自动化专业外文翻译--自动控制的发展历史

自动化专业外文翻译--自动控制的发展历史
自动化专业外文翻译--自动控制的发展历史

HISTORY OF AUTOMATIC CONTROL

Feedback control is the basic mechanism by which systems, whether mechanical, electrical, or biological, maintain their equilibrium or homeostasis. In the higher life forms, the conditions under which life can continue are quite narrow. A change in body temperature of half a degree is generally a sign of illness. The homeostasis of the body is maintained through the use of feedback control [Wiener 1948]. A primary contribution of CR Darwin during the last century was the theory that feedback over long time periods is responsible for the evolution of species. In 1931 V. V olterra explained the balance between two populations of fish in a closed pond using the theory of feedback.

The use of feedback to control a system has a fascinating history .The first applications of feedback control appeared in the development of float regulator mechanisms in Greece in the period 300 to1B.C. The water clock of ktesibios used a float regulator. An oil lamp devised by Philon in approximately 250 B.C .Used a float regular in an oil lamp for maintaining a constant levels of fuel oil .Heron of Alexandria, who lived in the first century A.D, published a book entitled Pneumatica, which outlined several forms of water-level mechanisms using floating regulators The first feedback system to be invented in modern Europe was the temperature regulator of CornelisDrebb(1572-1633) of Holland Dennis Papin invented the first pressure regulator for steam boilers In 1681.Papin’s pressure regulator was a form of safety Regulator Similar to a pressure-cooker valve.

Feedback control may be defined as the use of difference signals, determined by comparing the actual values of system variables to their desired values, as a means of controlling a system. An everyday example of a feedback control system is an automobile speed control, which uses the difference between the actual and the desired speed to vary the fuel flow rate. Since the system output is used to regulate its input, such a device is said to be a closed-loop control system.

The first historical feedback system, claimed by Russia, is the water-level float regulator said to have been invented by I. Polzunov in 1765. The float detects the water level and controls the valve that covers the water inlet in the boiler.

There have been many developments in automatic control theory during recent years. It is difficult to provide an impartial analysis of an area while it is still developing; however, looking back on the progress of feedback control theory it is by now possible to distinguish some main trends and point out some key advances. Feedback control is an engineering discipline. As such, its progress is closely tied to the practical problems that needed to be solved during any phase of human history. The key developments in the history of mankind that affected the progress of feedback control were:

1、The preoccupation of the Greeks and Arabs with keeping accurate track of time.。This represents a period from about 300 BC to about 1200 AD.

2、The Industrial Revolution in Europe. The Industrial Revolution is generally agreed to have started in the third quarter of the eighteenth century; however, its roots can be traced back into the 1600's.

3、The beginning of mass communication and the First and Second World

Wars.Thisrepresents a period from about 1910 to 1945.

4、The beginning of the space/computer age in 1957.

At a point between the Industrial Revolution and the World Wars, there was an extremely important development. Namely, control theory began to acquire its written language- the language of mathematics. JC Maxwell provided the first rigorous mathematical analysis of a feedback control system in 1868. The period preceding 1868 was characterized by the development of automatic control systems through intuition and invention. Efforts to increase the accuracy of the control system led to slower attenuation of the transient oscillations and even to unstable systems. It then became imperative to develop a theory of automatic control. J.C. Maxwell formulated a mathematical theory related to control theory using a differential equation model of a governor. Maxwell’s study was concerned wit h the effect various system parameters had on the system performance. During the same period, I.A. Vyshnegradskii formulated a mathematical theory of regulators. Thus, relative to this written language, we could call the period before about 1868 the prehistory of automatic control.

Prior to World War II, control theory and practice developed in a different manner in the United States and Western Europe than in Russia and eastern Europe. A main impetus for the use of feedback in the United States was the development of the telephone system and electronic feedback amplifiers by Bode, Nyquist, and Black at Bell Telephone Laboratories. The frequency domain was used primarily to describe the operation of the feedback amplifiers in the term of bandwidth and other frequency variable. In contrast, the eminent mathematics and applied mechanics in the former Soviet Union inspired and dominated the field of control theory. Therefore, the Russian theory tended to utilize a time-domain formulation using differential equations. A large impetus to the theory and practice of automatic control occurred during World War II when it became necessary to design and construct automatic airplane pilots, gun-positioning systems, radar antenna control system, and other military system based on the feedback control approach. The complexity and expected performance of these military systems necessitated an extension of the available control techniques and fostered interest in control systems and the development of new insights and methods. Prior to 1940, for most cases, the design of control was on air involving a trial-and-error approach. During the 1940s, mathematical and analytical methods increased in number and utility , and control engineering became an engineering discipline in its own right.

Frequency-domain techniques continued to dominate the field of control following World War II with the increase use of the Laplace transform and the complex frequency plane. During the 1950s, the emphasis in control engineering theory was on the development and use of the s-plane methods and, particularly, the root locus approach. Furthermore, during the 1980s, the utilization of digital computers for control digital computers for control components became routine. The technology of these new control elements to perform accurate and rapid calculations was formerly unavailable to control engineers. There are now over 400,000 digital process control computers installed in the Untied Stated. These computers are employed especially for process control system in which many variables are measured and controlled

simultaneously by the computer.

Following Friedland [1986], we may call the period from 1868 to the early 1900's the primitive period of automatic control. It is standard to call the period from then until 1960 the classical period,and the period from 1960 through present times the modern period .

