余弦函数的对称性

余弦函数的对称性
余弦函数的对称性

《函数对称性的解题方法归纳》

函数对称性的解题方法归纳 讲函数的对称性主要是讲奇偶函数图像的对称性,函数与反函数图像的对称性。前者是函数自身的性质,而后者是函数的变换问题。下文中我们均简称为函数的变换性。函数的对称性在近几年高考中屡见不鲜,对于解决其它问题也很有帮助,同时也是数学美的很好体现。现通过函数自身的对称性和不同函数之间的对称变换这两个方面来探讨函数对称性有关的性质。 1. 函数自身的对称性探究 设函数 )2()2(),()(x f x f x f +=-∞+-∞上满足在,)7()7(x f x f +=-,且在闭区间[0,7]上只有0)3()1(==f f (1)试判断函数)(x f y =的奇偶性; (2)试求方程0)(=x f 在闭区间[-2005,2005]上根的个数并证明你的结论。 分析:由)7()7(),2()2(x f x f x f x f +=-+=-可得:函数图象既关于x =2对称,又关于x =7对称,进而可得到周期性,然后再继续求解,而本题关键是要首先明确函数的对称性,因此,熟悉函数对称性是解决本题的第一步。 定理1 函数)(x f y =的图像关于直线x =a 对称的充要条件是)()(x a f x a f -=+即)2()(x a f x f -= 证明(略) 推论 函数)(x f y =的图像关于y 轴对称的充要条件是)()(x f x f -= 定理2 函数)(x f y =的图像关于点A (a ,b )对称的充要条件是 b x a f x f 2)2()(=-+ 证明(略) 推论 函数)(x f y =的图像关于原点O 对称的充要条件是0)()(=-+x f x f 偶函数、奇函数分别是定理1,定理2的特例。 定理3 ①若函数)(x f y =的图像同时关于点A (a ,c )和点B (b ,c )成中心对称(b a ≠),则)(x f y =是周期函数,且b a -2是其一个周期。

正余弦函数图像的对称轴和对称中心

正余弦函数图像的对称轴和对称中心 【基本结论】: 正弦曲线x y sin =,R x ∈的对称轴方程是2ππ+=k x ,Z k ∈;对称中心坐标为 (πk ,0),Z k ∈。 余弦曲线x y cos =,R x ∈的对称轴方程是πk x =,Z k ∈;对称中心坐标为 (2 π π+k ,0),Z k ∈。 【典例分析】: 例1 求函数)3 2cos(3π--=x y 的对称中心和对称轴方程。 解: 由于函数 x y cos =的对称中心为(2ππ+k ,0),(Z k ∈)对称轴方程是πk x = 又由232πππ+=- k x ,得1252ππ+=k x (Z k ∈) 由ππ k x =-32,得62π π +=k x (Z k ∈) 故函数)32cos(3π--=x y 的对称中心为(1252 ππ +k ,3)(Z k ∈) 对称轴方程为62ππ+= k x (Z k ∈) 例2 已知函数)2sin()(?+=x x f 的图像关于直线8π =x 对称,求?的值。 解: 由于函数x x f sin )(=的图像的对称轴方程为ππ k x +=2(Z k ∈) 所以,函数)2sin()(?+=x x f 的图像的对称轴方程为 ππ ?k x += +22(Z k ∈) 即?ππ -+=k x 22(Z k ∈) 2 24?ππ -+=k x (Z k ∈) 又因为已知函数)2sin()(?+=x x f 的图像的对称轴方程为8π=x 则有2 248?ππ π-+=k (Z k ∈)

