遗传学课后习题答案

遗传学课后习题答案

第二章遗传的细胞学基础(参考答案)

一、解释下列名词:

染色体:细胞分裂时出现的,易被碱性染料染色的丝状或棒状小体,由核酸和蛋白质组成,是生物遗传物质的主要载体,各种生物的染色体有一定数目、形态和大小。

染色单体:染色体通过复制形成,由同一着丝粒连接在一起的两条遗传内容完全一样的子染

色体。

着丝点:即着丝粒。染色体的特定部位,细胞分裂时出现的纺锤丝所附着的位置,此部位不

染色。

细胞周期:一次细胞分裂结束后到下一次细胞分裂结束所经历的过程称为细胞周期(cell cy

cle)。

同源染色体:体细胞中形态结构相同、遗传功能相似的一对染色体称为同源染色体(homolo gous chromosome)。两条同源染色体分别来自生物双亲,在减数分裂时,两两配对的染色

体,形状、大小和结构都相同。

异源染色体:形态结构上有所不同的染色体间互称为非同源染色体,在减数分裂时,一般不

能两两配对,形状、大小和结构都不相同。

无丝分裂:又称直接分裂,是一种无纺锤丝参与的细胞分裂方式。

有丝分裂:又称体细胞分裂。整个细胞分裂包含两个紧密相连的过程,先是细胞核分裂,后是细胞质分裂,核分裂过程分为四个时期;前期、中期、后期、末期。最后形成的两个子细

胞在染色体数目和性质上与母细胞相同。

单倍体:指具有配子染色体数(n)的个体。

联会:减数分裂中同源染色体的配对。

联会复合体——减数分裂偶线期和粗线期在配对的两个同源染色体之间形成的结构,包括两

个侧体和一个中体。

胚乳直感:又称花粉直感。在3n胚乳的性状上由于精核的影响而直接表现父本的某些性状。

果实直感:种皮或果皮组织在发育过程中由于花粉影响而表现父本的某些性状

二、可以形成:40个花粉粒,80个精核,40个管核;10个卵母细胞可以形成:10个胚囊,

10个卵细胞,20个极核,20个助细胞,30个反足细胞。

三、(1)叶(2)根(3)胚乳(4)胚囊母细胞(5)胚

(6)卵细胞(7)反足细胞(8)花药壁(9)花粉管核

(1)叶:20条;(2)根:20条;(3)胚乳:30条;(4)胚囊母细胞:20条;(5)胚:20条;

(6)卵细胞:10条;(7)反足细胞:10条;(8)花药壁:20条;(9)花粉管核:10条

四、如果形成的是雌配子,那么只形成一种配子ABC或A’B’C’或A’ BC或A B’C’ 或 A

B’ C 或A’ B C’ 或AB C’ 或A’B’ C ;

如果形成的是雄配子,那么可以形成两种配子ABC和A’B’C’或A B’ C 和A’ B C’ 或A’

BC和A B’C’ 或AB C’ 或和A’B’ C 。

五、(1)保证了亲代与子代之间染色体数目的恒定性。

双亲性母细胞(2n)经过减数分裂产生性细胞(n),实现了染色体数目的减半;

雌雄性细胞融合产生的合子(及其所发育形成的后代个体)就具有该物种固有的染色体数目(2n),保持了物种的相对稳定。子代的性状遗传和发育得以正常进行。

(2)为生物的变异提供了重要的物质基础。

减数分裂中期I,二价体的两个成员的排列方向是随机的,所以后

期I 分别来自双亲的两条同源染色体随机分向两极,因而所产生的性细胞就可能会有2n种非同源染色体的组合形

式(染色体重组,recombination of chromosome)。

另一方面,非姊妹染色单体间的交叉导致同源染色体间的片段交换(exchange of segmen t),使子细胞的遗传组成更加多样化,为生物变异提供更为重要的物质基础(染色体片断重组,recombination of segment)。同时这也是连锁遗传规律及基因连锁分析的基础。

六、1.减数分裂前期有同源染色体配对(联会);

2.减数分裂遗传物质交换(非姐妹染色单体片段交换);

3.减数分裂中期后染色体独立分离,而有丝分裂则着丝点裂开后均衡分向两极;

4.减数分裂完成后染色体数减半;

5.分裂中期着丝点在赤道板上的排列有差异:

减数分裂中同源染色体的着丝点分别排列于赤道板两侧,而有丝分裂时则整齐地排列在

赤道板上。

第三章遗传物质的分子基础(练习)

解释下列名词:

半保留复制冈崎片段转录翻译小核RNA 不均一RNA 遗传密码简并多聚合糖体中

心法则

如何证明DNA是生物的主要遗传物质?

简述DNA的双螺旋结构,有何特点?

比较A-DNA,B-DNA和Z-DNA的主要异同。

染色质的基本结构是什么?现有的假说是怎样解释染色质螺旋化为染色体的?

原核生物DNA聚合酶有哪几种?各有何特点?

真核生物与原核生物DNA合成过程有何不同?

简述原核生物RNA的转录过程。

真核生物与原核生物相比,其转录过程有何特点?

简述原核生物蛋白质合成的过程。

第三章遗传物质的分子基础(参考答案)

1.解释下列名词

半保留复制:以DNA两条链分别作模板,以碱基互补的方式,合成两条新的DNA双链,互相盘旋在一起,恢复了DNA的双分子链结构。这样,随着DNA分子双螺旋的完全拆开,就逐渐形成了两个新的DNA分子,与原来的完全一样。DNA的这种复制方式称为半保留复制(semiconservative replication),因为通过复制所形成的新的DNA 分子,保留原来亲本D NA双链分子的一条单链。DNA在活体内的半保留复制性质,已为1958年以来的大量试验所证实。DNA的这种复制方式对保持生物遗传的稳定具有非常重要的作用。

冈崎片段:DNA的复制只能从5’向3’方向延伸,5’向3’方向延伸的链称作前导链(leading s trand),它是连续合成的。而另一条先沿5’-3’方向合成一些片段,然后再由连接酶将其连起来的链,称为后随链(lagging strand),其合成是不连续的。这种不连续合成是由冈崎等人首先发现的,所以现在将后随链上合成的DNA不连续单链小片段称为冈崎片段(Okazaki

fragment)。

转录:以DNA的一条链为模板,在RNA聚合酶的作用下,以碱基互补的方式,以U代替T,合成mRNA,在细胞核内将DNA的遗传信息转录到RNA上。

翻译:以mRNA为模板,在多种酶和核糖体的参与下,在细胞质内合成蛋白质的多肽链。

小核RNA:真核生物转录后加工过程中RNA剪接体(spliceosome)的主要成份。

不均一RNA:在真核生物中,转录形成的RNA中,含由大量非编码序列,大约只有25%RNA经加工成为mRNA,最后翻译为蛋白质。因为这种未经加工的前体mRNA(pre-mRNA)在分子大小上差别很大,所以通常称为不均一核RNA(heterogeneous nuclear RNA,hnR

NA)。

遗传密码:DNA链上编码氨基酸的三个核苷酸称之为遗传密码。

简并:一个氨基酸由一个以上的三联体密码所决定的现象,称为简并(degeneracy)。

多聚合糖体:在氨基酸多肽链的延伸合成过程中,当mRNA上蛋白质合成的起始位置移出核糖体后,另一个核糖体可以识别起始位点,并与其结合,然后进行第二条多肽链的合成。此过程可以多次重复,因此一条mRNA分子可以同时结合多个核糖体,形成一串核糖体,称为多聚核糖体(polyribosome 或者polysome)。

中心法则:遗传信息从DNA→mRNA→蛋白质的转录和翻译的过程,以及遗传信息从DNA →DNA的复制过程,这就是分子生物学的中心法则(central dogma)。由此可见,中心法则所阐述的是基因的两个基本属性:复制与表达。

2.证明DNA是生物的主要遗传物质,可设计两种实验进行直接证明DNA是生物的主要遗

传物质:

(1)肺炎双球菌定向转化试验:

有毒SⅢ型(65℃杀死)→小鼠成活→无细菌

无毒RⅡ型→小鼠成活→重现RⅡ型

有毒SⅢ型→小鼠死亡→重现SⅢ型

RⅡ型+有毒SⅢ型(65℃) →小鼠→死亡→重现SⅢ型

将III S型细菌的DNA提取物与II R型细菌混合在一起,在离体培养的条件下,也成功地使少数II R型细菌定向转化为III S型细菌。该提取物不受蛋白酶、多糖酶和核糖核酸酶的影响,而只能为DNA酶所破坏。所以可确认导致转化的物质是DNA。

(2)噬菌体的侵染与繁殖试验

T2噬菌体的DNA在大肠杆菌内,不仅能够利用大肠杆菌合成DNA的材料来复制自己的D NA,而且能够利用大肠肝菌合成蛋白质的材料,来合成其蛋白质外壳和尾部,因而形成完

整的新生的噬菌体。

32P和35S分别标记T2噬菌体的DNA与蛋白质。因为P是DNA 的组分,但不见于蛋白质;而S是蛋白质的组分,但不见于DNA。然后用标记的T2噬菌体(32P或35S)分别感染大肠杆菌,经10分钟后,用搅拌器甩掉附着于细胞外面的噬菌体外壳。发现在第一种情况下,基本上全部放射活性见于细菌内而不被甩掉并可传递给子代。在第二种情况下,放射性活性大部分见于被甩掉的外壳中,细菌内只有较低的放射性活性,且不能传递给子代。3.(1)两条多核苷酸链以右手螺旋的形式,彼此以一定的空间距离,平行地环绕于同一轴上,很象一个扭曲起来的梯子。

(2)两条多核苷酸链走向为反向平行(antiparallel)。即一条链磷酸二脂键为5’-3’方向,而另一条为3’-5’方向,二者刚好相反。亦即一条链对另一条链是颠倒过来的,这称为反向平行。