With the advent of Sputnik and the space age, another new impetus was imparted to control engineering. It became necessary to design complex, highly accurate control system for missiles and space probes. Furthermore, the necessity to minimize the weight of satellites and to control them vary accurately has spawned the important field of optimal control. Due to these requirements, the time-domain methods developed by Liapunov, Minorsky, and others has met with great interest in the last two decades. Recent theories of optimal control developed by L.S. Pontryagin in the former Soviet Union and R. Bellman in the United Stated, as well as recent studies of robust systems, have contributed to the interest in time-domain methods. It now is clear that control engineering must consider both the time-do-main and the frequency-domain approaches simultaneously in the analysis and design of control systems.

A selected history of control system development is summarized in follow table AUTOMATIC ASSEMBLY AND ROBOTS

Feedback control systems are used extensively in industrial applications. Thousands ofindustrial and laboratory robots are currently in use. Manipulators can pick up objects weighing hundreds of pounds and position them with an accuracy of one-tenth of an inch or better. Automatic handling equipment for home, school, and industry is particularly useful for hazardous, repetitious, dull, or simple tasks. Machines that automatically load and unload, cut, weld, or cast are used by industry to obtain accuracy, safety, economy, and productivity. The use of computers integrated with machines that perform tasks like a human worker has been foreseen by several authors. In his famous 1923 play, entitled R.U.R, Karel Capek called artificial workers robots, deriving the word from the Czech noun robot, meaning ”work”.

As stated earlier, robots are programmable computers integrated with machines, and they often substitute for human labor in specific repeated tasks. Some devices even have anthropomorphic mechanisms, including what we might recognize as mechanical arms, wrists, and hands. An example of an anthropomorphic robot is shown in Figure 1.17.

The Future Evolution Of Control System

The continuing goal of control systems is to provide extensive flexibility and a high level of autonomy. Two system concepts are approaching this goal by different evolutionary pathways, as illustrated in Figure.Today’s industrial robot is perceived as quite autonomous—once it is programmed, further intervention is not normally required. Because of sensory limitations, these robotic systems have limited flexibility in adaption to work environment changes, which is the motivation of computer vision research. The control system is very adaptable, but it relies on human supervision, Advanced robotic systems are striving for task adaptability through enhanced sensory feedback. Research areas concentrating on artificial intelligence, sensor integration,

computer vision, and off-time CAD/CAM programming will make systems more universal and economical. Control systems are moving toward autonomous operation as an enhancement to human control. Research in supervisory control, human-machine interface methods to reduce operator burden, and computer database management is intended to improve operator efficiency. Many research activities are common to robotics and control systems and are aimed toward reducing implementation cost and expanding the realm of application. These include improved communication methods and advanced programming languages.

1769 James Watt’s steam engine and governor developed. The Watt steam engine is often used to mark the beginning Industrial Revolution in Great Britain.

During the Industrial Revolution, great strides were made in the

development of mechanization, a technology preceding automation.

1800 Eli Whitney’s concept of interchangeable parts manufacturing demonstrated in the production of muskets. Whitney’s development is often considered to

the beginning of mass production.

1868 J.C. Maxwell formulates a mathematical model for a governor control of a steam engine.

1913 Henry Ford’s mechanized assembly machine introduced for automobile production.

1927 H.W. Bode analyzes feedback amplifiers.

1932 H.Nyquist develops a method for analysis the stability of systems.

1952 Numerical control (NC) developed at Massachusetts Institute of technology for control of machine-tool axes.

1954 Devoldevelops “programmed article transfer”, consider to the first industrial robot design.

1960 Frist Unimate robot introduced, based on Devol’s designs. Unimate installed in 1961 for tending die-casting machine.

1970 State-variable models and optimal control developed.

1980 Robust control system design widely studied.

1900 Export-oriented manufacturing companies emphasize automation.

1994 Feedback control widely used in the automobiles. Reliable, robust systems demanded in the manufacturing.

1997 First ever autonomous rover vehicle, known as Sojourner, explores the Martian surface.

1998-2003 Advances in micro-and nanotechnology. Frist intelligent micromachines are developed and functioning nanomachines are created.

自动控制的发展历史

反馈是通过系统,无论是机械,电气,还是生物,保持平衡或动态平衡的基本机制。在更高的生命形式,生活可以继续在何种条件下是比较窄的。体温半度的变化通常是疾病的征兆。通过使用反馈控制[维纳1948]保持身体的平衡。一个在上世纪达尔文的主要贡献是,在很长一段时间期的反馈负责的物种进化理论。在1931年五.沃尔泰拉使用反馈理论解释在一个封闭池塘里的两种鱼类种群之间的平衡。

利用反馈控制系统有一个引人入胜的历史。第一个应用反馈控制出现在公元前300年到公元前一世纪浮动机制的发展。克特西比乌斯的水钟使用了一个浮动调节器。费隆设计的油灯大约在公元前250年。他为油灯设定了一个浮定期,为了保持固定水平的燃油。在第一世纪公元后,亚历山大利亚出版了一本书题为《Pneumatica》,其中概述了使用浮动监管机构的水位机制的几种形式。

第一个反馈系统是在现代欧洲荷兰丹尼斯?帕潘科内利斯(1572-1633)发明的温度调节器。1681年丹尼斯发明了第一个压力调节阀用于蒸汽锅炉。丹尼斯?帕潘科内利斯的压力调节阀是一种安全调节阀类似于压力锅的阀门反馈控制可以定义为不同信号的使用,确定其所需的值由系统变量的实际值比较得到,作为控制系统的一种手段。反馈控制系统的一个日常的例子是汽车速度控制,它采用了以实际情况所需的速度来改变燃料流量的差异。由于是用来调节其输入输出的系统,这种装置被认为是一个闭环控制系统。