解之得:4ππ?+=k (Z k ∈); 当0=k 时,4π ?=

函数的周期和对称性

专题:函数的周期性对称性 1、周期函数的定义 一般地,对于函数)(x f y =,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+,那么函数)(x f y =就叫做周期函数,非零常数T 叫做这个函数的一个周期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 显然,若T 是函数的周期,则)0,(≠∈k z k kT 也是)(x f 的周期。如无特别说明,我们后面一般所说的周期是指函数的最小正周期。 说明:1、周期函数定义域必是无界的。 2、周期函数不一定都有最小正周期。 推广:若)()(b x f a x f +=+,则)(x f 是周期函数,a b -是它的一个周期; )2 ()2(T x f T x f -=+,则)(x f 周期为T ; ()f x 的周期为)(x f T ω?的周期为 ω T 。 2、常见周期函数的函数方程: (1)函数值之和定值型,即函数)()()(b a C x b f x a f ≠=+++ 对于定义域中任意x 满足)()()(b a C x b f x a f ≠=+++,则有)()]22([x f a b x f =-+,故函数)(x f 的周期是)(2a b T -= 特例:()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数; (2)两个函数值之积定值型,即倒数或负倒数型 若)()()(可正可负,C b a C x b f x a f ≠=+?+,则得 )]22()2[()2(a b a x f a x f -++=+,所以函数)(x f 的周期是)(2a b T -=

函数的对称性

函数的对称性 知识梳理 一、对称性的概念及常见函数的对称性 1、对称性的概念 ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数;②一次函数;③二次函数;④反比例函数;⑤指数函数;⑥对数函数;⑦幂函数;⑧正弦函数; ⑨正弦型函数sin()y A x ω?=+既是轴对称又是中心对称;⑩余弦函数;⑾正切函数;⑿耐克函数; ⒁绝对值函数:这里主要说的是(||)y f x =和|()|y f x =两类。前者显然是偶函数,它会关于y 轴对称;后者是把x 轴下方的图像对称到x 轴的上方,是否仍然具备对称性,这也没有一定的结论,例如|ln |y x =就没有对称性,而|sin |y x =却仍然是轴对称。 ⒂形如(0,)ax b y c ad bc cx d +=≠≠+的图像是双曲线,其两渐近线分别直线d x c =- (由分母为零确定)和直线a y c =(由分子、分母中x 的系数确定),对称中心是点(,)d a c c -。 二、抽象函数的对称性 【此类问题涉及到了函数图象的两种对称性,一种是同一函数自身的对称性,我们称其为自对称;另一种是两个函数之间的对称性 ,我们称其为互对称。】 1、函数)(x f y =图象本身的对称性(自对称问题) (1)轴对称 ①)(x f y =的图象关于直线a x =对称 ?)()(x a f x a f -=+ ?)2()(x a f x f -= ?)2()(x a f x f +=-

函数对称性、周期性和奇偶性的规律总结大全 .分解

函数对称性、周期性和奇偶性规律 一、 同一函数的周期性、对称性问题(即函数自身) 1、 周期性:对于函数 )(x f y =,如果存在一个不为零的常数 T ,使得当x 取定义域内的每一个值时,都有 )()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周 期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 2、 对称性定义(略),请用图形来理解。 3、 对称性: 我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 奇函数关于(0,0)对称,奇函数有关系式 0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称?)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在 )(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==, 即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。得证。 若写成:)()(x b f x a f -=+,函数)(x f y =关于直线2 2)()(b a x b x a x +=-++= 对称 (2)函数 )(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在 )(x f y =上,即) (11x f y =,通过 b x f x a f 2)()2(=+-可知, b x f x a f 2)()2(11=+-,所以 1 112)(2)2(y b x f b x a f -=-=-,所以点 )2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。得 证。 若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2 ,2( c b a + 对称 (3)函数 )(x f y =关于点b y =对称:假设函数关于b y =对称,即关于任一个x 值,都有两个 y 值与其对应,显然这不符合函数的定义,故函数自身不可能关于b y =对称。但在曲线c(x,y)=0,则 有可能会出现关于 b y =对称,比如圆04),(22=-+=y x y x c 它会关于y=0对称。 4、 周期性: (1)函数 )(x f y =满足如下关系系,则T x f 2)(的周期为 A 、 )()(x f T x f -=+ B 、) (1 )()(1)(x f T x f x f T x f - =+= +或 C 、 )(1)(1)2(x f x f T x f -+=+或) (1) (1)2(x f x f T x f +-=+(等式右边加负号亦成立)

