专题 训练 函数的对称性

专题 训练  函数的对称性
专题 训练  函数的对称性

试卷第1页,总2页

专题 函数的对称性

一、单选题

1.下列函数中,图象是轴对称图形且在区间()0+∞,上单调递减的是( ) A . 1

y x

=

B . 2log y x =

C . 2x y =

D . 21y x =-+ 2.已知函数()f x 的图象关于原点对称,且周期为4,当()0,2x ∈时, ()()2

84f x x =--,

则(f =

( )[参考数据:

()6,6.5.] A . 36 B . 36- C . 18 D . 18- 3.已知函数()2

2x

x f x -=-,则其图象( )

A . 关于x 轴对称

B . 关于直线y x =对称

C . 关于原点对称

D . 关于y 轴对称

4.函数 在[0,2]上单调递增,且函数 是偶函数,则下列结论成立的是( ) A .

B .

C .

D .

5.函数 在 上单调递减,且 的图像关于 对称,若 ,则满足 的 取值范围是( )

A .

B .

C .

D . 6.设函数 与函数 的图象关于点 对称,则有( ) A . B . C . D .

7.函数y=f (x )与

的图像关于直线y =x 对称,则 的单调递增区间为( ) A . B . (0,2) C . (2,4) D . (2,+∞)

8.下列函数中,其图像与函数 的图像关于直线 对称的是( ) A . B . C . D . 9. 的图象为

A .

B .

C .

D .

试卷第2页,总2页

10.已知函数 满足 , ,且 时, ,则 ( ) A . 0 B . 1

C .

D .

11.已知()y f x =满足()()112f x f x ++-+=,则以下四个选项一定正确的是( ) A . ()11f x -+是偶函数 B . ()11f x -+-是奇函数 C . ()11f x ++是偶函数 D . ()11f x +-是奇函数

12.函数 与 ,两函数图象所有交点的横坐标之和为( ) A . 0 B . 2 C . 4 D . 8

二、填空题

13.函数()(0,1)x

f x a a a =>≠的反函数图像经过点()2,1,则a =____________

14.已知函数()f x =

21

1214

x x

+++,若()f a =1,则()f a -=_____. 15.已知函数()1y f x =+图像关于直线1x =-对称,当[

)1,x ∈-+∞时, ()1f x +是增函数,则不等式()()30f x f x -->的解集为__________.

16.函数()1

x a f x x a

++=

+图象的对称中心横坐标为3,则a =_______.

17.若函数 的图象关于直线

对称,则 的最大值是 .

18.已知函数()11112f x x x x =++++,由()111111

f x x x x -=++-+是奇函数,可得函数()f x 的图象关于点()1,0-对称,类比这一结论,可得函数()237

126

x x x g x x x x +++

=++++++的图象关于点___________对称. 19.已知函数())

lg

f x ax =图象关于原点对称.则实数a 的值为__________.

20.函数()12y f x =++是定义域为R 的奇函数,则()()2f e f e +-=________.

答案第1页,总7页

参考答案

1.D

【解析】对于选项A , 1

y x

=

是奇函数,不符合题意;对于选项B , 2log y x =在()0,+∞为增函数,不符合题意;对于选项C ,图象不是轴对称图形,不符合;对于选项D ,函数21y x =-+为开口向下的二次函数,对称轴为y 轴,为偶函数,轴对称图形,在()0,+∞为减函数,符合题意。故选D. 2.B

【解析】(

(

)(

()

2

8888436f f f ==--=--+=-,故选B 。

3.C

【解析】函数()2

2x

x f x -=-定义域为R ,且()()()2222x x x x

f x f x ---=-=--=--,所以函数

()22x x f x -=-为奇函数,其图像关于原点对称.

4.C 【分析】

函数 是偶函数可得函数 图像关于 对称,利用对称性将数值转化到 内比较大小. 【详解】

函数 是偶函数,则其图象关于 轴对称,所以函数 的图像关于 对称,则

,函数 在 上单调递增,则有

,所以

.选 .

本题考查抽象函数的性质.由 的奇偶性得到 的对称性是本题解题关键.需要考生熟练掌握函数解析式与函数图象变换之间的关系. 5.D 【分析】

根据函数的图象平移可知, 关于 对称,所以 关于y 轴对称,所以 ,结合增减性可知 只需 即可,所以可解出 . 【详解】

因为 的图象向左平移2个单位可得到 的图象,所以由 的图像关于 对称可知 的图象关于y 轴对称,为偶函数,所以 上为增函数且 ,所以 只需

,解得,故选D.

本题主要考查了抽象函数的奇偶性、增减性及解不等式,属于中档题.

6.D

【分析】

设出点坐标,表示出关于对称的点坐标,即可求出结果

【详解】

设图象上的点,,

则点关于对称点为,

在()的图像上,

故选

本题考查了图像的对称性,只需设出点坐标,表示出关于对称的点坐标,即可求出结果,较为基础。7.C

【分析】

由条件求得f(4x﹣x2)=(4x﹣x2),令t=4x﹣x2>0,求得0<x<4,故f(4x﹣x2)的定义域为(0,4),本题即求函数f(4x﹣x2)在(0,4)上的减区间.

再利用二次函数的性质可得函数f(4x﹣x2)在(0,4)上的减区间.

【详解】

由题意可得函数f(x)与g(x)=的互为反函数,故f(x)=,

f(4x﹣x2)=(4x﹣x2).