历史上第一次使用反馈系统,据说是1765年由俄罗斯的伊凡?普洛祖诺夫发明的水位浮动调节阀。用浮动原理检测水位和控制锅炉进水口的阀门。

近年来已经有许多自动控制理论的发展。这是很难提供在这个领域内的公正的分析,而它仍处于发展阶段。然而,回首反馈控制理论的进展,它是现在可能区分一些主要趋势和指出一些关键的进步。

反馈控制是一门工程学科。正因为如此,在人类历史的任何阶段,需要加以解决的实际问题与其进展是紧密联系在一起的。在人类历史上的主要发展影响的反馈控制的进展是:

1、希腊人和阿拉伯人在保持时间的紧缺轨道的当务之急。这代表了从公元签300年到公元1200年左右的时期。

2、在欧洲工业革命。一般都同意,在十八世纪的第三季度开始的工业革命,但是其根源可以归宿到1600年。

3、大众传播与第一第二次世界大战的开始。这代表了从1910年到1945年间的时期。

4、1957年的计算机时代的开始。

在工业革命和两次世界大战之间,是它极其重要的发展阶段。即,控制理论开始获得用数学语言表示的书面语言。在1868年JC麦克斯韦对反馈控制系统进行了第一次严格数学的分析。1868 前这一阶段自动控制系统发展的特点是通过直觉和发明得以发展。努力提高控制系统的准确性的同时导致的结果是慢衰减的瞬态振荡,甚至出现不稳定系统。因而必须制定一种自动控制的理论。J.c.麦克斯韦制定有关使用微分方程模型的控制理论的数学理论。麦克斯韦的研究涉及各种系统参数对系统性能的影响。在同一期间,Vyshnegradskii应用数学理论对调节器做了简单的描述。因此,相对于约1868年前的这个书面语言,我们可以称之为自动控制的史前时期。我们可以称之为从1868年到1900年初期间是自动控制的原始时期。

第二次世界大战前,控制理论与其实践美国和西欧与在俄罗斯和东欧以不同的方式发展。使用反馈在美国的主要动力是波特、奈奎斯特,和黑贝尔电话实验室的发展的电话系统和电子反馈放大器。频域主要用于描述由反馈运算放大器和其他变量作用的频带宽。与此相反,著名数学和前苏联应用机械学家在灵感和控制理论领域占主导地位。因此,俄罗斯的理论倾向于采用时域微分方程。

一个比较大对自动控制理论与实践发展的推动力发生在二次世界大战期间, 当时它已成为设计及建造自动飞行员、枪定位系统、雷达天线控制系统和其他基于反馈控制方法的军事系统的必要理论。他们复杂性和预期这些军事系统的性能需要更加广泛的控制技术,这促进了对控制系统的兴趣和发展的方法和新的见解。在1940年之前,因为大多数的情况下,设计控制器是利用空气反复实验的方法。在19世纪40年代数学和分析方法已经被越来越多的人开始使用,控制工程也在工程学科内有了自己的地位。

二战后频域技术在控制领域内继续使用以及拉普拉斯变换和复杂的频率平面逐渐开始被使用。在20 世纪50 年代,在控制工程理论重点是发展了s 平面方法,特别是根轨迹方法的使用。此外,80年代,数字计算机控制部件构成的数字计算机控制已成为惯例。这些新的控制器件达到的准确而快速性的计算技术是以前控制工程师们不可能达到的。现在有超过400,000台数字过程控制计算机安装在美国。这些计算机特别被用于多变量测量和同时控制的过程控制系统中。

弗里德兰[1986]之后,我们可以称从1868年开始到1900年代是自动控制的原始时期。即从那时到1960年古典时期以及从1960年开始至当前时代的现代时期。

人造卫星与太空时代的到来,另一个对控制工程新的动力是不言自明。它成了设计复杂、高度精确导弹和空间探测器的控制系统的必要条件。此外,由于尽量减少卫星重量和精确控制他们必要性而产生了最优控制的重要领域。由于这些需要极大的兴趣,在过去的20 年中出现了由李雅普诺夫、诺斯基和其他人开发的时间域方法。最年来,前苏联列夫?庞特里亚金和美国的贝尔曼发展了最优控制,和最近的鲁棒系统的学说都促进了对时域分析发的兴趣。现在我们必须明确,在控制技术的设计和分析中必须同时考虑频域和时域的方法。

1769年詹姆斯瓦特改良的高效蒸汽机和控制器的发展。瓦特蒸汽机经常被用来纪念英国工业革命的开始。在工业革命时期机械化、自动化技术,也取得了长足的发展。

自动装配和机器人

反馈控制系统广泛用于工业应用中。成千上万的实验室和工业机器人当前正在使用中。机器人可以拿起称数百磅重的物体,其定位的精度在十分之一英寸或更高。自动控制处理家庭、学校及工业设备是特别是在有执行危险、重复、枯燥,或简单的任务是都很有用。机器自动装卸、切割、焊接、铸造被工业生产使用并且能够比较准确、安全和经济、而且还具有较高的生产率。电脑的使用并结合机器执行任务的现象像一个人类工人受到几位科学家的预见。在他著名的1923打,标题为R.U.R,Karel Capek称为人工工人的机器人,推导这个词来自捷克语名词机器人,意思是“工作”。如前所述,机器人可编程计算机集成与机器,他们常常代替人类的劳动在进行特定而重复的任务甚至有某些装置人化机制,包括我们可能识别为机械手臂、手腕和手。例如一个人化机器人被显示在图。