三角函数的对称性

三角函数的对称性 一、对称性规律: 1、 对称轴: 若 x a =是 ()sin()f x A x ω=+Φ或()cos()f x A x ω=+Φ的对 称轴,则 ()f a A =± 2、 对称中心: 若 (,0) a 是 ()sin()f x A x ω=+Φ或()cos()f x A x ω=+Φ或 ()tan()f x A x ω=+Φ的对称中心,则()0f a = 解题思路:解选择题的思路即代入法。 二、基础检测 (会考说明)1、 )(62sin 3π +=x y 的一条对称轴可以是: ( ) A .Y 轴; B . 6π = x .; C .12π -=x . D .. 3π =x .。 (会考说明)2、)(43sin 3π -=x y 的一个对称中心可以是: ( ) A .),(012π -; B .),(0127π-.; C .. ),(012 7π; D .),(01211π. 3、已知函数(文)函数y = cos (2x -4π )的一对称方程是 ( ) A .x = 2π - B .x = 4π - C .x = 8π - D .x = π 4、函数πsin 23y x ? ?=+ ? ? ?的图象( ) A.关于点π03?? ???,对称 B.关于直线π4x =对称

C.关于点π04?? ???,对称 D.关于直线π3x =对称 5、22.(山东卷)已知函数)12cos()12sin(π -π-=x x y ,则下列判断正确 的是( ) (A )此函数的最小正周期为π2,其图象的一个对称中心是)0,12(π (B )此函数的最小正周期为 π ,其图象的一个对称中心是) 0,12(π (C )此函数的最小正周期为π2,其图象的一个对称中心是)0,6(π (D )此函数的最小正周期为 π ,其图象的一个对称中心是) 0,6(π 6、(4) 给定性质:①最小正周期为π,②图象关于直线3x π =对称, 则下列函数中同时具有性质①、②的是 ( ) (A) sin()26x y π=+ (B) sin(2)6y x π =- (C) sin y x = (D) sin(2)6y x π =+

高中函数对称性总结分析

高中函数对称性总结 新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角函数的对称性,因而考查的频率一直比较高。以笔者的经验看,这方面一直是教学的难点,尤其是抽象函数的对称性判断。所以这里我对高中阶段所涉及的函数对称性知识做一个粗略的总结。 一、对称性的概念及常见函数的对称性 1、对称性的概念 ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ③二次函数:是轴对称,不是中心对称,其对称轴方程为x=-b/(2a)。 ④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴。 ⑤指数函数:既不是轴对称,也不是中心对称。 ⑥对数函数:既不是轴对称,也不是中心对称。 ⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性。 ⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴。 ⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上

函数对称性、周期性和奇偶性规律总结

函数对称性、周期性和奇偶性规律总结

注:换种说法:)(x f y =与()()y g x f x ==-若满足)()(x g x f -=,即它们关于0=y 对称。 2、()y f x =与()y f x =-关于Y 轴对称。 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以()y f x =-经过点11(,)x y - ∵11(,)x y 与11(,)x y -关于Y 轴对称,∴()y f x =与()y f x =-关于Y 轴对称。 注:因为11(,)x y -代入()y f x =-得111(())()y f x f x =--=所以()y f x =-经过点11(,)x y - 换种说法:)(x f y =与()()y g x f x ==-若满足)()(x g x f -=,即它们关于0=x 对称。 ()(())()g x f x f x -=--= 3、()y f x =与(2)y f a x =-关于直线x a = 对称。 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以(2)y f a x =-经过点11(2,)a x y - ∵11(,)x y 与11(2,)a x y -关于x a =轴对称,∴()y f x =与(2)y f a x =-关 于直线x a = 对称。 注:换种说法:)(x f y =与()(2)y g x f a x ==-若满足)2()(x a g x f -=,即它们关于a x =对称。 4、)(x f y =与)(2x f a y -=关于直线a y =对称。 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以)(2x f a y -=经过点11(,2)x a y - ∵11(,)x y 与11(,2)x a y -关于y a =轴对称,∴)(x f y =与)(2x f a y -=关于直线a y =对称. 注:换种说法:)(x f y =与()2()y g x a f x ==-若满足a x g x f 2)()(=+,即它们关于a y =对称。 5、)2(2)(x a f b y x f y --==与关于点(a,b)对称。 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以2(2)y b f a x =--经过点11(2,2)a x b y --

