数学分析21.6重积分的应用(含习题及参考答案)

数学分析21.6重积分的应用(含习题及参考答案)
数学分析21.6重积分的应用(含习题及参考答案)

第二十一章 重积分 6重积分的应用

一、曲面的面积

问题:设D 为可求面积的平面有界区域,函数f(x,y)在D 上具有连续的一阶偏导数,讨论由方程z=f(x,y), (x,y)∈D 所确定的曲面S 的面积.

分析:对区域D 作分割T ,把D 分成n 个小区域σi (i=1,2,…,n). 曲面S 同时也被分割成相应的n 个小曲面片S i (i=1,2,…,n). 在每个S i 上任取一点M i , 作曲面在这一点的切平面πi , 并 在πi 上取出一小块A i , 使得A i 与S i 在xy 平面上的投影都是σi . 现在M i 附近,用切平面A i 代替小曲面片S i . 则当T 充分小时,有 △S=∑=?n

i i S 1

≈∑=?n

i i A 1

, 这里的△S, △S i , △A i 分别表示S, S i 和A i 的面积.

∴当T →0时,可用和式∑=?n

i i A 1

的极限作为S 的面积.

建立曲面面积计算公式:

∵切平面πi 的法向量就是曲面S 在点M i (ξi ,ηi ,ζi )处的法向量, 记其与z 轴的夹角为γi , 则|cos γi |=)

,(),(11

22i i y

i i x

f f ηξηξ++.

∵A i 在xy 平面上投影为σi , ∴△A i =

i

i

γσcos ?=i i i y i i x f f σηξηξ?++),(),(122. 又和数∑=?n

i i A 1

=∑=?++n

i i i i y i i x f f 1

22),(),(1σηξηξ是连续函数

),(),(122y x f y x f y x ++在有界闭区域D 上的积分和,∴当T →0时,有 △S=∑=→?++n

i i i i y i i x T f f 1220

),(),(1lim σηξηξ=??++D

y x dxdy y x f y x f ),(),(122, 或△S=∑

=→?n

i i i

T 1

cos lim

γσ=??∧

D

z n dxdy )

,cos(,

其中),cos(∧

z n 为曲面的法向量与z 轴正向夹角的余弦.

例1:求圆锥z=22y x +在圆柱体x 2+y 2≤x 内那一部分的面积. 解:由x 2+y 2≤x, 得D={(r,θ)|0≤r ≤2

1

, 0≤θ≤2π}, 又z x =

2

2y x x +=

r r θcos =cos θ, z y =22y

x y

+=r r θsin =sin θ, ∴△S=??++D

y

x

dxdy z z 221=??

π

θ20210

2rdr d =

π4

2.

例2:设平面光滑曲线的方程为y=f(x), x ∈[a,b] (f(x)>0). 求证:此曲线绕x 轴旋转一周得到的旋转曲面的面积为: S=?'+b

a dx x f x f )(1)(22π.

证:由上半旋转面方程为z=22)(y x f -, 得 z x =

2

2)()()(y

x f x f x f -', z y =

2

2

)(y

x f y --. 即有

221y x

z z ++=2

22

2222)()()()(1y

x f y y x f x f x f -+-'+=2

222)())

(1)((y

x f x f x f -'+. ∴S=??--'+b a x f x f dy y x f x f x f dx )

()

(2

22)()(1)(2=??-'+b a x f dy

y x f dx x f x f )(0222)(1

)(1)(4

=??---'+b

a x f x yf d x f y dx x f x f )

(0

1

2

22))(()(11)(1)(4

=??-'+b a dt t

dx x f x f 1

02211)(1)(4=?'+b a

dx x f x f )(1)(22

π.

注:若空间曲面S 由参量方程:x=x(u,v),y=y(u,v),z=z(u,v),(u,v)∈D 确定, 其中x(u,v), y(u,v), z(u,v)在D 上具有连续一阶偏导数,且

),(),(v u u y x ?,),(),(v u u z y ?,)

,()

,(v u u x z ?中至少有一个不等于0,则 曲面S 在点(x,y,z)的法线方向数为

???),(),(v u u z y ,),(),(v u u x z ?,???

?

?),(),(v u u y x , 则 它与z 轴的夹角的余弦的绝对值为:

),cos(∧

z n =

2

2

2

),(),(),(),(),(),()

,()

,(???

? ???+???? ???+???? ????v u u y x v u u x z v u u z y v u u y x

=

2

222222)

())(()

,()

,(v u v u v u v

v

v

u

u

u

z z y y x x z y x z y x v u u y x ++-++++?=

2

1)

,(),(F

EG v u u y x -?,

其中E=222u u u z y x ++,G=222v v v z y x ++,F=v u v u v u z z y y x x ++.

),()

,(v u u y x ?≠0,则有△S=??∧

D

z n dxdy )

,cos(=dudv z n v u u y x D ??

'

?)

,cos(),()

,(=dudv F EG D ??'

-2.

例3:求球面上两条纬线和两条经线之间 的曲面的面积(图中阴影部分). 解:设球面方程为:(R 为球的半径). x=Rcos ψcos φ,y=Rcos ψsin φ, z=Rsin ψ

.

由E=222ψψψz y x ++=R 2, G=2

22?

??z y x ++=R 2cos 2ψ, F=?ψ?ψ?ψz z y y x x ++=0, 得2F EG -=R 2cos ψ. ∴△S=??2

1

21

cos 2ψψ??ψψ?d R d =R 2(φ2-φ1)(sin ψ2-sin ψ1).

二、质心

引例:设V 是密度函数为ρ(x,y,z)的空间物体,ρ(x,y,z)在V 上连续. 为求得V 的质心坐标公式,先对V 作分割T ,在属于T 的每一小块v i 上任取一点(ξi ,ηi ,ζi ),则小块v i 的质量可用ρ(ξi ,ηi ,ζi )△v i 近似代替. 若把每一小块看作质量集中在(ξi ,ηi ,ζi )的质点时,整个物体就可用这n 个质点的质点系来近似代替. 由于质点系的质心坐标公式为:

∑∑==??=

n

i i

i

i

i

n

i i

i

i

i

i

n v v x 1

1

),,(),,(ζ

ηξρζ

ηξρξ, ∑∑==??=

n

i i

i

i

i

n

i i

i

i

i

i

n v v y 1

1),,(),,(ζ

ηξρζ

ηξρη, ∑∑==??=

n i i

i

i

i

n

i i

i i i i

n v v z 1

1),,(),,(ζ

ηξρζηξρζ

.

当T →0时,n x , n y , n z 的极限x , y , z 就定义为V 的质心坐标,即

??????=

V

V

dV

z y x dV

z y x x x ),,(),,(ρρ, ??????=

V

V

dV

z y x dV

z y x y y ),,(),,(ρρ, ??????=

V

V

dV

z y x dV

z y x z z ),,(),,(ρρ.

当物体V 的密度均匀即ρ为常数时,则有

????=

V

xdV V

x 1, ????=

V

ydV V

y 1, ????=

V

zdV V

z 1, 这里△V 为V 的体积.

又密度分布为ρ(x,y)的平面薄板D 的质心坐标为:

????=

D

D

d y x d y x x x σ

ρσ

ρ),(),(, ????=

D

D

d y x d y x y y σ

ρσ

ρ),(),(. 当平面薄板的密度均匀时,即

ρ为常数时,则有???=D

xd D x σ1, ???=D yd D y σ1

, △D 为薄板D 的面积.

