2020学年高中数学第一章数列1.3.1第2课时等比数列的性质学案含解析北师大版必修5.doc

内容标准学科素养

1.理解等比数列的单调性与首项a1及公比q的关系,体会等比数列

的通项公式与指数函数的关系.

2.掌握等比中项的概念,会求同号两数的等比中项.

3.掌握等比数列的有关性质,并能综合应用解决有关问题.

加强定义理解

精确性质应用

提升数学运算

授课提示:对应学生用书第20页

[基础认识]

知识点一等比数列的单调性

2325

,思考并完成以下问题

观察下面几个等比数列中项的变化趋势,指出它们的单调性.

(1)-1,-

1

2,-

1

4,-

1

8,-

1

16,…

(2)9,3,1,

1

3,

1

9,…

(3)-1,-2,-4,-8,-16,…

(4)1,-

1

3,

1

9,-

1

27,

1

81,…

(5)2,2,2,2,2,…

提示:(1)项是增加的,且a1<0,0<q<1,是单调递增数列.

(2)项是减小的,且a1>0,0<q<1,是单调递减数列.

(3)项是减小的,且a1<0,q>1,是单调递减数列.

(4)项是摆动的,a1>0,q<0,不是单调数列.

(5)项是不变的,a1>0,q=1,是常数列.

公比q单调性首项a1q<00<q<1q=1q>1 a1>0不具备单调性递减数列不具备单调性递增数列

a1<0不具备单调性递增数列不具备单调性递减数列

1.在2,8之间插入一个数,使之成等比数列.这样的实数有几个?

提示:设这个数为G,则

G

2

=8

G

,G2=16,G=±4,所以这样的数有2个.

2.若a,G,b成等比数列,能得出什么结论?

提示:因为a,G,b成等比数列,所以

G

a

=b

G

,所以G2=ab.

如果在a与b中间插入一个数G,使得a,G,b成等比数列,那么根据等比数列的定义,

G

a=b

G,G

2=ab,G=±ab,我们称G为a,b的等比中项.

2.等比中项与等差中项的异同,对比如下表

对比项等差中项等比中项

定义

若a,A,b成等差数列,则A叫作a与

b的等差中项

若a,G,b成等比数列,则G叫作a,

b的等比中项

定义式 A -a =b -A G a =b G 公式 A =a +b 2

G =±ab

个数 a 与b 的等差中项唯一 a 与b 的等比中项有两个,且互为相反数

备注

任意两个数a 与b 都有等差中项

只有当ab >0时,a 与b 才有等比中项

知识点三 等比数列的性质 给出以下两个等比数列{a n }. ①1,2,4,8,…; ②1,-3,9,-27,…. (1)在上述每一个数列中,请你计算a 2·a 6与a 3·a 5的值,看它们有什么关系?若计算a 1·a 5与a 2·a 4呢?

提示:a 2·a 6=a 3·a 5;a 1·a 5=a 2·a 4. (2)在上述每一个数列中,a 2·a 6;a 3·a 5的值与a 4的值有什么关系?a 1·a 5;a 2·a 4与a 3的值呢? 提示:a 2·a 6=a 3·a 5=a 24;a 1·a 5=a 2·a 4=a 23.

若数列{a n }是公比为q 的等比数列,则

(1)a n =a m q n -

m (m ,n ∈N +).

(2)若m +n =s +t =2k (m ,n ,s ,t ,k ∈N +),则a m ·a n =a s ·a t =a 2k . (3){c ·a n }(c 是非零常数)是公比为q 的等比数列. (4){|a n |}是公比为|q |的等比数列.

(5)若{a n }、{b n }分别是公比为q 1、q 2且项数相同的等比数列,则数列{a n ·b n }是公比为q 1·q 2的等比数列.

[自我检测]

1.等比数列{a n }的公比q =-1

4

,a 1=2,则数列{a n }是( )

A .递增数列

B .递减数列

C .常数列

D .摆动数列

解析:由于公比q =-1

4

<0,所以数列{a n }是摆动数列.

答案:D

2.2+3和2-3的等比中项是( ) A .1 B .-1 C .±1 D .2 解析:设2+3和2-3的等比中项为G ,则G 2=(2+3)(2-3)=1,∴G =±1. 答案:C

3.已知{a n }是等比数列,a 2=2,a 5=1

4,则公比q 等于______.

解析:由a 5=a 2·q 3,得q 3=a 5a 2=142=18,所以q =1

2

.

答案:12

授课提示:对应学生用书第21页

探究一 等比数列的性质

[例1] 已知{a n }为等比数列.

(1)若a n >0,a 2a 4+2a 3a 5+a 4a 6=25.求a 3+a 5.

(2)若a n >0,a 5a 6=9.求log 3a 1+log 3a 2+…+log 3a 10的值.

[解题指南] (1)由等比数列性质得a 2a 4=a 23,a 4a 6=a 25,从而得解.

(2)由等比数列性质得a 1a 10=a 2a 9=a 3a 8=a 4a 7=a 5a 6,从而进行求解.

[解析] (1)a 2a 4+2a 3a 5+a 4a 6=a 23+2a 3a 5+a 25=(a 3+a 5)2=25,

∵a n >0,∴a 3+a 5>0,∴a 3+a 5=5. (2)根据等比数列的性质,得 a 5a 6=a 1a 10=a 2a 9=a 3a 8=a 4a 7=9, ∴a 1a 2…a 9a 10=(a 5a 6)5=95, ∴log 3a 1+log 3a 2+…+log 3a 10 =log 3(a 1a 2…a 9a 10)

=log 395=10.

方法技巧 等比数列的常用性质

性质1:通项公式的推广:a n =a m ·q n -m (n ,m ∈N +).

性质2:若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N +),则a k ·a l =a m ·a n .

性质3:若{a n },{b n }(项数相同)是等比数列,则{λa n },??????1a n ,{a 2n },{a n ·b n

},??????

a n

b n 仍是等比数列.