函数的对称性

函数的对称性 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

函数的对称性 一、教学目标 函数图象的对称性是一类函数的特性,是函数性质的重要方面,它包括自身对称和两个函数图象之间的对称,理解掌握函数对称性,对数学问题的解决有很大的帮助,对也是数形结合思想的重要体现。 1.自身对称函数,函数图象本身具有对称轴或是对称中心,该函数的图象是轴对称图形或是中心对称图形,奇函数与偶函数是最典型的两类函数,其它自身对称的函数都可以由奇偶函数平移得到; 2.两个函数图象的对称,是指两个图形之间的关系,它们之间存在某种关联,即它们关于某一点对称或是关于某一条直线对称,研究其中一个函数的性质就可知另一个函数的特点(互为反函数的两个函数图象)。 二、举例分析 例1. 设()f x 是定义在R 上的函数, (1)若对任意x R ∈,都有()()f a x f b x -=+成立,则函数()f x 的图象关于直线2 a b x +=对称; (2)若对任意x R ∈,都有()()22f x f a x b +-=,则函数()f x 的图象关于点(),a b 成中心对称。 选题目的:通过此题的学习,让学生明白一个道理,函数()f x 的图象是轴对称或是中心对称,函数解析式()f x 应满足一关系式是什么,并能通过奇偶函数的平移获得理解这种关系式的钥匙。 思路分析: (1)要证明()f x 图象上任意一点()00,P x y 关于直线2 a b x +=对称的点()00,Q a b x y +-也在()f x 的图象上。 事实上,()()()()00000y f x f a a x f b a x f a b x ==--=+-=+-????????,即得点 ()00,Q a b x y +-也在()f x 的图象上。 特别地,当,a b 都为0时,就是偶函数的特征了。

(完整版)函数的周期性与对称性总结

一:有关周期性的讨论 在已知条件()()f a x f b x +=-或 ()()f x a f x b +=-中, (1) 等式两端的两自变量部分相加得常数,如()()a x b x a b ++-=+,说明f x ()的图像具有对称性,其对称轴为2 b a x +=。 (2)等式两端的两自变量部分相减得常数,如()()x a x b a b +--=+,说明 f (x )的图像具有周期性,其周期T=a +b 。 设a 为非零常数,若对于)(x f 定义域内的任意x 恒有下列条件之一成立 周期性规律 对称性规律 (1))()(a x f a x f +=- a T 2=? (1))()(x a f x a f -=+ a x =? (2))()(a x f x f += a T =? (2))()(x b f x a f -=+ 2 b a x += ? (3))()(x f a x f -=+ a T 2=? (3) )()(x b f x a f +=- 2b a x +=? (4))(1)(x f a x f =+ a T 2=? (4) )()(x b f x a f --=+ 中心点)0,2 (b a +? (5))(1)(x f a x f - =+ a T 2=? (5) )()(x a f x a f --=+ 为对称中心点)0,(a ? (6)1 )(1)()(-+=+x f x f a x f a T 2=? (7) 1()()1() f x f x a f x -+=+ a T 2=? (8) 1()()1()f x f x a f x -+=- + a T 4=? (9) ) (1)(1)(x f x f a x f -+=+ a T 4=? (10) )()()(a x f a x f x f ++-=, 0>a a T 6=?

函数的对称性完美

函数的对称性 一、教学目标 函数图象的对称性是一类函数的特性,是函数性质的重要方面,它包括自身对称和两个函数图象之间的对称,理解掌握函数对称性,对数学问题的解决有很大的帮助,对也是数形结合思想的重要体现。 1.自身对称函数,函数图象本身具有对称轴或是对称中心,该函数的图象是轴对称图形或是中心对称图形,奇函数与偶函数是最典型的两类函数,其它自身对称的函数都可以由奇偶函数平移得到; 2.两个函数图象的对称,是指两个图形之间的关系,它们之间存在某种关联,即它们关于某一点对称或是关于某一条直线对称,研究其中一个函数的性质就可知另一个函数的特点(互为反函数的两个函数图象)。 二、举例分析 例1. 设()f x 是定义在R 上的函数, (1)若对任意x R ∈,都有()()f a x f b x -=+成立,则函数()f x 的图象关于直线2 a b x +=对称; (2)若对任意x R ∈,都有()()22f x f a x b +-=,则函数()f x 的图象关于点(),a b 成中心对称。 选题目的:通过此题的学习,让学生明白一个道理,函数()f x 的图象是轴对称或是中心对称,函数解析式()f x 应满足一关系式是什么,并能通过奇偶函数的平移获得理解这种关系式的钥匙。 思路分析: (1)要证明()f x 图象上任意一点()00,P x y 关于直线2 a b x +=对称的点()00,Q a b x y +-也在()f x 的图象上。 事实上,()()()()00000y f x f a a x f b a x f a b x ==--=+-=+-????????,即得点()00,Q a b x y +-也在()f x 的图象上。 特别地,当,a b 都为0时,就是偶函数的特征了。