例4:求密度均匀的上半椭球体的质心.

解:设椭球体由不等式a x 2+b

y 2+c z 2

≤1表示.

由对称性知x =0, y =0, 又由ρ为常数,得z =

??????V

V

dV

dV

z ρρ=

abc abc ππ3

2

42

=

8

3c .

三、转动惯量

质点A 对于轴l 的转动惯量J 是质点A 的质量m 和A 与转动轴l 的距离r 的平方的乘积,即J=mr 2.

设ρ(x,y,z)为空间物体V 的密度分布函数,它在V 上连续. 对V 作分割T ,在属于T 的每一小块v i 上任取一点(ξi ,ηi ,ζi ),则v i 的质量可用ρ(ξi ,ηi ,ζi )△v i 近似代替. 当以质点系{(ξi ,ηi ,ζi ), i=1,2,…, n}近似替代V 时,质点系对于x 轴的转动惯量为:i i i i n

i i i x v J n

?+=∑=),,()(1

22ζηξρζη.

当T →0时,上述积分和的极限就是物体V 对于x 轴的转动惯量 J x =???+V

dV z y x z y ),,()(22ρ. 类似地,V 对于y 轴与z 轴的转动惯量分别为:

J y =???+V

dV z y x x z ),,()(22ρ, J z =???+V

dV z y x y x ),,()(22ρ.

同理,V 对于坐标平面的转动惯量分别为:

J xy =???V

dV z y x z ),,(2ρ, J yz =???V

dV z y x x ),,(2ρ, J xz =???V

dV z y x y ),,(2ρ.

平面薄板对于坐标轴的转动惯量分别为:

J x =??D

d y x y σρ),(2, J y =??D

d y x x σρ),(2. 以及有J l =??D

d y x y x r σρ),(),(2,

其中l 为转动轴, r(x,y)为D 中点(x,y)到l 的距离函数.

例5:求密度均匀的圆环D 对于垂直于圆环面中心轴的转动惯量. 解:设圆环D 为R 12≤x 2+y 2≤R 22, 密度为ρ, 则

D 中任一点(x,y)与转轴的距离平方为x 2+y 2, 于是转动惯量为:

J=??+D

d y x σρ)(2

2

=??2

1

320R R dr r d π

θρ=

2

πρ

(R 24-R 14)=

例6:求均匀圆盘D 对于其直径的转动惯量.

解:设D 为x 2+y 2≤R 2, 密度为ρ, D 内任一点(x,y)与y 轴的距离为|x|, 于是转动惯量为:(m 为圆盘质量) J=??D

d x σρ2

=??R

dr r d 02

3

20cos θθρπ

=

?

π

θθρ20

2

4

cos 4

d R =

44

R ρπ=4

2mR .

例7:设某球体的密度与球心的距离成正比,求它对于切平面的转动惯量.

解:设球体由x 2+y 2+z 2≤R 2表示,密度为k 222z y x ++, k 为比便常数. 切平面方程为x=R, 则球体对于平面x=R 的转动惯量为: J=k ???-++V

dV x R z y x 2

2

2

2

)(=k ???-ππ?θ??θ003220sin )cos sin (R

dr r r R d d

=kR 6????

? ??+-ππ?θ?θ?θ023220cos sin 6

1cos sin 524

1d d =?πθθ202

6cos 911d kR =9

11k πR 6.

四、引力

求密度为ρ(x,y,z)的立体对立体外质量为1的质点A 的引力.

设A 的坐标为(ξi ,ηi ,ζi ),V 中点的坐标用(x,y,z)表示. V 中质量微元dm=ρdV 对A 的引力在坐标轴上的投影为 dF x

y

z

其中K 为引力系数, r=222)()()(ζηξ-+-+-z y x 是A 到dV 的距离,于是 力F 在三个坐标轴上的投影分别为: F x =K ???

-V

dV r x ρξ3, F y =K ???-V dV r y ρη3, F z =K ???-V

dV r z ρζ

3, 所以F=F x i+F y j+F z k.

例8:设球体V 具有均匀的密度ρ, 求V 对球外一点A(质量为1)的引力(引力系数为k).

解:设球体为x 2+y 2+z 2≤R 2,球外一点坐标为(0,0,a) (R

F z =k ???-++-V dV a z y x a z ρ2/3222])([=k ρ???-++--z

D R R a z y x dxdy

dz a z 2/3222])([)(, 其中D z ={(x,y)|x2+y2≤R 2-z 2}. 运用极坐标计算得: F z =k ρdr a z r r

d dz a z z R R

R ???---+-2

202

/32220])([)(π

θ =2πk ρ?-+---

-R R dz a

az R a z )21(2

2

=2πk ρ????

??+--++-+-?-R R dz a az R R a a az R a R 2

2222222212= 2πk ρ??

?

??

?-+---

-+---?

?

--R

R

R

R

az d a az R a R a az d a az R a R )2(21

4)2(241

2222

2

22

2

2

=2πk ρ??

???

?+---

+-----R

R

R

R

a az R a R a a az R a R 2

22

22322

2

22)

2(61

2 =2πk ρ??

?

???-++----2

22233)(6)()(2a R a R a a R R a R

=2πk ρ???

?

??-+++-232332a R R a R R R =2334a R k ρπ-. (注:z ≤R

习题

1、求曲面az=xy 包含在圆柱x 2+y 2=a 2内那部分的面积.

解:∵z x =a y

, z y =a

x , D={(r,θ)|0≤r ≤a, 0≤θ≤2π}, ∴曲面面积为: S=??

??

?

??+??? ??+D

dxdy a x a y 2

21=??+a dr a r r d 022201πθ=)122(322-a π.

2、求锥面z=22y x +被柱面z 2=2x 所截部分的曲面面积. 解:且面在xy 平面的投影区域为:D={(r,θ)|0≤r ≤1, 0≤θ≤2π}, 且z x =

2

2

y

x x +, z y =

2

2

y

x y +, ∴曲面面积为:

S=??

?

??

? ??++???? ??++D

dxdy y x y y x x 2

222

221=??10202rdr d πθ=π2.

3、求下列均匀密度的平面薄板质心:

(1)半椭圆22

22b

y a x +≤1, y ≥0;(2)高为h, 底分别为a 和b 的等腰梯形.

解:(1)设质心位置为(x ,y ), 由对称性得x =0.

y =

????D

D

d yd σ

ρσρ=

????D

D

d yd σ

σ

=

??D

yd ab σπ

2

=

dr r ab d ab ?

θθπ

1

22sin 2=

π

34b . (2)不妨设a 为下底,以下底中点为原点建立直角坐标系,则 D={(x,y)|l 1(y)≤x ≤l 2(y),0≤y ≤h}.

设质心位置为(x ,y ), 由对称性得x =0.又等腰三角形的面积为

2

)(h

b a +, ∴y =??+D yd h b a σ)(2=??+h y l y l dx ydy h b a 0)()(21)(2

=

??????

?+---+--+h ydy a h y h a b a h y h b a h b a 02)(22)(2)(2

=

???????+--+h ydy a h y h b a h b a 0)()(2=???