控制系统的前瞻:

现在我们对控制系统的要求仍是提高广泛的灵活性和高度的自主性。两个系统接近这一目标的概念是由不同的演化途径,如图。今天的工业机器人被看作非常自

主的机器人。它的一一编程对于进一步干预通常不是必需的。由于的工业机器人的感官的限制,这些工业机器人系统有限的适应工作环境的变化,这是灵活性计算机视觉研究的动机。该控制系统适应力非常强,但是它依靠人力监督、先进的机器人系统任务适应性都努力争取通过加强感官的反馈。把注意力集中在人工智能研究领域、传感器集成、计算机视觉、不占用时间的CAD / CAM编程将使系统更广泛和更加经济。控制系统作为一个提升人类的控制正在向自主运营发展。对于研究在监控、人机界面的方法来减少操作人员的负担,和计算机数据库管理是旨在改善操作效率。许多研究活动是普遍的,机器人技术和控制系统,并对实施的目的是降低成本、扩大应用领域。其中包括改善的沟通方法和先进的编程语言。1800年以利惠特尼关于人工可互换零件的概念在自动步枪的制造中被得以证明。以利惠特尼的理论常常被认为是这些零件批量生产的开始。

1868 年麦克斯韦负责设计的蒸汽引擎的调速控制的数学模型。

1913 年亨利·福特推出汽车生产的机械化。

1927年波特分析反馈放大器。

1932年奈奎斯特开发的系统稳定性的分方法。

1952年数值控制(NC)在马萨诸塞州理工学院在控制的机床交叉轴的应用。

1954年迪沃尔发展"编程条转移"考虑开始第一个工业机器人设计。

1960年基于迪沃尔设计通用机械手的引进。1962年通用机械手安装于维修压铸机上。

1970 状态变量模型和最优控制的发展。

1980 鲁棒控制系统的设计广泛研究。

1900 以出口为导向的制造企业强调自动化。

1994反馈控制广泛用于汽车中。可靠、系统的鲁棒性要求在制造中加以考虑。1997 第一次过自主漫游车,称为骄子,探索火星表面。

1998-2003年发展微-纳米科技。第一个智能微型机械系统及其功能被创造。

出自:《现代控制系统(英文版)》(第十版)[美] R.C.多尔夫,

R.H.毕晓普

《自动化专业英语》中英文翻译-中文部分

第二部分 控制理论 第1章 1.1控制系统的引入 人类控制自然力量的设计促进人类历史的发展,我们已经广泛的能利用这种量进行在人类本身力量之外的物理进程?在充满活力的20世纪中,控制系统工程的发展已经使得很多梦想成为了现实?控制系统工程队我们取得的成就贡献巨大?回首过去,控制系统工程主要的贡献在机器人,航天驾驶系统包括成功的实现航天器的软着陆,航空飞机自动驾驶与自动控制,船舶与潜水艇控制系统,水翼船?气垫船?高速铁路自动控制系统,现代铁路控制系统? 以上这些类型的控制控制系统和日常生活联系紧密,控制系统是一系列相关的原件在系统运行的基础上相互关联的构成的,此外控制系统存在无人状态下的运行,如飞机自控驾驶,汽车的巡航控制系统?对于控制系统,特别是工业控制系统,我们通常面对的是一系列的器件,自动控制是一个复合型的学科?控制工程师的工作需要具有力学,电子学,机械电子,流体力学,结构学,无料的各方面的知识?计算机在控制策略的执行中具有广泛的应用,并且控制工程的需求带动了信息技术的与软件工程的发展? 通常控制系统的范畴包括开环控制系统与闭环控制系统,两种系统的区别在于是否在系统中加入了闭环反馈装置? 开环控制系统 开环控制系统控制硬件形式很简单,图2.1描述了一个单容液位控制系统, 图2.1单容液位控制系统 我们的控制目标是保持容器的液位h 在水流出流量V 1变化的情况下保持在一定 可接受的范围内,可以通过调节入口流量V 2实现?这个系统不是精确的系统,本系 统无法精确地检测输出流量V 2,输入流量V 1以及容器液位高度?图2.2描述了这 个系统存在的输入(期望的液位)与输出(实际液位)之间的简单关系, 图2.2液位控制系统框图 这种信号流之间的物理关系的描述称为框图?箭头用来描述输入进入系统,以及

英文翻译 机械自动化类

Mechatronics Electrical machinery and electronics, also known as the integration of science, English as Mechatronics, it is by English mechanics of the first half of Mechanics and Electronics of the latter part of a combination of Electronics. Mechatronics 1971, first appeared in Japanese magazine, "Machine Design" on the supplement, with the mechanical-electrical integration of the rapid development of technology, electromechanical integration, the concept was widely accepted and we have universal application. With the rapid development of computer technology and extensive application of mechatronics technology unprecedented development. Mechatronics present technology, mechanical and micro-electronics technology is closely a set of technologies, the development of his machine has been cold humane, intelligent. Specific mechanical and electrical integration technologies, including the following: (1) mechanical engineering machinery and technology is the basis of mechatronics, mechanical technology, focused on how to adapt to mechanical and electrical integration technologies, the use of other high and new technology to update the concept, the realization of the structure, materials, the performance changes to meet the needs to reduce weight, reduce the size and improve accuracy, increase the stiffness and improving the performance requirements. Mechatronic systems in the manufacturing process, the classical theory and technology of mechanical computer-aided technology should help, while the use of artificial intelligence and expert systems, the formation of a new generation of mechanical manufacturing technology. (2) Computer and Information Technology Which information exchange, access, computing, judge and decision-making, artificial intelligence techniques, expert system technology, neural networks are computer information processing technology. (3) System Technology System technology that is the concept of the overall application of related technology organizations, from the perspective of the overall objectives and systems will be interconnected into the overall number of functional units, system interface technology is an important aspect of technology, it is an organic part of the realization of system guarantee connectivity.