人教版高中数学必修4试题 1.4.2.2正、余弦函数的单调性与最值

1.4. 2.2正、余弦函数的单调性与最值 基础知识和技能训练(九) 1.函数y =cos2x 在下列哪个区间上是减函数( ) A.???? ??-π4,π4 B.?????? π4,3π4 C.? ?? ???0,π2 D.???? ??π2,π 解析 ∵y =cos2x , ∴2k π≤2x ≤π+2k π(k ∈Z ), 即k π≤x ≤π 2+k π(k ∈Z ). ∴? ?? ???k π,k π+π2(k ∈Z )为y =cos2x 的单调递减区间. 而? ?? ? ??0,π2显然是上述区间中的一个. 答案 C 2.函数y =cos ? ????x +π6,x ∈??????0,π2的值域是( ) A.? ???? -32,12 B.?????? -12,32 C.???? ?? 32,1 D.? ??? ?? 12,1 解析 由0≤x ≤π2,得π6≤x +π6≤2π 3, ∴-12≤cos ? ????x +π6≤3 2,选B. 答案 B

3.设M 和m 分别表示函数y =1 3cos x -1的最大值和最小值,则M +m 等于( ) A.23 B .-23 C .-43 D .-2 解析 依题意得M =13-1=-23,m =-1 3-1 =-4 3,∴M +m =-2. 答案 D 4.下列关系式中正确的是( ) A .sin11°<cos10°<sin168° B .sin168°<sin11°<cos10° C .sin11°<sin168°<cos10° D .sin168°<cos10°<sin11° 解析 cos10°=sin80°,sin168°=sin12°. sin80°>sin12°>sin11°, 即cos10°>sin168°>sin11°. 答案 C 5.若函数f (x )=sin ωx (ω>0)在区间??? ? ??0,π3上单调递增,在区间???? ?? π3,π2上单调递减,则ω=( ) A.23 B.32

三角函数的对称性测试题(人教A版)(含答案)

三角函数的对称性(人教A版)一、单选题(共10道,每道10分) 1.函数在上对称轴的条数为( ) A.1 B.2 C.3 D.0 答案:B 解题思路: 令,解得,. ∴,解得,, ∴,即共2条对称轴. 故选B. 试题难度:三颗星知识点:正弦函数的对称性 2.方程(是参数,)表示的曲线的对称轴的方程为( ) A. B. C. D. 答案:B 解题思路: ∵, ∴.

∴方程表示的曲线为:. 令,解得,. ∴对称轴的方程为. 故选B. 试题难度:三颗星知识点:正弦函数的对称性 3.已知,函数的一条对称轴为直线,一个对称中心为 ,则有( ) A.最小值2 B.最大值2 C.最小值1 D.最大值1 答案:A 解题思路: 由题意, (1), 则,解得,. ∴可取: (2), 则,解得,. ∴可取: 由题意知,必须同时满足(1)(2), 则有最小值2.