? ??+-+h dy by y h b a h b a 02

)(2=h b a a b )(32++. 其中:l 1(y): x=2)(2a h y h a b ---; l 2(y): x=2

)(2a

h y h b a +--.

4、求下列均匀密度物体的质心.

(1)z ≤1-x 2-y 2, z ≥0;(2)由坐标面及平面x+2y-z=1所围的四面体. 解:(1)设质心为(x ,y ,z ), 由对称性x =y =0, 应用柱面坐标变换有,

z =??????V

V dV dV

z ρρ=??????--22

10

201010201

0r r dz r d r d zdz r d r d ππθθ=dr r r dr r r )1()1(212

102

210--??=3

1. (2)设质心为(x ,y ,z ),∵V=???V

dV =

12

1, ∴x =

?

??--+210

01

21

1

x y x dz dy xdx V =?

?---210

1

)21(12x dy y x xdx =?-1

024)1(12dx x x =4

1

. y =???--+y

y x dz dx ydy V 210

12210

1=?

?---y

dx x y ydy 210

210

)21(12=?

-210

22)21(12dy y y =81

. z =?

??

--+y

y x zdz dx dy V

210

1

221

1=?

?--+-y

dx y x dy 210

2

210

)12(6=?

--210

33)21(6dy y =4

1

-.

5、求下列均匀密度的平面薄板的转动惯量: (1)半径为R 的圆关于其切线的转动惯量;

(2)边长为a 和b, 且夹角为φ的平行四边形,关于底边b 的转动惯量.

解:(1)设切线为x=R, 密度为ρ.

则对任一点P(x,y)∈D, P 到x=R 的距离为R-x ,从而转动惯量 J=ρ??-D

d x R σ2)(=ρ??+-R

dr r Rr R r d 022220)cos cos 2(θθθπ

=ρ?

+-π

θθθ20

24

)cos 41cos 3221(d R

= R 4. (2)设密度为ρ. 以底边为x 轴,左端点为原点,则转动惯量 J=??D

d y σ2=ρ?

?+b

y y a dx dy y ??

?

cot cot sin 0

2

=

3

sin 33?

ρb a .

6、计算下列引力:

(1)均匀薄片x 2+y 2≤R 2, z=0对于轴上一点(0,0,c) (c>0)处的单位质量的引力;

(2)均匀柱体x 2+y 2≤a 2, 0≤z ≤h 对于点P(0,0,c) (c>h)处的单位质量的引力;

(3)均匀密度的正圆锥体(高h, 底半径R)对于在它的顶点处质量为m 的质点的引力.

解:(1)根据对称性知引力方向在z 轴上,∴F z =0, F y =0.

F z =k ρ??++D

dxdy c y x c 2/3222)(=kc ρ??+R dr c r r d 02/32220)(πθ=2k .

∴F={0,0,2k }.

(2)根据对称性知引力方向在z 轴上,∴F z =0, F y =0. F z =k ρ???

-++-V

dV c z y x c z 2

/3222])([=k ρ???-+-a h dr c z r r

d dz c z 02/322200])([)(πθ

=-2k πρdz c z a c z h

????

?

????-+-+0

22)(1=2k πρ[]

h c h a c a --+-+2222)(. ∴F={0,0,2k πρ[]

h c h a c a --+-+2222)(}.

(3)以圆锥体的顶点为原点, 对称轴为z 轴建立xyz 三维直角坐标系. 根据对称性知引力方向在z 轴上,∴F z =0, F y =0.

F z =k ρm ???++V dV z y x z 2/3222)

(=k ρm ???+R hr

R dz z r z

rdr d 02/322020)(πθ

=2k πR ρm ???

?

??++-222

21R h R h R . ∴F={0,0, 2k πR ρm ???

? ?

?++-22221R h R h R }.

7、求曲面??

???=+=+=ψ?ψ?

ψsin sin )cos (cos )cos (a z a b y a b x (0≤φ≤2π, 0≤ψ≤2π) 的面积,其中

常数a,b 满足0≤a ≤b.

解:∵x φ=-(b+acos ψ)sin φ, y φ=(b+acos ψ)cos φ, z φ=0; x ψ=-asin ψcos φ, y ψ=-asin ψsin φ, z ψ=acos ψ.

∴E=222???z y x ++=(b+acos ψ)2, G=2

22ψ

ψψz y x ++=a 2, F=ψ?ψ?ψ?z z y y x x ++=0. ∴S=σd F EG D ??'

-2

=σψd a b a D ??'

+)cos (=??+π

πψψ?2020)cos (d a b d a =4ab π2.

8、求螺旋面??

???===???b z r y r x sin cos (0≤r ≤a, 0≤φ≤2π) 的面积.

解:∵x r =cos φ, y r =sin φ, z r =0; x φ=-rsin φ, y φ=rcos φ, z φ=b.

∴E=222r r r z y x ++=1, G=2

22?

??z y x ++=r 2+b 2, F=???z z y y x x r r r ++=0.

∴S=σd F EG D ??'-2

=σd b r D ??'

+2

2

=??+π

?2002

2

d dr b r a

=π???

?

??++++b b a a b b a a 222

22ln .

9、求边长为a 密度均匀的正方体关于其任一棱边的转动变量. 解:以正方体的一个顶点为原点,顶点上方的棱为z 轴,使 正方体处于第一卦限中,则正方体对z 轴上的棱的转动变量为: J z =ρ???+V dV y x )(22=ρ???+a

a

a

dz y x dy dx 00220)(=a ρ??+a

a

dy y x dx 0220)(

=a ρ?+a

dx a ax 032)31(=3

2a 5ρ. (ρ为正方体密度)

高等数学定积分应用

第六章 定积分的应用 本章将应用第五章学过的定积分理论来分析和解决一些几何、物理中的问题,其目的不仅在于建立这些几何、物理的公式,而且更重要的还在于介绍运用元素法将一个量表达为定积分的分析方法。 一、教学目标与基本要求: 使学生掌握定积分计算基本技巧;使学生用所学的定积分的微元法(元素法)去解决各种领域中的一些实际问题; 掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、变力作功、引力、压力及函数的平均值等) 二、本章各节教学内容及学时分配: 第一节 定积分的元素法 1课时 第二节 定积分在几何学上的应用 3课时 第三节 定积分在物理学上的应用 2课时 三、本章教学内容的重点难点: 找出未知量的元素(微元)的方法。用元素法建立这些几何、物理的公式解决实际问题。运用元素法将一个量表达为定积分的分析方法 6.1定积分的微小元素法 一、内容要点 1、复习曲边梯形的面积计算方法,定积分的定义 面积A ?∑=?==→b a n i i i dx x f x f )()(lim 1 ξλ 面积元素dA =dx x f )( 2、计算面积的元素法步骤: (1)画出图形; (2)将这个图形分割成n 个部分,这n 个部分的近似于矩形或者扇形; (3)计算出面积元素; (4)在面积元素前面添加积分号,确定上、下限。 二、教学要求与注意点 掌握用元素法解决一个实际问题所需要的条件。用元素法解决一个实际问题的步骤。 三、作业35 6.2定积分在几何中的应用