令t=4x﹣x2>0,求得0<x<4,

故f(4x﹣x2)的定义域为(0,4),

个本题即求函数f(4x﹣x2)在(0,4)上的减区间.

再利用二次函数的性质可得函数f(4x﹣x2)在(0,4)上的减区间为(2,4),

故选:C.

答案第2页,总7页

复合函数的单调性:对于复合函数y=f[g(x)],若t=g(x)在区间(a,b)上是单调函数,且y=f(t)在区间(g(a),g(b))或者(g(b),g(a))上是单调函数,若t=g(x)与y=f(t)的单调性相同(同时为增或减),则y=f[g(x)]为增函数;若t=g(x)与y=f(t)的单调性相反,则y=f[g(x)]为减函数.简称:同增异减.

8.B

分析:确定函数过定点(1,0)关于x=1对称点,代入选项验证即可。

详解:函数过定点(1,0),(1,0)关于x=1对称的点还是(1,0),只有过此点。故选项B正确

点睛:本题主要考查函数的对称性和函数的图像,属于中档题。

9.C

【分析】

根据对数函数的性质,得到函数的图象关于对称,再根据选项,即可得到答案.

【详解】

由可知函数的定义域为:或,函数的图象关于对称,

由函数的图象,可知,A、B、D不满足题意.

故选:C.

本题主要考查了函数图象的识别,其中解答中熟记对数函数的性质及函数的对称性的应用,得到函数的对称性是解答的关键,着重考查了推理与论证能力.

10.D

【分析】

根据,可判断出函数的对称轴;由函数可得函数的单调性与奇偶性,进而通过函数周期性和对称性求得。

【详解】

因为,

所以函数关于x=1与x=4轴对称

当时,

因为

答案第3页,总7页

答案第4页,总7页

所以当 时 ,即 为奇函数,且 在 上为单调递增函数 根据函数对称性与周期性,可知 的周期为T=6 所以 所以 所以选D

本题考查了函数的对称性和奇偶性及其综合应用,关键是对函数性质能够很好的理解和应用,属于中档题。 11.D

【解析】根据题干条件可知函数()f x 关于点(1,1)中心对称,故()1f x +是关于(0,1)中心对称,则

()11f x +-是关于(0,0)中心对称,是奇函数.

故答案为:D. 12.C

【解析】由 ,得 ,画出 两个函数图像如下图所示,由图可知,两个函数图像都关于直线 对称,故交点横坐标之和为 .故选 .

13.2

【解析】反函数过()2,1,则原函数过()1,2,所以()12f a ==。 14.2

【解析】因为()f x =

21

1214x x

+++, 所以()()f x f x +-=212112141214x x x x --+++++++=()

22222443,222244x x x x

x x x x

---

-+++++=++++

答案第5页,总7页

因为()f a =1, 所以()f a -=2. 答案为:2. 15.3,

2??-∞ ???

【解析】由题意可知()y f x =是偶函数,且在[

)0,+∞递增,所以()()30f x f x -->得()()3f x f x ->即()()33f x f x x x ->∴-> 解得32x <

,所以不等式()()30f x f x -->的解集为3,2?

?-∞ ??

?. 故答案为3,

2?

?-∞ ???

点睛:本题考查了函数的对称性,单调性的应用,由()1y f x =+得到()y f x =需要进行平移变换,注意方向即可,偶函数()f x 利用单调性来解决问题常转化为()f x .

16.3- 【解析】()11

1a

x a f x x a x ++=

=+++,易得对称中心为()a 1-,

又函数()f x 图象的对称中心横坐标为3, ∴a 3-=,即3a =- 故答案为: 3- 17. 【分析】

先找出函数图象上两个特殊点(由 获取),它们关于直线

的对称点也在函数图象上,把这两点坐标代入函数解析式可求得 .然后把函数 的表达式因式分解后,重新组合利用换元法转化为求二次函数的的最大值问题. 【详解】

因为点 , 在函数 的图象上,且 的图象关于直线 对称, 所以点 , 必在 图象上, 则

,解得

. 所以 ,

答案第6页,总7页

则 , 当 时,函数 的最大值为 . 【点晴】

本题主要考查了多项式函数的图象的对称性、求解函数的最大值等问题,着重考查了函数的性质和换元法的应用,属于中档试题.本题的解答中,根据点 , 在函数 的图象上,且 的图象关于直线

称,确定 , 必在 图象上,求解 的值,从而确定函数的解析式,再把函数分解为 ,利用换元法求解函数的最值. 18.7,62??

-

???

【解析】由题得()234567

6111111123456

x x x x x x g x x x x x x x ++++++-=

-+-+-+-+-+-++++++ 111111123456

x x x x x x =+++++++++++ 711111167777772123456222222g x x x x x x x ?

?--=+++++ ???-+-+-+-+-+-+

()711111165311352222222

g x f x x x x x x x ?

?--=+++++= ???---+++

()()1111115

311352

2

2

2

2

2

f x f x x x x x x x ∴-=

+

+

+

+

+

=---

--

--

-+

-+

-+

所以()f x 是奇函数,所以函数()23

712

6x x x g x x x x +++=

+++

+++的图象关于点7,62??

- ???

对称. 故填7,62??

-

???

.

19.2±

【解析】关于原点对称,则

()()f x f x --=

))

lg

ax lg

ax =-

ax =

答案第7页,总7页

222141x a x +-=, 2224x a x = 24a =,解得2a =±

20.-4

【解析】函数()12y f x =++是奇函数,所以图象关于原点()0,0 对称,则函数()y f x = 的图象由函数

()12y f x =++的图象先向下平移2个单位,再向右平移1个单位得到,所以函数()y f x = 的图象关于点

()1,2-对称,所以()()24f e f e +-=-.