电气工程及其自动化专业_外文文献_英文文献_外文翻译_plc方面

1、 外文原文 A: Fundamentals of Single-chip Microcomputer Th e si ng le -c hi p m ic ro co mp ut er i s t he c ul mi na ti on of both t h e de ve lo pm en t o f t he d ig it al co m pu te r an d th e i n te gr at ed c i rc ui t a rg ua bl y t h e to w m os t s ig ni f ic an t i nv en ti on s o f t he 20th c e nt ur y [1]. Th es e t ow ty pe s of ar ch it ec tu re a re fo un d i n s in g le -ch i p m i cr oc om pu te r. So m e em pl oy t he spl i t pr og ra m/da ta m e mo ry o f th e H a rv ar d ar ch it ect u re , sh ow n in Fi g.3-5A -1, o th ers fo ll ow t he p h il os op hy , wi del y a da pt ed f or ge n er al -p ur po se co m pu te rs a nd m i cr op ro ce ss o r s, o f ma ki ng n o log i ca l di st in ct ion be tw ee n p r og ra m an d d at a m e mo ry a s i n t he P r in ce to n ar ch ite c tu re , sh ow n i n F ig.3-5A-2. In g en er al te r ms a s in gl e -chi p m ic ro co mp ut er i s c h ar ac te ri ze d b y t h e i nc or po ra ti on o f a ll t he un it s of a co mp uter i n to a s in gl e d ev i ce , as s ho wn in Fi g3-5A -3. Fig.3-5A-1 A Harvard type Program memory Data memory CPU Input& Output unit memory CPU Input& Output unit

自动化外文翻译

景德镇陶瓷学院 毕业设计(论文)有关外文翻 译 院系:机械电子工程学院 专业:自动化 姓名:肖骞 学号: 201010320116 指导教师:万军 完成时间: 2014.5.8 说明

1、将与课题有关的专业外文翻译成中文是毕业设计(论文)中的一个不可缺少的环节。此环节是培养学生阅读专业外文和检验学生专业外文阅读能力的一个重要环节。通过此环节进一步提高学生阅读专业外文的能力以及使用外文资料为毕业设计服务,并为今后科研工作打下扎实的基础。 2、要求学生查阅与课题相关的外文文献3篇以上作为课题参考文献,并将其中1篇(不少于3000字)的外文翻译成中文。中文的排版按后面格式进行填写。外文内容是否与课题有关由指导教师把关,外文原文附在后面。 3、指导教师应将此外文翻译格式文件电子版拷给所指导的学生,统一按照此排版格式进行填写,完成后打印出来。 4、请将封面、译文与外文原文装订成册。 5、此环节在开题后毕业设计完成前完成。 6、指导教师应从查阅的外文文献与课题紧密相关性、翻译的准确性、是否通顺以及格式是否规范等方面去进行评价。 指导教师评语: 签名: 年月日

TMS320LF2407, TMS320LF2406, TMS320LF2402 TMS320LC2406, TMS320LC2404, MS320LC2402 DSP CONTROLLERS The TMS320LF240x and TMS320LC240x devices, new members of the ‘24x family of digital signal processor (DSP) controllers, are part of the C2000 platform of fixed-point DSPs. The ‘240x devices offer the enhanced TMS320 architectural design of the ‘C2xx core CPU for low-cost, low-power, high-performance processing capabilities. Several advanced peripherals, optimized for digital motor and motion control applications, have been integrated to provide a true single chip DSP controller. While code-compatible with the existing ‘24x DSP controller devices, the ‘240x offers increased processing performance (30 MIPS) and a higher level of peripheral integration. See the TMS320x240x device summary section for device-specific features. The ‘240x family offers an array of memory sizes and different peripherals tailored to meet the specific price/performance points required by various applications. Flash-based devices of up to 32K words offer a reprogrammable solution useful for: ◆Applications requiring field programmability upgrades. ◆Development and initial prototyping of applications that migrate to ROM-based devices. Flash devices and corresponding ROM devices are fully pin-to-pin compatible. Note that flash-based devices contain a 256-word boot ROM to facilitate in-circuit programming. All ‘240x devices offer at least one event manager module which has been optimized for digital motor control and power conversion applications. Capabilities of this module include centered- and/or edge-aligned PWM generation, programmable deadband to prevent shoot-through faults, and synchronized analog-to-digital conversion. Devices with dual event managers enable multiple motor and/or converter