(3)每条长链的内侧是扁平的盘状碱基,碱基一方面与脱氧核糖相联系,另一方面通过氢键(h ydrogen bond)与它互补的碱基相联系,相互层叠宛如一级一级的梯子横档。互补碱基对A 与T之间形成两对氢键,而C与G之间形成三对氢键。上下碱基对之间的距离为3.4?。

(4)每个螺旋为34?(3.4nm)长,刚好含有10个碱基对,其直径约为20?。

(5)在双螺旋分子的表面大沟(major groove)和小沟(minor groove)交替出现。

4.一般将瓦特森和克里克提出的双螺旋构型称这B-DNA。B-DNA是DNA在生理状态

下的构型。生活细胞中极大多数DNA以B-DNA形式存在。但当外界环境条件发生变化时,DNA的构型也会发生变化。实际上在生活细胞内,B-DNA一螺圈也并不是正好10个核苷酸对,而平均一般为10.4对。当DNA在高盐浓度下时,则以A-DNA形式存在。A-DN A是DNA的脱水构型,它也是右手螺旋,但每螺圈含有11个核苷酸对。A-DNA比较短和密,其平均直径为23?。大沟深而窄,小沟宽而浅。在活体内DNA并不以A构型存在,但细胞内DNA-RNA 或RNA-RNA双螺旋结构,却与A-DNA非常相似。现在还发现,

某些DNA序列可以以左手螺旋的形式存在,称为Z-DNA。当某些DNA序列富含G-C,并且在嘌呤和嘧啶交替出现时,可形成Z-DNA。Z-DNA除左手螺旋外,其每个螺圈含有12个碱基对。分子直径为18?,并只有一个深沟。现在还不知道,Z-DNA在体内是否存

在。

5.

6.原核生物DNA聚合酶有一些共同的特性:只有5’-3’聚合酶的功能,而没有3’-5’聚合酶功能,DNA链的延伸只能从5’向3’端进行。它们都没有直接起始合成DNA的能力,只能在引物存在下进行链的延伸,因此,DNA的合成必须有引物引导才能进行。都有核酸外切酶的功能,可对合成过程中发生的错识进行校正,从而保证DNA复制的高度准确性。7.(1)原核生物DNA的复制是单起点的,而真核生物染色体的复制则为多起点的;(2)真核生物DNA合成所需的RNA引物及后随链上合成的―冈崎片段‖的长度比原核生物要短:在原核生物中引物的长度约为10-60个核苷酸,―冈崎片段‖的长度为1000-2000个核苷酸;而在真核生物中引物的长度只有10个核苷酸,而―冈崎片段‖的长度约为原核生

物的十分之一,只有100-150 核苷酸。

(3)有二种不同的DNA聚合酶分别控制前导链和后随链的合成。

在原核生物中有DNA聚合酶I、II和III等三种聚合酶,并由聚合酶III同时控制二条链的合

成。

而在真核生物中共有α、β、γ、δ和ε等五种DNA聚合酶。聚合酶α和δ是DNA合成的主要酶,由聚合酶α控制不连续的后随链的合成,而聚合酶δ则控制前导链的合成,所以其二条链的合成是在二种不同的DNA聚合酶的控制下完成。聚合酶β可能与DNA修复有关,而γ则是线粒体中发现的唯一一种DNA聚合酶。

(4)染色体端体的复制:原核生物的染色体大多数为环状,而真核生染色体为线状。8.(一)、RNA聚合酶组装与启动子的识别结合催

化转录的RNA聚合酶是一种由多个蛋白亚基组成的复合酶。如大肠杆菌的RNA聚合酶有五个亚基组成,其分子量为480,000道尔顿,含有α、β、β’和δ等四种不同的多肽,其中α为二个分子。所以其全酶(holoenzyme)的组成是α2ββ’δ。α亚基与RNA聚合酶的四聚体核心(α2 ββ’)的形成有关。β亚基含有核苷三磷酸的结合位点;β’亚基含有与DNA模板的结合位点;而Sigma(δ)因子只与RNA转录的起始有关,与链的延伸没有关系,一旦转录开始,δ因子就被释放,而链的延伸则由四聚体核心酶(core enzyme)催化。所以,δ因子的作用就是识别转录的起始位置,并使RNA

聚合酶结合在启动子部位。

(二)、链的起始RNA链转录的起始首先是RNA聚合酶在δ因子的作用下结合于DNA的启动子部位,并在RNA聚合酶的作用下,使DNA双链解开,形成转录泡,为RNA合成提供单链模板,并按照碱基配对的原则,结合核苷酸,然后,在核苷酸之间形成磷酸二脂键,使其相连,形成RNA新链。δ因子在RNA链伸长到8-9个核酸后,就被释放,然后由核

心酶催化RNA的延伸。

启动子位于RNA转录起始点的上游,δ因子对启动子的识别是转录起始的第一步。对大肠

杆菌大量基因的启动子。

(三)、链的延伸RNA链的延伸是在δ因子释放以后,在RNA聚合酶四聚体核心酶的催化下进行。因RNA聚合酶同时具有解开DNA 双链,并使其重新闭合的功能。随着RNA的延伸,RNA聚合酶使DNA双链不断解开和重新闭合。RNA转录泡也不断前移,合成新的RNA链。

(四)、链的终止当RNA链延伸遇到终止信号(termination signal)时,RNA转录复合体就

发生解体,而使新合成的RNA链释放出来。

9.真核生物与原核生物RNA的转录过程总体上基本相同,但是,其过程则要复杂得多,主要有以下几点不同:首先,真核生物RNA的

转录是在细胞核内进行,而蛋白质的合成则是在细胞质内,所以,RNA转录后首先必须从核内运输到细胞质内,才能进行蛋白质的合成。

其次,原核生物的一个mRNA分子通常含有多个基因,而少数较低等真核生物外,在真核生物中,一个mRNA分子一般只编码一个基因。

第三、在原核生物中只有一种RNA聚合酶催化所有RNA的合成,而在真核生物中则有R NA聚合酶I、II、III等三种不同酶,分别催化不同种类型RNA的合成。三种RNA聚合酶都是有10个以上亚基组成的复合酶。聚合酶I存在于细胞核内,催化合成除5S rRNA以外的所有rRNA;聚合酶II催化合成mRNA前体,即不均一核RNA(hnRNA);聚合酶III催化

tRNA和小核RNA的合成。

第四、不象在原核生物中,RNA聚合酶可以直接起始转录合成RNA。在真核生物中,三种RNA聚合酶都必须在蛋白质转录因子的协助下才能进行RNA的转录。另外,RNA聚合酶

对转录启动子的识别,也比原核生物更加复杂,如对聚合酶II来说,至少有三个DNA的保守序列与其转录的起始有关,第一个称为TATA框(TATA box),具有共有序列TATAAAA,其位置在转录起始点的上游约为25个核苷酸处,它的作用可能与原核生物中的-10共有序列相似,与转录起始位置的确定有关。第二个共有序列称为CCAAT 框(CCAAT box),具有共有序列GGCCAATCT,位于转录起始位置上游约50-500个核苷酸处。如果该序列缺失会极大地降低生物的活体转录水平。第三个区域一般称为增强子(enhancer),其位置可以在起始位置的上游,也可以在基因的下游或者在基因之内。它可能虽不直接与转录复合体结

合,但可以显著提高转录效率。

另外,大多数真核生物的mRNA在转录后必须进行下面三方面的加工后(图3-28),才能运

送到细胞质进行蛋白质的翻译。

(1)在mRNA前体的5’端加上7-甲基鸟嘌呤核苷的帽子(cap)。

(2)在mRNA前体的3’端加上聚腺苷酸(poly (A))的尾巴。

(3)如果基因中存在不编码的内含子序列,要进行剪接,将其切除。10.(1)链的起始:原核生物在核糖体小亚基、一个mRNA分子、决定起始的氨酰基tR NA、GTP、Mg++以及至少三种可溶性蛋白质起始因子(initiation factors,IFs)IF1、IF2 和IF3的参与下,以AUG合成的起始密码子,编码甲酰化甲硫氨酸。蛋白质合成开始时,首先是决定蛋白质起始的甲酰化甲硫氨酰-tRNA与起始因子IF2结合形成第一个复合体。同时,核糖体小亚基与起始因子IF3和mRNA结合形成第二个复合体。此过程中在起始密码子前面大约7个核苷酸的一段mRNA保守序列(AGGAGG)起着关键作用。它与核糖体小亚基16S rRNA 3’端的一段碱基序列互补,可能起着识别作用。当该序列发生改变后,mRN A就不能翻译或者翻译效率很低。接着二个复合体在起始因子IF1和一分子GDP的作用下,形成一个完整的30S起始复合体。此时,甲酰化甲硫氨酰-tRNA通过tRNA的反密码子识别起始密码子AUG,而直接进入核糖体的P位(peptidyl,P)并释放出IF3。最后与50S大亚基结合,形成完整的70S核糖体,此过程需要水解一分子GDP以提供能量,同时释放出

IF1和IF2,完成肽链的起始;

(2)链的延伸:肽链的延伸在原核生物和真核生物中基本一致。当甲酰化甲硫氨酰-tRN A(或甲硫氨酰-tRNA)结合在P位后,与其相临的一个三联体密码位置就称为A位(aminoa cyl,A)。根据,反密码子与密码子配对的原则,第二个氨基酰tRNA就进入A位,此过程需要带有一分子GTP的延伸因子Tu(elongation factor,EF-Tu)的参与。EF-TuGTP则是在延伸因子Ts的作用下水解一分子的GTP而形成的。随后,在转肽酶(peptidyl transfe rase)的催化下,在A位的氨基酰tRNA上的氨基酸残基与在P位上的氨基酸的碳末端间形成多肽键。过去认为核糖体50S大亚基本身就有转肽酶的活性,但现在发现50S大亚基中的23S RNA才真正具有转肽酶的活性。此过程水解与EF -Tu结合的GTP而提供能量。最后是核糖体向前移一个三联体密码,