函数周期性与对称性的函数方程 专题

函数周期性与对称性的函数方程 【问题提出】 问题1:满足下列条件的函数是否为周期函数?为什么?如果是,请写出它的一个正周期. (1))()(a x f x f += ; (2))()(a x f x f +-=;(3))()(a x f b x f +=+ (4)) (1 )(a x f x f +± =.(其中0,0>>b a ) 问题2:满足下列条件的函数是否具有对称性?为什么?如果有,请写出它的对称性质. (1))()(x a f x a f -= +; (2))()(x b f x a f -=+ (3))()(x a f x a f --=+;(4))()(x b f x a f --=+ 【探究拓展】 探究1:设()b a ,为函数) (x f y =的对称中心,则必有等式 ________________________ 变式:(复旦自主招生)写出函数)3sin()(-+=x x x f 的一个对称中心为____________ 探究2:已知奇函数 )(x f 的图像关于直线2-=x 对称,当[]2,0∈x 时, ,2)(x x f = 则______)9(=-f 变式1:奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且1)1(=f ,则 =+)9()8(f f _____ 1

变式2:已知偶函数)(x f 满足)(1 )2(x f x f - =+,当 32<---≤-=0 ),2()1(, 0),2(log )(2x x f x f x x x f ,则) 2013(f 的值为_______. -1 变式:定义在 R 上的函数 ) (x f 满足 ?? ?>---≤=-. 0),2()1(,0,3)(1x x f x f x x f x ,则 =)2014(f ______. 9 2- 探究4:已知函数y =f (x )(x ∈R )满足f (x +2)=f (x ),且x ∈(-1,1]时,f (x )=|x |,则y =f (x )与y =log 7x 的交点

高中数学总结归纳 抽象函数的对称性

抽象函数的对称性 关于抽象函数图象的对称问题,下面给出四种常见类型及其证明。 一、设y f x =()是定义在R 上的函数,若f a x f b x ()()+=-,则函数y f x =()的图象关于直线x a b =+2 对称。 证明:设点A (m ,n )是y f x =()图象上任一点,即f m n ()=,点A 关于直线x a b = +2的对称点为()A a b m n '+-,。 []∵f a b m f b b m f m n ()()()+-=--== ∴点A'也在y f x =()的图象上,故y f x =()的图象关于直线x a b =+2 对称。 二、设y f x =()是定义在R 上的函数,则函数y f a x =+()与函数y f b x =-()的图象关于直线x b a =-2 对称。 证明:设点A (m ,n )是y f a x =+()图象上任一点,即f a m n ()+=,点A 关于直线x b a =-2 的对称点为()A b a m n '--,。 ∵f b b a m f a m n [()]()---=+= ∴点A'在y f b x =-()的图象上 反过来,同样可以证明,函数y f b x =-()图象上任一点关于直线x b a =-2 的对称点也在函数y f a x =+()的图象上,故函数y f a x =+()与函数y f b x =-()的图象关于直线x b a =-2 对称。 说明:可以从图象变换的角度去理解此命题。

易知,函数y f x a b =++? ? ???2与y f x a b =-++?? ?? ?2的图象关于直线x =0对称,由y f x a b =++?? ???2的图象平移得到y f x b a a b f a x =--?? ???++?? ????=+22()的图象,由y f x a b =-++?? ???2的图象平移得到y f x b a a b f b x =---?? ???++????? ?=-22()的图象,它们的平移方向和长度是相同的,故函数y f a x =+()与函数y f b x =-()的图象关于直线x b a =-2 对称。 三、设y f x =()是定义在R 上的函数,若f a x c f b x ()()+=--2,则函数y f x =()的图象关于点a b c +?? ?? ?2,对称。 证明:设点() A m n ,是y f x =()图象上任一点,则f m n ()=,点A 关于点a b c +?? ?? ?2,的对称点为()A a b m c n '+--,2。 []∵f a b m c f b b m c f m c n ()()()+-=---=-=-222 ∴点A'也在y f x =()的图象上,故y f x =()的图象关于点a b c +?? ?? ?2,对称 说明:(1)当a b c ===0时,奇函数图象关于点(0,0)对称。(2)易知此命题的逆命题也成立。 四、设y f x =()是定义在R 上的函数,则函数y f a x =+()与函数y c f b x =--2()的图象关于点b a c -?? ?? ?2,对称。 证明:设点A (m ,n )是y f a x =+()图象上任一点,即f a m n ()+=,点A 关于点b a c -?? ?? ?2,的对称点为()A b a m c n '---,2

函数的对称性

函数的对称性 知识梳理 一、对称性的概念及常见函数的对称性 1、对称性的概念 ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数;②一次函数;③二次函数;④反比例函数;⑤指数函数;⑥对数函数;⑦幂函数;⑧正弦函数; ⑨正弦型函数sin()y A x ω?=+既是轴对称又是中心对称;⑩余弦函数;⑾正切函数;⑿耐克函数; ⒁绝对值函数:这里主要说的是(||)y f x =和|()|y f x =两类。前者显然是偶函数,它会关于y 轴对称;后者是把x 轴下方的图像对称到x 轴的上方,是否仍然具备对称性,这也没有一定的结论,例如|ln |y x =就没有对称性,而|sin |y x =却仍然是轴对称。 ⒂形如(0,)ax b y c ad bc cx d +=≠≠+的图像是双曲线,其两渐近线分别直线d x c =- (由分母为零确定)和直线a y c =(由分子、分母中x 的系数确定),对称中心是点(,)d a c c -。 二、抽象函数的对称性 【此类问题涉及到了函数图象的两种对称性,一种是同一函数自身的对称性,我们称其为自对称;另一种是两个函数之间的对称性 ,我们称其为互对称。】 1、函数)(x f y =图象本身的对称性(自对称问题) (1)轴对称 ①)(x f y =的图象关于直线a x =对称 ?)()(x a f x a f -=+ ?)2()(x a f x f -= ?)2()(x a f x f +=-

