MW超超临界技术全面引进依托芜湖660MW项目完成660MW超超临界技术全面引进

东汽从日立全面技术引进 1)包括设计图纸、工艺方案及材料、检验和采购规范全面人员培训; 2)日立保证机组设计的先进性和准确性,并对设计性能负责;3)东汽在日立的许可证下严格按照日立要求进行生产和制造,变更和材料代用等均需日立认可; 4)日立将为项目的工程配合、生产制造及售后服务、用户培训提供技术支持。 ——全面技术引进,便于电厂备件采购及获得运行维护技术支持

智能型超速离心机技术要求

智能型超速离心机技术要求 1.温度控制系统 1.1. 离心室采用八块半导体制冷元件的固态制冷系统 1.2.利用热敏电阻和红外检测温度,准确度为±0.3?C,设定温度范围 0 至 40?C; 1.3. 环境操作温度范围为100C 至400C 1.4. 自动干燥系统,可使离心室在每次离心后保持干燥 2.真空系统 2.1. 真空度显示精度:1 micron ★2.2. 真空度少于 5 microns (0.7 Pa) ,面板上数字化显示真空度的数值. 2.3. 内设脱湿装置,可于3小时内排出10mL水. 3. 驱动系统 3.1.真空密封变频电机驱动系统,无碳刷,直接驱动 3.2. 最高转速100,000 rpm,最大相对离心力≥802,400 xg; 转速控制精度: ± 2 RPM 3.3. 目视平衡,样品量不平衡容忍度为± 10% 或±5mL 4. 控制、操作系统 4.1 大屏幕液晶屏显示,触幕式操作,带中文操作系统 4.2. 可预设实验开始或结束时间,及备有仪器预冷功能 4.3. 时间设定范围至999小时59分钟,另有连续时间运行 (HOLD) 选择 4.4. 10个加速,11个减速选择 4.5. 无限程序储存,且每个程序可设定30个步骤,以满足实验需求 ★4.6可以使用手机或计算机远程监控仪器状态,以实现跨越实验室对离心机进行远程监控和操作,并可以本机模拟以下实验过程: a)RNA最佳/最快沉降运行 b)替代转头运行 c)颗粒沉降运行 d)速率区带运行 e)质粒最佳分离运行 4.7 仪器可实时显示运行曲线图,以便于追踪整个实验过程 4.8 化学试剂耐受性数据库内置主机内,便于离心不同样品时离心管的选择; 4.9 具备密码保护功能,要求用户密码锁功能内置于主机软件,并可设置三个级别,方便仪器管理者对不同的使用者进行权限管理; 4.10区带/连续流操作具备授权功能,以便于对使用者进行权限管理;区带/连续流操作界面以流程图显示,简单、直观,便于操作;

