立体几何中有关球体的计算

立体几何中有关球体的计算
立体几何中有关球体的计算

1.如图,一个几何体的三视图是三个直角三角形,则该几何体的外接球的表面积为 .29π

2.若长方体1111ABCD A BC D -中,1AB =,11,B C C D 分别与底面

ABCD 所成的角为45 ,60 ,则长方体1111ABCD A BC D -的外接球的体积为( )

A

B

C

D

3.如图1111D C B A ABCD -是棱长为1的正方体,ABCD S -是高为1的正四棱锥,若点1111,,,,D C B A S 在同一个球面上,则该球的表面积为___.8116

π

4.已知,,,S A B C 是球O 表面上的点,SA ⊥平面ABC ,,AB BC SA ⊥

球O 的表面积等于( )

A .4π

B .3π

C .2π

D .π

5.四棱锥P ABCD -

的三视图如下图所示,四棱锥P ABCD -的五个顶点都在一个球面

3

4

2 俯视图 主视图 左视图

A.12p

B.24p

C.36p

D.48p

6.已知三棱锥ABC O -,A,B,C 三点均在球心为O 的球表面上,AB=BC=1,∠ABC=120°,三棱锥ABC O -的体积为4

5,则球O 的表面积是( ) A .π64 B .π16 C .

π332 D .π544 7.已知点,,,A B C D 在同一个球面上,3,4,5AB BC AC ===,若四面体ABCD 体积的最大值为10,则这个球的表面积是( )

A .25π4

B .125π4

C .225π16

D .625π16 8.已知三棱锥A -BCD 的所有棱长都为2,则该三棱锥的外接球的表面积为________3π

9.(2014·大纲全国卷)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )

A.81π4

B .16π

C .9π D.27π4 10.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此三棱锥的体积为( )

A.26

B.36

C.23

D.22

11.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S -ABC 的体积为

( ) A .3 3 B .2 3 C. 3 D .1

12.(2014·辽宁大连四所重点中学联考)球O 的球面上有四点S ,A ,B ,C ,

其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥

平面ABC ,则三棱锥S -ABC 的体积的最大值为________.33

解析 记球O 的半径为R ,作SD ⊥AB 于D ,连接OD 、OS ,易求R =

23,易知SD ⊥平面ABC ,注意到SD =SO 2-OD 2=R 2-OD 2,因此要使SD 最大,则需OD 最小,而OD 的最小值为12×23=33,因此高SD 的最大值是????232-???

?332=1,又三棱锥S -ABC 的体积为13S △ABC ·SD =13×34×22×SD =33SD ,因此三棱锥S -ABC 的体积的最大值是33×1=33

. 13.设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面

积为( )

A .πa 2 B.73

πa 2 C.113πa 2 D .5πa 2 14.已知直三棱柱111ABC A B C -中,090BAC ∠=,侧面11BCC B 的面积为2,则直三棱柱111ABC A B C -外接球表面积的最小值为 .

【答案】4π

试题分析:根据题意,设2B C m =,则有11BB m

=,从而有其外接球的半径为

1R =,所以其比表面积的最小值为4S π=. 15.已知直三棱柱ABC ﹣A 1B 1C 1的6个顶点都在直径为13球O 的球面,且AB=4,AC=3,AB ⊥AC ,则三棱柱的体积为 .72.

16.已知三棱柱111C B A ABC -的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为3,2AB =, 60,1=∠=BAC AC ,则此球的表面积等于__________.π8.

17.将长、宽分别为4和3的长方形ABCD 沿对角线AC 折起,得到四面体A-BCD ,则四面体A-BCD 的外接球的体积为( )

A .3125π

B .6125π

C .9125π

D .12

125π 18.已知,,,P A B C 是球O 球面上的四点,ABC ?是正三角形,三棱锥ABC P -的体积为4

39,且?=∠=∠=∠30CPO BPO APO ,则球O 的表面积为______________.π16

P A B C ,,,是球O 球面上四点,ABC V 是正三角形,设ABC V 的中心为S ,球O 的半

径为R ,ABC V 的边长为2a ,∵30APO BPO CPO ∠=∠=∠=?,OB OP R ==,∴

2R OS BS R ==,,∴3

2R =,解得33242a R a R ==,,∵三棱锥P ABC -的

333sin 60211123222R R R ??????=2R =,∴球O 的表面积2416S R ππ==.故答案为:16π.

19.把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四

个球,使它与前三个都相切,则第四个球的最高点与桌面的距离

A.2+

C. 1+ 【答案】A

【解析】

试题分析:这四个球的球心形成一个棱长为2的正四面体,则第四个球的球心到前三个球心

,前三个球心所在平面到桌面的距离为1,则第四个球的最高点与

桌面的距离2+。故选A. 20.已知边长

为的菱形ABCD 中,60BAD ∠= ,沿对角线BD 折成二面角A BD C --为120 的四面体ABCD ,则四面体的外接球的表面积为( )

A .25π

B .26π

C .27π

D .28π

【答案】D

【解析】

试题分析:如图所示,设两三角形外心分别为23,O O ,球心为O ,1120AOC ∠=

,

故132,OO OO =

OC ==28π.

21.(2014·湖南卷改编)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的体积等于( )

A.4π3

B.32π3

C .36π D.256π3

立体几何空间计算

教学过程 一、新课导入 我们已经学习了平面向量的内容,本节课就把平面向量及其线性运算推广到空间向量,并运用空间向量解决立体几何问题.