函数的周期性与对称性

第5炼 函数的对称性与周期性 一、基础知识 (一)函数的对称性 1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称 2、轴对称的等价描述: (1)()()f a x f a x -=+?()f x 关于x a =轴对称(当0a =时,恰好就是偶函数) (2)()()()f a x f b x f x -=+?关于2 a b x +=轴对称 在已知对称轴的情况下,构造形如()()f a x f b x -=+的等式只需注意两点,一是等式两侧f 前面的符号相同,且括号内x 前面的符号相反;二是,a b 的取值保证2 a b x +=为所给对称轴即可。例如:()f x 关于1x =轴对称()()2f x f x ?=-,或得到()()31f x f x -=-+均可,只是在求函数值方面,一侧是()f x 更为方便 (3)()f x a +是偶函数,则()()f x a f x a +=-+,进而可得到:()f x 关于x a =轴对称。 ① 要注意偶函数是指自变量取相反数,函数值相等,所以在()f x a +中,x 仅是括号中的一部分,偶函数只是指其中的x 取相反数时,函数值相等,即()()f x a f x a +=-+,要与以下的命题区分: 若()f x 是偶函数,则()()f x a f x a +=-+????:()f x 是偶函数中的x 占据整个括号,所以是指括号内取相反数,则函数值相等,所以有()()f x a f x a +=-+???? ② 本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称。

(完整版)常见函数对称性和周期性

(一)函数)(x f y =图象本身的对称性(自身对称) 若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”。 推论1:)()(x a f x a f -=+ ?)(x f y =的图象关于直线a x =对称 推论2、)2()(x a f x f -= ?)(x f y =的图象关于直线a x =对称 推论3、)2()(x a f x f +=- ?)(x f y =的图象关于直线a x =对称 推论1、b x a f x a f 2)()(=-++ ?)(x f y =的图象关于点),(b a 对称 推论2、b x a f x f 2)2()(=-+ ?)(x f y =的图象关于点),(b a 对称 推论3、b x a f x f 2)2()(=++- ?)(x f y =的图象关于点),(b a 对称 (二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、偶函数)(x f y =与)(x f y -=图象关于Y 轴对称 2、奇函数)(x f y =与)(x f y --=图象关于原点对称函数 3、函数)(x f y =与()y f x =-图象关于X 轴对称 4、互为反函数)(x f y =与函数1()y f x -=图象关于直线y x =对称 推论1:函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称 推论2:函数)(x f y =与)2(x a f y -= 图象关于直线a x =对称 推论3:函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称

二次函数对称性的专题复习

二次函数图象对称性的应用 一、几个重要结论: 1、抛物线的对称轴是直线__________。 2、对于抛物线上两个不同点P1(),P2(),若有,则P1,P2两点是关于_________对称的点,且这时抛物线的对称轴是直线_____________;反之亦然。 3、若抛物线与轴的两个交点是A(,0),B(,0),则抛物线的对称轴是__________(此结论是第2条性质的特例,但在实际解题中经常用到)。 4、若已知抛物线与轴相交的其中一个交点是A(,0),且其对称轴是,则另一个交点B 的坐标可以用____表示出来(注:应由A、B两点处在对称轴的左右情况而定,在应用时要把图画出)。 5、若抛物线与轴的两个交点是B(,0),C(,0),其顶点是点A,则?ABC是____三角形,且?ABC的外接圆与内切圆的圆心都在抛物线的_______上。 二、在解题中的应用: 例1已知二次函数的图象经过A(-1,0)、B(3,0),且函数有最小值-8,试求二次函数的解析式。 例2已知抛物线,设,是抛物线与轴两个交点的横坐标,且满足 . (1)求抛物线的解析式; (2)设点P(,),Q(,)是抛物线上两个不同的点,且关于此抛物线的对称轴对称,求的值。 例3已知抛物线经过点A(-2,7)、B(6,7)、C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是。 例4已知抛物线的顶点A在直线上。 (1)求抛物线顶点的坐标; (2)抛物线与轴交于B、C两点,求B、C两点的坐标; (3)求?ABC的外接圆的面积。