故选A. 试题难度:三颗星知识点:余弦函数的对称性 4.函数()图象的一条对称轴在内,则满足此条件的一个值为( ) A. B. C. D. 答案:A 解题思路: 由题意, 令,解得. ∴对称轴为直线,, ∵该对称轴在内, ∴, 解得,. 又, ∴当时,,可取,满足题意, 故选A. 试题难度:三颗星知识点:正弦函数的对称性

5.已知函数图象在区间上仅有两条对称轴,且,那么符合条件的值有( )个 A.1 B.2 C.3 D.4 答案:D 解题思路: 由题意,,作出的大致图象如下: 由图知, ①,②, 由①得,;由②得,. ∵, ∴. 故选D. 试题难度:三颗星知识点:正弦函数的对称性 6.设函数与函数的对称轴完全相

高考数学复习专题函数的对称性与周期性

第5炼 函数的对称性与周期性 一、基础知识 (一)函数的对称性 1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称 2、轴对称的等价描述: (1)()()f a x f a x -=+?()f x 关于x a =轴对称(当0a =时,恰好就是偶函数) (2)()()()f a x f b x f x -=+?关于2 a b x += 轴对称 在已知对称轴的情况下,构造形如()()f a x f b x -=+的等式只需注意两点,一是等式两侧f 前面的符号相同,且括号内x 前面的符号相反;二是,a b 的取值保证2 a b x += 为所给对称轴即可。例如:()f x 关于1x =轴对称()()2f x f x ?=-,或得到 ()()31f x f x -=-+均可,只是在求函数值方面,一侧是()f x 更为方便 (3)()f x a +是偶函数,则()()f x a f x a +=-+,进而可得到:()f x 关于x a =轴对称。 ① 要注意偶函数是指自变量取相反数,函数值相等,所以在()f x a +中,x 仅是括号中的一部分,偶函数只是指其中的x 取相反数时,函数值相等,即()()f x a f x a +=-+,要与以下的命题区分: 若()f x 是偶函数,则()()f x a f x a +=-+????:()f x 是偶函数中的x 占据整个括号,所以是指括号内取相反数,则函数值相等,所以有()()f x a f x a +=-+???? ② 本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称。 3、中心对称的等价描述: (1)()()f a x f a x -=-+?()f x 关于(),0a 轴对称(当0a =时,恰好就是奇函数) (2)()()()f a x f b x f x -=-+?关于,02a b +?? ??? 轴对称 在已知对称中心的情况下,构造形如()()f a x f b x -=-+的等式同样需注意两点,一是

三角函数图象的对称性

三角函数图象的对称性质及其应用 观察三角函数的图象,不难发现它们都具有对称性 ,虽然历届高考中关于三角函数图象的对称性问题屡有涉及,但教材中却是一个盲点。为此,本文谈谈三角函数图象的对称性质及其应用。 一、正弦曲线和余弦曲线都是轴对称图形 性质1、函数)sin(?ω+=x A y 和)cos(?ω+=x A y 的图象关于过最值点且垂直于x 轴的直线分别成轴对称图形; )sin(?ω+=x A y 对称轴方程的求法是:令1)sin(±=+?ωx ,得 2ππ?ω+=+k x )(Z k ∈,则ω ?π22)12(-+= k x ,所以函数)sin(?ω+=x A y 的图象的对称轴方程为ω?π22)12(-+=k x ; )cos(?ω+=x A y 对称轴方程的求法是:令1)cos(±=+?ωx ,得π?ωk x =+)(Z k ∈,则ω?π-= k x ,所以函数)cos(?ω+=x A y 的图象的对称轴方程为ω?π-=k x 。 例1、函数)62sin(3π+ =x y 图象的一条对称轴方程是( ) (A )0=x (B )32π=x (C )6π-=x (D )3π=x 解:由性质1知,令1)62sin(3±=+ πx 得262πππ+=+k x )(Z k ∈,即62ππ+=k x )(Z k ∈,取1=k 时,3 2π=x ,故选(B )。 例2、函数)3 3cos(21)(π+=x x f 的图象的对称轴方程是 解:由性质1知, 令1)33cos(±=+ πx 得ππk x =+33)(Z k ∈,即93ππ-=k x )(Z k ∈,所以)3 3cos()(π+=x x f 的图象的对称轴方程是9 3ππ-=k x )(Z k ∈。 二、正弦曲线和余弦曲线都是中心对称图形 性质2、函数)sin(?ω+=x A y 和)cos(?ω+=x A y 的图象关于其与x 轴的交点分别成中心对称图形; )sin(?ω+=x A y 的对称中心求法是:令0)sin(=+?ωx ,得