三、知识讲解 考点1 空间向量基本知识点及运算 1.向量的直角坐标运算 设a = 123(,,) a a a , b = 123(,,) b b b 则 (1) a +b = 112233(,,) a b a b a b +++; (2) a -b = 112233(,,) a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R); (4) a ·b =112233a b a b a b ++; 2.设A 111(,,) x y z ,B 222(,,) x y z ,则 AB OB OA =-= 212121(,,)x x y y z z ---. 3、设111(,,)a x y z =r ,222(,,)b x y z =r ,则 a b r r P ?(0)a b b λ=≠r r r r ; a b ⊥r r ?0a b ?=r r ?1212120x x y y z z ++=. 4.夹角公式 : 设a = 123(,,) a a a , b = 123(,,) b b b ,则 cos ,a b <>=

5.异面直线所成角: cos |cos ,|a b θ=r r =|| |||| a b a b ?= ?r r r r 6.平面外一点p 到平面α的距离: 已知AB 为平面α的一条斜线,n 为平面α的一个法 向量,A 到平面α的距离为:|| || AB n d n ?= . 7.线线夹角θ(共面与异面)[0,90]???两线的方向向量12,n n →→的夹角或夹角的补角,12cos cos ,n n θ→→ =<>. 8.线面夹角θ[0,90]??:求线面夹角的步骤:先求线的方向向量AP 与面的法向量n 的夹角,若为锐角角即可,若为钝角,则取其补角;再求其余角,即是线面的夹角.sin cos ,AP n θ→→ =<>. 9.面面夹角(二面角)θ[0,180]??:若两面的法向量一进一出,则二面角等于两法向量12,n n →→ 的夹角;法向量同进同出,则二面角等于法向量的夹角的补角. 12cos cos ,n n θ→ → =±<>. B A α n

立体几何动点问题

立体几何与平面解析几何的交汇问题 在教材中,立体几何与解析几何是互相独立的两章,彼此分离不相联系,实际上,从空间维数看,平面几何是二维的,立体几何是三维的,因此,立体几何是由平面几何升维而产生;另一方面,从立体几何与解析几何的联系看,解析几何中的直线是空间二个平面的交线,圆锥曲线(椭圆、双曲线、抛物线)是平面截圆锥面所产生的截线;从轨迹的观点看,空间中的曲面(曲线)是空间中动点运动的轨迹,正因为平面几何与立体几何有这么许多千丝万缕的联系,因此,在平面几何与立体几何的交汇点,新知识生长的土壤特别肥沃,创新型题型的生长空间也相当宽广,这一点,在高考卷中已有充分展示,应引起我们在复习中的足够重视。 一、动点轨迹问题 这类问题往往是先利用题中条件把立几问题转化为平面几何问题,再判断动点轨迹。 例1定点A 和B 都在平面α内,定点α?P ,α⊥PB , C 是α内异于A 和B 的动点,且AC PC ⊥。那么,动点C 在平面α内的轨迹是( ) A. 一条线段,但要去掉两个点 B. 一个圆,但要去掉两个点 C. 一个椭圆,但要去掉两个点 D. 半圆,但要去掉两个点 例2若三棱锥A —BCD 的侧面ABC 内一动点P 到平面BCD 距离与到棱AB 距离相等,则动点P 的轨迹与△ABC 组成的图形可能是( ) ) 解:设二面角A —BC —D 大小为θ,作PR ⊥面BCD ,R 为垂足,PQ ⊥BC 于Q ,PT ⊥AB 于T ,则∠PQR =θ, 且由条件PT=PR=PQ·sinθ,∴ 为小于1的常数,故轨迹图形应选(D )。 二、几何体的截痕

例3:球在平面上的斜射影为椭园:已知一巨型广告汽球直径6米,太阳光线与地面所成角为60°,求此广告汽球在地面上投影椭圆的离心率和面积(椭圆面积公式为S=πab ,其中a,b 为长、短半轴长)。 解:由于太阳光线可认定为平行光线,故广告球的投影 椭园等价于以广告球直径为直径的圆柱截面椭园:此时 b=R ,a= =2R ,∴离心率 , 投影面积S=πab=π·k·2R=2πR 2=18π。 三、动点与某点(面)的距离问题 , 例4.正方体1111D C B A ABCD -中,棱长为a ,E 是 1AA 的中点, 在对角面D D BB 11上找一动点M ,使AM+ME 最小.a 23. 四、常见的轨迹问题 (1) 轨迹类型识别 此类问题最为常见,求解时,关注几何体的特征,灵活选择几何法与代数法. 例5、(北京)平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交 α于点C ,则动点C 的轨迹是( ) A .一条直线 B.一个圆 C.一个椭圆 D.双曲线的一支 【解析】直线l 运动后形成的轨迹刚好为线段AB 的垂面,由公理二易知点C 刚好落在平面α与线段AB 的垂面的交线上,所以动点C 的轨迹是一条直线.选择 A. 总结:空间的轨迹最简单的一直存在形式就是两个平面的交线,处理问题中注意识别即可. 例6、如图,在正方体ABCD A 1 B 1C 1D 1 中,若四边形A 1BCD 1 内一动点P 到AB 1和 BC 的距离相等,则点P 的轨迹为( ) … A .椭圆的一部分 B .圆的一部分 C .一条线段 D .抛物线的一部分 O E 例4题图 A % C D A 1 C 1 D 1 B 1 M - C D B C P O

高中数学立体几何证明定理及性质总结

一.直线和平面的三种位置关系: 1. 线面平行 2. 线面相交 l 符号表示: 符号表示: 3. 线在面内 符号表示: 二.平行关系: 1.线线平行: 方法一:用线面平行实现。方法二:用面面平行实现。 m l m l l // // ? ? ? ? ? ? = ? ? β α β α m l m l// // ? ? ? ? ? ? = ? = ? β γ α γ β α 方法三:用线面垂直实现。若α α⊥ ⊥m l,,则m l//。 2.线面平行: 方法一:用线线平行实现。 α α α// // l l m m l ? ? ? ? ? ? ? ? 方法二:用面面平行实现。 α β β α // // l l ? ? ? ? ? 3.面面平行: 方法一:用线线平行实现。方法二:用线面平行实现 β α α β // ' ,' , ' // ' // ? ? ? ? ? ? ? ? ? ? 且相交 且相交 m l m l m m l l 。β α β α α // , // // ? ? ? ? ? ? ?且相交 m l m l 三.垂直关系: l

1. 线面垂直: 方法一:用线线垂直实现。 方法二:用面面垂直实现。 α α⊥??? ????? ?=?⊥⊥l AB AC A AB AC AB l AC l , αββαβα⊥???? ???⊥=?⊥l l m l m , 2. 面面垂直: 方法一:用线面垂直实现。 方法二:计算所成二面角为直角。 βαβα⊥?? ?? ?⊥l l 3. 线线垂直: 方法一:用线面垂直实现。 m l m l ⊥?? ?? ?⊥αα 方法二:三垂线定理及其逆定理。 PO l OA l PA l αα⊥? ? ⊥?⊥????