y O x -1 -2 1 2 - 3 3 -1 1 2 -2 二次函数专题训练——对称性与增减性 一、选择 1、若二次函数 ,当x 取 , ( ≠ )时,函数值相等,则 当x 取+时,函数值为( ) (A )a+c (B )a-c (C )-c (D )c 2、抛物线2)1(2++=x a y 的一部分如图所示,该抛物线在y 轴右 侧部分与x 轴交点的坐标是 (A )( 2 1 ,0) (B )(1,0) (C )(2,0) (D )(3,0) 3、已知抛物线2 (1)(0)y a x h a =-+≠与x 轴交于1(0)(30)A x B ,,,两点,则线段AB 的长度为( ) A.1 B.2 C.3 D.4 4、抛物线c bx x y ++-=2 的部分图象如图所示,若0>y ,则的取值范围是( ) A.14<<-x B. 13<<-x C. 4-x D.3-x 5、函数y =x 2-x +m (m 为常数)的图象如图,如果x =a 时,y <0; 那么x =a -1时,函数值( ) A .y <0 B .0<y <m C .y >m D .y =m 6、抛物线y=ax 2 +2ax+a 2 +2的一部分如图所示,那么该抛物线在y 轴右侧与x 轴交点的坐标是( ) A .(0.5,0) B .(1,0) C .(2,0) D .(3,0) 7、老师出示了小黑板上的题后(如图),小华说:过点(3,0); 小彬 说:过点(4,3);小明说:a=1;小颖说:抛物线被x 轴截 得的线段长为2.你认为四人的说法中,正确的有( ) A .1个 B .2个 C .3个 D .4个 8、若二次函数2 y ax c =+,当x 取1x 、2x (12x x ≠)时,函数值相等,则当x 取12x x + 时,函数值为( ) A.a c + B.a c - C.c - D.c 9、二次函数 c bx x y ++=2的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是( ) A .x =4 B. x =3 C. x =-5 D. x =-1。 10、已知关于x 的方程32 =++c bx ax 的一个根为1x =2,且二次函数c bx ax y ++=2 的对称轴直线是x =2,则抛物线的顶点坐标是( ) A .(2,-3 ) B .(2,1) C .(2,3) D .(3,2) 11、已知函数215 322 y x x =- --,设自变量的值分别为x 1,x 2,x 3,且-3< x 1< x 2

函数对称性、周期性和奇偶性规律总结

( 函数对称性、周期性和奇偶性 关岭民中数学组 (一)、同一函数的函数的奇偶性与对称性:(奇偶性是一种特殊的对称性) 1、奇偶性:(1) 奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f (2)偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 2、奇偶性的拓展 : 同一函数的对称性 (1)函数的轴对称: 函数)(x f y =关于a x =对称?)()(x a f x a f -=+ > )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 若写成:)()(x b f x a f -=+,则函数)(x f y =关于直线 2 2)()(b a x b x a x +=-++= 对称 证明:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知, )2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点 ),(11y x 与点),2(11y x a -关于x=a 对称。得证。 说明:关于a x =对称要求横坐标之和为2a ,纵坐标相等。 ∵1111(,)(,)a x y a x y +-与 关于x a =对称,∴函数)(x f y =关于a x =对称 ?)()(x a f x a f -=+ ∵1111(,)(2,)x y a x y -与关于x a =对称,∴函数)(x f y =关于a x =对称 ?)2()(x a f x f -= ∵1111(,)(2,)x y a x y -+与关于x a =对称,∴函数)(x f y =关于a x =对称 ?)2()(x a f x f +=- (2)函数的点对称: · 函数)(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+-

高中数学函数的对称性与周期性讲义

高中数学函数的对称性与周期性讲义 一、引例:若)(x f 是定义在R 上的函数,对于满足下例条件中,)(,x f r x ∈?某一个,那么对于每个条件下的)(x f ,各具有哪些特殊性质? (1),)1()1(x f x f -=+ (4),)1()1(x f x f --=+ (7),)1()1(-=+x f x f (2),)2()(x f x f -= (5),)2()(x f x f --+ (8),)()2(x f x f =+ (3),)3()1(x f x f -=+- (6),)2(4)(x f x f --= (9),)()1(x f x f -=+ 二、 函数的对称性 1、轴对称 )()()() 2()() ()()(] 0[x f x f y x f x a f x f x a f x a f a x x f a =-?-=?-=+?=?=轴对称关于对称关于 2、点对称 0 )()()()()00()(] 0[) ()()2()()0,()(] 0[2)()()2(2)(),()(=-+?--=?=-=+?--=?==-++?--=?x f x f x f x f x f a x a f x a f x a f x f a x f b b x a f x a f x a f b x f b a x f 对称,关于对称关于对称关于 3、本质特征: 【自变量】 为常数) (定义域)且a a x x D x x (2212,1=+∈? 【函数值】 a x x x x x f x f =→+=→→=对称轴对称轴轴对称性2 )()(2121 ),)22,2(2)()(2121b a b x x b x f x f 对称中心(对称中心中心对称 →+→→=+ 模型:对称关于2 )()()(,b a x x f x b f x a f D x +=?-=+∈? 对称关于)0,2 ()()()(,b a x f x b f x a f D x +?--=+∈? 三,函数的周期性 定义:设定义在D 上的函数,),(D x x f ∈?对于都存在非零常数T ,使得)()(x f T x f =+则函数)(x f 为周期函数,T 为)(x f 的一个周期, 【自变量】 D x x ∈?21,(定义域)且T x x =-21(T 为非零常数)

函数的对称性应用

函数的对称性应用(一) ──含绝对值函数的图象 内蒙古赤峰市翁牛特旗乌丹一中熊明军 在学习函数时,若将函数的自变量或应变量带上绝对值“”,再研究其性质就不仅仅要从函数的角度来考虑,还得结合绝对值的意义来共同探讨。 图象是刻画变量之间关系的一个重要途径。函数图象是函数的一种表示形式,是形象直观地研究函数性质的常用方法,是数形结合的基础和依据。本文针对含绝对值函数的性质进行分析,然后利用对称性作出函数图象,并借助图象来展示绝对值对函数性质特征的影响。 一、含绝对值的函数常见情况的分类: 已知函数,叫做函数的自变量;叫做函数的应变量(函数值)。 ①对自变量取绝对值:;②对应变量取绝对值:; ③对全都取绝对值:;④对整个函数取绝对值:; ⑤对都取绝对值:;⑥部分自变量取绝对值:。 二、分析不同情况含绝对值函数的性质特点及图象作法: ①对自变量取绝对值: 【特征分析:】 已知函数,设是函数图象上任意一点,则该点与点关于 轴对称。因为点与都在函数上,所以其函数图象关于轴对称。 【作图步骤:】 (1)作出函数的图象; (2)保留时函数的图象; (3)当时,利用对称性作出(2)中图象关于轴对称后的图象。 【作图展示:】作函数的图象