一、内容要点 1、在直角坐标系下计算平面图形的面积 方法一 面积元素dA =dx x x )]()([12??-,面积 A = x x x b a d )]()([12??-? 第一步:在D 边界方程中解出y 的两个表达式)(1x y ?=,)(2x y ?=. 第二步:在剩下的边界方程中找出x 的两个常数值a x =,b x =;不够时由)(1x ?)(2x ?=解出, b x a ≤≤,)()(21x y x ??≤≤,面积S =x x x b a d )]()([12??-? 方法二 面积元素dA =dy y y )]()([12??-,面积 A = y y y d c d )]()([12??-? 第一步:在D 边界方程中解出x 的两个表达式)(1y x ?=,)(2y x ?=. 第二步:在剩下的边界方程中找出y 的两个常数值c y =,d y =;不够时由)(1y ?)(2y ?=解出, d y c ≤≤,)()(21y x y ??≤≤,面积S =y y y d c d )]()([12??-? 例1 求22-=x y ,12+=x y 围成的面积 解?????+=-=1 222x y x y ,1222+=-x x ,1-=x ,3=x 。当31<<-x 时1222+<-x x ,于是 面积?--=+-=--+=3 1 313223 210)331 ()]2()12[(x x x dx x x 例2 计算4,22-==x y x y 围成的面积 解 由25.0y x =,4+=y x 得,4,2=-=y y ,当42<<-y 时 45.02+

数学分析不定积分

第八5章不定积分 教学要求: 1.积分法是微分法的逆运算。要求学生:深刻理解不定积分的概念,掌握原函数与不定积分的概念及其之间的区别;掌握不定积分的线性运算法则,熟练掌握不定积分的基本积分公式。 2.换元积分公式与分部积分公式在本章中处于十分重要的地位。要求学生:牢记换元积分公式和选取替换函数(或凑微分)的原则,并能恰当地选取替换函数(或凑微分),熟练地应用换元积分公式;牢记分部积分公式,知道求哪些函数的不定积分运用分部积分公式,并能恰当地将被积表达式分成两部分的乘积,熟练地应用分部积分公式;独立地完成一定数量的不定积分练习题,从而逐步达到快而准的求出不定积分。 3.有理函数的不定积分是求无理函数和三角函数有理式不定积分的基础。要求学生:掌握化有理函数为分项分式的方法;会求四种有理最简真分式的不定积分,知道有理函数的不定积分(原函数)还是初等函数;学会求某些有理函数的不定积分的技巧;掌握求某些简单无理函数和三角函数有理式不定积分的方法,从理论上认识到这些函数的不定积分都能用初等函数表示出来。 教学重点:深刻理解不定积分的概念;熟练地应用换元积分公式;熟练地应用分部积分公式; 教学时数:18学时

§ 1 不定积分概念与基本公式(4学时)教学要求:积分法是微分法的逆运算。要求学生:深刻理解不定积分的概念,掌握原函数与不定积分的概念及其之间的区别;掌握不定积分的线性运算法则,熟练掌握不定积分的基本积分公式。 教学重点:深刻理解不定积分的概念。 一、新课引入:微分问题的反问题,运算的反运算. 二、讲授新课: (一)不定积分的定义: 1.原函数: 例1填空: ; ( ; ; ; ; . 定义. 注意是的一个原函数. 原函数问题的基本内容:存在性,个数,求法. 原函数的个数: Th 若是在区间上的一个原函数, 则对,都是在区间上的原函数;若也是在区间上的原函数,则必有. ( 证)

数学分析第八章不定积分

第八章不定积分 §1 不定积分概念与基本积分公式 正如加法有其逆运算减法,乘法有其逆运算除法一样,微分法也有它的逆运算———积分法.我们已经知道,微分法的基本问题是研究如何从已知函数求出它的导函数,那么与之相反的问题是:求一个未知函数,使其导函数恰好是某一已知函数.提出这个逆问题,首先是因为它出现在许多实际问题之中.例如:已知速度求路程;已知加速度求速度;已知曲线上每一点处的切线斜率(或斜率所满足的某一规律),求曲线方程等等.本章与其后两章(定积分与定积分的应用)构成一元函数积分学. 一原函数与不定积分 定义1 设函数f 与F 在区间I 上都有定义.若 F ′( x) = f( x ), x ∈I, 则称F 为f 在区间I 上的一个原函数. - 1 例如, 1 3 x 3 是x 2 在( - ∞,+ ∞) 上的一个原函数, 因为(1 3 1 x 3)′= x 2 ; 又如 2 cos 2 x 与- 2 cos 2 x + 1 都是sin 2 x 在(-∞, + ∞) 上的原函数, 因为 ( -1 cos 2 x )′= ( -1 cos 2 x + 1)′= sin 2 x . 2 2 如果这些简单的例子都可从基本求导公式反推而得的话,那么 F( x) = x arctan x - 1 ln (1 + x 2 ) 2 是f ( x) = arctan x 的一个原函数, 就不那样明显了.事实上, 研究原函数必须解决下面两个重要问题: 1 .满足何种条件的函数必定存在原函数? 如果存在, 是否唯一? 2 .若已知某个函数的原函数存在, 又怎样把它求出来? 关于第一个问题, 我们用下面两个定理来回答; 至于第二个问题, 其解答则是本章接着要介绍的各种积分方法.

数学分析 重积分

第二十一章重积分 教学目的:1.理解并掌握二重积分的有关概念及可积条件,进而会计算二重积分; 2.理解三重积分的概念,掌握三重积分的计算方法,并能应用其解决有关的数学、物理方面的计算问题; 教学重点难点:本章的重点是重积分的计算和格林公式;难点是化重积分为累次积分。 教学时数:22学时 § 1 二重积分概念 一.矩形域上的二重积分 :从曲顶柱体的体积引入. 用直线网分割 . 定义二重积分 . 例1用定义计算二重积分 . 用直线网 分割该正方形 , 在每个正方形上取其右上顶点为介点 . 解 . 二. 可积条件 : D . 大和与小和. Th 1 , .

Th 2 , . Th 3 在D上连续 , Th 4 设 D ) . 若在D上有界 , 且 ( 或 在D \ 上连续 , 则 三.一般域上的二重积分: 1.定义:一般域上的二重积分. 2.可求面积图形: 用特征函数定义. 四.二重积分的性质 : 性质1 . 性质2 关于函数可加性 . 在D上可积在 性质3 则 和可积 , 且. 性质4 关于函数单调性 . 性质5 .