立体几何的计算

教案 教师姓名授课班级授课形式 授课日期年月日第周授课时数 授课章节名称立体几何的计算 教学目的计算立体几何中的有关角度和距离以及一些体积问题教学重点二面角和几何体的体积 教学难点二面角的计算 更新、补充、 删节内容 使用教具三角板 课外作业补充 课后体会注意立体图形与平面图形的转化

授课主要内容或板书设计

一、复习知识点 1. 有关角的计算 ⑴异面直线所成的角 a . 定义:设,a b 是异面直线,过空间任一点o 引'',a a b b ,则'a 与'b 所成的锐角(或直角)叫异面直线,a b 所成的角。 b .范围(0,90] c . 求法:作平行线,将异面转化成相交 ⑵线面所成的角 a . 定义:平面的一条斜线和它在平面上的射影所成的锐角,叫这条斜线和这个平面所成的角。 b .范围:[0,90] c . 求法:作垂线,找射影 ⑶二面角 a . 定义:从一条直线出发的两个半平面所组成的图形叫二面角,其大小通过二面角的平面角来度量。 b .二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线所成的角叫二面角的平面角。 c . 范围:[0,]π d .作法: 1定义法:过棱上任一点o 在两个半平面内分别引棱的两条垂线,OA OB ,则 AOB ∠为二面角的平面角 2三垂线定理法:过二面角的一个半平面内一点A ,作棱l 的垂线,垂足为O , 作另一个面的垂线,垂足为B ,连接OB ,则AOB ∠为二面角的平面角。 β α O B A 3作棱的垂面法:过二面角内任意一点O ,分别向两个平面作垂线,垂足为,A B 则,AO BO 所确定的平面与棱l 交于P ,则APB ∠为二面角的平面角。

立体几何动态问题专题

立体几何的动态问题 立体几何的动态问题,主要有五种:动点问题、翻折问题、旋转问题、投影与截面问题以及轨迹问题。基本类型:点动问题;线动问题;面动问题;体动问题;多动问题等。解题时一般可以通过改变视角、平面化或者寻找变化过程中的不变因素而把问题回归到最本质的定义、定理或现有的结论中,若能再配以沉着冷静的心态去计算,那么相信绝大多数问题可以迎刃而解。 动点轨迹问题 空间中动点轨迹问题变化并不多,一般此类问题可以从三个角度进行分析处理,一是从曲线定义或函数关系出发给出合理解释;二是平面与平面交线得直线或线段;三是平面和曲面(圆锥,圆柱侧面,球面)交线得圆,圆锥曲线。很少有题目会脱离这三个方向。(注意:阿波罗尼斯圆,圆锥曲线第二定义) 1.(2015·浙江卷8)如图11-10,斜线段AB与平面α所成的角为60°,B为斜足,平面α上的动点P满足∠PAB =30°,则点P的轨迹是( ) A.直线 B.抛物线C.椭圆 D.双曲线的一支 式题如图,平面α的斜线AB交α于B点,且与α所成的角为θ,平面α内有一动点满足∠=π 6 ,若动 点C的轨迹为椭圆,则θ的取值范围为________. 3.(2015春?龙泉驿区校级期中)在棱长为1的正方体ABCD﹣A1B1C1D1中,M是A1D1的中点,点P在侧面BCC1B1上运动.现有下列命题: ①若点P总保持PA⊥BD1,则动点P的轨迹所在的曲线是直线; ②若点P到点A的距离为,则动点P的轨迹所在的曲线是圆; ③若P满足∠MAP=∠MAC1,则动点P的轨迹所在的曲线是椭圆; ④若P到直线BC与直线C1D1的距离比为2:1,则动点P的轨迹所在的曲线是双曲线; ⑤若P到直线AD与直线CC1的距离相等,则动点P的轨迹所在的曲线是抛物线. 其中真命题的个数为() A.4 B.3 C.2 D.1

高中数学立体几何专项练习

立体几何简答题练习 1、正方形ABCD 与正方形ABEF 所在平面相交于AB,在AE 、BD 上各有一点P 、Q,且AP=DQ 。求证:PQ ∥平面BCE.(用两种方法证明) 2、如图所示,P 是平行四边形ABCD 所在平面外一点,E 、F 分别在PA 、BD 上,且PE:EA=BF:FD,求证:EF ∥平面PBC. 3、如图,E ,F ,G ,H 分别是正方体ABCD-A 1B 1C 1D 1的棱BC ,CC 1,C 1D 1,AA 1的中点。 求证:(1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H .

4、如图所示,已知P 是平行四边形ABCD 所在平面外一点,M 、N 分别为AB 、PC 的中点,平面PAD ∩平面PBC =l. (1)求证:l ∥BC ; (2)MN 与平面PAD 是否平行?试证明你的结论。 5、如图,在四棱锥S-ABCD 中,底面ABCD 是正方形,SA ⊥底面ABCD ,SA=SB ,点M 是SD 的中点,AN ⊥SC ,且交SC 于点N 。 (1)求证:SB ∥平面ACM ; (2)求证:平面SAC ⊥平面AMN ; (3)求二面角D-AC-M 的余弦值。 6、如图,在四棱锥P-ABCD 中,底面ABCD 是边长为2的正方形,侧面PAD ⊥底面ABCD,且PA=PD= 2 2 AD,E 、F 分别为PC 、BD 的中点. 求证:(1) 求证:EF ∥平面PAD; (2) 求证:平面PAB ⊥平面PDC; (3) 在线段AB 上是否存在点G,使得二面角C-PD-G 的余弦值为3 1 ?说明理由.