②对应变量取绝对值:; 【特征分析:】 已知函数,设是函数图象上任意一点,则该点与点关于 轴对称。因为点与都在函数上,所以其函数图象关于轴对称。 【作图步骤:】 (1)作出函数的图象; (2)保留时函数的图象; (3)当时,利用对称性作出(2)中图象关于轴对称后的图象。 【作图展示:】作函数的图象 ③对全都取绝对值:; 【特征分析:】 已知函数,设是函数图象上任意一点,它与点关于轴对称、与点关于轴对称且与点关于原点对称。因为点、、 与都在函数上,所以函数图象关于轴、轴及原点对称。 【作图步骤:】 (1)作出函数的图象; (2)保留(第一象限)时函数的图象; (3)利用对称性作出(2)中图象关于轴、轴及原点对称后的图象。

函数的对称性

函数的对称性 新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角函数的对称性,因而考查的频率一直比较高。 一、对称性的概念及常见函数的对称性 1、对称性的概念: ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ③二次函数:是轴对称,不是中心对称,其对称轴方程为a b x 2-=。 ④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x 与y=-x 均为它的对称轴。 ⑤指数函数:既不是轴对称,也不是中心对称。 ⑥对数函数:既不是轴对称,也不是中心对称。 ⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y 轴;而其他的幂函数不具备对称性。 ⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,2π π+=k x 是它的对称轴。 ⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x ,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x ,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化。 ⑩余弦函数:既是轴对称又是中心对称,其中x=kπ是它的对称轴,)0,2(ππ+k 是它的对称中心。 (11)正切函数:不是轴对称,但是是中心对称,其中)0,2(π k 是它的对称中心, 容易犯错误的是可能有的同学会误以为对称中心只是(kπ,0)。 (12)对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。但容易犯错误的是同学们可能误以为最值处是它的对称轴。 (13)三次函数:显然三次函数中的奇函数是中心对称,对称中心是原点,而其他的三次函数是否具备对称性得因题而异。

函数的对称性和周期性

函数的对称性和周期性 一.明确复习目标 1.理解函数周期性的概念,会用定义判定函数的周期; 2.理解函数的周期性与图象的对称性之间的关系,会运用函数的周期性处理一些简单问题。 3.掌握常见的函数对称问题 二、建构知识网络 一、两个函数的图象对称性 1、 )(x f y =与)(x f y -=关于x 轴对称。 换种说法:)(x f y =与)(x g y =若满足)()(x g x f -=,即它们关于0=y 对称。 2、 )(x f y =与)(x f y -=关于Y 轴对称。 换种说法:)(x f y =与)(x g y =若满足)()(x g x f -=,即它们关于0=x 对称。 3、 )(x f y =与)2(x a f y -=关于直线a x =对称。 换种说法:)(x f y =与)(x g y =若满足)2()(x a g x f -=,即它们关于a x =对 称。 4、 )(x f y =与)(2x f a y -=关于直线a y =对称。 换种说法:)(x f y =与)(x g y =若满足a x g x f 2)()(=+,即它们关于a y =对 称。 5、 )2(2)(x a f b y x f y --==与关于点(,)a b 对称。 换种说法:)(x f y =与)(x g y =若满足b x a g x f 2)2()(=-+,即它们关于点 (,)a b 对称。 6、 )(x a f y -=与)(b x y -=关于直线2b a x += 对称。 二、单个函数的对称性 性质1:函数()y f x =满足()()f a x f b x +=-时,函数()y f x =的图象关于直线2 a b x +=对称。 证明:在函数()y f x =上任取一点11(,)x y ,则11()y f x =,点11(,)x y 关于直线 2 a b x +=的对称点11(,)a b x y +-,当1x a b x =+-时 11111()[()][()]()f a b x f a b x f b b x f x y +-=+-=--== 故点11(,)a b x y +-也在函数()y f x =图象上。