性质4:在等比数列{a n }中距首末两端等距离的两项的积相等,即a 1a n =a 2a n -1=a 3a n -2=…. 性质5:在等比数列{a n }中,序号成等差数列的项仍成等比数列.

跟踪探究 1.(2019·朝阳区模拟)已知等比数列{a n }各项均为正数,公比为q ,满足a n +1<a n ,a 2a 8=6,a 4+a 6=5,则q 2=( ) A.53 B.49 C.59 D.23 解析:∵a 4a 6=a 2a 8=6,a 4+a 6=5,等比数列{a n }各项均为正数,解得a 4=3,a 6=2,∴q 2=a 6a 4=2

3.故选D. 答案:D

2.已知等比数列{a n }的公比为正数,且4a 2a 8=a 24,a 2=1,则a 6=( ) A.18 B.116 C.132 D.164

解析:由4a 2a 8=a 24,得4a 25=a 2

4,∴q =12

, ∴a 6=a 2q 4=1

16

.

答案:B

探究二 等比中项的应用

[阅读教材P25练习2第三题]求下列各组数的等比中项. (1)-45和-80.

(2)7+35和7-3 5.

(3)(a +b )2和(a -b )2.

解析:由等比数列性质所得,等比中项的平方等于前后两项的乘积. (1)G =±(-45)(-80)=±60. (2)G =±(7+35)(7-35)=±2.

(3)G =±(a +b )2(a -b )2=±(a 2-b 2).

[例2] (1)在等比数列{a n }中,a 3,a 9是方程3x 2-11x +9=0的两个根,则a 5a 6a 7=( )

A .3 3 B.11

2

C .±3 3

D .以上都不对

(2)已知1既是a 2与b 2的等比中项,又是1a 与1

b 的等差中项,则a +b a 2+b

2的值是( )

A .1或12

B .1或-1

2

C .1或13

D .1或-1

3

[解题指南] (1)由根与系数的关系可得a 3·a 9,又a 3·a 9=a 26,a 5·a 7=a 26.可得结果. (2)根据等差及等比中项的定义求解.

[解析] (1)由根与系数的关系得a 3a 9=3,又a 6为a 3与a 9的等比中项,所以a 6=±3,在等比数列{a n }中,a 5a 6a 7=a 36=±

3 3. (2)由题意得,a 2b 2=(ab )2=1,1a +1

b

=2,

所以?????ab =1,a +b =2或?????ab =-1,a +b =-2.

因此a +b a 2+b 2=a +b (a +b )2-2ab

=1或-13. [答案] (1)C (2)D

方法技巧 等比中项的性质

(1)由等比中项的定义可知G a =b

G ?G 2=ab ?G =±ab ,所以只有a ,b 同号时,a ,b 的等比中

项有两个,异号时,没有等比中项.

(2)在一个等比数列中,从第二项起,每一项(有穷数列的末项除外)都是它的前一项和后一项的等比中项.

(3)a ,G ,b 成等比数列等价于G 2=ab (ab >0).

跟踪探究 3.如果-1,a ,b ,c ,-9成等比数列,那么( ) A .b =-3,ac =9 B .b =3,ac =9 C .b =-3,ac =-9 D .b =3,ac =-9

解析:根据等比中项的定义得????

?a 2=-b , ①

b 2=a

c ②

c 2

=-9b ③

①×③得a 2c 2=9b 2, 即ac =±3b ④

将④代入②得b 2=±3b ,解得b =±3.

又由③得b <0,∴b =-3,ac =b 2=9.故选A.

答案:A

探究三等比数列的实际应用

[阅读教材P24例4及解答]据报载,中美洲地区毁林严重,据统计,在20世纪80年代末,每时平均毁林约48 hm2,森林面积每年以3.6%~3.9%的速度减少,迄今被毁面积已达1.3×107 hm2,目前还剩1.9×107 hm2,请你回答以下几个问题:

(1)如果以每时平均毁林约48 hm2计算,剩下的森林经过多少年将被毁尽?

(2)根据(1)计算出的年数n,如果以每年3.6%~3.9%的速度减少,计算n年后的毁林情况;

(3)若按3.6%的速度减少,估算经过150年后、经过200年后、经过250年后及经过300年后森林面积的情况,经过多少年森林将被毁尽?

题型:等比数列的实际应用

方法步骤:(1)先计算出平均每年毁林数,然后用算式得出森林将被毁尽的年数;

(2)根据等比数列的通项公式用计算器计算45年后还剩余的森林面积;

(3)分别计算150年后,200年后,250年后,300年后,剩余森林的面积数.

[例3]某城市2017年年底人口为100万人,人均住房面积为5平方米.该城市拟自2018年年初开始每年新建住房245万平方米,到2025年年底时,人均住房面积为24平方米,则该城市的人口年平均增长率约是多少?(精确到0.001,参考公式(1+x)8≈1+8x(其中0<x<1))

[解题指南]设人口年平均

增长率为x→

求2025年底

人口数量→求2025年底住房面积→列方程求x.

[解析]设这个城市的人口年平均增长率为x(0<x<1),则该城市2017年年底到2025年年底人口数量组成等比数列,记为{a n},则a1=100,公比q=1+x,则2025年年底人口数量为a8=a1q8=100(1+x)8.2025年年底住房总面积为100×5+8×245=2 460(万平方米).

由题意得 2 460

100(1+x)8=24,即(1+x)8=41

40

,因为(1+x)8≈1+8x(0<x<1),所以1+8x≈41

40

所以x≈0.003.

答:该城市的人口年平均增长率约是0.003.

延伸探究在本例中,若将“该城市拟自2018年年初开始每年新建住房245万平方米”改为“该城市拟自2018年年初开始每年新建住房250万平方米”,则结论如何?

解析:由例题解析知2025年年底住房总面积为100×5+8×250=2 500(万平方米),由题意得

2 500

100(1+x)8

=24,解得x≈0.005.

答:该城市的人口年平均增长率约是0.005.