高中立体几何计算方法总结

高中立体几何计算方法总结 1.位置关系: (1)两条异面直线相互垂直 证明方法:①证明两条异面直线所成角为90o;②证明线面垂直,得到线线垂直;③证明两条异面直线的方向量相互垂直。 (2)直线和平面相互平行 证明方法:①证明直线和这个平面内的一条直线相互平行; ②证明这条直线的方向量和这个平面内的一个向量相互平行;③证明这条直线的方向量和这个平面的法向量相互垂直。(3)直线和平面垂直 证明方法:①证明直线和平面内两条相交直线都垂直,②证明直线的方向量与这个平面内不共线的两个向量都垂直;③证明直线的方向量与这个平面的法向量相互平行。 (4)平面和平面相互垂直 证明方法:①证明这两个平面所成二面角的平面角为90o;②证明一个平面内的一条直线垂直于另外一个平面;③证明两个平面的法向量相互垂直。 2.求距离: 求距离的重点在点到平面的距离,直线到平面的距离和两个 平面的距离可以转化成点到平面的距离,一个点到平面的距 离也可以转化成另外一个点到这个平面的距离。

(1)两条异面直线的距离 求法:利用公式法。 (2)点到平面的距离 求法:①“一找二证三求”,三步都必须要清楚地写出来。 ②等体积法。③向量法。 3.求角 (1)两条异面直线所成的角 求法:①先通过其中一条直线或者两条直线的平移,找出这两条异面直线所成的角,然后通过解三角形去求得;②通过两条异面直线的方向量所成的角来求得,但是注意到异面直线所成角得范围是,向量所成的角范围是,如果求出的是钝角,要注意转化成相应的锐角。 (2)直线和平面所成的角 求法:①“一找二证三求”,三步都必须要清楚地写出来。 ②向量法,先求直线的方向量于平面的法向量所成的角α,那么所要求的角为或。 (3)平面与平面所成的角 求法:①“一找二证三求”,找出这个二面角的平面角,然后再来证明我们找出来的这个角是我们要求的二面角的平面角,最后就通过解三角形来求。②向量法,先求两个平面的法向量所成的角为α,那么这两个平面所成的二面角的平面角为α或π-α。

空间几何中的角和距离的计算

空间角和距离的计算(1) 一 线线角 1.直三棱柱A 1B 1C 1-ABC ,∠BCA=900,点D 1,F 1分别是A 1B 1和A 1C 1的中点,若BC=CA=CC 1,求BD 1与AF 1所成角的余弦值. 2.在四棱锥P-ABCD 中,底面ABCD 是直角梯形,∠BAD=900,AD ∥BC ,AB=BC=a ,AD=2a ,且PA ⊥面ABCD ,PD 与底面成300角. (1)若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ; (2)若AE ⊥PD ,求异面直线AE 与CD 所成角的大小. 二.线面角 1.正方体ABCD-A 1B 1C 1D 1中,E ,F 分别为BB 1、CD 的中点,且正方体的棱长为2. (1)求直线D 1F 和AB 和所成的角; (2)求D 1F 与平面AED 所成的角. F 1D 1B 1 C 1A 1 B A C A B C D P E C D E F D 1 C 1 B 1 A 1 A B

2.在三棱柱A 1B 1C 1-ABC 中,四边形AA 1B 1B 是菱形,四边形BCC 1B 1是矩形,C 1B 1⊥AB ,AB=4,C 1B 1=3,∠ABB 1=600,求AC 1与平面BCC 1B 1所成角的大小. 三.二面角 1.已知A 1B 1C 1-ABC 是正三棱柱,D 是AC 中点. (1)证明AB 1∥平面DBC 1; (2)设AB 1⊥BC 1,求以BC 1为棱,DBC 1与CBC 1为面的二面角的大小. 2.ABCD 是直角梯形,∠ABC=900,SA ⊥面ABCD ,SA=AB=BC=1,AD=0.5. (1)求面SCD 与面SBA 所成的二面角的大小; (2)求SC 与面ABCD 所成的角. 3.已知A 1B 1C 1-ABC 是三棱柱,底面是正三角形,∠A 1AC=600,∠A 1AB=450,求二面角B —AA 1—C 的大小. B 1 C 1 A 1 B A C D B 1 C 1 A 1B A C B A D C S B 1 C 1 B C A 1

高中数学立体几何专题证明题训练

A P B C F E D 立体几何专题训练 1.在四棱锥P -ABCD 中,PA =PB .底面ABCD 是菱形, 且∠ ABC =60°.E 在棱PD 上,满足DE =2PE ,M 是AB 的中点. (1)求证:平面PAB ⊥平面PMC ; (2)求证:直线PB ∥平面EMC . 2.如图,正三棱柱ABC —A 1B 1C 1的各棱长都相 等, D 、 E 分别是CC 1和AB 1的中点,点 F 在BC 上且满 足BF ∶FC =1∶3. (1)若M 为AB 中点,求证:BB 1∥平面EFM ; (2)求证:EF ⊥BC 。 3.如图,在长方体1111ABCD A B C D -中,,E P 分别是 11,BC A D 的中点,M 、N 分别是1,AE CD 的中点,1,2AD AA a AB a === (1)求证://MN 面11ADD A (2)求三棱锥P DEN -的体积 4如图1,等腰梯形ABCD 中,AD ∠ο 60⊥⊥⊥ 4a 2a (1)求证:平面PCF ⊥平面PDE ; (2)求四面体PCEF 的体积. 6如图,等腰梯形ABEF 中,//AB EF ,AB =2, 1AD AF ==,AF BF ⊥,O 为AB 的中点,矩形ABCD 所在的平面和平面ABEF 互相垂直. (Ⅰ)求证:AF ⊥平面CBF ; (Ⅱ)设FC 的中点为M ,求证://OM 平面DAF ; (Ⅲ)求三棱锥C BEF -的体积. 7在直三棱柱111C B A ABC -中,,900=∠ABC E 、F 分别为 11A C 、11B C 的中点,D 为棱1CC 上任一点. (Ⅰ)求证:直线EF ∥平面ABD ;(Ⅱ)求证:平面ABD ⊥平面11BCC B 8已知正六棱柱111111ABCDEF A B C D E F -的所有棱长均为2,G 为 AF 的中点。 (1)求证:1F G ∥平面11BB E E ; (2)求证:平面1F AE ⊥平面11DEE D ; D A B C P E M A B D C E A B C D E P F A B C D E F M O C 1 A B C D E F A 1 B 1