函数的对称性知识点讲解及典型习题分析

函数的对称性知识点讲解及典型习题分析 新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连 续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角 函数的对称性,因而考查的频率一直比较高。 对称性的概念及常见函数的对称性 1、对称性的概念: ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称, 该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的 中心对称,该点称为该函数的对称中心。 常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ③二次函数:是轴对称,不是中心对称,其对称轴方程为 a b x2。 ④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴。 ⑤指数函数:既不是轴对称,也不是中心对称。 ⑥对数函数:既不是轴对称,也不是中心对称。 ⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性。 ⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0 )是它的对称中心,2kx是它的对称轴。 ⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不 会改变,但对称中心的纵坐标会跟着变化。 ⑩余弦函数:既是轴对称又是中心对称,其中x=kπ是它的对称轴,) 0,2 (k是它的对称中心。 (11 )正切函数:不是轴对称,但是是中心对称,其中)0,2 ( k是它的对称中心,容易犯错误的是可能有的同学会误以为对 称中心只是(kπ,0)。 对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。但容易犯错误的是同学们可能 误以为最值处是它的对称轴。 三次函数:显然三次函数中的奇函数是中心对称,对称中心是原点,而其他的三次函数是否具备对称性得因题而异。 绝对值函数:这里主要说的是y=f(│x│)和y=│f(x)│两类。前者显然是偶函数,它会关于y轴对称;后者是把x轴下方的图像对称到x轴的上方,是否仍然具备对称性,这也没有一定的结论,例如y=│lnx│就没有对称性,而y=│sinx│却仍然是轴对称。 二、函数的对称性猜测: 具体函数特殊的对称性猜测 ①一个函数一般是不会关于x轴对称,这是由函数定义决定的,因为一个x不会对应两个y的值。但一个曲线是可能关于x 轴对称的。例1、判断曲线xy42 ②函数关于y轴对称例2、判断函数y=cos(sinx)的对称性。 ③函数关于原点对称例3、判断函数xxysin3 ④函数关于y=x对称例4 、判断函数x y1 ⑤函数关于y=-x对称例5 、判断函数x y4 总结为:设(x,y)为原曲线图像上任一点,如果(x,-y)也在图像上,则该曲线关于x轴对称;如果(-x,y)也在图像上,则该曲线关于y轴对称;如果(-x,-y)也在图像上,则该曲线关于原点对称;如果(y,x)也在图像上,则该曲线关 于y=x对称;如果(-y,-x)也在图像上,则该曲线关于y=-x轴对称。2、抽象函数的对称性猜测①轴对称 例6、如果函数y=f(x)满足f(x+1)=f(4-x),求该函数的所有对称轴。(任意取值代入例如x=0有f(1)=f(4),正中间 2.5,从而该函数关于x=2.5对称) 例7、如果函数y=f(x)满足f(x)=f(-x),求该函数的所有对称轴。(按上例一样的方法可以猜出对称轴为x=0,可见偶函数是特殊的轴对称) 例8、如果f(x)为偶函数,并且f(x+1)=f(x+3),求该函数的所有对称轴。(因为f(x+1)=f(-x-3),按上例可以猜出对称轴x=-1,又因为它以2为周期,所以x=k是它所有的对称轴,k∈Z)②中心对称 例9、如果函数y=f(x)满足f(3+x)+f(4-x)=6,求该函数的对称中心。(因为自变量加起来为7时函数值的和始终为6,所以中点固定为(3.5,3),这就是它的对称中心)

正弦、余弦函数的单调性

§4.8正弦、余弦函数的单调性(一) 班级 学号 姓名 一、 课堂目标: 能正确地求出正弦、余弦函数及一些简单复合函数的单调区间 二、 要点回顾: 1增函数定义回顾:如果对于属于定义域内某个区间上的任意两个自变量的值x 1, x 2,当x 1sin β. C.sin α≥sin β D.sin α,sin β大小不定 7、下列函数中,既是偶函数又是周期函数的是 A.y=x sin B.y=x 2log C.y=sin x D.y=log x 2 7、求下列函数的单调递增区间: (1))42cos(2π- =x y (2))24sin(2x y -=π (3)x y sin 21?? ? ??= (4)x y cos log 2=