我国1000MW级超超临界燃煤发电技术的瓶颈浅析

第39卷第6期2011年6 月Vol.39No.6 Jun.2011 我国1000MW级超超临界燃煤发电技术的瓶颈浅析 金利勤1,王家军2,王剑平1 (1.浙江浙能嘉华发电有限公司,浙江嘉兴314201;2.杭州电子科技大学自动化研究所,杭州310018) 摘要:对我国1000MW级超超临界燃煤发电技术的现状进行了综述,并和发达工业国家的超超临界燃煤机组进行了对比分析。针对我国超超临界机组发展的技术瓶颈,提出了亟需研究解决的课题。对高超超临界燃煤发电技术进行了展望。 关键词:1000MW级;超超临界;燃煤火力发电;技术瓶颈 作者简介:金利勤(1960-),男,高级工程师,从事火电厂技术管理工作。 中图分类号:TK325文献标志码:A文章编号:1001-9529(2011)06-0976-04 基金项目:浙江省科技厅重点软科学研究资助项目(2010C25096) Analysis on the Technological bottleneck of1000MW Ultra-supercritical Coal-fired Power Generation in China JIN Li-qin1,WANG Jia-jun2,WANG Jian-ping1 (1.Jiahua Power Generation Co.Ltd of Zhejiang Zhe Energy,Jiaxing Zhejiang,314201; 2.Institute of Automation,Hangzhou Dianzi University,Hangzhou Zhejiang,310018) Abstract:In this paper,a survey is given about the present1000MW ultra supercritical coal-fired power generation technology in China.The development of ultra supercritical coal-fired power generation technology in China is ana-lyzed and compared with that of industrialized countries.After summarizing the technological bottlenecks existed in this field,the problems needing to be solved are pointed out and the future developments of ultra supercritical coal-fired power generation technology are proposed. Key words:1000MW;ultra-supercritical;coal-fired power generation;technology bottleneck Foundation items:The Important Soft Science Research Foundation of Science Technology Department of Zhejiang Province(2010C25096 櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚櫚) 参考文献: [1]陈春元,李永兴.大型煤粉锅炉燃烧设备的优化设计问题[J].锅炉制造,1992(2). [2]范从振.锅炉原理[M].北京:水利电力出版社,1986.[3]VAPNIK V N.The nature of statistical learning theory[M].NY:Springer-Verlag,1995:8-50.[4]VAPNIK V N,LEVIN E,LE Cun Y.Measuring the VC-dimension of a learning machine[J].Neural Computation, 1994(6):851-876. [5]连慧莉.电站锅炉燃煤特性预测建模研究[D].南京:东南大学,2005. 收稿日期:2010-03-28 本文编辑:王延婷 1000MW级超超临界燃煤发电是一种先进、高效的发电技术,代表了当前火力发电的最高水平,1000MW级超超临界燃煤发电技术的研发和应用对实现我国火电结构调整、节能降耗,建设资源节约型、环境友好型社会,促进电力工业可持续发展具有重要意义。国家能源局表示在“十二五”期间将进一步降低200MW以下小型火电机组在整个发电装机容量中的比例,提高600MW 以上超超临界发电机组的比例,特别是1000MW 级超超临界燃煤发电机组将成为当前我国火电发展的主流机组。 虽然我国已投运和在建、拟建的1000MW 级超超临界燃煤发电机组居世界首位,但是在超超临界燃煤发电的核心技术方面与发达工业国家

通信工程介绍概况

通信工程介绍概况 通信工程(也作电信工程,旧称远距离通信工程、弱电工程)是电子工程的一个重要分支,电子信息类子专业,同时也是其中一个基础学科。该学科关注的是通信过程中的信息传输和信号处理的原理和应用。本专业学习通信技术、通信系统和通信网等方面的知识,能在通信领域中从事研究、设计、制造、运营及在国民经济各部门和国防工业中从事开发、应用通信技术与设备。 该学科是信息科学技术发展迅速并极具活力的一个领域,尤其是数字移动通信、光纤通信、Internet网络通信使人们在传递信息和获得信息方面达到了前所未有的便捷程度。通信工程具有极广阔的发展前景,也是人才严重短缺的专业之一。本专业学习通信技术、通信系统和通信网等方面的知识,能在通信领域中从事研究、设计、制造、运营及在国民经济各部门和国防工业中从事开发、应用通信技术与设备。通信工程研究的是以电磁波、声波或光波的形式把信息通过电脉冲,从发送端(信源)传输到一个或多个接受端(信宿)。接受端能否正确辨认信息,取决于传输中的损耗高低。信号处理是通信工程中一个重要环节,其包括过滤,编码和解码等。毕业后可从事无线通信、电视、大规模集成电路、智能仪器及应用电子技术领域的研究,设计和通信工程的研究、设计、技术引进和技术开发工作。 研究内容 通信工程专业主要为研究信号的产生、信息的传输、交换和处理,以及在计算机通信、数字通信、卫星通信、光纤通信、蜂窝通信、个人通信、平流层通信、多媒体技术、信息高速公路、数字程控交换等方面的理论和工程应用问题。随着19世纪美国人发明电报之日起,现代通信技术就已经产生。为了适应日益发展的技术需要,通信工程专业成为了美国大学教育中的一门学科,并随着现代技术水平的不断提高而得到迅速发展。 专业发展 通信工程专业代码:0810,分为两个学科,一个是偏向于传输的“通信与信息系统(081001)”,另一个是偏向于编解码的“信号与信息处理(081002)”。其中“通信与信息系统(081001)”的前身是电机系,北京交通大学是中国通信与信息系统研究的发祥地;“信号与信息处理(081002)”的前身是信息论系,西安电子科技大学是中国信号与信息处理的发源地。 未来展望

