曲线上任意里程的坐标正算及反算

曲线上任意里程的坐标正算及反算
曲线上任意里程的坐标正算及反算

坐标正算反算公式讲解(借鉴材料)

一 方位角: 在高斯直角坐标系中,由坐标纵轴方向的北端起,顺时针量到直线间的夹角,称为该直线的坐标方位角,常简称方位角,用a 表示。 1、第一象限的方位角 Y X 第一象限第二象限 第三象限 第四象限 o A a 图1 2、第二象限的方位角 Y X 第一象限 第二象限第三象限 第四象限 o A a 图2

3、第三象限的方位角 Y X 第一象限 第二象限 第三象限 第四象限 o A a 图3 4、第四象限的方位角 Y X 第一象限 第二象限 第三象限 第四象限 o A a 图4 方位角计算公式:

x =a -1 tan A Y O Y -A X O X - 方位角的计算器计算程序:Pol(X A -X O ,Y A -Y O ) 直线OA 方位角度值赋予给计算器的字母J ,0≤J <360。 直线段OA 的距离值赋予给计算器的字母I,I >0 直线OA 与直线AO 的方位角关系: 1、 当直线OA 的方位角≤180°时,其反方位角等于a+180°。 2、 当直线 OA 的方位角>180°时,其反方位角等于a-180°。 二 方位角的推算 (一)几个基本公式 1、坐标方位角的推算

或: 注意:若计算出的方位角>360°,则减去360°;若为负值,则加上360°。 例题:方位角的推算 已知:α12=30°,各观测角β如图,求各边坐标方位角α23、α34、α 45 、α51。 13 图5

解:α23= α12-β2+180°=30°-130°+180°=80° α34= α23-β3+180°=80°-65°+180°=195° α45=α34-β4+180°=195°-128°+180°=247° α51=α45-β5+180°=247°-122°+180°=305° α12=α51-β1+180°=305°-95°+180°=30°(检查) 三坐标正算 一、直线段的坐标计算 o B D A C E a a p 图6 设起点O的坐标(X O,Y O),直线OP的方位角为F op,求A、C、E点的坐标 1、设直线段OA长度为L,则A点坐标为 X A=X O+L×Cos(F op)

高斯投影坐标正反算VB程序

高斯投影坐标正反算 学院: 班级: 学号: 姓名: 课程名称: 指导老师:

实验目的: 1.了解高斯投影坐标正反算的基本思想; 2.学会编写高斯正反算程序,加深了解。 实验原理: 高斯投影正算公式中应满足的三个条件: 1. 中央子午线投影后为直线; 2. 中央子午线投影后长度不变; 3. 投影具有正形性质,即正形投影条件。 高斯投影反算公式中应满足的三个条件: 1. x坐标轴投影成中央子午线,是投影的对称轴; 2. x轴上的长度投影保持不变; 3. 正形投影条件,即高斯面上的角度投影到椭球面上后角度没 有变形,仍然相等。 操作工具: 计算机中的VB6.0 代码: Dim a As Double, b As Double, x As Double, y As Double, y_# Dim l_ As Double, b_ As Double, a0#, a2#, a4#, a6#, a8#, m2#,

m4#, m6#, m8#, m0#, l0#, e#, e1# Dim deg1 As Double, min1 As Double, sec1 As Double, deg2 As Double, min2 As Double, sec2 As Double Private Sub Command1_Click() Dim x_ As Double, t#, eta#, N#, W#, k1#, k2#, ik1%, ik2%, dh% deg1 = Val(Text1.Text) min1 = Val(Text2.Text) sec1 = Val(Text3.Text) deg2 = Val(Text4.Text) min2 = Val(Text5.Text) sec2 = Val(Text6.Text) l_ = (deg1 * 3600 + min1 * 60 + sec1) / 206265 b_ = (deg2 * 3600 + min2 * 60 + sec2) / 206265 dh = Val(Text9.Text) k1 = ((l_ * 180 / 3.14159 + 3) / 6) k2 = (l_ * 180 / 3.14159 / 3) ik1 = Round(k1, 0) ik2 = Round(k2, 0) If dh = 6 Then l0 = 6 * ik1 - 3 Else If dh = 3 Then