方法技巧等比数列的实际应用

数列实际应用题常与现实生活和生产实际中的具体事件相联系,建立数学模型是解决这类问题的核心,常用的方法有:(1)构造等差、等比数列的模型,然后用数列的通项公式或求和公式解;(2)通过归纳得到结论,再用数列知识求解.

跟踪探究 4.某厂生产电脑,原计划第一季度每月增加台数相同,在生产过程中,实际上二月份比原计划多生产10台,三月份比原计划多生产25台,这样三个月产量成等比数列,而第三个月的产量是原计划第一季度总产量的一半少10台,问该厂第一季度实际生产电脑多少台?

解析:根据已知,可设该厂第一季度原计划3个月生产电脑台数分别为x-d,x,x+d,(d>0),

则实际上3个月生产电脑台数分别为x-d,x+10,x+d+25,

由题意得?????(x +10)2

=(x -d )(x +d +25),

x +d +25=3x

2-10,

解得x =90,d =10,

故共有(x -d )+(x +10)+(x +d +25)=3x +35=3×90+35=305(台), 即该厂第一季度实际生产电脑305台.

授课提示:对应学生用书第22页

[课后小结]

(1)在准确掌握等比数列的定义及通项公式的前提下认识等比数列的性质,可以提高解题速度与解题的准确率.

(2)对于等比数列基本量之间的运算应先考虑是否能用性质解决,然后再考虑是否能列出关于a 1,d 的方程组.

(3)两个同号的实数a ,b 才有等比中项,而且它们的等比中项有两个(±ab ),而不是一个(ab ),这是容易忽视的地方.

[素养培优]

忽视等比数列中奇、偶项的符号特点致误

在等比数列{a n }中,a 5,a 9是方程7x 2-18x +7=0的两个根,则a 7=________.

易错分析 在等比数列中,其奇数项的符号相同,其偶数项的符号也相同,解题过程中如果忽略这一特点,容易造成增解致误,考查精确应用的学科素养. 自我纠正 ∵a 5,a 9是方程7x 2-18x +7=0的两个根.

∴?????a 5+a 9=187,a 5·a 9=1,∴?????a 5>0,

a 9>0,

∴a 7>0.

又a 7是a 5与a 9的等比中项, ∴a 27=a 5·a 9=1, ∴a 7=1.

高中数学-等差等比数列经典例题以及详细答案

等差等比数列综合应用 【典型例题】 [例1] 一个等比数列共有三项,如果把第二项加上4所得三个数成等差数列,如果再把这个等差数列的第3项加上32所得三个数成等比数列,求原来的三个数。 解:等差数列为d a a d a +-,, ∴ ?????=++--=+?-2 2 )32)(()4()()(a d a d a a d a d a ∴ ?????=-+-+-=-) 2()(32)()1(168222222a d a d a a a d a ∴ 2 23232168a d a a =-++- 0432=-+d a 代入(1) 16)24(3 1 82+-?-=-d d 0643232=+-d d 0)8)(83(=--d d ① 8=d 10=a ② 38=d 9 26=a ∴ 此三数为2、16、18或92、910-、9 50 [例2] 等差数列}{n a 中,3931-=a ,76832-=+a a ,}{n b 是等比数列,)1,0(∈q ,21=b ,}{n b 所有项和为20,求: (1)求n n b a , (2)解不等式 2211601 b m a a m m -≤++++Λ 解:(1)∵ 768321-=+d a ∴ 6=d ∴ 3996-=n a n 2011=-q b 10 9 =q ∴ 1 )10 9( 2-?=n n b 不等式10 921601) (21 21??-≤++?+m a a m m m

)1(1816)399123936(2 1 +??-≤-+-? m m m m 0)1(181639692≤+??+-m m m 032122≤+-m m 0)8)(4(≤--m m }8,7,6,5,4{∈m [例3] }{n a 等差,}{n b 等比,011>=b a ,022>=b a ,21a a ≠,求证:)3(≥ ),1(+∞∈q 01>-q 01>-n q ∴ 0*> ∴ N n ∈ 3≥n 时,n n a b > [例4] (1)求n T ;(2)n n T T T S +++=Λ21,求n S 。 解:???=-=????=+++-=+++221 04811598 7654d a a a a a a a a Λ n T 中共12-n 个数,依次成等差数列 11~-n T T 共有数1222112-=+++--n n Λ项 ∴ n T 的第一个为2)12(211 21?-+-=--n n a ∴ 2)12()2(2 1 )232(2 111 ?-?+-?=---n n n n n T 122112222232-----+?-=n n n n 2222323+-?-?=n n