原来在A位的多肽-tRNA转入P位,而原在P位的tRNA离开核糖体。此过程需要延伸因子G(EF-G)和水解GTP提供能量。这样空出的A 位就可以接合另外一个氨基酰tRNA从而开始第二轮的多肽链延伸;

多肽链的延伸速度非常快,在大肠杆菌中,多肽链上每增加一个氨基酸只需0.05秒,也就是说合成一个300个氨基酸的多肽链只需要15秒钟。

3、链的终止:当多肽链的延伸遇到UAA、UAG和UGA等终止密码子进入核糖体的A位时,多肽链的延伸就不再进行。对终止密码子的识别,需要多肽链释放因子(release factor,RF)的参与。在大肠杆菌中有二类释放因子RF1和RF2,RF1识别UAA和UAG;RF2识别UAA和UGA。在真核生物中则只有一种释放因子(eRF),可以识别所有三种终止密码子。当释放因子结合在核糖体的A位后,改变了转肽酶的活性,在新合成多肽链的末端加上水分子,从而使多肽链从P 位tRNA上释放出来,离开核糖体,完成多肽链的合成,随后核糖体解体为30S和50S二个亚基。

第四章孟德尔遗传(练习)

一、小麦毛颖基因P为显性,光颖基因p为隐性。写出下列杂交组合的亲本基因型。

(1)毛颖×毛颖,后代全部毛颖;

(2)毛颖×毛颖,后代3/4毛颖:1/4光颖;

(3)毛颖×光颖,后代1/2毛颖:1/2光颖。

二、小麦无芒基因A为显性,有芒基因a为隐性。写出下列各杂交组合中F1的基因型和表

现型。每一组合的F1群体中,出现无芒或有芒个体的机会各为多少?

(1)AA×aa (2)AA×Aa (3)Aa×Aa (4)Aa×aa (5)aa×aa

三、小麦有稃基因H为显性,裸粒基因h为隐性。现以纯合的有稃品种(HH)与纯合的裸粒品种(hh)杂交,写出其F1和F2的基因型和表现型。在完全显性条件下,其F2基因型和表

现型的比例怎样?

四、大豆的紫花基因P对白花基因p为显性,紫花′白花的F1全为紫花,F2共有1653株,

其中紫花1240株,白花413株,试用基因型说明这一试验结果。

五、纯种甜粒玉米和纯种非甜粒玉米间行种植,收获时发现甜粒玉米果穗上结有非甜粒的子

实,而非甜粒玉米果穗上找不到甜粒的子实。如何解释这种现象?怎样验证解释?

六、花生种皮紫色(R)对红色(r)为显性,厚壳(T)对薄壳(t)为显性。R–r和T–t是独立遗传的。

指出下列各种杂交组合的:

(1)亲本的表现型、配子种类和比例;(2)F1的基因型种类和比例、表现型种类和比例。

1)TTrr×ttRR 2) TTRR×ttrr 3) TtRr×ttRr 4) ttRr×Ttrr

七、番茄的红果(Y)对黄果(y)为显性,二室(M)对多室(m)为显性。两对基因是独立遗传的。当一株红果、二室的番茄与一株红果、多室的番茄杂交后,子一代(F1)群体内有:3/8的植株为红果、二室的、3/8是红果、多室的,1/8是黄果、二室的,1/8是黄果、多室的。试问

这两个亲本植株是怎样的基因型?

八、下表是不同小麦品种杂交后代产生的各种不同表现型的比例,试写出各个亲本的基因型。

九、大麦的刺芒(R)对光芒(r)为显性,黑稃(B)对白稃(b)为显性。现有甲品种为白稃,但具有

刺芒;而乙品种为光芒,但为黑稃。怎样获得白稃、光芒的新品种?

十、小麦的相对性状,毛颖(P)是光颖(p)的显性,抗锈(R)是感锈(r)的显性,无芒(A)是有芒(a)的显性。这三对基因之间也没有互作。已知小麦品种杂交亲本的基因型如下,试述F1的表

现型。

(1) PPRRAa×ppRraa (2) pprrAa×PpRraa (3) PpRRAa×PpRrAa (4) Pprraa×ppRr

Aa

十一、光颖、抗锈、无芒(ppRRAA)小麦和毛颖、感锈、有芒(PPrraa)小麦杂交,希望从F3选出毛颖、抗锈、无芒(PPRRAA)的小麦10个株系,试问在F2群体中至少应选择表现型

为毛颖、抗锈、无芒(P_R_A_)的小麦若干株?

十二、设有三对独立遗传、彼此没有互作、并且表现完全显性的基因Aa、Bb、Cc,在杂合基因型个体AaBbCc(F1)自交所得的F2群体中,试求具有5显性基因和1隐性基因的个体的频率,以及具有2显性性状和1隐性性状个体的频率。

十三、基因型为AaBbCcDd的F1植株自交,设这四对基因都表现完全显性,试述F2代群体中每一类表现型可能出现的频率。在这一群体中,每次任意取5株作为一样本,试述3株显性性状、2株隐性性状,以及2株显性性状、3株隐性性状的样本可能出现的频率各为若干?

十四、设玉米籽粒有色是独立遗传的三显性基因互作的结果,基因型为A_C_R_的籽粒有色,其余基因型的籽粒均无色。有色籽粒植株与以下三个纯合品系分别杂交,获得下列结果:

(1) 与aaccRR品系杂交,获得50%有色籽粒;

(2) 与aaCCrr品系杂交,获得25%有色籽粒;

(3) 与AAccrr品系杂交,获得50%有色籽粒。

试问这些有色籽粒亲本是怎样的基因型?

十五、萝卜块根的形状有长形的,圆形的,有椭圆形的,以下是不同类型杂交的结果:

长形×圆形→ 595椭圆形

长形×椭圆形→ 205长形,201椭圆形

椭圆形×圆形→ 198椭圆形,202圆形

椭圆形×椭圆形→ 58长形,112椭圆形,61圆形

说明萝卜块根形状属于什么遗传类型,并自定基因符号,标明上

述各杂交组合亲本及其后裔

的基因型。

十六、假定某个二倍体物种含有4个复等位基因(如a1、a2、a3、a4),试决定在下列这三种情况可能有几种基因组合?(1)一条染色体;

(2)一个个体;(3)一个群体。

第四章孟德尔遗传(参考答案)

1. (1)PP×PP 或者PP×Pp

(2) Pp×Pp

(3) Pp×pp

2. 杂交组合 AA×aa AA×Aa Aa×Aa Aa×aa aa×aa

F1基因型全Aa AA, Aa AA Aa aa Aa aa aa

F1表现型无芒无芒无芒无芒有芒无芒有芒有芒

出现无芒机会 1 1 3/4 1/2 0

出现有芒机会0 0 1/4 1/2 1

3. F1基因型:Hh ;表现型:有稃

F2基因型HH: Hh: hh=1:2:1;表现型有稃:裸粒=3:1

4. 紫花×白花→紫花→紫花(1240株):白花(413株)

PP ×pp→Pp→ 3P_: 1pp

5.解释:玉米非甜对甜为显性验证:获得的后代籽粒再与甜粒个体杂交,看性状分离情况

6.

杂交组合TTrr×ttRR TTRR×ttrr TtRr ×ttRr ttRr ×Ttrr

亲本表型厚红薄紫厚紫薄红厚紫薄紫薄紫厚红

配子 Tr tR TR tr 1TR:1Tr:1tR:1tr 1tr:1tR 1tR:1tr 1Tr:1tr

F1基因型TtRr TtRr 1TtRR:2TtRr:1Ttrr:1ttRR:2ttRr:1ttrr 1Ttrr:1TtRr:1ttRr:1ttrr

F1表型厚壳紫色厚壳紫色3厚紫:1厚红:3薄紫:1薄红1厚红:1厚紫:1薄紫:

1薄红

7.根据杂交子代结果,红果:黄果为3:1,说明亲本的控制果

色的基因均为杂合型,为Y y;多室与二室的比例为1:1,说明亲本之一为杂合型,另一亲本为纯合隐性,即分别为M m和mm,故这两个亲本植株的基因型分别为YyMm和Yymm。

8.Pprr×pprr ; PpRr×pprr; PpRr×ppRr; ppRr×ppRr

9.如果两品种都是纯合体:bbRR×BBrr→BbRr F1自交可获得纯合白稃光芒种bbrr.

如果两品种之一是纯合体bbRr×BBr r→ BbRr Bbrr F1自交可获得纯合白稃光芒bbrr.

如果两品种之一是纯合体bbRR×Bbrr→BbRr bbRr F1自交可获得纯合白稃光芒bbrr.

如果两品种都是杂合体bbRr×Bbrr→BbRr bbRr Bbrr bbrr直接获得纯合白稃光芒bbrr.