性质6 . 性质7 中值定理 . Th 若区域D 的边界是由有限条连续曲线 ( 或 在D上可积 . )组成 , 在D上连续 , 则 例3去掉积分中的绝对值 . § 2 二重积分的计算 二. 化二重积分为累次积分: 矩形域上的二重积分: 1. 2. 简单域上的二重积分: 简推公式, 一般结果]P219Th9. 例1 , . 解法一P221例3 , 解法二为三角形, 三个顶点为 . 例2 , . P221例2. 的两直交圆柱所围立体的体积 . P222例4. 例3求底半径为

高等数学 第七章 定积分的应用

第七章定积分的应用 一、本章提要 1.基本概念 微元法,面积微元,体积微元,弧微元,功微元,转动惯量微元,总量函数. 2.基本公式 平面曲线弧微元分式. 3.基本方法 (1)用定积分的微元法求平面图形的面积, (2)求平行截面面积已知的立体的体积, (3)求曲线的弧长, (4)求变力所作的功, (5)求液体的侧压力, (6)求转动惯量, (7)求连续函数f(x)在[]b a,区间上的平均值, (8)求平面薄片的质心,也称重心. 二、要点解析 问题1什么样的量可以考虑用定积分求解?应用微元法解决这些问题的具体步骤如何? 解析具有可加性的几何量或物理量可以考虑用定分求解,即所求量Q必须满足条件:(1)Q与变量x和x的变化区间[]b a,以及定义在该区间上某一函数f(x)有关;(2)Q在[]b a, 上具有可加性,微元法是“从分割取近似,求和取极限”的定积分基本思想方法中概括出来的,具体步骤如下: (1)选变量定区间:根据实际问题的具体情况先作草图,然后选取适当的坐标系及适当的变量(如x),并确定积分变量的变化区间[]b a,; (2)取近似找微分:在[]b x d ,+,当x d很小时运用“以 x a,内任取一代表性区间[]x 直代曲,以不变代变”的辩证思想,获取微元表达式d=()d Q f x x≈Q ?为量Q在小 ?(Q 区间[]x ,+上所分布的部分量的近似值); x x d

(3)对微元进行积分得 =d ()d b b a a Q Q f x x = ?? . 下面举例说明. 例1 用定积分求半径为R 的圆的面积. 解一 选取如图所示的坐标系,取x 为积分变量,其变化区间为[]R R ,-,分割区间 []R R ,-成若干个小区间,其代表性小区间[]x x x d ,+所对应的面积微元 x x R x x R x R A d 2d ))((d 222222-=----=, 于是 ? ? ---== R R R R x x R A A d 2d 2 2=2 πR . 解二 选取如图所示的坐标系, 取θ 为积分变量,其变化区间为[]π2,0.分割区间[]π2,0成若干个小区间,其代表性小区 间[]θθθd ,+所对应的面积微元θd 2 1d 2 R A = ,于是 2 2π20 2 π20 ππ22 1d 2 1d R R R A A =?= = = ? ? θ. 解三 选取r 为积分变量, 其变化区间为[]R ,0,如图,分割[]R ,0成若干个小区间,

数学分析9.1定积分概念

第九章 不定积分 1 定积分概念 一、问题提出 1、曲边梯形的面积:设f 为[a,b]上的连续函数,且f(x)≥0,由曲线y=f(x),直线x=a ,x=b 以及x 轴所围成的平面图形,称为曲边梯形. 在[a,b]内任取n-1个分点,依次为:a=x 0

作的功就近似等于F(ξi )△x i , 从而W ≈∑=n 1 i F (ξi )△x i (△x i =x i -x i-1). 对[a,b]作无限细分时,和式与某一常数无限接近,则把此常数定义为变力所作的功W. 注:解决这类问题的思想方法概括为“分割,近似求和,取极限”. 二、定积分的定义 定义1:设闭区间[a,b]内有n-1个点,依次为:a=x 0

华东师范大学数学系《数学分析》讲义重积分【圣才出品】

第21章重积分 21.1本章要点详解 本章要点 ■二重积分的概念 ■二重积分的定义、存在性及性质 ■格林公式 ■曲线积分与路径无关的定义 ■二重积分的变量替换 ■三重积分的定义、计算 ■重积分的应用 重难点导学 一、二重积分的概念 1.平面图形的面积 (1)设P是一平面有界图形,用某一平行于坐标轴的一组直线网T分割这个图形(如图21-1所示)这时直线网T的网眼——小闭矩形Δi可分为三类 ①Δi上的点都是P的内点; ②Δi上的点都是P的外点,即; ③Δi上含有P的边界点.

图21-1 将所有介于直线网T 的第①类小矩形(如图21-1中阴影部分)的面积加起来,记这个和数为s p (T ),则有(这里ΔR 表示包含P 的那个矩形R 的面积);将所有第①类与笫③类小矩形(如图21-1中粗线所围部分)的面积加起来,记这个和数为S p (T ),则有s p (T )≤S p (T ). 由确界存在定理可以推得,对于平面上所有直线网,数集{s p (T )}有上确界,数集{S p (T )}有下确界,记 显然有 通常称I P 为P 的内面积,P I 为P 的外面积. (2)若平面图形P 的内面积I P 等于它的外面积P I ,则称P 为可求面积,并称其共同值P P P I I I ==为P 的面积. (3)平面有界图形P 可求面积的充要条件是:对任给的ε>0,总存在直线网T ,使得 S p (T )-s p (T )<ε (4)平面有界图形P 的面积为零的充要条件是它的外面积0P I =,即对任给的ε>0,存在直线网T ,使得S p (T )<ε或对任给的ε>0,平面图形P 能被有限个面积总和小于ε的

高等数学定积分的应用

授课单元12教案

教学内容 课题1用定积分求平面图形的面积 一、微元法 在本章第1节定积分概念的两个实例(曲边梯形的面积和变速直线运动的路程)中,我们是先把所求整体量进行分割,然后在局部范围内“以不变代变”,求出整体量在局部范围内的f (?)?x 的形式;再把这些近似值加起来,得到整体量的近似值;最近似值,即表成乘积 iinb ??????x ?ff ?xdx ?lim (即整体量) 后,当分割无限加密时取和式的极限得定积分. iia 0??1i ? 事实上,对于求几何上和物理上的许多非均匀分布的整体量都可以用这种方法计算.但在实 ??b ,aQ 的定积分的方法简化成下面的上的某个量际应用时,为了方便,一般把计算在区间 : 两步: x [a ,b ] ,求出积分区间确定积分变量1) ([x ,x ?dx ]]a ,b [ ,并在该小区间上找出所求量Q ) 在区间上,任取一小区间的微分元(2素 dQf (x )dx =b Q 的定积分表达式(3) 写出所求量?dxxQ ?)f (a 用以上两步来解决实际问题的方 法称为元素法或微元法.下面我们就用元素法来讨论定积分在几何、物理和经济学中的一些应用. 二、在直角坐标系下求平面图形的面积 b ? f (?x )dxA oxba ,x ?x ?)(xy ?f 1、 .由 轴所围成图形面积公式 及,a

d????(y?)dyA y dy,x??(y),y?c1及、轴所围成图形面积公式c3xy?2x??1,x?例求曲线轴所 ???xxdxs???dx解 围成的图形面积及x与直线172033 40?1??????????xxxy?yyx?yy?yx?a,x?b(a?b)所围2、和由两条连续曲线与直线 ?dxyy?xx?A)的面积成平面图形(如图112a 2211b??????