数学必修5导学案:1-2 第2课时等比数列的性质

第2课时 等比数列的性质 知能目标解读 1.结合等差数列的性质,了解等比数列的性质和由来. 2.理解等比数列的性质及应用. 3.掌握等比数列的性质并能综合运用. 重点难点点拨 重点:等比数列性质的运用. 难点:等比数列与等差数列的综合应用. 学习方法指导 1.在等比数列中,我们随意取出连续三项及以上的数,把它们重新依次看成一个新的数列,则此数列仍为等比数列,这是因为随意取出连续三项及以上的数,则以取得的第一个数为首项,且仍满足从第2项起,每一项与它的前一项的比都是同一个常数,且这个常数量仍为原数列的公比,所以,新形成的数列仍为等比数列. 2.在等比数列中,我们任取下角标成等差的三项及以上的数,按原数列的先后顺序排列所构成的数列仍是等比数列,简言之:下角标成等差,项成等比.我们不妨设从等比数列{a n }中依次取出的数为a k ,a k +m ,a k +2m ,a k +3m ,…,则 k m k a a 2+= m k m k a a ++2= m k m k a a 23++=…=q m (q 为原等比数列的公比),所以此数列成等比数列. 3.如果数列{a n }是等比数列,公比为q,c 是不等于零的常数,那么数列{ca n }仍是等比数列,且公比仍为q ; {|a n |} 也是等比,且公比为|q |.我们可以设数列{a n }的公比为q ,且满足 n n a a 1+=q ,则 n n ca ca 1+= n n a a 1+=q ,所以数 列{ca n }仍是等比数列,公比为q .同理,可证{|a n |}也是等比数列,公比为|q |. 4.在等比数列{a n }中,若m+n=t+s 且m,n,t,s ∈N +则a m a n =a t a s .理由如下:因为a m a n =a 1q m-1·a 1q n-1 =a 21q m+n-2,a t a s =a 1q t-1·a 1q s-1=a 21q t+s-2,又因为m+n=t+s ,所以m+n -2=t+s -2,所以a m a n =a t a s .从此性质还可得到,项数确定的等比数列,距离首末两端相等的两项之积等于首末两项之积. 5.若{a n },{b n }均为等比数列,公比分别为q 1,q 2,则 (1){a n b n }仍为等比数列,且公比为q 1q 2. (2) { n n b a }仍为等比数列,且公比为2 1q q . 理由如下:(1) n n n n b a b a 11++=q 1q 2,所以{a n b n }仍为等比数列,且公比为q 1q 2;(2) n n n n b a b a 11 ++· n n a b = 2 1q q , 所以{ n n b a }仍为等比数列,且公比为 2 1q q . 知能自主梳理 1.等比数列的项与序号的关系 (1)两项关系 通项公式的推广:

等比数列教学设计(共2课时)

《等比数列》教学设计(共2课时) 一、教材分析: 1、内容简析: 本节主要内容是等比数列的概念及通项公式,它是继等差数列后有一个特殊数列,是研究数列的重要载体,与实际生活有密切的联系,如细胞分裂、银行贷款问题等都要用等比数列的知识来解决,在研究过程中体现了由特殊到一般的数学思想、函数思想和方程思想,在高考中占有重要地位。 2、教学目标确定: 从知识结构来看,本节核心内容是等比数列的概念及通项公式,可从等比数列的“等比”的特点入手,结合具体的例子来学习等比数列的概念,同时,还要注意“比”的特性。在学习等比数列的定义的基础上,导出等比数列的通项公式以及一些常用的性质。从而可以确定如下教学目标(三维目标): 第一课时: (1)理解等比数列的概念,掌握等比数列的通项公式及公式的推导 (2)在教学过程中渗透方程、函数、特殊到一般等数学思想,提高学生观察、归纳、猜想、证明等逻辑思维能力 (3)通过对等比数列通项公式的推导,培养学生发现意识、创新意识 第二课时: (1)加深对等比数列概念理解,灵活运用等比数列的定义及通项公式,了解等比中项概念,掌握等比数列的性质 (2)运用等比数列的定义及通项公式解决问题,增强学生的应用 3、教学重点与难点: 第一课时: 重点:等比数列的定义及通项公式 难点:应用等比数列的定义及通项公式,解决相关简单问题 第二课时: 重点:等比中项的理解与运用,及等比数列定义及通项公式的应用 难点:灵活应用等比数列的定义及通项公式、性质解决相关问题 二、学情分析: 从整个中学数学教材体系安排分析,前面已安排了函数知识的学习,以及等差数列的有关知识的学习,但是对于国际象棋故事中的问题,学生还是不能解决,存在疑问。本课正是由此入手来引发学生的认知冲突,产生求知的欲望。而矛盾解决的关键依然依赖于学生原有的认知结构──在研究等差数列中用到的思想方法,于是从几个特殊的对应观察、分析、归纳、概括得出等比数列的定义及通项公式。 高一学生正处于从初中到高中的过度阶段,对数学思想和方法的认识还不够,思维能力比较欠缺,他们重视具体问题的运算而轻视对问题的抽象分析。同时,高一阶段又是学生形成良好的思维能力的关键时期。因此,本节教学设计一方面遵循从特殊到一般的认知规律,另一方面也加强观察、分析、归纳、概括能力培养。 多数学生愿意积极参与,积极思考,表现自我。所以教师可以把尽可能多的时间、空间让给学生,让学生在参与的过程中,学习的自信心和学习热情等个性心理品质得到很好的培养。这也体现了教学工作中学生的主体作用。 三、教法选择与学法指导: 由于等比数列与等差数列仅一字之差,在知识内容上是平行的,可用比较法来学习等比

等差等比数列的性质总结

一、等差数列 1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式: * 11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而m n a a d m n --=; 3.等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A += 或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4.等差数列的前n 项和公式: 1()2n n n a a S += 1(1)2n n na d -=+211 ()22 d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项 ()()()12121121212 n n n n a a S n a +++++= = +(项数为奇数的等差数列的各项和等于项数乘以中间项) 5.等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . ⑶数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2 n S An Bn =+,(其中A 、B 是常数)。 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数列. 7.提醒: (1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。 (2)设项技巧: ①一般可设通项1(1)n a a n d =+- ②奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d ); ③偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(注意;公差为2d ) 8..等差数列的性质: (1)当公差0d ≠时, 等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ; 前n 和211(1)()222 n n n d d S na d n a n -=+ =+-是关于n 的二次函数且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。 (3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=. 注:12132n n n a a a a a a --+=+=+=???,

高中数学必修五全套教案(非常好的)