10.(1)PPRRAa×ppRraa

毛颖抗锈无芒(PpR_Aa);毛颖抗锈有芒(PpR_aa)

(2)pprrAa×PpRraa

毛颖抗锈无芒(PpRrA_);光颖感锈有芒(pprraa);毛颖抗锈有芒(PpRraa);光颖感锈无芒(pprrAa);毛颖感锈无芒(PprrAa);光颖抗锈有芒(ppRraa);毛颖感锈有芒

(Pprraa);光颖抗锈无芒(ppRrAa)

(3)PpRRAa×PpRrAa

毛颖抗锈无芒(P_R_A_);毛颖抗锈有芒(P_R_aa);

光颖抗锈有芒(ppR_aa);光颖抗锈无芒(ppR_A_)

(4)Pprraa×ppRrAa

毛颖抗锈无芒(PpRrAa);光颖感锈有芒(pprraa);毛颖抗锈有芒(PpRraa);

光颖感锈无芒(pprrAa);毛颖感锈无芒(PprrAa);光颖抗锈有芒(ppRraa);

毛颖感锈有芒(Pprraa);光颖抗锈无芒(ppRrAa)

11.由于F3表现型为毛颖抗锈无芒(P_R_A_)中PPRRAA的比例仅为1/27,因此,要获得10株基因型为PPRRAA,则F3至少需

270株表现型为毛颖抗锈无芒(P_R_A_)。12.根据公式展开(1/2+1/2)6可知,5显性基因1隐性基因的概率为3/32;(3/4+1/4)3=(3/4)3+3(3/4)2(1/4)+3(3/4)(1/4)2+(1/4)3=27/64+27/64(2显性性状1

隐性性状)+9/64+1/64

13. 16种表型。

(1)四显性性状A_B_ C_ D_ 占81/256

(2)三显性一隐性性状:A_ B_ C_ dd;A_ B_ ccD_ ;A_ bbC_ D_ ;aaB_ C_ D_ 共4种各占27/256

(3)二显性二隐性性状:A_ B_ ccdd;A_ bbccD_ ;aabbC_ D_ ;aaB_ ccD_ ;aaB_ C_ dd;A_ bbC_ dd共6种各占9/256 (4)一显性三隐性性状:A_ bbccdd;aaB_ ccdd;aabbC_ dd;aabbccD_ 共4种各占3/256

(5)四隐性性状aabbccdd 1/256

(先求3株显性性状概率,2株隐性性状概率)

(1)C53((3/4)4)3((1/4)4)2

(2)C52((3/4)4)2((1/4)4)3

14.根据(1)试验,该株基因型中A或C为杂合型;

根据(2)试验,该株基因型中A和R均为杂合型;

根据(3)试验,该株基因型中C或R为杂合型;

综合上述三个试验,该株的基因型为AaCCRr

15.不完全显性

16.(1)四种可能,但一个特定染色体上只有其中一种,即a1或a2或a3或a4。

(2)十种可能,但一个特定个体只有其中一种,即a1a1或a2a2或a3a3或a4a4或a1a 2或a1a3或a1a4或a2a3或a2a4或a3a4。

(3)十种都会出现,即a1a1,a2a2,a3a3,a4a4,a1a2,a1a3,a1a4,a2a3,a2a4,a3a4。

第五章连锁锁传的性连锁(练习)

1.试述交换值、连锁强度和基因之间距离三者的关系。

2.试述连锁遗传与独立遗传的表现特征及其细胞学基础。

3.在大麦中,带壳(N)对裸粒(n)、散穗(L)对密穗(1)为显性。今以带壳、散穗与裸粒、密穗的纯种杂交,F1表现如何?让F1与双隐性纯合体测交,其后代为:带壳、散穗201株裸粒、散穗18株,带壳、密穗20株裸粒、密穗203株,试问,这两对基因是否连锁?

交换值是多少?要使F2出现纯合的裸粒散穗20株,至少应种多少株?

4.在杂合体内,a和b之间的交换值为6%,b和y之间的交换值为10%。在没有干扰的条件下,这个杂合体自交,能产生几种类型的配子;在符合系数为0.26时,配子的比例如

何?

5.a和b是连锁基因,交换值为16%,位于另一染色体上的d和e也是连锁基因,交换值

为8%。假定ABDE和abde都是纯合体,杂交后的F1又与纯隐性亲本测交,其后代的基

因型及其比例如何?

6.a、b、c三个基因都位于同一染色体上,让其杂合体与纯隐性亲本测交,得到下列结果:

试求这三个基因排列的顺序、距离和符合系数。

7.已知某生物的两个连锁群如下图:

试求杂合体AaBbCc可能产生配子的类型和比例。

8.纯合的葡匐、多毛、白花的香豌豆与丛生、光滑、有色花的香豌豆杂交,产生的F1全是葡匐、多毛、有色花。如果F1与丛生、光滑、白色花又进行杂交,后代可望获得近于下

列的分配,试说明这些结果,求出重组率。

葡、多、有6% 丛、多、有19%

葡、多、白19% 丛、多、白6%

葡、光、有6% 丛、光、有19%

葡、光、白19% 丛、光、白6%

9.基因a、b、c、d位于果蝇的同一染色体上。经过一系列杂交

后得出如下交换值:

基因交换值

a,c 40%

a,d 25%

b,d 5%

b,c 10%

试描绘出这四个基因的连锁遗传图。

10.脉孢菌的白化型(al)产生亮色子囊孢子,野生型产生灰色子囊孢子。将白化型与野生型

杂交,结果产生:

129个亲型子囊––孢子排列为4亮: 4灰,

141个交换型子囊––孢子排列为2:2:2:2或2:4:2。

问al基因与着丝点之间的交换值是多少?

11.果蝇的长翅(Vg)对残翅(vg)是显性,该基因位于常染色体上;红眼(W)对白眼(w)是显性,该基因位于X染色体上。现在让长翅红眼的杂合体与残翅白眼纯合体交配,所产生的基因

型如何?

12.何谓伴性遗传、限性遗传和从性遗传?人类有哪些性状是伴性遗传的?

13.设有两个无角的雌羊和雄羊交配,所生产的雄羊有一半是有角的,但生产的雌羊全是

无角的,试写出亲本的基因型,并作出解释。

第五章连锁锁传的性连锁(参考答案)

1.交换值与连锁强度成反比,与基因间的距离成正比。即:交换值越大,连锁强度越小,基因间的距离越大;反之,交换值越小,连锁强度越大,基因间的距离越小。

2(略)

3.F1表现为带壳散穗;Ft后代不符合1:1:1:1,说明N与L 基因间连锁,交换值为:R(n-l)=(18+20)/(18+20+201+203)=8.6%;如果要使F2出现纯合的裸粒散穗20株,

20/(4.3%*4.3%)=10817

4.8种:ABy abY aBy AbY ABY aby Aby aBY

符合系数为0.26时,实际双交换值=10%*6%*0.26=0.156%

双交换型Aby=aBY=1/2*0.156%=0.078%

单交换aBy=AbY=1/2*(6%-0.156%)=2.922%

单交换ABY=aby=1/2*(10%-0.156%)=4.922%

亲型Aby=abY=1/2*(1-0.156%-5.844%-9.844%)=42.078%

5.

42%AB 42%ab 8%Ab 8%aB

46%DE 0.1932ABDE 0.1932abDE 0.0368AbDE 0.0368aBDE

46%de 0.1932ABde 0.1932abde 0.0368Abde 0.0368aBde

4%De 0.0168ABDe 0.0168abDe 0.0032AbDe 0.0032aBDe

4%dE 0.0168ABdE 0.0168abdE 0.0032AbdE 0.0032aBdE

6.R(a-b)=(3+5+98+106)/1098=19.2% R(a-c)= (3+5+74+66)/1098=13.5%

R(b-c)=32.7% 符合系数=0.28

7.b,c为相引组时:

93ABC:93 Abc:7ABc:7AbC:93aBC:93abc:7aBc:7abC

b,c为相斥组时:

7 ABC:7 Abc:93ABc:93AbC:7aBC:7abc:93aBc:93abC

8.(先将两对性状连在一起,看第三对性状的比例是否为1:1)匍匐/丛生这对性状与白花/有色这对性状是连锁的,交换值是24%;光滑/多毛这对性状位于另一对染色体上,与前两对性

状是自由组合的。

9. a-----------d--—b------c

25 5 10

10.141/(129+141)*1/2=26.1%

11.VgvgXWXw×vgvgXwY→VgvgXWXw VgvgXwXw

vgvgXWXw vgvgXwXw

VgvgXWY VgvgXwY vgvgXWY vgvgXwY

VgvgXWY×vgvgXwXw→VgvgXwY vgvgXwY VgvgXWXw vgvgXWXw

12.伴性遗传:决定性状位于性染色体上使某些性状的遗传与性别相伴随遗传,正反交结果不同,表现交叉遗传。人类红绿色盲、血友病。限性遗传:位于Y或W染色体上的基因控制的性状只在某一种性别表现。从性遗传:决定性状的基因位于常染色体上,由于内分泌或其他因素的影响使性状的表现在两种性别不同的现象。

13.雌性:Hh ;雄性:hh 从性遗传

第六章染色体变异(练习)

1某植株是显性AA纯合体,如果用隐性aa纯合体的花粉给它授粉杂交,在500株F1中,有两株表现型为aa。如何证明和解释这个杂交结果?

2. . 某玉米植株是第九染色体的缺失杂合体,同时也是Cc杂合体,糊粉层有色基因C在缺失染色体上,与C等位的无色基因c在正常染色体上。玉米的缺失染色体一般是不能通过花粉而遗传的。在一次以该缺失杂合体植株为父本与正常的cc纯合体为母本的杂交中,10%的杂交子粒是有色的。试解释发生这种现象的原因。

3. 某个体的某一对同源染色体的区段顺序有所不同,一个是12·34567,另一个是12·365

47(―·‖代表着丝粒)。试解释以下三个问题。

(1)这一对染色体在减数分裂时是怎样联会的?