高、超速离心技术及离心过程中应注意

高、超速离心技术及离心过程中应注意的事项在生物科学和医学领域中离心机主要用于分离细胞和细菌;纯化和收集病毒、RNA、DNA、质粒和蛋白质等生物大分子。 一. 离心机的组成 离心机主要有驱动电机、制冷系统、真空系统(超离有)、显示系统、自动保护系统和控制系统组成。必要的配件为离心转头和离心管。 二. 离心转头的选用 在离心中最常使用的转头是角度头和水平头。 1.角度头常用于差速离心来分离s(沉降系数)值相差较大(1:10) 的样品。 2. 水平头常用于密度梯度或等密度离心。 3.另有一种垂直转头使用较少,此转头主要用于等密度离心,以缩短 离心时间。 三. 离心管的选用 1.玻璃离心管不能在高速或者超速离心机上使用。 2.PP (polypropyiene,聚丙烯) 半透明。化学及温度性能稳定,但低 温下发脆。不要在4℃以下离心。 3.PA (polyallomer,聚丙烯和聚乙烯的聚合物) 半透明。化学性质最 稳定,但高温易变软。 4.CAB (cellulose acetobutyrate,醋酸丁酯纤维素) LH为0-15℃

下使用,HT为20-40℃下使用。透明。可用于较稀的酸、碱、盐。 但当pH=8以上,有机溶剂,重盐如CsCl时仅有限条件下可用。适用于酒精及蔗糖梯度。 5.PC (polycarbonate,聚碳酸酯):透明度好,硬度大,能耐高温消 毒。但不耐强酸强碱及某些有机溶剂如酒精、油、MDSO。可不装满。 主要用于5万rpm以上离心。 6.PCR (polyclear,超透明) 与PC相似,但比PC更硬 7.PE (polyethylene,聚乙烯) 不透明。对丙酮、醋酸、盐酸等稳定。 高温易变软,必须装满。 8.PS (polystyrol,聚苯乙烯) 透明坚硬。对大多数水溶液稳定,但 不能沾许多有机物,一次性使用。多用于低速离心。 9.PF (polyflor,聚氟) -100℃-140℃下使用,半透明。 10.不锈钢能抗热,抗化学腐蚀,能高压消毒,但较重,也较贵。 https://www.360docs.net/doc/3a6734603.html,管:质地较软,透明,但不耐强酸强碱及某些有机溶剂,不能高 压消毒。适合于蔗糖、甘油等密度梯度离心。透明,利于收集。 四. 注意事项 1.对称平衡:当离心转速达1-5万(转/分)时,如对称管相差1克, 转头半径5厘米,则 离心力公式 F=m×RCF 查表得:1万(转/分) RCF=6000 代入公式 F=1×6000=6(公斤)