(第1课时) 课题 §2.1数列的概念与简单表示法 ●教学目标 知识与技能:理解数列及其有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项写出它的个通项公式。 过程与方法:通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力. 情感态度与价值观:通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。 ●教学重点 数列及其有关概念,通项公式及其应用 ●教学难点 根据一些数列的前几项抽象、归纳数列的通项公式 ●教学过程 Ⅰ.课题导入 三角形数:1,3,6,10,… 正方形数:1,4,9,16,25,… Ⅱ.讲授新课 ⒈ 数列的定义:按一定次序排列的一列数叫做数列. 注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列; ⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现. ⒉ 数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,…. 例如,上述例子均是数列,其中①中,“4”是这个数列的第1项(或首项),“9”是这个数列中的第6项. ⒊数列的一般形式: ,,,,,321n a a a a ,或简记为{}n a ,其中n a 是数列的第n 项 结合上述例子,帮助学生理解数列及项的定义. ②中,这是一个数列,它的首项是“1”,“ 3 1 ”是这个数列的第“3”项,等等 下面我们再来看这些数列的每一项与这一项的序号是否有一定的对应关系?这一关系可否用一个公式表示?(引导学生进一步理解数列与项的定义,从而发现数列的通项公式)对于上面的数列②,第一项与这一项的序号有这样的对应关系: 项 1 51 413121 ↓ ↓ ↓ ↓ ↓ 序号 1 2 3 4 5 这个数的第一项与这一项的序号可用一个公式:n a n 1 = 来表示其对应关系 即:只要依次用1,2,3…代替公式中的n ,就可以求出该数列相应的各项 结合上述其他例子,练习找其对应关系

高中数学必修五导学案-第二课时 等比数列的性质

第2课时 等比数列的性质 1.掌握等比数列的性质及其应用.(重点) 2.熟练掌握等比数列与等差数列的综合应用.(难点、易错点) 3.能用递推公式求通项公式.(难点) [基础·初探] 教材整理 等比数列的性质 阅读教材P 51例4~P 53,完成下列问题. 1.“子数列”性质 对于无穷等比数列{a n },若将其前k 项去掉,剩余各项仍为等比数列,首项为a k +1,公比为q ;若取出所有的k 的倍数项,组成的数列仍为等比数列,首项为a k ,公比为q k . 2.等比数列项的运算性质 在等比数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m ·a n =a p ·a q . ①特别地,当m +n =2k (m ,n ,k ∈N *)时,a m ·a n =a 2k . ②对有穷等比数列,与首末两项“等距离”的两项之积等于首末两项的积,即a 1·a n =a 2·a n -1=…=a k ·a n -k +1=…. 3.两等比数列合成数列的性质 若数列{a n },{b n }均为等比数列,c 为不等于0的常数,则数列{ca n }, {a 2 n }{a n ·b n },? ??? ??????a n b n 也为等比数列. 1.等比数列{a n }中,a 4=4,则a 2·a 6=________. 【解析】 ∵{a n }是等比数列, ∴a 2a 6=a 24=42 =16. 【答案】 16 2.若a ,b ,c 既成等差数列,又成等比数列,则它们的公比为________.

【解析】 只有非零常数列才满足题意,∴公比q =1. 【答案】 1 3.正项等比数列{a n }中,a 2a 5=10,则lg a 3+lg a 4=___________________. 【解析】 lg a 3+lg a 4=lg(a 3a 4) =lg(a 2a 5) =lg 10=1. 【答案】 1 4.在等比数列{a n }中,a 2=2,a 6=16,则a 10=________. 【解析】 ∵数列{a n }是等比数列,∴a 10·a 2=a 26, 即a 10=a 26 a 2=1622 =128. 【答案】 128 [小组合作型] 等比数列性质的应 用 已知{a n }为等比数列, (1)等比数列{a n }满足a 2a 4=1 2 ,求a 1a 23a 5; (2)若a n >0,a 2a 4+2a 3a 5+a 4a 6=25,求a 3+a 5; (3)若a n >0,a 5a 6=9,求log 3a 1+log 3a 2+…+log 3a 10的值. 【精彩点拨】 利用等比数列的性质,若m +n =p +q ,则a m ·a n =a p ·a q 求解. 【自主解答】 (1)等比数列{a n }中,因为a 2a 4=12,所以a 23=a 1a 5=a 2a 4=1 2, 所以a 1a 2 3a 5=14 . (2)由等比中项,化简条件得 a 23+2a 3a 5+a 25=25,即(a 3+a 5)2 =25, ∵a n >0,∴a 3+a 5=5. (3)由等比数列的性质知a 5a 6=a 1a 10=a 2a 9=a 3a 8=a 4a 7=9, ∴log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1a 2…a 10)

(完整版)等比数列前n项和公式的性质导学案

等比数列前n 项和的性质导学案 知识目标:掌握等比数列前n 项和的性质,灵活的应用等比数列前n 项和公式的性质解决问题。 方法与过程:通过自主探究的方式,培养学生团队精神,勇于探索的精神。 教学过程: 复习: 1、 等比数列前n 项和公式: (1) (2) 2.数学思想: 课前练习: 1.数列()项和的前n a a a a n 13 2............,,,1- a a A n --11. B a a n --+111 C a a n ---111 D.以上答案都不对。 2.求和()() )(.......212n a a a n -++-+- 新课探究: 探究一: 性质1。数列{}n a 的前n 项和A Aq S n n -=()1,0,0≠≠≠q q A 探究{}n a 是否为等比数 列。 例题1:若等比数列{}n a 的前n 项和,4a S n n +=求a 的值。 变式:若等比数列{}n a 的前n 项和13-=n n S +a 2,求a 的值。 探究二: 我们知道,等差数列有这样的性质: 数列{}n a 是等差数列,则K K K K K S S S S S 232,,--................也成等差数列; 则新的等差数列的首项是K S ,公差为d k 2 。 那么,在等比数列中,也有类似的性质吗? 等比数列前n 项和的性质二: 数列{}n a 是等比数列,则K K K K K S S S S S 232,,--...............是否也构成成等比数列; 则新的等比数列的首项是K S ,公比( ) 例题2 :已知等比数列{}n a 中,前10项和10S =10,前20项和20S =30,求30S 变式训练: 1. 等比数列{}n a 10S =20,20S =80,求30S =?.