(2)倘若在减数分裂时,5与6之间发生一次非姊妹染色单体的交换,图解说明二分体和四分体的染色体结构,并指出所产生的孢子的育性。

(3)倘若在减数分裂时,着丝粒与3之间和5与6之间各发生一次交换,但两次交换所涉及的非姊妹染色单体不同,试图解说明二分子和四分子的染色体结构,并指出所产生的孢

子的育性。

遗传学课后习题及答案-刘祖洞

第二章孟德尔定律之欧侯瑞魂创作 1、 2、为什么分离现象比显、隐性现象有更重要的意义? 答:因为1、分离规律是生物界普遍存在的一种遗传现象, 而显性现象的暗示是相对的、有条件的;2、只有遗传因子的分离和重组, 才华暗示出性状的显隐性.可以说无分离现象的存在, 也就无显性现象的发生. 2、在番茄中, 红果色(R)对黄果色(r)是显性, 问下列杂交可以发生哪些基因型, 哪些暗示型, 它们的比例如何(1)RR×rr (2)Rr×rr(3)Rr×Rr(4)Rr×RR(5)rr×rr 3 哪些配子?杂种后代的基因型和表型怎样?(1)Rr×RR (2)rr×Rr(3)Rr×Rr粉红红色白色粉红粉红粉红 (D)对球状(d)是显性, 这两对基因是自由组合的.问下列杂交

可以发生哪些基因型, 哪些表型, 它们的比例如何?(1)WWDD×wwdd(2)XwDd×wwdd(3)Wwdd×wwDd(4)Wwdd×WwDd 序号杂交基因型暗示型 1 WWDD×wwdd WwDd 白色、盘状果实 2 WwDd×wwdd 1/4WwDd, 1/4Wwdd, 1/4wwDd, 1/4wwdd, 1/4白色、盘状, 1/4白色、球状, 1/4黄色、盘状, 1/4黄色、球状 2 wwDd×wwdd 1/2wwDd, 1/2wwdd 1/2黄色、盘状, 1/2黄色、球状 3 Wwdd×wwDd 1/4WwDd, 1/4Wwdd, 1/4wwDd, 1/4wwdd, 1/4白色、盘状, 1/4白色、球状, 1/4黄色、盘状, 1/4黄色、球状 4 Wwdd×WwDd 1/8WWDd, 1/8WWdd, 2/8WwDd, 2/8Wwdd, 1/8wwDd, 1/8wwdd 3/8白色、盘状, 3/8白色、球状, 1/8黄色、盘状, 1/8黄色、球状 5.在豌豆中, 蔓茎(T)对矮茎(t)是显性, 绿豆荚(G)对黄豆荚(g)是显性, 圆种子(R)对皱种子(r)是显性.现在有下列两种杂交组合, 问它们后代的表型如何?(1)TTGgRr×ttGgrr (2)TtGgrr×ttGgrr解:杂交组合TTGgRr×ttGgrr: 即蔓茎绿豆荚圆种子3/8, 蔓茎绿豆荚皱种子3/8, 蔓茎黄豆荚圆种子 1/8, 蔓茎黄豆荚皱种子1/8. 杂交组合TtGgrr ×ttGgrr:

遗传学课后习题及答案完整

作业——绪论 1,名词解释 遗传学:是研究遗传变异及其规律的科学。或研究遗传物质的本质和传递及遗传信息表达和进化的科学。 遗传:亲代与子代间相似性的传递过程。具有稳定性和保守性。 变异:子代与亲代及子代个体间的差异。具有普遍性和绝对性。 2,拉马克的两个重要法则 (1)用进废退:动物器官的进化与退化取决于用于不用,经常使用的器官就发达、进化,不使用的器官就退化或消失。 (2)获得性遗传: 每一世代中由于用于不用而加强或削弱的性是可以遗传给下一代,即用进废退获得的性状能遗传。 3,遗传学诞生于那一年? 遗传学诞生于1900年。 4,遗传学发展过程是如何概括的? (1)两个阶段:遗传学分为孟德尔以前(1900年以前)和孟德尔以后(1900以后) (2)三个水平:遗传学分为个体水平、细胞水平和分子水平。 (3)四个时期: 遗传学诞生前期; 细胞遗传学时期; 微生物与生化遗传学时期;

分子遗传学时期。 作业——第一章遗传的细胞学基础 一、名词解释 1、异固缩:显微镜下观察染色质着色不均匀,深浅不同的现象 2、二价体:由染色体进一步缩短变粗,各对同源染色体彼此靠拢,进行准确的配对,这种联会的一对同源染色体称为二价体。 3、端粒:染色体末端特化的着色较深部分。由端粒DNA和端粒蛋 白组成。 4、染色体组型分析:根据染色体数目,大小和着丝粒位置,臂比,次溢痕,随体等形态特征,对生物核内染色体进行配对,分组,归类,编号,进行分析的过程。 5、体联会:体细胞在有丝分裂过程中,出现的同源染色体联会的现 象 二、唾线染色体的特点? 1、巨大性和伸展性; 2、体联会:体细胞在有丝分裂过程中,出现的同源染色体联会的现象。 3、有横纹结构:深色部位一带纹区,浅色部分一间带区。 4、多线性 5、染色中心和5条臂 三、下列事件是发生在有丝分裂,还是减数分裂?或是两者都发生还 是两者都不发生? 有丝分裂:1、子细胞染色体数与母细胞相同 6、子细胞中含有一对同源染色体的两个成员 减数分裂:3、染色体联会 5、子细胞中含有一对同源染色体中的一个 两者都有:2、染色体复制 4、染色体发生向两极运动 7、着丝点分裂 四、某植物细胞内有两对同源染色体(2n=4),其中一对为中间着丝点,另一对为近端着丝点,是绘出以下时期的模式图。 (1)有丝分裂中期(2)减数第一次分裂中期(3)减数第二次分裂中期 (1) (2) (3)

(完整版)遗传学课后习题及答案-刘祖洞

第二章孟德尔定律 1、为什么分离现象比显、隐性现象有更重要的意义? 答:因为1、分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的;2、只有遗传因子的分离和重组,才能表现出性状的显隐性。可以说无分离现象的存在,也就无显性现象的发生。 2、在番茄中,红果色(R)对黄果色(r)是显性,问下列杂交可以产生哪些基因型,哪些表现型,它们的比例如何(1)RR×rr(2)Rr×rr(3)Rr×Rr(4)Rr×RR(5)rr×rr 3、下面是紫茉莉的几组杂交,基因型和表型已写明。问它们产生哪些配子?杂种后代的基因型和表型怎样?(1)Rr × RR(2)rr × Rr(3)Rr × Rr 粉红红色白色粉红 粉红粉红 4、在南瓜中,果实的白色(W)对黄色(w)是显性,果实盘状(D)对球状(d)是显性,这两对基因是自由组合的。问下列杂交可以产生哪些基因型,哪些表型,它们的比例如何?(1)WWDD×wwdd(2)XwDd×wwdd(3)Wwdd×wwDd(4)Wwdd×WwDd 5.在豌豆中,蔓茎(T)对矮茎(t)是显性,绿豆荚(G)对黄豆荚(g)是显性,圆种子(R)对皱种

子(r)是显性。现在有下列两种杂交组合,问它们后代的表型如何?(1)TTGgRr×ttGgrr (2)TtGgrr×ttGgrr解:杂交组合TTGgRr × ttGgrr: 即蔓茎绿豆荚圆种子3/8,蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚圆种子1/8,蔓茎黄豆荚皱种子1/8。 杂交组合TtGgrr ×ttGgrr: 即蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚皱种子1/8,矮茎绿豆荚皱种子3/8,矮茎黄豆荚皱种子1/8。 6.在番茄中,缺刻叶和马铃薯叶是一对相对性状,显性基因C控制缺刻叶,基因型cc是马铃薯叶。紫茎和绿茎是另一对相对性状,显性基因A控制紫茎,基因型aa的植株是绿茎。把紫茎、马铃薯叶的纯合植株与绿茎、缺刻叶的纯合植株杂交,在F2中得到9∶3∶3∶1的分离比。如果把F1:(1)与紫茎、马铃薯叶亲本回交;(2)与绿茎、缺刻叶亲本回交;以及(3)用双隐性植株测交时,下代表型比例各如何? 解:题中F2分离比提示:番茄叶形和茎色为孟德尔式遗传。所以对三种交配可作如下分析: (1) 紫茎马铃暮叶对F1的回交:

遗传学课后习题答案

遗传学课后习题答案 复习题 9 核外遗传 1. 细胞质遗传有什么特点?它与母性影响有什么不同? 答:细胞质遗传不同于孟德尔遗传的特点:1、无论是正交还是反交,F1的表型总是与母本的一致;2、连续回交不会导致用作非轮回亲本的母本细胞质基因及其所控制的性状的消失,但其核遗传物质则按每回交一代减少一半的速度减少,直到被全部置换;3、非细胞器的细胞质颗粒中遗传物质的传递类似病毒的转导。母性影响是指子代某一性状的表型由母体的核基因型决定,而不受本身基因型的支配,从而导致子代的表型和么ben相同的现象。其表现形式也是正反交结果不一致,不同之处在于由细胞质遗传决定的性状,表型是稳定的,可以一代一代地通过细胞质传下去,而母性影响有持久的,也有短暂的。(P225) 2. 一个基因型为Dd的椎实螺自体受精后,子代的基因型和表型分别如何?如果其子代个体也自体受精,它们的下一代的基因型和表型又如何? 答:椎实螺的显性基因为右旋D,隐性基因为d,受母性影响,基因型为Dd的椎实螺自体受精,亲本基因型均为右旋Dd,F1产生1DD右旋(基因型为右旋)、2Dd右旋(基因型为右旋)、1dd右旋(基因型为左旋);F1的DD自体受精产生的子代均为DD右旋(基因型为右旋),F1的Dd自体受精产生的子代为1DD右旋(基因型为右旋)、2Dd右旋(基因型为右旋)、1dd右旋(基因型为左旋),F1的dd自体受精产生的子代均为dd左旋(基因型为左旋)。(P226图) 3. 正交和反交的结果不同可能是因为:①细胞质遗传,②性连锁,和③母性影响。怎样用实验方法来确定它属于哪一种类型? 答:细胞质遗传和母性影响正反交结果不同,且F1子代与母本的表型一致;而性连锁虽然正反交结果不同,但F1子代有与父本表型一致的。母性影响虽然看起来很想细胞质遗传,但其实质是细胞核基因作用的结果,一代以上的杂交可以获得性状是否属于细胞质遗传的结论。