电气自动化专业毕业论文英文翻译

电厂蒸汽动力的基础和使用 1.1 为何需要了解蒸汽 对于目前为止最大的发电工业部门来说, 蒸汽动力是最为基础性的。 若没有蒸汽动力, 社会的样子将会变得和现在大为不同。我们将不得已的去依靠水力发电厂、风车、电池、太阳能蓄电池和燃料电池,这些方法只能为我们平日用电提供很小的一部分。 蒸汽是很重要的,产生和使用蒸汽的安全与效率取决于怎样控制和应用仪表,在术语中通常被简写成C&I(控制和仪表 。此书旨在在发电厂的工程规程和电子学、仪器仪表以 及控制工程之间架设一座桥梁。 作为开篇,我将在本章大体描述由水到蒸汽的形态变化,然后将叙述蒸汽产生和使用的基本原则的概述。这看似简单的课题实际上却极为复杂。这里, 我们有必要做一个概述:这本书不是内容详尽的论文,有的时候甚至会掩盖一些细节, 而这些细节将会使热力学家 和燃烧物理学家都为之一震。但我们应该了解,这本书的目的是为了使控制仪表工程师充 分理解这一课题,从而可以安全的处理实用控制系统设计、运作、维护等方面的问题。1.2沸腾:水到蒸汽的状态变化 当水被加热时,其温度变化能通过某种途径被察觉(例如用温度计 。通过这种方式 得到的热量因为在某时水开始沸腾时其效果可被察觉,因而被称为感热。 然而,我们还需要更深的了解。“沸腾”究竟是什么含义?在深入了解之前,我们必须考虑到物质的三种状态:固态,液态,气态。 (当气体中的原子被电离时所产生的等离子气体经常被认为是物质的第四种状态, 但在实际应用中, 只需考虑以上三种状态固态,

物质由分子通过分子间的吸引力紧紧地靠在一起。当物质吸收热量,分子的能量升级并且 使得分子之间的间隙增大。当越来越多的能量被吸收,这种效果就会加剧,粒子之间相互脱离。这种由固态到液态的状态变化通常被称之为熔化。 当液体吸收了更多的热量时,一些分子获得了足够多的能量而从表面脱离,这个过程 被称为蒸发(凭此洒在地面的水会逐渐的消失在蒸发的过程中,一些分子是在相当低的 温度下脱离的,然而随着温度的上升,分子更加迅速的脱离,并且在某一温度上液体内部 变得非常剧烈,大量的气泡向液体表面升起。在这时我们称液体开始沸腾。这个过程是变为蒸汽的过程,也就是液体处于汽化状态。 让我们试想大量的水装在一个敞开的容器内。液体表面的空气对液体施加了一定的压 力,随着液体温度的上升,便会有足够的能量使得表面的分子挣脱出去,水这时开始改变 自身的状态,变成蒸汽。在此条件下获得更多的热量将不会引起温度上的明显变化。所增 加的能量只是被用来改变液体的状态。它的效用不能用温度计测量出来,但是它仍然发生 着。正因为如此,它被称为是潜在的,而不是可认知的热量。使这一现象发生的温度被称为是沸点。在常温常压下,水的沸点为100摄氏度。 如果液体表面的压力上升, 需要更多的能量才可以使得水变为蒸汽的状态。 换句话说, 必须使得温度更高才可以使它沸腾。总而言之,如果大气压力比正常值升高百分之十,水必须被加热到一百零二度才可以使之沸腾。

自动化外文翻译

电气工程与自动化学院 本科毕业设计专业翻译资料(中文读书报告) 学生姓名:王超杰 专业班级:自动化12-06班 学号:311208002219 2016 年 6 月11 日

原文: Design of Combustible Gas Detection system using Wireless Transmission Technology Shijiazhuang Universities of Economics, Hebei, China zkzhlp@https://www.360docs.net/doc/e815613855.html, Keywords:TGS813, AT89S52, DS18B20, nRF905, TC35i Abstract.The detection device of combustible gas are designed in the presented work,using wireless transceiver and GSM network.The system realize the wireless transmission of the gas concentration,and also can send alarm information to user’s mobile when an exception occurs. The system consists of two parts: a master and slave. The function of the slave is to collect data, process data and transffer the data to the master.The taskof the master is to receive data and display it by LED. The signal acquisition is completed by sensor TGS813 and A/D converter TLC2543. The wireless transmission is achieved through wireless transceiver nRF905. Since the accuracy of the sensor is affected by the environment,using DS18B20 to achieve temperature compensation. And with wireless communication module TC35i and GSM network platform, we can send the alarm information to user’s mobile promptly. Introduction Gas detection is widely used in petroleum, chemical, metallurgy, family, shopping malls, gas stations and other places. Currently, how to monitor the hazardous gas fast and accurately are the important issues. Although the gas detection technology is relatively mature, but most products has many shortcomings, such as single function, operating complex, bulky, expensive and low sensitivity. Wireless communication technology applied to the gas monitoring field, can resolve the problem of remote monitoring in special environment, such as high temperature, low temperature, toxic gas.and unable to wiring . In the presented work, the combustible gas detectoris fully functional (with wireless transceiver), simple, small size, low cost, and has high sensitivity. The equipment can greatly improve the system's detection capability and accuracy with temperature compensation algorithm, and also can send alarm information to the user's mobile phone promptly through the GSM network. System design The system consists of two parts as shown in Figure 1. Fig. 1 Overall system block diagram