2020年人教版高中数学必修一全套精品教案(完整版)

2020年人教版高中数学必修一全套精品教 案(完整版) 第一章集合与函数 §1.1.1集合的含义与表示 一. 教学目标: l.知识与技能 (1)通过实例,了解集合的含义,体会元素与集合的属于关系; (2)知道常用数集及其专用记号; (3)了解集合中元素的确定性.互异性.无序性; (4)会用集合语言表示有关数学对象; (5)培养学生抽象概括的能力. 2. 过程与方法 (1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义. (2)让学生归纳整理本节所学知识. 3. 情感.态度与价值观 使学生感受到学习集合的必要性,增强学习的积极性. 二. 教学重点.难点

重点:集合的含义与表示方法. 难点:表示法的恰当选择. 三. 学法与教学用具 1. 学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标. 2. 教学用具:投影仪. 四. 教学思路 (一)创设情景,揭示课题 1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗? 引导学生回忆.举例和互相交流. 与此同时,教师对学生的活动给予评价. 2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容. (二)研探新知 1.教师利用多媒体设备向学生投影出下面9个实例: (1)1—20以内的所有质数; (2)我国古代的四大发明; (3)所有的安理会常任理事国; (4)所有的正方形;

(5)海南省在2004年9月之前建成的所有立交桥; (6)到一个角的两边距离相等的所有的点; (7)方程2560 -+=的所有实数根; x x (8)不等式30 x->的所有解; (9)国兴中学2004年9月入学的高一学生的全体. 2.教师组织学生分组讨论:这9个实例的共同特征是什么? 3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义. 一般地,指定的某些对象的全体称为集合(简称为集).集合中的 每个对象叫作这个集合的元素. 4.教师指出:集合常用大写字母A,B,C,D,…表示,元素常 用小写字母,,, a b c d…表示. (三)质疑答辩,排难解惑,发展思维 1.教师引导学生阅读教材中的相关内容,思考:集合中元素有 什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的 三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是 一样的,我们就称这两个集合相等. 2.教师组织引导学生思考以下问题: 判断以下元素的全体是否组成集合,并说明理由: (1)大于3小于11的偶数;

高考数学复习专题 等比数列性质(含等差等比数列综合题)

第50炼 等比数列性质 一、基础知识 1、定义:数列{}n a 从第二项开始,后项与前一项的比值为同一个常数()0q q ≠,则称{}n a 为等比数列,这个常数q 称为数列的公比 注:非零常数列既可视为等差数列,也可视为1q =的等比数列,而常数列0,0,0,L 只是等差数列 2、等比数列通项公式:11n n a a q -=?,也可以为:n m n m a a q -=? 3、等比中项:若,,a b c 成等比数列,则b 称为,a c 的等比中项 (1)若b 为,a c 的等比中项,则有 2a b b a c b c =?= (2)若{}n a 为等比数列,则n N * ?∈,1n a +均为2,n n a a +的等比中项 (3)若{}n a 为等比数列,则有m n p q m n p q a a a a +=+?= 4、等比数列前n 项和公式:设数列{}n a 的前n 项和为n S 当1q =时,则{}n a 为常数列,所以1n S na = 当1q ≠时,则()111n n a q S q -= - 可变形为:()1111111 n n n a q a a S q q q q -= = ----,设11a k q =-,可得:n n S k q k =?- 5、由等比数列生成的新等比数列 (1)在等比数列{}n a 中,等间距的抽取一些项组成的新数列仍为等比数列 (2)已知等比数列{}{},n n a b ,则有 ① 数列{}n ka (k 为常数)为等比数列 ② 数列{}n a λ (λ为常数)为等比数列,特别的,当1λ=-时,即1n a ?? ???? 为等比数列 ③ 数列{}n n a b 为等比数列 ④ 数列{} n a 为等比数列

等比数列的概念及通项公式导学案

1 等比数列的概念及通项公式 基本概念 新知: 1. 等比数列定义:一般地,如果一个数列从第 项起, 一项与它的 一项的 等于 常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的 ,通常用字母 表示(q ≠0),即:1 n n a a -= (q ≠0) 2. 等比数列的通项公式: 21a a = ; 3211()a a q a q q a === ;24311()a a q a q q a === ; … … ∴ 11n n a a q a -==? 等式成立的条件 3. 等比数列中任意两项n a 与m a 的关系是: 3、等比数列的性质:对于等比数列}{n a ,若.,n m q p a a a a n m q p =+=+则 4、等比数列的}{n a 的单调性————————与首项和公比都有关 11-=n n q a a 例题 例一:判断数列是否为等比数列,若是请指出公比 (1)1,-1,1,-1,1,…(2)0,1,2,4,8,…(3)13 181-4121-1,,, 例二、指出下列等比数列中的未知项 (1)2,a ,8 (2)-4,b ,c ,2 1 问题1:如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则2G b G ab G a G =?=?= 新知1:等比中项定义 如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么称这个数G 称为a 与b 的等比中项. 即G = (a , b 同号). 试试:数4和6的等比中项是 . 例三、(1)在等比数列}{n a 中,是否有)2(112 ≥=+-n a a a n n n ? (2)如果数列}{n a 中,对于任意的正整数),2(,2112 ≥=≥+-n a a a n n n n n 都有) (那么}{n a 一定是等比数列 吗?

最新人教版高中数学必修二_全册教案

按住Ctrl键单击鼠标打开教学视频动画全册播放 第一章:空间几何体 1.1.1柱、锥、台、球的结构特征 一、教学目标 1.知识与技能 (1)通过实物操作,增强学生的直观感知。 (2)能根据几何结构特征对空间物体进行分类。 (3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。 (4)会表示有关于几何体以及柱、锥、台的分类。 2.过程与方法 (1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。(2)让学生观察、讨论、归纳、概括所学的知识。 3.情感态度与价值观 (1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。 (2)培养学生的空间想象能力和抽象括能力。 二、教学重点、难点 重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。 难点:柱、锥、台、球的结构特征的概括。 三、教学用具 (1)学法:观察、思考、交流、讨论、概括。 (2)实物模型、投影仪 四、教学思路 (一)创设情景,揭示课题 1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。 2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。 (二)、研探新知 1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么? 3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。 4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。 5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类? 请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的? 6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。 7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。 8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。 9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。 10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的? (三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。 1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图) 2.棱柱的何两个平面都可以作为棱柱的底面吗? 3.课本P8,习题1.1 A组第1题。 4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转? 5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢? 四、巩固深化 练习:课本P7 练习1、2(1)(2) 课本P8 习题1.1 第2、3、4题 五、归纳整理 由学生整理学习了哪些内容 六、布置作业