遗传学课后题答案

孟德尔定律 为什么别离现象比显、隐性现象有更重要的意义? 答:因为别离规律是生物界普遍存在的一种遗传现象,而显 性现象的表现是相对的、有条件的;只有遗传因子的别离和 重组,才能表现出性状的显隐性。可以说无别离现象的存在,也就无显性现象的发生。 9、真实遗传的紫茎、缺刻叶植株〔AACC〕与真实遗传的绿茎、马铃薯叶植株〔aacc 〕杂交, F2 结果如下: 紫茎缺紫茎马铃绿茎缺绿茎马铃 刻叶薯叶刻叶薯叶 247908334 (1〕在总共 454 株 F2 中,计算 4 种表型的预期数。 (2〕进行2测验。 (3〕问这两对基因是否是自由组合的? 解: 紫茎缺刻叶紫茎马铃 薯叶 绿茎缺 刻叶 绿茎马铃 薯叶 观测值〔O〕 预测值〔e〕(四舍五247 255 90 85 83 85 34 29 入) 2(o e) 2(247 255)2(90 85) 2 e25585 (83855)2(34 29)2 8529 当 df=3 时,查表求得: 0.50 <P< 0.95 。这里也可以将 与临界值7.81 比拟。 2 可见该杂交结果符合F2的预期别离比,因此结论,这两对基

因是自由组合的。 11、如果一个植株有 4 对显性基因是纯合的。另一植株有相 应的 4 对隐性基因是纯合的,把这两个植株相互杂交,问 F2 中:〔 1〕基因型,〔 2〕表型全然象亲代父母本的各有多少? 解:(1) 上述杂交结果, F1为 4 对基因的杂合体。于是, F2 的 类型和比例可以图示如下: 也就是说,基因型象显性亲本和隐性亲本的各是1/2 8。 (2)因为,当一对基因的杂合子自交时,表型同于显性亲本的占 3/4,象隐性亲本的占 1/ 4。所以,当 4 对基因杂合的 F1自交时,象显性亲本的为 (3/4) 4,象隐性亲本的为 (1/4) 4=1/2 8。 第三章遗传的染色体学说 2、水稻的正常的孢子体组织,染色体数目是 12 对,问以下各组 织的染色体数目是多少? (1〕胚乳;〔 2〕花粉管的管核;〔 3〕胚囊;〔 4〕叶;(5〕根端;〔 6〕种子的胚;〔 7〕颖片; 答;〔1〕36;〔 2〕12;〔 3〕12*8 ;〔4〕24;〔 5〕24;〔 6〕24;(7〕 24; 3、用基因型 Aabb 的玉米花粉给基因型 AaBb 的玉米雌花 授粉,你预期下一代胚乳的基因型是什么类型,比例如何? 答: 雄配子 雌配极核Ab ab 子 AB AABB AAABBb AAaBBb Ab AAbb AAAbbb AAabbb

遗传学课后习题答案

遗传学课后习题答案 第二章遗传的细胞学基础(参考答案) 一、解释下列名词: 染色体:细胞分裂时出现的,易被碱性染料染色的丝状或棒状小体,由核酸和蛋白质组成,是生物遗传物质的主要载体,各种生物的染色体有一定数目、形态和大小。 染色单体:染色体通过复制形成,由同一着丝粒连接在一起的两条遗传内容完全一样的子染 色体。 着丝点:即着丝粒。染色体的特定部位,细胞分裂时出现的纺锤丝所附着的位置,此部位不 染色。 细胞周期:一次细胞分裂结束后到下一次细胞分裂结束所经历的过程称为细胞周期(cell cy cle)。 同源染色体:体细胞中形态结构相同、遗传功能相似的一对染色体称为同源染色体(homolo gous chromosome)。两条同源染色体分别来自生物双亲,在减数分裂时,两两配对的染色 体,形状、大小和结构都相同。 异源染色体:形态结构上有所不同的染色体间互称为非同源染色体,在减数分裂时,一般不 能两两配对,形状、大小和结构都不相同。 无丝分裂:又称直接分裂,是一种无纺锤丝参与的细胞分裂方式。 有丝分裂:又称体细胞分裂。整个细胞分裂包含两个紧密相连的过程,先是细胞核分裂,后是细胞质分裂,核分裂过程分为四个时期;前期、中期、后期、末期。最后形成的两个子细 胞在染色体数目和性质上与母细胞相同。 单倍体:指具有配子染色体数(n)的个体。 联会:减数分裂中同源染色体的配对。

联会复合体——减数分裂偶线期和粗线期在配对的两个同源染色体之间形成的结构,包括两 个侧体和一个中体。 胚乳直感:又称花粉直感。在3n胚乳的性状上由于精核的影响而直接表现父本的某些性状。 果实直感:种皮或果皮组织在发育过程中由于花粉影响而表现父本的某些性状 二、可以形成:40个花粉粒,80个精核,40个管核;10个卵母细胞可以形成:10个胚囊, 10个卵细胞,20个极核,20个助细胞,30个反足细胞。 三、(1)叶(2)根(3)胚乳(4)胚囊母细胞(5)胚 (6)卵细胞(7)反足细胞(8)花药壁(9)花粉管核 (1)叶:20条;(2)根:20条;(3)胚乳:30条;(4)胚囊母细胞:20条;(5)胚:20条; (6)卵细胞:10条;(7)反足细胞:10条;(8)花药壁:20条;(9)花粉管核:10条 四、如果形成的是雌配子,那么只形成一种配子ABC或A’B’C’或A’ BC或A B’C’ 或 A B’ C 或A’ B C’ 或AB C’ 或A’B’ C ; 如果形成的是雄配子,那么可以形成两种配子ABC和A’B’C’或A B’ C 和A’ B C’ 或A’ BC和A B’C’ 或AB C’ 或和A’B’ C 。 五、(1)保证了亲代与子代之间染色体数目的恒定性。 双亲性母细胞(2n)经过减数分裂产生性细胞(n),实现了染色体数目的减半; 雌雄性细胞融合产生的合子(及其所发育形成的后代个体)就具有该物种固有的染色体数目(2n),保持了物种的相对稳定。子代的性状遗传和发育得以正常进行。 (2)为生物的变异提供了重要的物质基础。 减数分裂中期I,二价体的两个成员的排列方向是随机的,所以后

遗传学刘祖洞第三版课后习题答案

遗传学刘祖洞第三版课后习题答案 遗传学是生物学中的重要分支,研究着生物遗传信息的传递和变异。而刘祖洞教授的《遗传学》第三版是这一领域的经典教材之一。在学习过程中,课后习题是检验自己对知识掌握程度的重要手段。下面将为大家提供一些《遗传学刘祖洞第三版》课后习题的答案,希望能够帮助大家更好地理解和应用遗传学的知识。 1. 什么是基因型和表型? 答:基因型是指个体在基因水平上的遗传信息,即由基因组成的遗传基础。表型则是基因型在个体外部可观察到的表现,包括形态、生理、行为等方面的特征。 2. 什么是等位基因? 答:等位基因是指在同一位点上存在的不同基因形式。例如,在人类的ABO血型系统中,A型和B型血的基因就是等位基因。 3. 什么是显性和隐性遗传? 答:显性遗传是指一个基因表现在个体表型上的现象,即使只有一个显性等位基因存在,也能够在个体表型上表现出来。而隐性遗传则是指需要两个隐性等位基因同时存在才能在个体表型上表现出来。 4. 什么是连锁? 答:连锁是指两个或多个基因位点在染色体上的相对位置固定,很少发生重组的现象。连锁基因在遗传学中起到了重要的作用,可以帮助我们推断基因位点之间的相对位置。 5. 什么是基因重组?

答:基因重组是指在有性生殖过程中,由于染色体的交叉互换,导致基因在染 色体上的相对位置发生改变。这种现象使得原本连锁的基因位点发生重组,产 生新的基因组合。 6. 什么是遗传连锁图? 答:遗传连锁图是一种图形化的表示方法,用于表示基因位点之间的连锁关系 和相对位置。通过遗传连锁图,我们可以推断基因位点之间的相对距离和顺序。 7. 什么是基因突变? 答:基因突变是指基因序列发生的突发性改变,包括点突变、插入突变、缺失 突变等。基因突变是遗传变异的重要来源,也是进化的基础。 8. 什么是基因表达调控? 答:基因表达调控是指细胞在不同环境和生理状态下,通过调节基因的转录和 翻译过程,使得不同基因在不同时间和空间上表达出来。基因表达调控是维持 生物体正常功能和适应环境变化的重要机制。 9. 什么是遗传多态性? 答:遗传多态性是指在自然种群中,同一基因位点上存在多个等位基因的现象。遗传多态性使得个体之间在遗传水平上存在差异,为进化提供了物质基础。 10. 什么是基因工程? 答:基因工程是利用现代生物技术手段,对生物体的基因进行修改和调控的过程。通过基因工程,可以实现对基因的精确操作,开辟了改良农作物、治疗疾 病等领域的新途径。 以上是对《遗传学刘祖洞第三版》课后习题的一些答案解析。通过课后习题的 练习和答案的解析,我们可以更好地理解和应用遗传学的知识,提高自己的学

(朱军)遗传学习题答案

(朱军)遗传学习题答案 《遗传学》课后练习题参考答案 (朱军主编第三版,分析类题目) 第二章 3.一般染色体的外部形态包括:长臂、断臂、着丝点等; 形态类型有:正中着丝拉染色体、中着丝拉染色体、近中着丝拉染色体、近端着丝拉染色体、端着丝拉染色体。 4.植物的10个花粉母细胞可以形成:40个花粉粒,80个精核,40个营养核; 10个卵母细胞可以形成10个胚囊,10个卵细胞,20个极核,20个助细胞,30个反足细胞。 6.玉米体细胞里有10对染色体,写出下列各组织的细胞中染色体数目。 (1)叶20 (2)根20 (3)胚乳30 (4)胚囊母细胞20(5)胚20 (6)卵细胞10 (7)反足细胞10 (8)花药壁20 (9)营养核10。 7.假定一个杂种细胞里含有3对染色体,其中A、B、C来自父本,A’、B’、C’来自母本。通过减数分裂能形成几种配子?写出各种配子的染色体组成。 如果形成的是雌配子,那么只形成一种配子ABC或A’B’C’或A’ BC或A B’C’ 或A B’ C 或A’ B C’ 或AB C’ 或A’B’ C 如果形成的是雄配子,那么可以形成两种配子ABC和A’B’C’或A B’ C 和A’ B C’ 或A’ BC 和A B’C’ 或AB C’ 或和A’B’ C 9.有丝分裂的遗传学意义 (1)核内染色体准确复制、分裂,为两个子细胞的遗传组成与母细胞完全一样打下基础。(2)染色体复制产生的两条姊妹染色单体分别分配到两个子细胞中,子细胞与母细胞具有相同的染色体数目和组