2018年高考数学压轴题突破140之立体几何五种动态问题和解题绝招

2018年高考数学压轴 题突破140之立体几何五种动态问题和解题 绝招 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2018年高考数学压轴题突破140之立体几何五种动态问题和解题绝招中高考数学名师张芙华2018-01-29 06:14:27 2018年高考数学压轴题突破140之立体几何五种动态问题和解题绝招 一.方法综述 立体几何的动态问题是高考的热点,问题中的“不确定性”与“动感性”元素往往成为学生思考与求解问题的思维障碍,使考题的破解更具策略性、挑战性与创新性。一般立体动态问题形成的原因有动点变化、平面图形的翻折、几何体的平移和旋转以及投影与截面问题,由此引发的常见题型为动点轨迹、角度与距离的计算、面积与体积的计算、探索性问题以及有关几何量的最值求解等。此类题的求解并没有一定的模式与固定的套路可以沿用,很多学生一筹莫展,无法形成清晰的分析思路,导致该题成为学生的易失分点。究其原因,是因为学生缺乏相关学科素养和解决问题的策略造成的。 动态立体几何题在变化过程中总蕴含着某些不变的因素,因此要认真分析其变化特点,寻找不变的静态因素,从静态因素中,找到解决问题的突破口。求解动态范围的选择、填空题,有时应把这类动态的变化过程充分地展现出来,通过动态思维,观察它的变化规律,找到两个极端位置,即用特殊法求解范围。对于探究存在问题或动态范围(最值)问题,用定性分析比较难或繁时,可以引进参数,把动态问题划归为静态问题。具体地,可通过构建方程、函数或不等式等进行定量计算,以算促证。 二.解题策略 类型一立体几何中动态问题中的角度问题

【指点迷津】空间的角的问题,一种方法,代数法,只要便于建立空间直角坐标系均可建立空间直角坐标系,然后利用公式求解;另一种方法,几何法,几何问题要结合图形分析何时取得最大(小)值。当点M在P处时,EM与AF 所成角为直角,此时余弦值为0(最小),当M点向左移动时,EM与AF所成角逐渐变小时,点M到达点Q时,角最小,余弦值最大。 类型二立体几何中动态问题中的距离问题

高中数学-立体几何位置关系-平行与垂直证明方法汇总

高中数学-立体几何位置关系-平行与垂直证明方法汇总 (一)立体几何中平行问题 证明直线和平面平行的方法有: ①利用定义采用反证法; ②平行判定定理; ③利用面面平行,证线面平行。 主要方法是②、③两法 在使用判定定理时关键是确定出面内的 与面外直线平行的直线. 常用具体方法:中位线和相似 例1、P是平行四边形ABCD所在平面外一点,Q是PA的中点. 求证:PC∥面BDQ. 证明:如图,连结AC交BD于点O. ∵ABCD是平行四边形, ∴A O=O C.连结O Q,则O Q在平面BDQ内, 且O Q是△APC的中位线, ∴PC∥O Q. ∵PC在平面BDQ外, ∴PC∥平面BDQ. 例2、在棱长为a的正方体ABCD-A1B1C1D1中,设M、N、E、F分别是棱A1B1、A1D1、C1D1、B1C1的中点.求证: (1)E、F、B、D四点共面; (2)面AMN∥面EFBD.

证明:(1)分别连结B 1D 1、ED 、FB ,如图, 则由正方体性质得 B 1D 1∥BD. ∵E 、F 分别是D 1C 1和B 1C 1的中点, ∴EF ∥ 21B 1D 1.∴EF ∥2 1 BD. ∴E 、F 、B 、D 对共面. (2)连结A 1C 1交MN 于P 点,交EF 于点Q ,连结AC 交BD 于点O ,分别连结PA 、Q O . ∵M 、N 为A 1B 1、A 1D 1的中点, ∴MN ∥EF ,EF ?面EFBD. ∴MN ∥面EFBD. ∵PQ ∥A O , ∴四边形PA O Q 为平行四边形. ∴PA ∥O Q. 而O Q ?平面EFBD , ∴PA ∥面EFBD.且PA ∩MN=P ,PA 、MN ?面AMN , ∴平面AMN ∥平面EFBD. 例3如图(1),在直角梯形P 1DCB 中,P 1D//BC ,CD ⊥P 1D ,且P 1D=8,BC=4,DC=4 6, A 是P 1D 的中点,沿A B 把平面P 1AB 折起到平面PAB 的位置(如图(2)),使二面角P —CD —B 成45°,设E 、F 分别是线段AB 、PD 的中点. 求证:AF//平面PE C ; 证明:如图,设PC 中点为G ,连结FG ,

考点17 立体几何中的计算问题(解析版)

考点17 立体几何中的计算问题 【知识框图】 【自主热身,归纳总结】 1、(2019扬州期末) 底面半径为1,母线长为3的圆锥的体积是________. 【答案】 22π 3 【解析】圆锥的高为h =32-12=22,圆锥的体积V =13×π×12 ×22=22π3 . 2、(2019镇江期末)已知一个圆锥的底面积为π,侧面积为2π,则该圆锥的体积为________. 【答案】 3π 3 【解析】思路分析 先求出圆锥的底面半径和高. 设圆锥的底面半径、高、母线长分别为r ,h ,l ,则?????πr 2 =π,πrl =2π,解得? ????r =1, l =2.所以h = 3.圆锥的体积 V =13Sh =3π 3 . 3、(2019宿迁期末)设圆锥的轴截面是一个边长为2 cm 的正三角形,则该圆锥的体积为________ cm 3 . 【答案】 3 3 π 【解析】 圆锥的底面半径R =1,高h =22-12=3,故圆锥的体积为V =13×π×12 ×3=33π. 4、(2019南通、泰州、扬州一调)已知正四棱柱的底面长是3 cm ,侧面的对角线长是3 5 cm ,则这个正四棱柱的体积为________cm 3 . 【答案】 54 【解析】由题意知,正四棱柱的高为(35)2 -32 =6,所以它的体积V =32 ×6=54,故答案为54. 5、(2019南京学情调研) 如图,在正三棱柱ABCA 1B 1C 1中,AB =2,AA 1=3,则四棱锥A 1B 1C 1CB 的体积是________.