高中数学 等差数列与等比数列 课件

第1讲等差数列与等比数列 高考定位 1.等差、等比数列基本运算和性质的考查是高考热点,经常以选择题、填空题的形式出现;2.数列的通项也是高考热点,常在解答题中的第(1)问出现,难度中档以下. 真题感悟 1.(2019·全国Ⅰ卷)记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则() A.a n=2n-5 B.a n=3n-10 C.S n=2n2-8n D.S n=1 2n 2-2n

2.(2018·北京卷)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于 122.若第一个单音的频率为f ,则第八个单音 的频率为( ) A.32f B.3 22f C.1225f D.1227f 3.(2019·全国Ⅰ卷)记S n 为等比数列{a n }的前n 项和,若a 1=1,S 3=34,则S 4= ________. 4.(2019·全国Ⅱ卷)已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16. (1)求{a n }的通项公式; (2)设b n =log 2a n ,求数列{b n }的前n 项和. 考 点 整 合 1.等差数列 (1)通项公式:a n =a 1+(n -1)d ; (2)求和公式:S n = n (a 1+a n )2=na 1+n (n -1)2 d ; (3)性质: ①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q ; ②a n =a m +(n -m )d ; ③S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列. 2.等比数列 (1)通项公式:a n =a 1q n -1(q ≠0); (2)求和公式:q =1,S n =na 1;q ≠1,S n =a 1(1-q n )1-q =a 1-a n q 1-q ; (3)性质: ①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m ·a n =a p ·a q ; ②a n =a m ·q n -m ; ③S m ,S 2m -S m ,S 3m -S 2m ,…(S m ≠0)成等比数列.

2019高考数学二轮复习专题三数列与不等式第1讲等差数列与等比数列学案

第1讲 等差数列与等比数列 [考情考向分析] 1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.等差、等比数列的判定及综合应用也是高考考查的重点,注意基本量及定义的使用,考查分析问题、解决问题的综合能力. 热点一 等差数列、等比数列的运算 1.通项公式 等差数列:a n =a 1+(n -1)d ; 等比数列:a n =a 1·q n -1 . 2.求和公式 等差数列:S n = n (a 1+a n ) 2 =na 1+ n (n -1) 2 d ; 等比数列:S n =????? a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1),na 1(q =1). 3.性质 若m +n =p +q , 在等差数列中a m +a n =a p +a q ; 在等比数列中a m ·a n =a p ·a q . 例1 (1)(2018·全国Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5等于( ) A .-12 B .-10 C .10 D .12 答案 B 解析 设等差数列{a n }的公差为d ,由3S 3=S 2+S 4, 得3???? ??3a 1+3×(3-1)2×d =2a 1+2×(2-1)2×d +4a 1+4×(4-1)2×d ,将a 1=2代入上式,解得d =-3, 故a 5=a 1+(5-1)d =2+4×(-3)=-10.故选B. (2)(2018·杭州质检)设各项均为正数的等比数列{a n }中,若S 4=80,S 2=8,则公比q =________,a 5=________. 答案 3 162

2018年秋高中数学第二章数列2.4等比数列第2课时等比数列的性质学案新人教A版必修5

第2课时 等比数列的性质 学习目标:1.掌握等比数列的性质及其应用(重点).2.熟练掌握等比数列与等差数列的综合应用(难点、易错点).3.能用递推公式求通项公式(难点). [自 主 预 习·探 新 知] 1.推广的等比数列的通项公式 {a n }是等比数列,首项为a 1,公比为q ,则a n =a 1q n -1 ,a n =a m ·q n -m (m ,n ∈N * ). 2.“子数列”性质 对于无穷等比数列{a n },若将其前k 项去掉,剩余各项仍为等比数列,首项为a k +1,公比为q ;若取出所有的k 的倍数项,组成的数列仍为等比数列,首项为a k ,公比为q k . 思考:如何推导a n =a m q n -m? [提示] 由a n a m =a ·q n -1a ·q m -1 =q n -m , ∴a n =a m ·q n -m . 3.等比数列项的运算性质 在等比数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N * ),则a m ·a n =a p ·a q . ①特别地,当m +n =2k (m ,n ,k ∈N * )时,a m ·a n =a 2k . ②对有穷等比数列,与首末两项“等距离”的两项之积等于首末两项的积,即a 1·a n =a 2·a n -1 =…=a k ·a n -k +1=…. 4.两等比数列合成数列的性质 若数列{a n },{b n }均为等比数列,c 为不等于0的常数,则数列{ca n },{a 2 n }{a n ·b n },???? ??a n b n 也 为等比数列. 思考:等比数列{a n }的前4项为1,2,4,8,下列判断正确的是 (1){3a n }是等比数列; (2){3+a n }是等比数列; (3)???? ?? 1a n 是等比数列; (4){a 2n }是等比数列. [提示]由定义可判断出(1),(3),(4)正确. [基础自测] 1.思考辨析 (1)有穷等比数列中,与首末两项“等距离”的两项之积等于首末两项的积.( ) (2)当q >1时,{a n }为递增数列.( ) (3)当q =1时,{a n }为常数列.( ) [答案] (1) √ (2)× (3)√

高三数学章节专题基础梳理导学案42(等差数列等比数列的性质)