巧用定积分求极限(数学分析)

定积分在求极限中的应用 1、知识准备 1.1绪论 微积分学在大学的数学学习中占有相当重要的地位.然而,求极限又是微积分学中常常要面临的问题.因此,积累更多求极限的方法应是每位大学生必备的素养. 求极限的方法层出不穷,最常用的方法有极限的定义和性质,重要极限的结论,洛必达法则以及泰勒公式等.应用极限的定义时,往往是在极限的结果已经比较明显,只需要根据极限的定义把相关式子进行放缩便可得到相应的结果.但是,这种方法一方面叙述上比较麻烦,另一方面也只适用于看上去容易放缩的式子.重要极限的结论形式上要求非常严格, 也只能解决两种形式的极限问题.洛必达法则是用于解决“00”型的极限和“∞ ∞ ”型极限的. 泰勒公式适宜于解决求分式极限中分子或分母有加减运算的问题,通过泰勒展式后可以达到某些项抵消效果.但若仔细观察这些方法,其特点不是表达较繁琐就是仅仅应用到微分学知识.事实上,微分学和积分学的关系正如中小学时代学习过的加法与减法,乘法与除法,乘方与开方以及幂运算与取对数运算的关系一样,他们互为逆运算.倘若也能用到积分学知识来解决求极限的问题,那么求极限的方法才算完美.而利用定积分求极限正体现了这一理念. 1.2定积分的概念 下面首先让我们回顾一下定积分以及极限的定义: 定积分:设函数()f x 在闭区间[],a b 上有定义,在闭区间[],a b 内任意插入 n-1个分点将 [],a b 分成 n 个区间[,]x i i x x -,记(1,2,,i i i x x x i n ?=-=),1[,]i i x x ξ-?∈,作乘积()i i f x ξ?(称 为积分元),把这些乘积相加得到和式 1 ()n i i i f x ξ=?∑(称为积分形式)设 {}max :1i x i n λ=?≤≤,若0 1 lim ()n i i i f x λξ→=?∑极限存在唯一且该极限值与区是[],a b 的分法 及分点i ξ的取法无关,则称这个唯一的极限值为函数()f x 在[],a b 上的定积分,记作 b a ()f x dx ?,即0 1 ()lim ()n b a i i i f x dx f x λξ→=?=?∑.否则称()f x 在[],a b 上不可积. 注1:由牛顿莱布尼兹公式知,计算定积分与原函数有关,故这里借助了不定积分的符号. 注2:若()b a f x dx ?存在,区间[],a b 进行特殊分割,分点i ξ进行特殊的取法得到的和式极限存在且与定积分的值相等,但反之不成立,这种思想在考题中经常出现,请读者要真正理

数学分析之定积分

第九章定积分 教学要求: 1知道定积分的客观背景——曲边梯形的面积和变力所作的功等,以及解决这些实际问题的数学思想方法;深刻理解并掌握定积分的思想:分割、近似求和、取极限,进而会利用定义解决问题; 2.深刻理解微积分基本定理的意义,能够熟练地应用牛顿-莱布尼兹公式计算定积分; 3.理解可积的必要条件以及上和、下和的性质,掌握可积的充要条件及可积函数类,能独立地证明可积性的问题; 4.理解并熟练地应用定积分的性质; 5.熟练地掌握换元积分法和分部积分法,并能解决计算问题. 教学重点: 1.深刻理解并掌握定积分的思想,能够熟练地应用牛顿-莱布尼兹公式计算定积分; 2.掌握可积的充要条件及可积函数类,能独立地证明可积性的问题; 3.理解并熟练地应用定积分的性质; 4.熟练地掌握换元积分法和分部积分法,并能解决计算问题. 教学时数:14学时 § 1 定积分概念(2学时) 教学要求:知道定积分的客观背景——曲边梯形的面积和变力所作的功等,以及解决这些实际问题的数学思想方法;深刻理解并掌握定积分的思想:分割、近似求和、取极限,进而会利用定义解决问题;

教学重点:深刻理解并掌握定积分的思想. 一、问题背景: 1.曲边梯形的面积: 2. 变力所作的功: 二、不积分的定义: 三、举例: 例1已知函数在区间上可积 .用定义求积分. 解取等分区间作为分法, . 取 .= . 由函数在区间上可积 ,每个特殊积分和之极限均为该积分值 . 例2已知函数在区间上可积 ,用定义求积分. 解分法与介点集选法如例1 , 有 .

上式最后的极限求不出来 , 但却表明该极限值就是积分. 例3讨论Dirichlet函数在区间上的可积性 . 四、小结:指出本讲要点 § 2 Newton — Leibniz公式(2学时) 教学要求:深刻理解微积分基本定理的意义,能够熟练地应用牛顿-莱布尼兹公式计算定积分. 教学重点:能够熟练地应用牛顿-莱布尼兹公式计算定积分. Th9.1 (N — L公式)( 证 ) 例1求ⅰ> ; ⅱ> ; 例2 求. §3可积条件(4学时) 教学要求:理解可积的必要条件以及上和、下和的性质,掌握可积的充要条件及可积函数类,能独立地证明可积性的问题. 教学重点:掌握可积的充要条件及可积函数类,能独立地证明可积性的问题; 一、必要条件: Th 9.2 ,在区间上有界. 二、充要条件:

数学分析8不定积分总练习题

第八章 不定积分 总练习题 求下列不定积分: (1)∫4 3x 1 x 2x --dx ;(2)∫xarcsinxdx ;(3)∫ x 1dx +;(4)∫e sinx sin2xdx ; (5)∫x e dx ;(6)∫1 x x dx 2-;(7)∫x tan 1x tan 1+-dx ;(8)∫32)2-x (x -x dx ; (9)∫ x cos dx 4;(10)∫sin 4 xdx ;(11)∫4 x 3x 5-x 23+-dx ;(12)∫arctan(1+x )dx ; (13)∫2x x 47+dx ;(14)∫x tan tanx 1tanx 2++dx ;(15)∫100 2 x) -(1x dx ; (16)∫2x arcsinx dx ;(17)∫xln ??? ??+x -1x 1dx ;(18)∫x sinx cos dx 7;(19)∫e x 2 2x 1x -1??? ??+dx ; (20)I n =∫ u v n dx, 其中u=a 1+b 1x ,v=a 2+b 2x ,求递推形式解. 解:(1)∫ 4 3x 1 x 2x --dx=∫41x dx-2∫12 1x dx-∫4 1x - dx =5445x -13241213x -3 4 ∫43 x +C. (2)∫xarcsinxdx=-2 1 ∫arcsinxd(1-x 2)=-2 1(1-x 2)arcsinx+2 1 ∫(1-x 2)darcsinx =-21(1-x 2)arcsinx+21∫2x -1dx =-21(1-x 2)arcsinx+21 ∫t sin -12dsint =-21(1-x 2)arcsinx+21∫cos 2tdt=-21(1-x 2)arcsinx+81 ∫(1+cos2t)d2t =-21(1-x 2)arcsinx+4t +81sin2t+C=-21(1-x 2)arcsinx+41arcsinx +4 1 sintcost+C =2x 2arcsinx-41arcsinx +2x -14 x +C. (3)∫x 1dx +=∫t 1dt 2+=∫t 12tdt +=2∫t 1t 1++dt-2∫t 1dt +=2t-2ln|1+t|+C =2x -2ln|1+x |+C. (4)∫e sinx sin2xdx=2∫e sinx sinxcosxdx=2∫sinxde sinx =2e sinx sinx-2∫e sinx dsinx

高等数学典型例题与应用实例(重积分B部分)