成。 (3)通过有丝分裂维持了生物个体的正常生长和发育(组织及细胞间遗传组成的一致性);并且保证了物种的连续性和稳定性(单细胞生物及无性繁殖生物个体间及世代间的遗传组成的一致性)。 减数分裂的遗传学意义 (1)保证了亲代与子代之间染色体数目的恒定性 双亲性母细胞(2n)经过减数分裂产生性细胞(n),实现了染色体数目的减半; 雌、雄性细胞融合产生的合子(及其所发育形成的后代个体)就具有该物种固有的染色体数目(2n),保持了物种的相对稳定。子代的性状遗传和发育得以正常进行。 (2)为生物的变异提供了重要的物质基础 一方面,减数分裂中期I,二价体的两个成员的排列方向是随机的,所以后期I 分别来自双亲的两条同源染色体随机分向两极,因而所产生的性细胞就可能会有2n种非同源染色体的组合形式(染色体重组,recombination of chromosome)。 另一方面,非姊妹染色单体间的交叉导致同源染色体间的片段交换(exchange of segment),使子细胞的遗传组成更加多样化,为生物变异提供更为重要的物质基础(染色体片断重组,recombination of segment)。同时这也是连锁遗传规律及基因连锁分析的基础。 第三章 2.如何证明DNA是生物的主要遗传物质? (一)间接证据 1. DNA含量的恒定性; 2. DNA代谢的稳定性; 3. 基因突变与紫外线诱变波长的关系 (二)直接证据 (1)、细菌转化实验 (2)、噬菌体侵染与繁殖试验 (3)、烟草花叶病毒重建试验

遗传学课后习题答案朱军

遗传学课后习题答案朱军 遗传学课后习题答案 遗传学是生物学中一个重要的分支,研究的是基因传递和表达的规律。在遗传学的学习过程中,课后习题是巩固知识、检验理解的重要方式。本文将为大家提供一些遗传学课后习题的答案,希望能够帮助大家更好地理解和应用遗传学知识。 1. 什么是基因? 答:基因是生物体内控制遗传性状的基本单位,是DNA分子的一部分。基因决定了生物体的形态、结构和功能特征。 2. 什么是等位基因? 答:等位基因是指在相同基因位点上存在的不同形式。等位基因可以决定同一性状的不同表现形式。 3. 什么是显性基因和隐性基因? 答:显性基因是指在杂合状态下表现出来的基因,其表现形式会掩盖掉其他等位基因的表达。隐性基因是指在杂合状态下不表现出来的基因,需要纯合状态才能表现。 4. 什么是基因型和表型? 答:基因型是指个体在某一基因位点上所携带的等位基因的组合。表型是指个体在形态、结构和功能上所表现出来的特征。 5. 什么是纯合和杂合? 答:纯合是指个体在某一基因位点上两个等位基因相同,可以是两个显性基因或两个隐性基因。杂合是指个体在某一基因位点上两个等位基因不同,可以是

一个显性基因和一个隐性基因。 6. 什么是基因频率? 答:基因频率是指在一个群体中某一等位基因的频率。基因频率可以通过对群体中个体基因型的统计分析来计算。 7. 什么是遗传连锁? 答:遗传连锁是指两个或多个基因位点上的等位基因在遗传过程中以固定的方式同时传递给子代。遗传连锁的现象可以通过基因重组的机制来解释。 8. 什么是基因重组? 答:基因重组是指在有性生殖过程中,亲代个体所携带的等位基因在染色体互换的作用下重新组合,形成新的基因组合。 9. 什么是基因突变? 答:基因突变是指基因发生的突然而持久的变异。基因突变可以是点突变、插入突变、缺失突变等不同形式。 10. 什么是遗传病? 答:遗传病是由于基因突变导致的一类疾病。遗传病的发生和传递与个体的基因型有关。 通过以上答案,我们可以更好地理解遗传学中的一些基本概念和原理。遗传学是一个复杂而有趣的学科,通过不断地学习和实践,我们能够更好地理解生物的遗传规律,为人类的健康和进步做出贡献。希望大家能够善用课后习题,不断巩固和拓展遗传学的知识。

普通遗传学课后习题解答

第一章遗传的细胞学基础(p32-33) 4.某物种细胞染色体数为2n=24,分别指出下列各细胞分裂期中的有关数据: (1)有丝分裂后期染色体的着丝点数。(2)减数分裂后期I染色体着丝点数。(3)减数分裂中期I的染色体数。(4)减数分裂末期II的染色体数。 [答案]:(1)48;(2)24;(3)24;(4)12。 [提示]:如果题目没有明确指出,通常着丝点数与染色体数都应该指单个细胞或细胞核内的数目;为了“保险”(4)也可答:每个四分体细胞中有12条,共48 条。具有独立着丝点的染色体才称为一条染色体,由复合着丝点联结的两个染色体单体只能算一条染色体。5.果蝇体细胞染色体数为2n=8,假设在减数分裂时有一对同源染色体不分离,被拉向同一极,那么: (1)二分子的每个细胞中有多少条染色单体? (2)若在减数分裂第二次分裂时所有的姊妹染色体单体都分开,则产生的四个配子中各有多少条染色体? (3)用n 表示一个完整的单倍染色体组,应怎样表示每个配子的染色体数? [答案]:(1)两个细胞分别为6 条和10 条染色单体。 (2)四个配子分别为3条、3 条、5条、5 条染色体。 (3)n=4 为完整、正常单倍染色体组;少一条染色体的配子表示为:n-1=3;多一条染色体的配子表示为:n+1=5。 [提示]:正常情况下,二价体的一对同源染色体分离并分配到两个二分体细胞。在极少数情况下发生异常分配,也是染色体数目变异形成的原因之一。 6. 人类体细胞染色体2n=46,那么, (1)人类受精卵中有多少条染色体? (2)人的初级精母细胞、初级卵母细胞、精子、卵细胞中各有多少条染色体? [答案]:(1)人类受精卵中有46 条染色体。 (2)人的初级精母细胞、初级卵母细胞、精子、卵细胞中分别有46 条、46 条、23 条、23条染色体。 7.水稻细胞中有24条染色体,小麦中有42条染色体,黄瓜中有14条染色体。理论上它们各能产生多少种含不同染色体的雌雄配子? [答案]:理论上,小稻、小麦、黄瓜各能产生=4096、=2097152、=128 种不同 含不同染色体的雌雄配子。 [提示]:水稻、黄瓜为二倍体,2n 条染色体配对形成n 个二价体;小麦虽然是六倍体但三种染色体组来源于不同的二倍体物种——是异源六倍体(参见第七章),因此正常情况下42 条染色体仍然配对形成21 个二价体。中期l 每个二价体有两种排列方式,配子中有两种 染色体组成。非同源染色体在形成配子时自由组合,因此有种配子染色体组合。 第二章遗传物质的分子基础(p58) 8.如果DNA的一条链上(A+G)/(T+C)=0.6,那么互补链上的同一个比率是多少? [答案]:其互补链上的(A+G)/(T+C)为1/0.6=1.7。 10. 有几种不同的mRNA可以编码氨基酸序列met-leu-his-gly? [答案]:根据遗传密码字典,有 1 种密码子编码met、6 种密码子编码leu、2 种密码子编码组氨酸、4 种密码子编码gly;因此有1×6×2×4=48 不同的mRNA可以编码该氨

遗传学课后习题答案

9 核外遗传 1. 细胞质遗传有什么特点?它与母性影响有什么不同? 答:细胞质遗传不同于孟德尔遗传的特点:1、无论是正交还是反交,F1的表型总是与母本的一致;2、连续回交不会导致用作非轮回亲本的母本细胞质基因及其所控制的性状的消失,但其核遗传物质则按每回交一代减少一半的速度减少,直到被全部置换;3、非细胞器的细胞质颗粒中遗传物质的传递类似病毒的转导。 母性影响是指子代某一性状的表型由母体的核基因型决定,而不受本身基因型的支配,从而导致子代的表型和么ben相同的现象。其表现形式也是正反交结果不一致,不同之处在于由细胞质遗传决定的性状,表型是稳定的,可以一代一代地通过细胞质传下去,而母性影响有持久的,也有短暂的。(P225) 2. 一个基因型为Dd的椎实螺自体受精后,子代的基因型和表型分别如何?如果其子代个体也自体受精,它们的下一代的基因型和表型又如何? 答:椎实螺的显性基因为右旋D,隐性基因为d,受母性影响,基因型为Dd的椎实螺自体受精,亲本基因型均为右旋Dd,F1产生1DD右旋(基因型为右旋)、2Dd右旋(基因型为右旋)、1dd 右旋(基因型为左旋);F1的DD自体受精产生的子代均为DD右旋(基因型为右旋),F1的Dd自体受精产生的子代为1DD右旋(基因型为右旋)、2Dd右旋(基因型为右旋)、1dd右旋(基因型为左旋),F1的dd自体受精产生的子代均为dd左旋(基因型为左旋)。(P226图) 3. 正交和反交的结果不同可能是因为:①细胞质遗传,②性连锁,和③母性影响。怎样用实验方法来确定它属于哪一种类型? 答:细胞质遗传和母性影响正反交结果不同,且F1子代与母本的表型一致;而性连锁虽然正反交结果不同,但F1子代有与父本表型一致的。母性影响虽然看起来很想细胞质遗传,但其实质是细胞核基因作用的结果,一代以上的杂交可以获得性状是否属于细胞质遗传的结论。 4. 衣藻的细胞质和细胞核中都可能存在链霉素抗性因子。如果将一个链霉素抗性突变品系与对链霉素敏感的品系杂交,(1)如果抗性品系是mt+,敏感品系是mt-,结果将会怎样?(2)如果做的是反交,结果又怎样? 答:(1)如果链霉素抗性因子的存在于细胞核,则杂交后代一半表现为抗性,一半无抗性。如果链霉素抗性因子的存在于细胞质,则杂交后代均表现为抗性。(2)如果链霉素抗性因子的存在于细胞核,则杂交后代一半表现为抗性,一半无抗性。如果链霉素抗性因子的存在于细胞质,则杂交后代均表现为无抗性。