【答案】2 3 【解析】如图,取B 1C 1的中点E ,连结A 1E ,易证A 1E ⊥平面BB 1C 1C ,所以A 1E 为四棱锥A 1B 1C 1CB 的高,所以V 四棱锥A 1B 1C 1CB =13S 矩形BB 1C 1C ×A 1E =1 3 ×(2×3)×3=2 3. 6、(2018盐城三模)若一圆锥的底面半径为1,其侧面积是底面积的3倍,则该圆锥的体积为 . 【答案】 3 【解析】设圆锥的高为h ,母线为l ,由2 =,=S rl S r ππ侧底得,2 1=31l ππ???,即=3l ,h == 故该圆锥的体积为2 113π???= .

立体几何的动态问题翻折问题

立体几何的动态问题之二 ———翻折问题 立体几何动态问题的基本类型: 点动问题;线动问题;面动问题;体动问题;多动问题等 一、面动问题(翻折问题): (一)学生用草稿纸演示翻折过程: (二)翻折问题的一线五结论 .DF AE ⊥一线:垂直于折痕的线即 五结论: 1)折线同侧的几何量和位置关系保持不变; 折线两侧的几何量和位置关系发生改变; 2--D HF D H F ''∠)是二面角的平面角; 3D DF ')在底面上的投影一定射线上; 二、翻折问题题目呈现: (一)翻折过程中的范围与最值问题 1、(2016年联考试题)平面四边形ABCD 中, , CD=CB= 且AD AB ⊥, 现将△ABD 沿对角线BD 翻折成'A BD ?,则在'A BD ?折起至转到平面BCD 的过程中,直线'A C 与平面BCD 所成最大角的正切值为_______ . 解:由题意知点A 运动的轨迹是以E 为圆心,EA 为半径的圆,当点A 运动到与圆相切的时候所称的角最大,所以tan 'A CB ∠= 【设计意图】加强对一线、五结论的应用,重点对学生容易犯的错误 1 2 进行分析,找出错误的原因。 2、2015年10月浙江省学业水平考试18).如图,在菱形ABCD 中,∠BAD=60°,线段AD ,BD 的中点分别为E ,F 。现将△ABD 沿对角线BD 翻折,则异面直线BE 与CF 所成角的取值范围是 D A B E C D A B C 4) ''D H DH 点的轨迹是以为圆心,为半径的圆;5AD'E AE .)面绕 翻折形成两个同底的圆锥C

A.( ,)63 ππ B. (,]62 ππ C. ( ,]32 ππ D. 2( ,)3 3 ππ 分析:这是一道非常经典的学考试题,本题的解法非常多,很好的考查了空间立体几何线线角的求法。 方法一:特殊值法(可过F 作FH 平行BE,找两个极端情形) 方法二:定义法:利用余弦定理: 222254cos 243 FH FC CH FHC CH FH FC +-∠==- ,有344CH ≤≤ 11cos ,22CFH ?? ∴∠∈-???? 异面直线BE 与CF 所成角的取值范围是(,] 32ππ 方法三:向量基底法: 111 ()()222BE FC BA BD FC BA FC BF FA FC =+==+ 111cos ,cos ,,222BE FC FC FA ?? <>= <>∈-???? 方法四:建系: 3、(2015年浙江·理8)如图,已知ABC ?,D 是AB 的中点,沿直线CD 将ACD ?折成 A CD '?,所成二面角A CD B '--的平面角为α,则 ( B ) A. A DB α'∠≤ B. A DB α'∠≥ C. A CB α'∠≥ D. A CB α'∠≤ 方法一:特殊值 方法二:定义法作出二面角,在进行比较。 方法三:抓住问题的本质,借助圆锥利用几何解题。 4、 (14 年1月浙江省学业学考试题)如图在Rt △ABC 中,AC =1,BC =x ,D 是斜边AB 的中点,将△BCD 沿直线CD 翻折,若在翻折过程 B

高三数学立体几何专题复习课程

高三数学立体几何专 题

专题三 立体几何专题 【命题趋向】高考对空间想象能力的考查集中体现在立体几何试题上,着重考查空 间点、线、面的位置关系的判断及空间角等几何量的计算.既有以选择题、填空题形式出现的试题,也有以解答题形式出现的试题.选择题、填空题大多考查概念辨析、位置关系探究、空间几何量的简单计算求解,考查画图、识图、用图的能力;解答题一般以简单几何体为载体,考查直线与直线、直线与平面、平面与平面的位置关系,以及空间几何量的求解问题,综合考查空间想象能力、推理论证能力和运算求解能力.试题在突出对空间想象能力考查的同时,关注对平行、垂直关系的探究,关注对条件或结论不完备情形下的开放性问题的探究. 【考点透析】立体几何主要考点是柱、锥、台、球及其简单组合体的结构特征、三 视图、直观图,表面积体积的计算,空间点、直线、平面的位置关系判断与证明,(理科)空间向量在平行、垂直关系证明中的应用,空间向量在计算空间角中的应用等. 【例题解析】 题型1 空间几何体的三视图以及面积和体积计算 例1(2008高考海南宁夏卷)某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为 A . 22 B . 32 C . 4 D . 52 分析:想像投影方式,将问题归结到一个具体的空间几何体中解决. 解析:结合长方体的对角线在三个面的投影来理解计算,如图设长方体的 高宽高分别为,,m n k = =1n ?=, a = b =,所以22(1)(1)6a b -+-= 228a b ?+=,22222()282816a b a ab b ab a b +=++=+≤++=∴4 a b ?+≤当且仅当2a b ==时取等号.