高中数学函数对称性和周期性小结

高中数学函数对称性和周期性小结 一、函数对称性: 1.f(a+x) = f(a-x) ==> f(x) 关于x=a对称 2.f(a+x) = f(b-x) ==> f(x) 关于x=(a+b)/2 对称 3.f(a+x) = -f(a-x) ==> f(x) 关于点(a,0)对称 4.f(a+x) = -f(a-x) + 2b ==> f(x) 关于点(a,b)对称 5.f(a+x) = -f(b-x) + c ==> f(x) 关于点[(a+b)/2 ,c/2] 对称 6.y = f(x) 与y = f(-x) 关于x=0 对称 7.y = f(x) 与y = -f(x) 关于y=0 对称 8.y =f(x) 与y= -f(-x) 关于点(0,0) 对称 例1:证明函数y = f(a+x) 与y = f(b-x) 关于x=(b-a)/2 对称。 【解析】求两个不同函数的对称轴,用设点和对称原理作解。 证明:假设任意一点P(m,n)在函数y = f(a+x) 上,令关于x=t 的对称点Q(2t – m,n),那么n =f(a+m) = f[ b – (2t – m)] ∴b – 2t =a ,==> t = (b-a)/2 ,即证得对称轴为x=(b-a)/2 . 例2:证明函数y = f(a - x) 与y = f(x – b) 关于x=(a + b)/2 对称。 证明:假设任意一点P(m,n)在函数y = f(a - x) 上,令关于x=t 的对称点Q(2t – m,n),那么n =f(a-m) = f[ (2t – m)– b] ∴2t - b =a ,==> t = (a + b)/2 ,即证得对称轴为x=(a + b)/2 . 二、函数的周期性 令a , b 均不为零,若: 1.函数y = f(x) 存在f(x)=f(x+a) ==> 函数最小正周期T=|a| 2.函数y = f(x) 存在f(a + x) = f(b + x) ==> 函数最小正周期T=|b-a| 3.函数y = f(x) 存在f(x) = -f(x + a) ==> 函数最小正周期T=|2a| 4.函数y = f(x) 存在f(x + a) =1/f(x) ==>函数最小正周期T=|2a| 5.函数y = f(x) 存在f(x + a) = [f(x) + 1]/[1 – f(x)] ==>函数最小正周期T=|4a| 这里只对第2~5点进行解析。 第2点解析: 令X=x+a ,f[a +(x –a)] = f[b +(x – a)] ∴f(x) = f(x + b – a) ==> T=b – a

高中的函数对称性的总结

高中函数对称性总结 新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角函数的对称性,因而考查的频率一直比较高。以笔者的经验看,这方面一直是教学的难点,尤其是抽象函数的对称性判断。所以这里我对高中阶段所涉及的函数对称性知识做一个粗略的总结。 一、对称性的概念及常见函数的对称性 1、对称性的概念 ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ③二次函数:是轴对称,不是中心对称,其对称轴方程为x=-b/(2a)。 ④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴。 ⑤指数函数:既不是轴对称,也不是中心对称。 ⑥对数函数:既不是轴对称,也不是中心对称。 ⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性。 ⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴。 ⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图

函数对称性、周期性和奇偶性的规律总结大全 .

函数对称性、周期性和奇偶性规律 一、 同一函数的周期性、对称性问题(即函数自身) 1、 周期性:对于函数 )(x f y =,如果存在一个不为零的常数 T ,使得当x 取定义域内的每一个值时,都有 )()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周 期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 2、 对称性定义(略),请用图形来理解。 3、 对称性: 我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 奇函数关于(0,0)对称,奇函数有关系式 0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称?)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在 )(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==, 即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。得证。 若写成:)()(x b f x a f -=+,函数)(x f y =关于直线2 2)()(b a x b x a x +=-++= 对称 (2)函数 )(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在 )(x f y =上,即) (11x f y =,通过 b x f x a f 2)()2(=+-可知, b x f x a f 2)()2(11=+-,所以 1 112)(2)2(y b x f b x a f -=-=-,所以点 )2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。得 证。 若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2 ,2( c b a + 对称 (3)函数 )(x f y =关于点b y =对称:假设函数关于b y =对称,即关于任一个x 值,都有两个 y 值与其对应,显然这不符合函数的定义,故函数自身不可能关于b y =对称。但在曲线c(x,y)=0,则 有可能会出现关于 b y =对称,比如圆04),(22=-+=y x y x c 它会关于y=0对称。 4、 周期性: (1)函数 )(x f y =满足如下关系系,则T x f 2)(的周期为 A 、 )()(x f T x f -=+ B 、) (1 )()(1)(x f T x f x f T x f - =+= +或 C 、 )(1)(1)2(x f x f T x f -+=+或) (1) (1)2(x f x f T x f +-=+(等式右边加负号亦成立)

高中数学中对称性问题总结.doc

对称性与周期性 函数对称性、周期性的判断 1. 函数()y f x =有()()f a x f b x +=-(若等式两端的两自变量相加为常数,如 ()()a x b x a b ++-=+),则()f x 的图像关于2 a b x += 轴对称;当a b =时,若()() (()(2))f a x f a x f x f a x +=-=-或,则()f x 关于x a =轴对称; 2. 函数()y f x =有()()f x a f x b +=-(若等式两端的两自变量相减为常数,如 ()()x a x b a b +--=+),则()f x 是周期函数,其周期T a b =+;当a b =时,若()()f x a f x a +=-,则()f x 是周期函数,其周期2T a =; 3. 函数()y f x =的图像关于点(,)P a b 对称?()(2)2 (()=2(2))f x f a x b f x b f a x +-=--或;函数()y f x =的图像关于点(,0)P a 对称? ()=(2) f x f a x --( ()=())f a x f a x +--或; 4. 奇函数()y f x =的图像关于点(,0)P a 对称?()y f x =是周期函数,且2T a =是函数的一个周期;偶函数()y f x =的图像关于点(,0)P a 对称?()y f x =是周期函数,且4T a =是函数的一个周期; 5. 奇函数()y f x =的图像关于直线x a =对称?()y f x =是周期函数,且4T a =是函数的一个周期;偶函数()y f x =的图像关于直线x a =对称?()y f x =是周期函数,且2T a =是函数的一个周期; 6. 函数()y f x =的图像关于点(,0)M a 和点(,0)N b 对称?函数()y f x =是周期函数,且 2()T a b =-是函数的一个周期; 7. 函数()y f x =的图像关于直线x a =和直线x b =对称?函数()y f x =是周期函数,且 2()T a b =-是函数的一个周期。