高斯投影正反算公式 新

高斯投影坐标正反算 一、相关概念 大地坐标系由大地基准面和地图投影确定,由地图投影到特定椭圆柱面后在南北两极剪开展开而成,是对地球表面的逼近,各国或地区有各自的大地基准面,我国目前主要采用的基准面为:基准面,为GPS基准面,17届国际大地测量协会上推荐,椭圆柱长半轴a=6378137m,短半轴b=; 2.西安80坐标系,1975年国际大地测量协会上推荐,椭圆柱长半轴a=6378140m,短半轴b=; 3.北京54坐标系,参照前苏联克拉索夫斯基椭球体建立,椭圆柱长半轴a=6378245m, 短半轴b=; 通常所说的高斯投影有三种,即投影后: a)角度不变(正角投影),投影后经线和纬线仍然垂直; b)长度不变; c)面积不变; 大地坐标一般采用高斯正角投影,即在地球球心放一点光源,地图投影到过与中央经线相切的椭圆柱面上而成;可分带投影,按中央经线经度值分带,有每6度一带或每3度一带两种(起始带中央经线经度为均为3度,即:6度带1带位置0-6度,3度带1带位置度),即所谓的高斯-克吕格投影。

图表11高斯投影和分带 地球某点经度(L)为过该点和地球自转轴的半圆与子午线所在半圆夹角,东半球为东经,西半球为西经;地球某点纬度(B)为所在水平面法线与赤道圆面的线面角。 正算是已知大地坐标(L,B),求解高斯平面坐标(X,Y),为确保Y值为正,Y增加500公里;反算则是由高斯平面坐标(X,Y)求解大地坐标(L,B)。 二、计算模型: 地球椭球面由椭圆绕地球自转轴旋转180度而成。 图表 1 椭圆 椭圆长半轴a,椭圆短半轴b, 椭圆方程:

(1) 图表2椭球面 椭球面方程: y2 a2+ x2 b2 + z2 a2 =1 /*************************************** 与网上充斥的将函数关系先展开为泰勒级数,再依据投影规则确定各参数不同,本文直接依据空间立体三角函数关系得出结果。 *****/ (一)正算 由图表1,

关于坐标反算里程的超常规方法

关于坐标反算里程的超常规方法 (仅适用于隧道工程) 对于曲线隧道超开挖线放样测量,大家都觉得用坐标反算里程时计算的时间长,有的可能在三秒以内,有的可能会超过五秒钟,那让人期待的滋味的确让人难以忍受,如果不慎把坐标数据输入错误,更会让人抓狂(呵呵,因为必须得输正确坐标数据,错了要返工.),这样的无奈我也深有感触啊.有没有什么好方法让计算时间缩短呢?肯定有,下面我会详细介绍. 不管什么样式的曲线,它在某些情况下是可以看成直线的,(比如说 1.5米,2米这样的曲线线段),我说的这种方法就是把曲线当成直线来计算,这样就少去了很多计算步骤,而且能直接计算出结果.在现实施工中,我们的开挖面都是倾斜的,这个倾斜面就存在一个里程差,我们就可以把这个里程差当做直线来计算,我们只需取两个点就可以了,一个是凹进去最深的点,一个是最突出的点,我们架设好仪器后就先测算出这两点的里程,然后就把我们计算范围界定在这两个里程之间,把这两个里程点之间的当着一条直线,而且这条直线一般都很短,很少有超过2米的,然后我们在放开挖线的时候测出来的坐标都通过这条直线来反算它对应的真实里程,计算出测量点的偏移值. 接下来我们再说说精度的问题,我曾在CAD中画过这样的图,里程差取2米,半径取值为50米.隧道半幅宽度按8米计算,垂直于这条直线的距离和半径方向的距离误差也就只有0.0077米,半径50米2米长的弧线外矢距也就0.01米(现实中设计的曲线半径很少有小于50米的),完全能满足要求.且我们实际的开挖尺寸也是按直线掘进的,进尺完全大于我们所取的这两个里程差.所以这个误差完全是可以忽略不记的. 以上这种方法,我已经在实际当中用过,真的不错哟.希望同行们留意,也许能对你有所帮助,本人QQ468076885,欢迎同行灌水.