超宽带技术概述

超宽带(UWB)技术 一、UWB技术简介 UWB(Ultra Wide Band)是一种短距离的无线通信方式。其传输距离通常在10m以内,使用1GHz以上带宽,通信速度可以达到几百Mbit/s以上。UWB不采用载波,而是利用纳秒至微微秒级的非正弦波窄脉冲传输数据,因此,其所占的频谱范围很宽,适用于高速、近距离的无线个人通信。美国联邦通讯委员会(FCC)规定,UWB的工作频段范围从3.1GHz到10.6GHz,最小工作频宽为500MHz。 超宽带传输技术和传统的窄带、宽带传输技术的区别主要有如下两方面:一个是传输带宽,另一个是是否采用载波方式。从传输带宽看,按照FCC的定义:信号带宽大于1.5G或者信号带宽与中心频率之比大于25%的为超宽带。超宽带传输技术直接使用基带传输。其传输方式是直接发送脉冲无线电信号,每秒可以发送数1O亿个脉冲。然而,这些脉冲的频域非常宽,可覆盖数Hz~数GHz。由于UWB发射的载波功率比较小,频率范围很广,所以,UWB对传统的无线电波影响相当小。UWB的技术特点显示出其具有传统窄带和宽带技术不可比拟的优势。 二、UWB技术的发展历程 现代意义上的超宽带UWB 数据传输技术,又称脉冲无线电( IR , Impulse Radio) 技术,出现于1960年,当时主要研究受时域脉冲响应控制的微波网络的瞬态动作。通过Harmuth、Ross和Robbins等先行公司的研究, UWB 技术在70 年代获得了重要的发展,其中多数集中在雷达系统应用中,包括探地雷达系统。到80 年代后期,该技术开始被称为"无载波"无线电,或脉冲无线电。美国国防部在1989 年首次使用了"超带宽"这一术语。为了研究UWB在民用领域使用的可行性,自1998 年起,美国联邦通信委员会( FCC) 对超宽带无线设备对原有窄带无线通信系统的干扰及其相互共容的问题开始广泛征求业界意见,在有美国军方和航空界等众多不同意见的情况下,FCC 仍开放了UWB 技术在短距离无线通信领域的应用许可。这充分说明此项技术所具有的广阔应用前景和巨大的市场诱惑力。 2003年12月,在美国新墨西哥州的阿尔布克尔市举行的IEEE有关UWB标准的大讨论。那时关于UWB技术有两种相互竞争的标准,一方是以Intel与德州仪器为首支持的MBOA标准,一方是以摩托罗拉为首的DS-UWB标准,双方在这场讨论中各不相让,两者的分歧体现在UWB技术的实现方式上,前者采用多频带方式,后者为单频带方式。这两个阵营均表示将单独推动各自的技术。虽然标准尘埃未定,但摩托罗拉已有了追随者,三星在国际消费电子展上展示了全球第一套可同时播放三个不同的HSDTV视频流的无线广播系统,就采用了摩托罗拉公司的Xtreme Spectrum芯片,该芯片组是摩托罗拉的第二代产品,已有样片提供,其数据传输速度最高可达114Mbps,而功耗不超过200mw。在另一阵营中,Intel 公司在其开发商论坛上展示了该公司第一个采用90nm技术工艺处理的UWB芯片;同时,该公司还首次展示多家公司联合支持的、采用UWB芯片的、应用范围超过10M的480Mbps无线USB技术。在5月中旬由IEEE802.15.3a工作组主持召开的标准大讨论会议上对这种技术进行投票选举UWB标准,MBOA获得60%的支持,DS-UWB获取40%的支持,两者都没有达到成为标准必须达到75%选票的要求。因

超宽带技术的发展

超宽带技术的发展 随着无线通信技术的发展,21世纪的世界将很快从网络时代进入无线互联时代。新兴的无线网络技术,例如WiFi、WiMax、ZigBee、Ad hoc、BlueT ooth和UltraWideBand(UWB),在办公室、家庭、工厂、公园等大众生活的方方面面得到了广泛应用,基于无线网络的定位技术的应用更加具有广阔的发展前景。根据投资银行Rutberg 公司、无线数据研究集团和国际数据公司等的预测,网络新技术将在未来的3年内达到几百亿甚至上千亿美元的营业收入,而无线定位技术的应用将在其中占有至少上百亿美元的份额。 除了全球定位系统(GPS)在导航和室外环境的应用定位以外,人们对室内定位、短距离定位等应用不甚了解。未来无线定位技术的趋势是室内定位与室外定位相结合,实现无缝的、精确的定位。现有的网络技术还不能完全满足这个要求,而UWB技术由于功耗低、抗多径效果好、安全性高、系统复杂度低、能提供精确定位精度等优点,在众多无线定位技术中脱颖而出,成为未来无线定位技术的热点。 UWB的定位优势 无线定位技术和方案很多,常用的定位技术包括红外线、超声波、射频信号等,但都不适合室内定位。红外线只适合短距离传播,而且容易被荧光灯或者房间内的灯光干扰,在精确定位上有局限性;超声波受多径效应和非视距传播影响很大,不能用于室内环境;而射频信号普遍用在室外定位系统中,应用于室内定位存在局限。 GPS是目前应用最为广泛的室外定位技术,它是20世纪70年代初美国出于军事目的开发的卫星导航定位系统,主要利用几颗卫星的测量数据计算移动用户位置,即经度、纬度和高度。一般用于车辆导航和手持设备。在此基础上,还出现了增强型GPS,辅助GPS 等技术,它们可以广泛用于航空、航海和野外定位等领域。利用GPS进行定位的优势是卫

相关文档
最新文档