函数对称性与周期性几个重要结论赏析

函数对称性与周期性几个重要结论赏析 对称性和周期性是函数的两个重要性质,下面总结这两个性质的几个重要结论及运用它们解决抽象型函数的有关习题。 一、 几个重要的结论 (一)函数图象本身的对称性(自身对称) 1、函数)(x f y =满足)()(x T f x T f -=+(T 为常数)的充要条件是)(x f y =的图象关于直线T x =对称。 2、函数)(x f y =满足)2()(x T f x f -=(T 为常数)的充要条件是)(x f y =的图象关于直线T x =对称。 3、函数)(x f y =满足)()(x b f x a f -=+的充要条件是)(x f y =图象关于直线2 2)()(b a x b x a x +=-++=对称。 4、如果函数 )(x f y =满足)()(11x T f x T f -=+且)()(22x T f x T f -=+,(1T 和2T 是不相等的常数),则)(x f y =是以为)(212T T -为周期的周期函数。 5、如果奇函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是以4T 为周期的周期性函数。 6、如果偶函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是以2T 为周期的周期性函数。 (二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、曲线 )(x f y =与)(x f y -=关于X 轴对称。 2、曲线)(x f y =与)(x f y -=关于Y 轴对称。 3、曲线)(x f y =与)2(x a f y -=关于直线a x =对称。 4、曲线0),(=y x f 关于直线b x =对称曲线为0)2,(=-y b x f 。 5、曲线0),(=y x f 关于直线0=++c y x 对称曲线为0),(=----c x c y f 。 6、曲线0),(=y x f 关于直线0=+-c y x 对称曲线为0),(=+-c x c y f 。 7、曲线0),(=y x f 关于点),(b a P 对称曲线为0)2,2(=--y b x a f 。 二、试试看,练练笔 1、定义在实数集上的奇函数 )(x f 恒满足)1()1(x f x f -=+,且)0,1(-∈x 时, 512)(+=x x f ,则=)20(log 2f ________。 2、已知函数)(x f y =满足0)2()(=-+x f x f ,则)(x f y =图象关于__________对称。 3、函数)1(-=x f y 与函数)1(x f y -=的图象关于关于__________对称。 4、设函数)(x f y =的定义域为R ,且满足)1()1(x f x f -=-,则)(x f y =的图象关于__________ 对称。 5、设函数)(x f y =的定义域为R ,且满足)1()1(x f x f -=+,则)1(+=x f y 的图象关于__________对称。)(x f y =图象关于__________对称。 6、设)(x f y =的定义域为R ,且对任意R x ∈,有)2()21(x f x f =-,则)2(x f y =图象关于__________对称,)(x f y =关于__________对称。 7、已知函数)(x f y =对一切实数x 满足)4()2(x f x f +=-,且方程0)(=x f 有5个实根,则这5个实根之和为( ) A 、5 B 、10 C 、15 D 、18 8、设函数 )(x f y =的定义域为R ,则下列命题中,①若)(x f y =是偶函数,则)2(+=x f y 图象

函数的奇偶性、对称性与周期性总结-史上最全

函数的奇偶性、对称性与周期性常用结论,史上最全 函数是高中数学的重点与难点,在高考数学中占分比重巨大。高考中对函数的考查灵活,相关的结论众多,有奇偶性,对称性,还有周期性,这些结论及变形能否掌握,都影响着学生的最终成绩。本篇将函数的奇偶性、对称性与周期性常用的结论进行总结,希望对同学们有帮助。需要WORD 电子文档的同学,可以入群领取。 1.奇偶函数: 设[][][]b a a b x b a x x f y ,,,),( --∈∈=或奇偶函数的定义域关于原点对称。 ①若为奇函数;则称)(),()(x f y x f x f =-=-() ()()0, 1() f x f x f x f x +-==-- ②若为偶函数则称)()()(x f y x f x f ==-。() ()-()0, 1() f x f x f x f x -==- 2.周期函数的定义: 对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。 《 分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:), (x f y = []a b T b a x -=∈,,。把)()(a b K KT x x f y -==轴平移沿个单位即按向量 )()0,(x f y kT ==平移,即得在其他周期的图像:[]b kT a kT x kT x f y ++∈-=,),(。 [][]?? ?++∈-∈=b kT a,kT x )(b a, x )()(kT x f x f x f

相关文档
最新文档