自动化专业英语 翻译

1.1 In recent years the performance requirements for process plant have become increasingly difficult to satisfy. Stronger competition, tougher (更加严苛的) environmental and safety regulations (法规), and rapidly changing economic conditions have been key factors in the tightening of plant product quality specifications (产品质量规范).A further complication (复杂) is that modern processes have become more difficult to operate because of the trend toward larger, more highly integrated plants with smaller surge capacities (谐振能力) between the various processing units. Such plants give the operators little opportunity to prevent upsets (扰乱) from propagating from one unit to other interconnected units. In view of (考虑到,由于) the increased emphasis placed on safe, efficient plant operation, it is only natural that the subject of process control has become increasingly important in recent years. In fact, without process control it would not be possible to operate most modern processes safely and profitably (有利的), while satisfying plant quality standards. 近年来,对过程系统的性能改善需求变得越来越困难.更为激烈的竞争,更加严格的环境和安全规范,以及快速变化的经济条件都是加强工厂产品质量规范的关键因素更为复杂的情况是,由于现代制造业朝着规模更大,集成度更高的方向发展,而使不同的加工环节之间的应变能力更低, 所以加工过程更难控制近年来,考虑到工业制造逐渐加强的安全、高效需求,过程控制这个课题变得越来越受重视. 实际上,对于大多数现代工业,要满足安全、高效,产品质量的要求,没有控制系统是不可能的. It is assumed that the inlet and outlet flow rates are identical (相同的) and that the liquid density ρ (rho) remains consant,that is, the temperature variations are small enough that the temperature dependence of ρ can be neglected. Under these conditions the volu me V of liquid in the tank remains constant. 假设输入和输出流量是相等的,并且液体密度保持恒定,也就是说温度变化足够小,密度对温度的影响可以忽略不计. 在这些条件下,槽内液体的体积保持恒定 Use a larger tank. If a larger tank is used, fluctuations (波动) in Ti will tend to be damped out (阻尼,衰减) due to the larger thermal capacitance of the tank contents. However, increased volume of tankage would be an expensive solution for an industrial plant due to the increased capital costs of the larger tank.Note that this approach is analogous to the use of water baths in chemistry laboratories where the large thermal capacitance of the bath serves as a heat sink (散热装置) and thus provides an isothermal (恒温的) environment for a small-scale research apparatus (仪器). 使用一个更大的槽. 如果使用更大的槽,因为更大的热容,Ti的波动会趋向于衰减. 然而,体积增加使得开支增加,会使工厂系统的解决方案变得更加昂贵.要指出的是这个方法类似于化学实验室中水缸的使用,水缸的大热容量可以看作散热装置,因此可以为小型研究仪器提供一个恒温环境. Note that in feedforward control, the controlled variable T is not measured. 在前馈控制中,被控变量T是没有被测量的. 1.2 The motivation of using feedback, illustrated (说明) by the examples in Section (1), is somewhat oversimplified.In these examples, the use of feedback is shown to be for the purpose of reducing the error between the reference input and the system output.However, the significance of the

自动化专业英语全文翻译

《自动化专业英语教程》-王宏文主编-全文翻译 PART 1Electrical and Electronic Engineering Basics UNIT 1A Electrical Networks ————————————3 B Three-phase Circuits UNIT 2A The Operational Amplifier ———————————5 B Transistors UNIT 3A Logical Variables and Flip-flop ——————————8 B Binary Number System UNIT 4A Power Semiconductor Devices ——————————11 B Power Electronic Converters UNIT 5A Types of DC Motors —————————————15 B Closed-loop Control of D C Drivers UNIT 6A AC Machines ———————————————19 B Induction Motor Drive UNIT 7A Electric Power System ————————————22 B Power System Automation PART 2Control Theory UNIT 1A The World of Control ————————————27 B The Transfer Function and the Laplace Transformation —————29 UNIT 2A Stability and the Time Response —————————30 B Steady State—————————————————31 UNIT 3A The Root Locus —————————————32 B The Frequency Response Methods: Nyquist Diagrams —————33 UNIT 4A The Frequency Response Methods: Bode Piots —————34 B Nonlinear Control System 37 UNIT 5 A Introduction to Modern Control Theory 38 B State Equations 40 UNIT 6 A Controllability, Observability, and Stability B Optimum Control Systems UNIT 7 A Conventional and Intelligent Control B Artificial Neural Network PART 3 Computer Control Technology UNIT 1 A Computer Structure and Function 42 B Fundamentals of Computer and Networks 43 UNIT 2 A Interfaces to External Signals and Devices 44 B The Applications of Computers 46 UNIT 3 A PLC Overview B PACs for Industrial Control, the Future of Control

电气 自动化 外文文献 外文翻译 英文文献

外文出处:Farhadi, A. (2008). Modeling, simulation, and reduction of conducted electromagnetic interference due to a pwm buck type switching power supply. Harmonics and Quality of Power, 2008. ICHQP 2008. 13th International Conference on, 1 - 6. Modeling, Simulation, and Reduction of Conducted Electromagnetic Interference Due to a PWM Buck Type Switching Power Supply I A. Farhadi Abstract:Undesired generation of radiated or conducted energy in electrical systems is called Electromagnetic Interference (EMI). High speed switching frequency in power electronics converters especially in switching power supplies improves efficiency but leads to EMI. Different kind of conducted interference, EMI regulations and conducted EMI measurement are introduced in this paper. Compliancy with national or international regulation is called Electromagnetic Compatibility (EMC). Power electronic systems producers must regard EMC. Modeling and simulation is the first step of EMC evaluation. EMI simulation results due to a PWM Buck type switching power supply are presented in this paper. To improve EMC, some techniques are introduced and their effectiveness proved by simulation. Index Terms:Conducted, EMC, EMI, LISN, Switching Supply I. INTRODUCTION FAST semiconductors make it possible to have high speed and high frequency switching in power electronics []1. High speed switching causes weight and volume reduction of equipment, but some unwanted effects such as radio frequency interference appeared []2. Compliance with electromagnetic compatibility (EMC) regulations is necessary for producers to present their products to the markets. It is important to take EMC aspects already in design phase []3. Modeling and simulation is the most effective tool to analyze EMC consideration before developing the products. A lot of the previous studies concerned the low frequency analysis of power electronics components []4[]5. Different types of power electronics converters are capable to be considered as source of EMI. They could propagate the EMI in both radiated and conducted forms. Line Impedance Stabilization Network (LISN) is required for measurement and calculation of conducted interference level []6. Interference spectrum at the output of LISN is introduced as the EMC evaluation criterion []7[]8. National or international regulations are the references for