例 利用二重积分的性质,估计积分 2222(2)d D x y x y σ+-?? 的值,其中D 为半圆形区域22 4,0x y y +≤≥. 解 我们先求函数2 2 2 2 (,)2f x y x y x y =+-在区域22{(,)4,0}D x y x y y =+≤≥上的最大值和最小值. 由22 220,420,x y f x xy f y x y '?=-=? ?'=-=??解得D 内驻点为(2,1)±,(2,1)2f ±=. 在边界1:0L y =(22)x -≤≤上,2 ()(,0)g x f x x ==在1L 上(,)f x y 的最大值为4,最小值为0. 在边界22 2:4L x y +=(0)y ≥上, 242()(,4)58(22)h x f x x x x x =-=-+-≤≤ 由3 ()4100h x x x '=-=得驻点123550,,22 x x x ==- =,(0)(0,2)8h f ==. 5537 ()(,)2224 h f ± =±=. 综上,(,)f x y 在D 上的最大值为8,最小值为0.又D 的面积为2π,所以由二重积分的估值性质知 222202(2)d 82D x y x y πσπ?≤+-≤???, 即 22220(2)d 16D x y x y σπ≤+-≤??. 例 设D 为xoy 平面上以(1,1),(1,1),(1,1)---为顶点的三角形区域,1D 为D 在第一象限的部分,则 (cos sin )( )D xy x y dxdy +=??. (A )1 2 cos sin D x y dxdy ?? (B )1 2D xy dxdy ?? (C )1 4 (cos sin )D xy x y dxdy +?? (D )0 解 区域D 如图所示,并记0D 为以(1,1),(1,1),(0,0)-为顶点的三角

数学分析不定积分

8.1 不定积分概念与基本积分公式(2学时) 【教学目的】深刻理解原函数与不定积分的概念;牢记基本积分表;掌握不定积分的线形运算法则。 【教学重点】不定积分的概念,基本积分表,不定积分的线形运算法则。 【教学难点】求不定积分的技巧。 【教学过程】 一、原函数与不定积分 (一) 原函数 定义1 设函数与在区间)(x f )(x F I 上有定义。若 )()(x f x F =′, I x ∈, 则称为在区间)(x F )(x f I 上的一个原函数。 如:331x 是在R 上的一个原函数;2x x 2cos 21?, 12cos 2 1+x ,,等都有是在R 上的原函数——若函数存在原函数,则其原函数不是唯一的。 x 2sin x 2cos ?x 2sin )(x f 问题1 在什么条件下必存在原函数?若存在,其个数是否唯一;又若不唯一,则有多少个? )(x f 问题 2 若函数的原函数存在,如何将它求出?(这是本章的重点内容)。 )(x f 定理1 若在区间)(x f I 上连续,则在)(x f I 上存在原函数。 )(x F (证明在第九章中进行。) 说明:(1)由于初等函数在其定义域内都是连续的,故初等函数在其定义域内必存在原函数(但其原函数不一定仍是初等函数)。(2)连续是存在原函数的充分条件,并非必要条件。 定理2 设是在在区间)(x F )(x f I 上的一个原函数,则(1)设是在在区间C x F +)()(x f I 上的原函数,其中C 为任意常量(若存在原函数,则其个)(x f

数必为无穷多个)。(2)在)(x f I 上的任何两个原函数之间,只可能相差上个常数(揭示了原函数间的关系)。 证:(i)这是因为[] .),()()(I x x f x F C x F ∈=′=′+(ii)设F 和G 是f 在I 上的任意两个原函数,则有 [] I x x f x f x G x F C x F ∈=?=′?′=′+,0)()()()()(根据第六章拉格朗日中值定理的推论,知道I x C x G x F ∈≡?,)()(. 口 (二) 不定积分 定义 2 函数在区间)(x f I 上的原函数的全体称为在)(x f I 上的不定积分,记作: ∫dx x f )( 其中∫积分号;被积函数; ????)(x f ??dx x f )(被积表达式;??x 积分变量。 注1: 是一个整体记号; ∫dx x f )(注2:不定积分与原函数是总体与个体的关系,即若是的一个原函数,则的不定积分是一个函数族)(x F )(x f )(x f {}C x F +)(,其中是任意常数,于是,记为:∫=。 C dx x f )(C x F +)(此时称C 为积分常数,它可取任意实数。故有 ——先积后导正好还原; ∫=′)(])([x f dx x f 或 。 ∫=dx x f dx x f d )()( ∫——先导后积还原后需加上一个常数(不能完全还原)。 +=′C x f dx x f )()(或 ∫。 +=C x f x df )()(如: C x dx x +=∫332, C x xdx +?=∫2cos 212sin 。 不定积分的风何意义: 若是的一个原函数,则称的图象为的一条积分曲线。于是,的不定积分在几何上表示的某一条)(x F )(x f )(x F y =)(x f )(x f )(x f

数学分析21.6重积分的应用(含习题及参考答案)

第二十一章 重积分 6重积分的应用 一、曲面的面积 问题:设D 为可求面积的平面有界区域,函数f(x,y)在D 上具有连续的一阶偏导数,讨论由方程z=f(x,y), (x,y)∈D 所确定的曲面S 的面积. 分析:对区域D 作分割T ,把D 分成n 个小区域σi (i=1,2,…,n). 曲面S 同时也被分割成相应的n 个小曲面片S i (i=1,2,…,n). 在每个S i 上任取一点M i , 作曲面在这一点的切平面πi , 并 在πi 上取出一小块A i , 使得A i 与S i 在xy 平面上的投影都是σi . 现在M i 附近,用切平面A i 代替小曲面片S i . 则当T 充分小时,有 △S=∑=?n i i S 1 ≈∑=?n i i A 1 , 这里的△S, △S i , △A i 分别表示S, S i 和A i 的面积. ∴当T →0时,可用和式∑=?n i i A 1 的极限作为S 的面积. 建立曲面面积计算公式: ∵切平面πi 的法向量就是曲面S 在点M i (ξi ,ηi ,ζi )处的法向量, 记其与z 轴的夹角为γi , 则|cos γi |=) ,(),(11 22i i y i i x f f ηξηξ++. ∵A i 在xy 平面上投影为σi , ∴△A i = i i γσcos ?=i i i y i i x f f σηξηξ?++),(),(122. 又和数∑=?n i i A 1 =∑=?++n i i i i y i i x f f 1 22),(),(1σηξηξ是连续函数

),(),(122y x f y x f y x ++在有界闭区域D 上的积分和,∴当T →0时,有 △S=∑=→?++n i i i i y i i x T f f 1220 ),(),(1lim σηξηξ=??++D y x dxdy y x f y x f ),(),(122, 或△S=∑ =→?n i i i T 1 cos lim γσ=??∧ D z n dxdy ) ,cos(, 其中),cos(∧ z n 为曲面的法向量与z 轴正向夹角的余弦. 例1:求圆锥z=22y x +在圆柱体x 2+y 2≤x 内那一部分的面积. 解:由x 2+y 2≤x, 得D={(r,θ)|0≤r ≤2 1 , 0≤θ≤2π}, 又z x = 2 2y x x += r r θcos =cos θ, z y =22y x y +=r r θsin =sin θ, ∴△S=??++D y x dxdy z z 221=?? π θ20210 2rdr d = π4 2. 例2:设平面光滑曲线的方程为y=f(x), x ∈[a,b] (f(x)>0). 求证:此曲线绕x 轴旋转一周得到的旋转曲面的面积为: S=?'+b a dx x f x f )(1)(22π. 证:由上半旋转面方程为z=22)(y x f -, 得 z x = 2 2)()()(y x f x f x f -', z y = 2 2 )(y x f y --. 即有 221y x z z ++=2 22 2222)()()()(1y x f y y x f x f x f -+-'+=2 222)()) (1)((y x f x f x f -'+. ∴S=??--'+b a x f x f dy y x f x f x f dx ) () (2 22)()(1)(2=??-'+b a x f dy y x f dx x f x f )(0222)(1 )(1)(4 =??---'+b a x f x yf d x f y dx x f x f ) (0 1 2 22))(()(11)(1)(4