(完整版)函数的周期性与对称性总结

一:有关周期性的讨论 在已知条件()()f a x f b x +=-或 ()()f x a f x b +=-中, (1) 等式两端的两自变量部分相加得常数,如()()a x b x a b ++-=+,说明f x ()的图像具有对称性,其对称轴为2 b a x +=。 (2)等式两端的两自变量部分相减得常数,如()()x a x b a b +--=+,说明 f (x )的图像具有周期性,其周期T=a +b 。 设a 为非零常数,若对于)(x f 定义域内的任意x 恒有下列条件之一成立 周期性规律 对称性规律 (1))()(a x f a x f +=- a T 2=? (1))()(x a f x a f -=+ a x =? (2))()(a x f x f += a T =? (2))()(x b f x a f -=+ 2 b a x += ? (3))()(x f a x f -=+ a T 2=? (3) )()(x b f x a f +=- 2b a x +=? (4))(1)(x f a x f =+ a T 2=? (4) )()(x b f x a f --=+ 中心点)0,2 (b a +? (5))(1)(x f a x f - =+ a T 2=? (5) )()(x a f x a f --=+ 为对称中心点)0,(a ? (6)1 )(1)()(-+=+x f x f a x f a T 2=? (7) 1()()1() f x f x a f x -+=+ a T 2=? (8) 1()()1()f x f x a f x -+=- + a T 4=? (9) ) (1)(1)(x f x f a x f -+=+ a T 4=? (10) )()()(a x f a x f x f ++-=, 0>a a T 6=?

高中数学函数地单调性奇偶性周期性对称性及函数地图像

实用文档 文案大全函数的单调性、奇偶性、周期性、对称性及函数的图像 (一)复习指导 单调性: 设函数y=f(x)定义域为A,区间M?A,任取区间M中的两个值x1,x2,改变量Δx= x2-x1>0,则当Δy=f(x2)-f(x1)>0时,就称f(x)在区间M上是增函数,当Δy=f(x2)-f(x1)<0时,就称f(x)在区间M上是减函数. 如果y=f(x)在某个区间M上是增(减)函数,则说y=f(x)在这一区间上具有单调性,这一区间M叫做y=f(x)的单调区间. 函数的单调性是函数的一个重要性质,在给定区间上,判断函数增减性,最基本的方法就是利用定义:在所给区间任取x1,x2,当x1<x2时判断相应的函数值f(x1)与f(x2)的大小. 利用图象观察函数的单调性也是一种常见的方法,教材中所有基本初等函数的单调性都是由图象观察得到的. 对于y=f[φ(x)]型双重复合形式的函数的增减性,可通过换元,令u=φ(x),然后分别根据u=φ(x),y=f(u)在相应区间上的增减性进行判断,一般有“同则增,异则减”这一规律. 此外,利用导数研究函数的增减性,更是一种非常重要的方法,这一方法将在后面的复习中有专门的讨论,这里不再赘述. 奇偶性: (1)设函数f(x)的定义域为D,如果对D内任意一个x,都有-x∈D,且f(-x)=-f(x),则这个函数叫做奇函数;设函数f(x)的定义域为D,如果对D内任意一个x,都有-x∈D,且f(-x)=f(x),则这个函数叫做偶函数. 函数的奇偶性有如下重要性质: f(x)奇函数?f(x)的图象关于原点对称. f(x)为偶函数?f(x)的图象关于y轴对称. 此外,由奇函数定义可知:若奇函数f(x)在原点处有定义,则一定有f(0)=0,此时函数f(x)的图象一定通过原点.

函数的对称性专题练习试卷及解析

函数的对称性?专题练习试卷?及解析 1.2015年北 京市西城区高 三第一次模拟 考试数学理科 试题第8题 已知抛物线和?214y x = 21 516 y x =-+所围成的封闭?曲线如图所示?, 给定点(0,)A a ,若在此封闭曲?线上恰有三对?不同的点,满足每一对点?关于点A 对称,则实数的取值?a 范围是 ( ) A. (1,3) B. (2,4) C. 3 (,3)2 D. 5(,4)2 2.2012年天?津市河北区高?三第一次模拟?数学理科试题?第8题 下图展示了一?个由区间到实?(0,1)数集的映射过?R 程:如图1,在区间中数轴?(0,1)上的点对应实?M 数m ;如图2,将线段围成一?AB 个圆,使两端点A 、B 恰好重合;如图3,将这个圆放在?平面直角坐标?系中,使其圆心在轴?y 上,点A 的坐标为(0,1),射线与轴交于?AM x 点(,0)N n .则n 就是m 的象,记作()f m n =.下列说法:

① ()f x 的定义域为(0,1),值域为R ; ②()f x 是奇函数; ③ ()f x 在定义域上是?单调函数; ④11()42 f = ; ⑤ ()f x 的图象关于点?1(,0)2 对称. 其中正确命题?的序号是( ) A. ②③⑤ B. ①③⑤ C. ①③④ D. ③④⑤ 3.2015年皖?北协作区高三?年级联考数学?文科试卷第9?题 定义在上的函? R 数的图像关于?()f x 直线3 2 x = 对称,且对任意实数?x 都有3 ()(),(1)1,(0)22 f x f x f f =-+-==-,则 (2013)(2014)(2015) f f f ++=( ) A. 0 B. 2- C. 1

相关文档
最新文档