坐标反算

在现场工作中,以往我们都是已知某点的里程及边距,来计算出该点的坐标,但有时我们如果能在测得某点坐标后,计算出该点的里程和距线路中心的距离(在这里我姑且称之为坐标反算)的话,将会帮我们大大减轻野外工作量,提高我们的工作效率。例如:路基填了几层后要精确检查一下路基是否够宽,那么按照我们以往的做法,就是要先将线路中心线放出来,然后用尺拉一下路基宽度,与其在此高程的设计宽度作比较,这样做对高填方而言极不方便。或者是先按所测高程,计算的宽度放出路基边桩,再与所填边线作比较。以上两种方法现场工作量都比较大。较为简便的方法是,我们可以测一下已填路基边线上任一点的三维坐标,然后将其反算求出该点的里程,及其距中线的距离(即所填宽度),由计算出的里程,可算出该里程的路面设计高程,再有所测高程,可计算出该点的设计宽度,两宽度作比较即可。同样在桥面铺装施工时,我们也无须再像以往那样,先放出某点再测其高程,然后与设计高程比较计,算出该点铺装厚度,而可以沿桥面外边线随意布点,测其三维坐标,计算出其里程及到中心线的距离,便可由其里程及距中心距离,计算出该点的设计高程,与其测得高程作比较得出应铺厚度。这样便大大减轻了外业工作强度(由放出点后再测其高程,变为测任意点高程),而内业计算量与常规相当。另外在临时增加桥涵时,也常用到此方法来计算变更桥涵的中心里程(斜交或正交均可).如目前我标段就存在很多临时变更涵洞,按以往我们的方法是先估计该处大概里程,然后放出所估计里程的中心桩,再用皮尺量出所要增加涵洞处与该中心桩的距离,以此来推算出涵洞的中心里程,这一过程即繁琐又不准确。而目前我们采用的方法是用全站仪测得跨路基现有水沟两端的沟底坐标,计算出其与路基的夹角,按所测坐标及此夹角就可以准确、快速地反算出水沟中心所对应的线路中心里程了。我们在日常测量工作中的很多方面,也会用到这一方法来减轻野外工作量。在目前我标段的S334分离式立交桥的架设过程中,也同样用到了此方法.支座安装好后,对支座中心位置检及高程查无误后开始梁板架设,但是尽管测量控制放样符合规范要求,可是因为其它方面的各种原因可能会使梁板出现偏位高程也可能会出现偏差,那么对现在这种问题该如何检查呢?其实方法是一样的,首先我们可以用全站仪测得架设好后梁的边板外边缘任一点的三维坐标,由此坐标反算出该点所对应的中心里程和距中心的距离,就可以和设计图纸上的距离作比较来检查其是否存在偏位,该点的设计高程也可以由反算所得的中心里程和距中心的边距算出,与所测得的实际高程作一下比较也就可以了.那么通过以上讨论问题归结到了一点,那就是如何在测得任一点坐标后,计算出其所对应的线路中心里程,及其到线路中心的距离(或是斜交的长度)呢?解决此类问题,对目前一些测量软件来说早已不成问题,但是在现场工作中我们用的更多、更方便的还是计算器,那么能否用我们常用的4800或5800计算器编程,来计算此类问

坐标正反算计算公式

坐标正反算公式

一、GPS数据处理相关术语 1、三维无约束平差 三维无约束平差是以基线解算所得到的三维静态基线向量为观测值,待定参数主要为GPS 网中点的坐标;同时,利用基线解算时随基线向量一同输出的基线向量的方差阵,形成平差的随机模型,最终形成平差完整的数学模型。随后对所形成的数学模型进行求解,根据平差结果来确定观测值中是否存在粗差,数学模型是否有需要改进的部分,若存在问题,则采用相应的方法进行处理并重新进行求解;若未发现问题,则输出最终结果,并进行后续的数据处理。 2、三维约束平差 三维约束平差是以基线解算所得到的三维静态基线向量为观测值,在平差过程中引入会使GPS 网的尺度、方向和位置发生变化的外部起算数据,从而实现GPS 网成果由基线解算时GPS 卫星星历所采用的参照系(WGS84 )到特定参照系的转换,得到在特定参照系下的经过用户约束条件约束的点三维空间坐标。 二、南方GPS数据处理软件的平差方式

三维约束平差是指在基线解算后,WGS84坐标系下的三维平差,在三维平差中是不需要当地平面直角坐标系下的已知点坐标,当需要用到WGS84经纬度或空间直角坐标的用户可加载已知点的WGS84空间坐标(如果只有经纬度时,可采用COORD4.1软件进行转换,本站免费提供)进行三维约束平差,即可得到与已知点相匹配的WGS84坐标。 一般情况下,在“已知点坐标录入”窗口中,我们都没有输入WGS8坐标,而只输入当地坐标系下的已知坐标,此时GPS处理软件会自动识取一个坐标点的WGS84坐标进行约束平差。如下图:

如果在某些控制测量中,需要得到精确的WGS84经纬度或空间坐标时,让系统自动识取显然是不行的,此时我们只要为参与平差的已知点的WGS84空间坐标输入后再进行三维平差即可 在这里,我们加入了两个已知点的WGS84空间坐标,三维平差后,列表中会显示两个"固定"字样的点,说明,在进行三维平差中,我们把这两个点做为起算点,进行平差别的未知点。

线元法线路坐标正反算程序

经苦心钻研,奋战多日,终于编写出了代码短,速度快,精度高,功能全的线路坐标正反算程序,欢迎试用并提出宝贵意见。 功能简介及特点: 1、选用高斯-勒让德公式作计算内核,保证精度,模块化设计,便于扩充功能。 2、线元数据可自动从数据库调用,也可手工输入。 3、可管理多条线路,如里程不在线路或线元范围,将警告里程偏大、偏小。 4、边桩计算设计为导线式递推方式,可用于由一个中桩推出结构物所有角点坐标。 5、反算实现了智能化操作,只需输入线路号(或手工输线元资料)、坐标,不需近似里程,即可自动从起点向后开始试算出里程、位置,如对算出里程、位置表示怀疑,还可以让计算器从终点起再向前试算下一个可能的位置(匝道、回头曲线同一坐标可能会有一个以上结果)。第三次及以后试算才要求输入近似里程。 6、程序代码规范简洁,便于阅读、理解。 完整程序清单: ZFS %正反算主程序 B=.1739274226:C=.5-B: Lbl 1:U"0 ZS 1 FS"=0=>Prog "ZS": ≠>U=1=>Prog"FS":≠>Goto 1

ZS %正算子程序 {K}:Prog"ZZ":I=0:{I}:I"L"≠0=>"Prog"WY":≠>Prog"ZB" FS %反算子程序 {KVW}:V"XC"W"YC":Lbl 2:Prog "ZZ":I=V-S:J=W-T:Pol(I,J: J=J-F:K=K+Rec(I,J:AbsI<1m=>Prog"WZ":≠>Goto 2Δ M=0:{M}:M"0 NEXT"=0=>U=U+1:Goto 2:≠>U=1 ZZ %高斯法中桩子程序(4节点) Prog"XL":M=K-L:O=(P-R)÷2PQR: D=.0694318442:E=.3300094782:F=1:G=1-E:H=1-D: I=5:Lbl 1:C[I]=A+MrC[I](1÷P+OMC[I]:Dsz I:Goto 1: S=X+M(BcosD+CcosE+CcosG+BcosH: T=Y+M(BsinD+CsinE+CsinG+BsinH WY %外移点计算子程序 Lbl 1:J=90:{J}:J=F+J"<":F=J:S=S+Rec(I,J:T=T+J: Prog"ZB":I=0:{I}:I"L"≠0=>Goto 1 WZ %位置显示子程序 "KJ":K:Pause 1:J◢ ZB %坐标显示子程序 "XY":S:Pause 1:T◢ YC %异常处理子程序 U=1=>K=L:U=2Δ U=3=>K=M:U=4Δ

坐标正反算定义及公式

坐标正反算定义及公式 Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8

第六章→第三节→导线测量内业计算 导线计算的目的是要计算出导线点的坐标,计算导线测量的精度是否满足要求。首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。 一、坐标正算与坐标反算 1、坐标正算 已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。如图6-6 所示,点的坐标可由下式计算: 式中、为两导线点坐标之差,称为坐标增量,即: 【例题6-1】已知点A坐标,=1000、=1000、方位角=35°17'36.5",两点水平距离=200.416,计算点的坐标?

35o17'36.5"=1163.580 35o17'36.5"=1115.793 2、坐标反算 已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。可知,由下式计算水平距离与坐标方位角。 (6-3) (6-4) 式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。 【例题6-2】=3712232.528、=523620.436、=3712227.860、=523611.598,计算坐标方位角计算坐标方位角 、水平距离。

=62°09'29.4"+180°=242°09'29.4" 注意:一直线有两个方向,存在两个方位角,式中:、的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。 坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。 【例题6-3】坐标反算,已知=2365.16、=1181.77、 =1771.03、=1719.24,试计算坐标方位角、水平距离。 键入1771.03-2365.16按等号键[=]等于纵坐标增量,按储存键[], 键入1719.24-1181.77按等号键[=]等于横坐标增量,按[]键输入,按[]显示横坐标增量,按[]键输入,按第二功能键[2ndF],再按[]键,屏显为距离,再按[]键,屏显为方位角。 【例题6-4】坐标正算,已知坐标方位角=294°42'51", =200.40,试计算纵坐标增量横坐标增量。