高考要求 等差、等比数列的性质是等差、等比数列的概念,通项公式,前n 项和公式的引申 应用等差、等比数列的性质解题,往往可以回避求其首项和公差或公比,使问题得到整体地解决,能够在运算时达到运算灵活,方便快捷的目的,故一直受到重视 高考中也一直重点考查这部分内容 重难点归纳 1 等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题的既快捷又方便的工具,应有意识去应用 2 在应用性质时要注意性质的前提条件,有时需要进行适当变形 3 “巧用性质、减少运算量”在等差、等比数列的计算中非常重要,但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条件,又要时刻注意题的目标,往往能取得与“巧用性质”解题相同的效果 典型题例示范讲解 例1已知函数f (x )= 4 12 -x (x <-2) (1)求f (x )的反函数f --1(x ); (2)设a 1=1, 1 1+n a =-f --1(a n )(n ∈N *),求a n ; (3)设S n =a 12+a 22+…+a n 2,b n =S n +1-S n 是否存在最小正整数m ,使得对任意n ∈N *,有b n <25 m 成立?若存在,求出m 的值;若不存在,说明理由 命题意图 本题是一道与函数、数列有关的综合性题目,着重考查学生的逻辑分析能力 知识依托 本题融合了反函数,数列递推公式,等差数列基本问题、数列的和、函数单调性等知识于一炉,结构巧妙,形式新颖,是一道精致的综合题 错解分析 本题首问考查反函数,反函数的定义域是原函数的值域,这是一个易错点,(2)问以数列{ 2 1n a }为桥梁求a n ,不易突破 技巧与方法 (2)问由式子4112 1 += +n n a a 得 2 2 1 11n n a a - +=4,构造等差数列{ 2 1n a },从 而求得a n ,即“借鸡生蛋”是求数列通项的常用技巧;(3)问运用了函数的思想 解 (1)设y = 412 -x ,∵x <-2,∴x =- 2 14y + , 即y =f --1(x )=-2 14y + (x >0) (2)∵411 ,1412 2 1 2 1 =- ∴+ =++n n n n a a a a , ∴{ 2 1 n a }是公差为4的等差数列, ∵a 1=1, 2 1n a =2 1 1a +4(n -1)=4n -3,∵a n >0,∴a n = 3 41-n

高中数学必修5:等差数列与等比数列知识对比表

高中数学必修5:等差数列与等比数列知识比较一览表等差数列等比数列 定义一般地,如果一个数列{} n a从第2项起,每一项与它 的前一项的差等于同一个常数d,那么这个数列就叫 做等差数列.这个常数d叫公差. 等差数列的单调性: 数列{} n a为等差数列,则 当公差0 d>,则为递增等差数列, 当公差0 d<,则为递减等差数列, 当公差0 d=,则为常数列. 一般地,如果一个数列{} n a从第2项起,每一项 与它的前一项的比等于同一个常数q,那么这个数 列就叫等比数列.这个常数q叫公比. 等比数列的单调性: 数列{} n a为等比数列,则 当1 q>时,1 1 0{} 0{} {n n a a a a > < ,则为递增数列 ,则为递减数列; 当1 q< 0<时,1 1 0{} 0{} {n n a a a a > < ,则为递减数列 ,则为递增数列 当q=1时,该数列为常数列,也为等差数列; 当q<0时,该数列为摆动数列. 判定方法等差数列的判定方法 (1)定义法:若d a a n n = - -1 或 d a a n n = - +1 (常数* ∈N n)?{}n a是等差数列. (2)等差中项:数列{}n a是等差数列 )2 ( 2 1 1- ≥ + = ? + n a a a n n n2 1 2 + + + = ? n n n a a a (3)通项公式:b kn a n + =(b k,是常数) ?数列{}n a是等差数列 (4)前n项和公式:数列{}n a是等差数列 ?2 n S An Bn =+,(其中A、B是常数)。 等比数列的判定方法 (1)用定义:对任意n,都有 1 1 (0) n n n n n a a qa q q a a + + ==≠ 或为常数, ?{} n a为等比数列 (2)等比中项:2 11 n n n a a a +- =( 11 n n a a +- ≠0) ?{} n a为等比数列 (3)通项公式:()0 n n a A B A B =??≠ ?{} n a为等比数列 (4)前n项和公式: () '',,',' n n n n S A A B S A B A A B A B =-?=- 或为常数 ?{} n a为等比数列 证明方法等差数列的证明方法:只能依据定义: 定义法:若d a a n n = - -1 或d a a n n = - +1 (常数* ∈N n)?{}n a是等差数列. 等比数列的证明方法:只能依据定义: 若()()* 1 2, n n a q q n n N a - =≠≥∈ 0且或1 n n a qa + = ?{} n a为等比数列 递推关系① 121 n n a a a a + -=-(* n N ∈) ② 1 n n a a d + -=(* n N ∈) ③ 11 n n n n a a a a +- -=-(* 2, n n N ≥∈) ①12 1 n n a a a a +=( * n N ∈) ②1n n a q a +=(* 0, q n N ≠∈) ③1 1 n n n n a a a a + - =(* 2, n n N ≥∈) 通项公式① 11 (1) n a a n d dn a d =+-=+-=b kn+ 推广:()d m n a a m n - + =(m、* n N ∈) 特别的,当m=1时,便得到等差数列的通项公式. 此公式比等差数列的通项公式更具有一般性. m n a a d m n - - =, 1 1 - - = n a a d n,()d n a a n 1 1 - - = ② n a pn q =+(* ,, p q n N ∈ 为常数) 是关于n的一次函数,且斜率为公差d ③由 n S的定义, n a= ? ? ? ≥ - = - )2 ( )1 ( 1 1 n S S n S n n (* n N ∈) ①() 11 1 n n n n a a a q q A B A B q - ===??≠ 推广:m n m n q a a- ? =(m、* n N ∈) 特别的,当m=1时,便得到等比数列的通项公式., 此公式比等比数列的通项公式更具有一般性. n m n m a q a -=, 1 1 a a q n n= -,n n q a a- ? =1 1 ②n n q p a? =(* ,,0,0, p q q p n N ≠≠∈ 是常数) ③由 n S的定义, () () ? ? ? ? ? ≥ = = - 2 1 1 1 n S S n S a n n n (* n N ∈)

相关文档
最新文档