电气自动化专业英语翻译

第一部分:电子技术 第一章电子测量仪表 电子技术人员使用许多不同类型的测量仪器。一些工作需要精确测量面另一些工作只需粗略估计。有些仪器被使用仅仅是确定线路是否完整。最常用的测量测试仪表有:电压测试仪,电压表,欧姆表,连续性测试仪,兆欧表,瓦特表还有瓦特小时表。 所有测量电值的表基本上都是电流表。他们测量或是比较通过他们的电流值。这些仪表可以被校准并且设计了不同的量程,以便读出期望的数值。 1.1安全预防 仪表的正确连接对于使用者的安全预防和仪表的正确维护是非常重要的。仪表的结构和操作的基本知识能帮助使用者按安全工作程序来对他们正确连接和维护。许多仪表被设计的只能用于直流或只能用于交流,而其它的则可交替使用。注意:每种仪表只能用来测量符合设计要求的电流类型。如果用在不正确的电流类型中可能对仪表有危险并且可能对使用者引起伤害。 许多仪表被设计成只能测量很低的数值,还有些能测量非常大的数值。 警告:仪表不允许超过它的额定最大值。不允许被测的实际数值超过仪表最大允许值的要求再强调也不过分。超过最大值对指针有伤害,有害于正确校准,并且在某种情况下能引起仪表爆炸造成对作用者的伤害。许多仪表装备了过载保护。然而,通常情况下电流大于仪

表设计的限定仍然是危险的。 1.2基本仪表的结构和操作 许多仪表是根据电磁相互作用的原理动作的。这种相互作用是通过流过导体的电流引起的(导体放置在永久磁铁的磁极之间)。这种类型的仪表专门适合于直流电。 不管什么时候电流流过导体,磁力总会围绕导体形成。磁力是由在永久磁铁力的作用下起反应的电流引起。这就引起指针的移动。 导体可以制成线圈,放置在永久磁铁磁极之间的枢钮(pivot中心)上。线圈通过两个螺旋型弹簧连在仪器的端子上。这些弹簧提供了与偏差成正比的恢复力。当没有电流通过时,弹簧使指针回复到零。 表的量程被设计来指明被测量的电流值。线圈的移动(或者是指针的偏移)与线圈的电流值成正比。如果必须要测量一个大于线圈能安全负载的电流,仪表要包含旁路或者分流器。分流器被容纳在仪表盒内或者连接到外部。 例子 一个仪表被设计成最大量程是10A。线圈能安全负载0。001A,那分流器必须被设计成能负载9。999A。当时。001A流过线圈时指针指示10A。 图1。1(A)说明了一个永久磁铁类型仪表。图1。1(B)显示了一个外部分流器连接到仪表端子上。永久磁铁类型仪表可以被用作安培表或者电压表。当量程被设计成指示电流并且内阻保持最小时,这个表可以作为安培表用。当量程被设计成指示电压,内阻相对高一些

生产自动化-外文翻译精品

生产自动化 自动化是一个在制造业中广泛使用的术语。文中,自动化可被定义为有关应用机械、 电子和计算机的系统去管理和控制生产的技术,这种技术的例子包括: ?加工零件的自动化机床 ?自动连续生产线和类似的顺序生产系统。 .自动装配机器。 .工业机器人 .自动材料处理和储存系统 .用于质量控制的自动检验系统。 .反馈控制和计算机程序控制 .使支持制造业活动的计划、数据收集和决策的过程自动化的计算机系统。 自动化生产系统可被化分为两个基本类别硬件自动化和可编程自动化。 1硬件自动化 1.1硬性自动化 硬性自动化是哈德尔(Harder)杜撰自动化”这个单词时所提出的硬性自动化是指生产系统中生产顺序或装配工作由设备配置确定,并且在没更换设备的情况下不能轻易改变。虽然顺序中的每一个操作通常是简单的,但是,将许多简单的操作集成和协调成一个单一系统使硬性自动化变得复杂化。硬性自动化的典型特点包括:1?定做设计设备的光期投资高;2?高生产效率;3?应用于大批量产品生产;4.适应产品变更的相对固定性。 硬性自动化对高需求率产品是经济合适的。先期设备的高投人可以被大量部件分摊,也许是数百万件,这样与其他生产方法相比部件花费低。硬性自动化的例子包括机加工连续生产线、转盘换位机械和自动装配机器。硬性自动化的大部分技术是在汽车工业中发展起来的;连续生产线(追溯到大约1920年)就是一个例子。 1.2机床 数控系统的又一个元件是机床或其他被控制的工序。它是数控系统完成有用工作的部分。在最常见的数控系统例子中,一个设计来完成机加工操作的系统中,机床由工作台、主轴以及驱动它们所必要的马达和控制器组成。它也包括刀具、工件夹具以及其他机加工

相关文档
最新文档