(完整版)数学分析知识点总结(定积分)

第一篇 分析基础 1.1收敛序列 (收敛序列的定义) 定义:设}{n x 是实数序列,a 是实数,如果对任意0>ε都存在自然数N ,使得只要N n >,就有 ε<-a x n 那么}{n x 收敛,且以a 为极限,称为序列}{n x 收敛收敛于a ,记为 a x n =lim 或者)(+∞→→n a x n 定理1:如果序列}{n x 有极限,那么它的极限是唯一的。 定理2(夹逼原理):设}{n x ,}{n y 和}{n z 都是实数序列,满足条件 N n z y x n n n ∈?≤≤, 如果a z x n n ==lim lim ,那么}{n y 也是收敛序列,且有 a y n =lim 定理3:设}{n x 是实数序列,a 是实数,则以下三陈述等价 (1) 序列}{n x 以a 为极限; (2) {}n x a -是无穷小序列; (3) 存在无穷小序列{}n a 使得 , 1,2,.n n x a a n =+=L (收敛序列性质) 定理4:收敛序列}{n x 是有界的。 定理5: (1)设a x n =lim ,则a x n =lim 。 (2)设a x n =lim ,b y n =lim ,则b a y x n n ±=±)lim (。 (3)设a x n =lim ,b y n =lim ,则ab y x n n =)lim(。

(4)设0≠n x ,0lim ≠=a x n ,则a x n 11lim =。 (5)设0≠n x ,0lim ≠=a x n ,b y n =lim ,则lim lim lim n n n n y y b x x a ==。 (收敛序列与不等式) 定理6:如果lim lim n n x y <,那么存在0N N ∈,使得0n N >时有 n n x y < 定理7:如果}{n x 和{}n y 都是收敛序列,且满足 0, ,n n x y n N ≤?> 那么 lim lim n n x y ≤

高等数学定积分应用习题答案

第六章 定积分的应用 习题 6-2 (A) 1. 求下列函数与 x 轴所围部分的面积: ] 3,0[,86)1(2+-=x x y ] 3,0[, 2)2(2x x y -= 2. 求下列各图中阴影部分的面积: 图 6-1 3.求由下列各曲线围成的图形的面积: ; 1,)1(===-x e y e y x x 与 ; )0(ln ,ln ,0ln )2(>>====a b b y a y x x y 与 ;0,2)3(2==-=y x y x x y 与 ; )1(,2)4(22--==x y x y ;0,2)1(4)5(2=-=-=y x y x y 与 ; 2,)6(2x y x y x y ===与 ; )0(2sin ,sin 2)7(π≤≤==x x y x y ; 8,2 )8(222 (两部分都要计算)=+=y x x y 4.的图形的面积。 所围成与直线求由曲线e x e x y x y ====-,,0ln 1 5.的面积。处的切线所围成的图形和及其在点求抛物线)0,3()3,0(342--+-=x x y 6.的面积。处的法线所围成的图形及其在点求抛物线),2 (22p p px y = 7.形的面积。与两坐标轴所围成的图求曲线a y x =+ 8.所围图形的面积。求椭圆 12 2 22 =+b y a x 9.。与横轴所围图形的面积(的一拱求由摆线)20)cos 1(),sin (π≤≤-=-=t t a y t t a x 10.轴之间的图形的面积。的切线的左方及下方与由该曲线过原点求位于曲线x e y x = 11.求由下列各方程表示的曲线围成的图形的面积: ;)0(sin 2)1(>=a a θρ ; )0()cos 2(2)2(>+=a a θρ ; 2cos 2)3(2(双纽线)θρ= 抛物体的体积。 轴旋转,计算所得旋转 所围成的图形绕及直线把抛物线x x x x ax y )0(4.12002>==

数学分析21.5三重积分(含习题及参考答案)

第二十一章 重积分 5三重积分 一、三重积分的概念 引例:设一空间立体V 的密度函数为f(x,y,z),为求V 的质量M , 将V 分割成n 个小块V 1,V 2,…,V n . 每个小块V i 上任取一点(ξi ,ηi ,ζi ), 则 M=i n i i i i T V f ?∑=→10 ),,(lim ζηξ, 其中△V i 是小块V i 的体积, T =}{max 1的直径i n i V ≤≤. 概念:设f(x,y,z)是定义在三维空间可求体积有界区域V 上的有界函数. 用若干光滑曲面所组成的曲面网T 来分割V ,把V 分成n 个小区域 V 1,V 2,…,V n .记V i 的体积为△V i (i=1,2,…,n),T =}{max 1的直径i n i V ≤≤. 在每个V i 中任取一点(ξi ,ηi ,ζi ), 作积分和i n i i i i V f ?∑=1 ),,(ζηξ. 定义1:设f(x,y,z)为定义在三维空间可求体积的有界闭区域V 上的函数,J 是一个确定的数. 若对任给的正数ε,总存在某一正数δ,使得对于V 的任何分割T ,只要T <δ,属于分割T 的所有积分和都有 J V f i n i i i i -?∑=1 ),,(ζ ηξ<ε,则称f(x,y,z)在V 上可积,数J 称为函数f(x,y,z) 在V 上的三重积分,记作J=???V dV z y x f ),,(或J=???V dxdydz z y x f ),,(,其中 f(x,y,z)称为被积函数,x, y, z 称为积分变量,V 称为积分区域. 注:当f(x,y,z)=1时,???V dV 在几何上表示V 的体积.

第十章____重积分(高等数学教案)

重积分 【教学目标与要求】 1.理解二重积分、三重积分的概念,了解重积分的性质,知道二重积分的中值定理。 2.掌握二重积分的(直角坐标、极坐标)计算方法。 3.掌握计算三重积分的(直角坐标、柱面坐标、球面坐标)计算方法。 4.会用重积分求一些几何量与物理量(平面图形的面积、体积、重心、转动惯量、引力等)。【教学重点】 1.二重积分的计算(直角坐标、极坐标); 2.三重积分的(直角坐标、柱面坐标、球面坐标)计算。 3.二、三重积分的几何应用及物理应用。 【教学难点】 1.利用极坐标计算二重积分; 2.利用球坐标计算三重积分; 3.物理应用中的引力问题。 【教学课时分配】 (10学时) 第1 次课§1第2 次课§2 第3 次课§3 第4 次课§4 第5次课习题课 【参考书】 [1]同济大学数学系.《高等数学(下)》,第五版.高等教育出版社. [2] 同济大学数学系.《高等数学学习辅导与习题选解》,第六版.高等教育出版社. [3] 同济大学数学系.《高等数学习题全解指南(下)》,第六版.高等教育出版社

§10. 1 二重积分的概念与性质 【回顾】定积分 设函数y =f (x )在区间[a , b ]上非负、连续. 求直线x =a 、x =b 、y =0 及曲线y =f (x )所围成的曲边梯形的面积. (1)分割:用分点a =x 0

相关文档
最新文档