刘祖洞(遗传学)课后习题答案!全面版

刘祖洞《遗传学》参考答案全面版 第二章孟德尔定律 1、为什么分离现象比显、隐性现象有更重要的意义? 答:因为 (1)分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的; (2)只有遗传因子的分离和重组,才能表现出性状的显隐性。可以说无分离现象的存在,也就无显性现象的发生。 2、 解:序号杂交基因型表现型 (1)RR×rr Rr 红果色 (2)Rr×rr 1/2Rr,1/2rr 1/2红果色,1/2黄果色 (3)Rr×Rr 1/4RR,2/4Rr,1/4rr 3/4红果色,1/4黄果色 (4)Rr×RR 1/2RR,1/2Rr 红果色 (5)rr×rr rr 黄果色 3、下面是紫茉莉的几组杂交,基因型和表型已写明。问它们产生哪些配子?杂种后代的基因型和表型怎样? (1)Rr × RR(2)rr × Rr(3)Rr × Rr 粉红红色白色粉红粉红粉红 解:序号杂交配子类型基因型表现型 (1)Rr × RR R,r;R 1/2RR,1/2Rr 1/2红色,1/2粉红 (2)rr × Rr r;R,r 1/2Rr,1/2rr 1/2粉红,1/2白色 (3)Rr × Rr R,r 1/4RR,2/4Rr,1/4rr 1/4红色,2/4粉色,1/4白色 4、在南瓜中,果实的白色(W)对黄色(w)是显性,果实盘状(D)对球状(d)是显性,这两对基因是自由组合的。问下列杂交可以产生哪些基因型,哪些表型,它们的比例如何? (1)WWDD×wwdd(2)XwDd×wwdd (3)Wwdd×wwDd(4)Wwdd×WwDd 解: 序号杂交基因型表现型 1 WWDD×wwdd WwDd 白色、盘状果实 2 WwDd×wwdd 1/4WwDd,1/4Wwdd,1/4wwDd,1/4wwdd,1/4白色、盘状,1/4白色、球状,1/4黄色、盘状,1/4黄色、球状 2 wwDd×wwdd 1/2wwDd,1/2wwdd 1/2黄色、盘状,1/2黄色、球状 3 Wwdd×wwDd 1/4WwDd,1/4Wwdd,1/4wwDd,1/4wwdd,1/4白色、盘状,1/4白色、球状,1/4黄色、盘状,1/4黄色、球状 4 Wwdd×WwDd 1/8WWDd,1/8WWdd,2/8WwDd,2/8Wwdd,1/8wwDd,1/8wwdd 3/8白色、盘状,3/8白色、球状,1/8黄色、盘状,1/8黄色、球状 5.在豌豆中,蔓茎(T)对矮茎(t)是显性,绿豆荚(G)对黄豆荚(g)是显性,圆种子(R)对皱种子(r)是显性。现在有下列两种杂交组合,问它们后代的表型如何? (1)TTGgRr×ttGgrr (2)TtGgrr×ttGgrr 解:杂交组合TTGgRr × ttGgrr: 即蔓茎绿豆荚圆种子3/8,蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚圆种子1/8,蔓茎黄豆荚皱种子1/8。 杂交组合TtGgrr × ttGgrr:

遗传学课后习题及答案-刘祖洞

第二章孟德尔定律之老阳三干创作 1、 2、为什么分离现象比显、隐性现象有更重要的意义? 答:因为1、分离规律是生物界普遍存在的一种遗传现象,而显性现象的暗示是相对的、有条件的;2、只有遗传因子的分离和重组,才华暗示出性状的显隐性.可以说无分离现象的存在,也就无显性现象的发生. 2、在番茄中,红果色(R)对黄果色(r)是显性,问下列杂交可以发生哪些基因型,哪些暗示型,它们的比例如何(1)RR×rr (2)Rr×rr(3)Rr×Rr(4)Rr×RR(5)rr×rr 3 些配子?杂种后代的基因型和表型怎样?(1)Rr×RR (2)rr×Rr(3)Rr×Rr粉红红色白色粉红粉红粉红 (D)对球状(d)是显性,这两对基因是自由组合的.问下列杂交

可以发生哪些基因型,哪些表型,它们的比例如何?(1)WWDD×wwdd(2)XwDd×wwdd(3)Wwdd×wwDd(4)Wwdd×WwDd 序号杂交基因型暗示型 1 WWDD×wwdd WwDd 白色、盘状果实 2 WwDd×wwdd 1/4WwDd,1/4Wwdd, 1/4wwDd,1/4wwdd, 1/4白色、盘状,1/4白色、球状, 1/4黄色、盘状,1/4黄色、球状 2 wwDd×wwdd 1/2wwDd,1/2wwdd 1/2黄色、盘状,1/2黄色、球状 3 Wwdd×wwDd 1/4WwDd,1/4Wwdd, 1/4wwDd,1/4wwdd, 1/4白色、盘状,1/4白色、球状, 1/4黄色、盘状,1/4黄色、球状 4 Wwdd×WwDd 1/8WWDd,1/8WWdd, 2/8WwDd,2/8Wwdd, 1/8wwDd,1/8wwdd 3/8白色、盘状,3/8白色、球状, 1/8黄色、盘状,1/8黄色、球状 5.在豌豆中,蔓茎(T)对矮茎(t)是显性,绿豆荚(G)对黄豆荚(g)是显性,圆种子(R)对皱种子(r)是显性.现在有下列两种杂交组合,问它们后代的表型如何?(1)TTGgRr×ttGgrr (2)TtGgrr×ttGgrr解:杂交组合TTGgRr×ttGgr r: 即蔓茎绿豆荚圆种子3/8,蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚圆种子1/8, 蔓茎黄豆荚皱种子1/8. 杂交组合TtGgrr ×ttGgrr:

《遗传学》课后习题答案版.docx

第2章孟德尔式遗传分析:习题解 1题解a:(l)他们第一个孩子为无尝味能力的女儿的概率是1/8; (2)他们第一个孩子为有尝味能力的孩子的概率是3/4; (3)他们第一个孩子为有尝味能力儿子的概率是3/8。 b:他们的头两个孩子均为品尝者的概率为9/16。 2题解:己知半乳糖血症是常染色体隐性遗传。因为甲的哥哥有半乳糖症,甲的父母必然是致病基因携带者,而甲表现正常,所以甲有2/3的可能为杂合体。乙粉卜祖母患有半乳糖血症,乙的母亲必为杂合体,乙有1/2 的可能为杂合体,二人结婚,每个孩子都有1/12的町能患病。3题解: a:该病是常染色体显性遗传病。 因为该系谱具有常显性遗传病的所有特点: (1)患者的双亲之一是患者; (2)患者同胞中约1/2是患者,男女机会相等; (3)表现连代遗传。 b:设致病基因为A,正常基因a,则该家系各成员的可能基因型如图中所示 c: 1/2 4题解a:系谱中各成员基因型见下图 b: 1/4X1/3X1/4=1/48 c: 1/48 d: 3/4 5题解:将红色、双子房、矮蔓纯合体(RRDDtt)与黄色、单子房、高蔓纯合体(rrddTT)杂交,在F?中只选黄、双、高植株((rrD-T))o而且,在F?中至少要选9株表现黄、双高的植株。分株收获F3的种子。次年,分株行播种选择无性状分离的株行。便是所需黄、双、高的纯合体。 6题解:正常情况:YY褐色(显性):yy黄色(隐性)。用含银盐饲料饲养:YY褐色一黄色(发生表型模写)因为表型模写是环境条件的影响,是不遗传的。将该未知基因型的黄色与正常黄色在不用含银盐饲料饲养的条件下,进行杂交,根据于代表型进行判断。如果子代全是褐色,说明所测黄色果蝇的基因型是YY,表现黄色是表型模写的结果。如果子代全为黄色,说明所测黄色果蝇的基因型是yy。无表型模写。 7题解:a:设计一个有效方案。用基因型分别为aaBBCC、AAbbCC、AABBcc的三个纯合体杂交,培育优良纯合体af^bcco由于三对隐性基因分散在三个亲本中。其方法是第一年将两个亲本作杂交。第二年将杂合体与另一纯合亲本杂交。第三年,将杂种自交,分株收获。第四年将自交种子分株行播种。一些株行中可分离出aabbcc 植株。 b:第一年将两个亲本作杂交.子代全为两对基因杂合体(AaBbCC或AaBBCc或AABbCc),表现三显性»第二年将杂合体与另一纯合亲本杂交,杂交子代有4种基因型,其中有1/4的子代基因型是AaBbCc。第三年,将杂种自交,分株收获。第四年将自交种子分株行播种.观察和统计其株行的表型和分离比。有三对基因杂合体的自交子代有8种表型,约有1/64的植株表现aabbcc。 c:有多种方案。上述方案最好。时间最短,费工最少。 8题解:因为纯合体自交,子代全是纯合体,而一对基因的杂合体每自交一代,杂合体减小50%’杂合体减少的比例是纯合体增加的比例。所以,该群体自交3代后,三种基因型的比例分别为: Aa: 0.4X( 1/2户=0.05 AA: 0.55+(0.4-0.05)/2=0.725=72.5% aa: 0.05+ (0.4-0.05)/2=0.225=22.5% 9题解:a:结果与性别有关。

相关文档
最新文档