高中立体几何证明方法及例题

由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: αβ αγβγ //,// ==???? a b a b 面面平行性质 ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化: a a OA a PO a PO a AO ?⊥?⊥⊥?⊥αα 在内射影则 面面垂直判定 线面垂直定义 l a l a ⊥??⊥? ??α α 面面垂直性质,推论2 αβ αββα⊥=?⊥?⊥??? ? ? b a a b a , αγβγαβ γ⊥⊥=?⊥? ?? ? ? a a 面面垂直定义 αβαβαβ =--?⊥? ?? l l ,且二面角成直二面角

面面∥面面平行判定2 线面垂直性质2a b a b //⊥?⊥??? α α a b a b ⊥ ⊥???? αα// a a ⊥⊥?? ?? αβα β // αβα β//a a ⊥⊥? ?? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90 ° (2)直线与平面所成的角:0°≤θ≤90° (3)二面角:二面角的平面角θ,0°<θ≤180° 2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角;(2)证明其符合定义; (3)指出所求作的角; (4)计算大小。

立体几何中的计算问题

立体几何中的计算问题 1.求底面边长为2,高为1的正三棱锥的全面积. 2.一个正三棱台的上、下底面边长分别是3 cm 和6 cm ,高是32 cm. (1)求三棱台的斜高; (2)求三棱台的侧面积和表面积. 3.(1) 若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为___ (2)平行四边形ABCD 满足AD=2,AB=4,60BAD ? ∠=,将平行四边形ABCD 绕边AB 所在的直线旋转一周,由此形 成的几何体是什么?并求出其表面积 4.正三棱锥的棱长为1,侧面等腰三角形的顶角为30度,一只小虫沿从B 出发 ,沿侧面爬行一周后回到B , 求路径的最短距离. 5.若一个正方体的棱长为a ,则 (1)该正方体外接球的体积为 ;(2)该正方体的内切球的表面积为 . 6. 若一个等边圆柱(轴截面为正方形的圆柱)的侧面积与一个球的表面积相等,则这个圆柱与该球的体积之比是 .

7.已知球的半径为R ,在球内作一个内接圆柱,当这个圆柱底面半径与高为何值时,它的侧面积最大? 8.(2012·山东卷)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为________. 9.已知正方形ABCD 的边长为2,E ,F 分别为BC ,DC 的中点,沿 AE ,EF ,AF 折成一个四面体,使B ,C ,D 三点重合,则这个四面体的体积为 . 10.如图,在长方体1111ABCD A BC D -中,13,2AB AD cm AA cm ===,则四棱锥11A BB D D -的体积为 3cm 11.正三棱柱ABC -A 1B 1C 1的所有棱长均为1,D 为线段AA 1上的点,则三棱锥B 1-BDC 1的体积为________. 12.如图,在三棱锥P -ABC 中,AC =BC =2,∠ACB =90°,AP =BP =AB ,PC ⊥AC . (1)求证:PC ⊥AB ; (2)求点C 到平面APB 的距离. 13.若三棱锥S ABC -的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA =1AB =,2AC =,60BAC ∠=?,则球O 的表面积为______.

立体几何中的动态问题

立体几何中的动态问题 立体几何中的动态问题主要包括:空间动点轨迹的判断,求轨迹的长度及动角的范围等;求解方法一般根据圆锥曲线的定义判断动点轨迹是什么样的曲线;利用空间向量的坐标运算求轨迹的长度等. 一、常见题目类型 (优质试题·金华十校高考模拟)在正方体ABCD -A 1B 1C 1D 1中,点 M 、N 分别是直线CD 、AB 上的动点,点P 是△A 1C 1D 内的动点(不包 括边界),记直线D 1P 与MN 所成角为θ,若θ的最小值为π3 ,则点P 的轨迹是( ) A .圆的一部分 B .椭圆的一部分 C .抛物线的一部分 D .双曲线的一部分 【解析】 把MN 平移到平面A 1B 1C 1D 1中,直线D 1P 与MN 所成角为 θ,直线D 1P 与MN 所成角的最小值是直线D 1P 与平面A 1B 1C 1D 1所成角, 即原问题转化为:直线D 1P 与平面A 1B 1C 1D 1所成角为π3 ,点P 在平面A 1B 1C 1D 1的投影为圆的一部分, 因为点P 是△A 1C 1D 内的动点(不包括边界), 所以点P 的轨迹是椭圆的一部分.故选B. 【答案】 B (优质试题·浙江名校协作体高三联考)已知平面ABCD ⊥平面ADEF ,AB ⊥AD ,CD ⊥AD ,且AB =1,AD =CD =2.ADEF 是正方形,在正方形ADEF 内部有一点M ,满足MB ,MC 与平面ADEF 所成的角相等,则点M 的轨迹长度为( ) A.43 B.163 C.49π D.83 π 【解析】 根据题意,以D 为原点,分别以DA ,DC ,DE 所在直线为x ,y ,z 轴,建立空间直角坐标系Dxyz ,如图1所示,则B (2,1,0),C (0,2,0),设M (x ,0,z ),易知直线MB ,MC 与平面ADEF 所成的角分别为∠AMB ,∠DMC ,均为锐角,且∠AMB =∠DMC ,所 以sin ∠AMB =sin ∠DMC ?AB MB =CD MC ,即2MB =MC ,因此2(2-x )2+12+z 2=x 2+22+z 2,

高中数学立体几何经典常考题型

高中数学立体几何经典常考题型 题型一:空间点、线、面的位置关系及空间角的计算 空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解. 【例1】如图,在△ABC 中,∠ABC = π4 ,O 为AB 边上一点,且3OB =3OC =2AB ,已知PO ⊥平 面ABC ,2DA =2AO =PO ,且DA ∥PO. (1)求证:平面PBD ⊥平面COD ; (2)求直线PD 与平面BDC 所成角的正弦值. (1)证明 ∵OB =OC ,又∵∠ABC =π 4, ∴∠OCB =π4,∴∠BOC =π 2. ∴CO ⊥AB. 又PO ⊥平面ABC , OC ?平面ABC ,∴PO ⊥OC. 又∵PO ,AB ?平面PAB ,PO ∩AB =O , ∴CO ⊥平面PAB ,即CO ⊥平面PDB. 又CO ?平面COD , ∴平面PDB ⊥平面COD. (2)解 以OC ,OB ,OP 所在射线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示. 设OA =1,则PO =OB =OC =2,DA =1. 则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴PD →=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1).

设平面BDC 的一个法向量为n =(x ,y ,z ), ∴?????n ·BC →=0,n · BD →=0,∴???2x -2y =0,-3y +z =0, 令y =1,则x =1,z =3,∴n =(1,1,3). 设PD 与平面BDC 所成的角为θ, 则sin θ=????? ? ??PD →·n |PD →||n | =??????1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=222 11. 即直线PD 与平面BDC 所成角的正弦值为22211. 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标. 第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角. 第六步:反思回顾.查看关键点、易错点和答题规范. 【变式训练】 如图所示,在多面体A 1B 1D 1-DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F . (1)证明:EF ∥B 1C . (2)求二面角E -A 1D -B 1的余弦值. (1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ?面A 1DE ,B 1C ?面A 1DE ,于是B 1C ∥面A 1DE.又B 1C ?面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C.

九章算术中的立体几何

《九章算术》中的立体几何 《九章算术》文字古奥,历代注释者甚多,其中以刘徽的注本最为有名.刘徽是我国魏晋时期著名数学家,他在曹魏末年撰成《九章算术注》九卷。在继承的基础上,又提出了许多自己的创见与发明,刘徽的观点,对现今的数学有很多借鉴的地方。 《九章算术》是一部问题集,全书分为九章,共收有246个问题,每题都有问、答、术三部分组成。内容涉及算术、代数、几何等诸多领域,并与实际生活紧密相连,充分体现了中国人的数学观与生活观。其中卷第五“商功”,主要讲各种几何体体积的计算,包括现阶段高中数学教材中的棱柱、棱锥、棱台,圆柱、圆锥、圆台,或可化为上述几何体的几何体体积的计算。 《九章算术》是东方数学的思想之源,也是我国多年来各级各类考试的重要题库。卷第五“商功”第25题作为2015年全国卷(Ⅰ)(文理)第6题,通过古题新解考查阅读理解能力,通过圆锥体积的计算考查空间想象能力与求解运算能力。 题目是:《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?” 其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的 四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米 堆的体积和堆放的米各为多少?”已知1斛米的体积约为 1.62立方尺,圆周率约为3,估算出堆放的米约有(解法见 例25) A.14斛 B.22斛 C.36斛 D.66斛 2015年湖北理科19题、文科20题选用《九章算术》“商功”第16题“阳马”与第17题“鳖臑”的组合考查立体几何中线、面间的位置关系与度量关系. 《九章算术》卷第五“商功”共收录28个题目,现将这28个问题整理如下,供参考。 【例1】今有穿地积一万尺.问为坚、壤各几何? 【注释】穿地:挖地取土. 坚:坚实的土. 壤:松软的土. 【译文】现挖地体积为1000立方尺,问换算成坚土、松土各多少? 【解析】本题是各种土方量的换算,有专门的换算比例,这里不赘述. 【说明】从例2到例7都是直四棱柱求体积问题,以例2为例,介绍它们的算法.【例2】今有城下广四丈,上广二丈,高五丈,袤一百二十六丈五尺。问积几何?【注释】广袤:广,东西方向,袤,南北方向. 【译文】现有城,下底长4丈,上底长2丈,高5丈,

31知识讲解 空间向量在立体几何中的应用三——距离的计算

空间向量在立体几何中的应用三——距离的计算 【学习目标】 1. 了解空间各种距离的概念,掌握求空间距离的一般方法; 2. 能熟练地将直线与平面之间的距离、两平行平面之间的距离转化为点到平面的距离. 【要点梳理】 要点一:两点之间的距离 1. 定义 连接两点的线段的长度叫作两点之间的距离. 如图,已知空间中有任意两点M N ,,那么这两点间的距离d MN =. 2. 向量求法 设()()111222M x y z N x y z ,,,,,,则 () ()()2 22 121212d MN x x y y z z == ++ . 要点二:点到直线的距离 1. 定义 从直线外一点向直线引垂线,点到垂足之间线段的长度就是该点到直线的距离. 如图,设l 是过点P 平行于向量s 的直线,A 是直线l 外一定点. 过点A 作做垂直于l 的直线,垂足为A ',则AA'即为点A 到直线l 的距离. 要点诠释:因为直线和直线外一点确定一个平面,所以空间点到直线的距离问题就是空间中某一个平面内的点到直线的距离距离. 2. 向量求法 2 2 d=PA PA s 要点诠释: (1)本公式利用勾股定理推得:点A 到直线l 的距离2 2 AA'=PA PA' ,其中PA'是PA 在s 上的射影,即为0PA s . (2)0cos PA PA =PA APA'=?∠s s s ,0s 为s 的单位向量,其计算公式为0=s s s . 3.计算步骤 ① 在直线l 上取一点P ,计算点P 与已知点A 对应的向量PA ; ② 确定直线l 的方向向量s ,并求其单位向量0= s s s ; ③ 计算PA 在向量s 上的投影0PA s ; ④ 计算点A 到直线l 的距离2 2 0d=PA PA s . 要点诠释:在直线上选取点时,应遵循“便于计算”的原则,可视情况灵活选择. 4. 算法框图

相关文档
最新文档