坐标正反算程序计算器

一、 Lbl 3:"1→ZS,2→FS"?Q Q=1=>Goto 1:Q=2=>Goto 2 Lbl 1:"CE:X"?M:"CE:Y"?F:"JL"?L:"FWJ"?A:Rec(L,A):M+I→C:F+J→D Cls "X=":Locate 3,1,C:"Y=":Locate 3,2,D◢ Goto 3 Lbl 2::"CE:X"?G:"CE:Y"?H:"(HOU)FY:X"?N:"(HOU)FY:Y"?E Pol(N-G,E-H) If J<0:Then J+360→Y:Else J→Y:IfEnd Cls "FY JL=":Locate 10,1,I:"FY FWJ=":Y◆DMS◢ Goto 3 进入程序运行如下: 1→ZS,2→FS? 输入1为正算,2为反算. 以输入1为例: CE:X? 测站点X(5796.717) CE:Y? 测站点Y(5212.569) JL? 仪器测得的距离(321.889) FWJ? 仪器测得的方位角(193-41-07) 得到:X=5483.966 Y=5136.414 再按EXE,输2为例: CE:X? 测站点X(5796.717) CE:Y? 测站点Y(5212.569) (HOU)FY:X? 后视或放样的X(5483.966) (HOU)FY:Y? 后视或放样的Y(5136.414) 得到:FY JL=321.889 FY FWJ=193-41-6.79 二、 Deg : Fix 3 : “XZ→0:YZ→1”?A : If A = 1: Then Goto 1 : IfEnd ↙ If A = 0 : Then “BS→0:XY→1:AND→2:DK→3:L(I)→4 ”?O : IfEnd ↙ If O = 4: Then Goto 1 : IfEnd ↙ If O = 3: Then Prog “F.2 ”: If X= 0 : Then Goto 1 : IfEnd : IfEnd ↙ If O≠1: Then “X1 ”?X : “Y1”?Y : X→Z[11]: Y→Z[12]: “X2 ”?P : “Y2”?Q : Pol( P-X , Q-Y) : If J﹤0 : Then J + 360→J : IfEnd : Cls : “S12= ”: Locate 6 ,1, I : “B12= ”: J ?DMS◣

坐标反算正算计算公式

坐标反算正算计算公式 一、坐标正算 根据A点的坐标X A、Y A和直线AB的水平距离D AB与坐标方位角O AB,推算B点的坐标X B、Y B,为坐标正算,其计算公式为: X B = X A + AX AB Y B = X A + AY AB(1-18 ) 二式中,AX AB与AY AB分别称为A?B的纵、横坐标增量,其计算公式为: AX AB = X B—X A = D AB COS O AB AY AB = Y B—Y A = D AB sin O AB(1-19 ) 注意,AX AB和AY AB均有正、负,其符号取决于直线AB的坐标方位角所在的象限。 二、坐标反算 根据A、B两点的坐标X A、Y A和X B、Y B,推算直线AB的水平距离D AB与坐标方位角 OCAB , 为坐标反算。其计算公式为: (1-20 ) 注意,由(1-20 )式计算OCAB时往往得到的是象限角的数值,必须先根据AX AB、AY AB的正、负号,确定直线AB所在的象限,再将象限角换算为坐标方位角。 三角函数内容规律 三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现 三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三 角函数的关键所在. 1、三角函数本质: 三角函数的本质来源于定义,如右图: 根据右图,有 sin 0 =y/ R; cos 0 =x/R; tan 0 =y/x; cot 0 =x/y。 深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导 si n( A+B) = si nAcosB+cosAs inB 为例: 推导: 首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。角AOD为a,BO D为B,旋转AOB使0B与0D重合,形成新A'OD。 A(cos a ,sin a ),B(cos 3 ,sin 3 ),A'(cos( - BM,sin( 诩)) OA'=OA=OB=OD=1,D(1,0) [cos( a- 3 >1]A2+[sin( a- 3 )]A2=(cos a cos 3 )A2+(sin a-sin 3 )A2 和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2 ) [1] (1-21 )

隧道坐标正反算

隧道测量---快速坐标正反算程序(4800-4850计算器) 2008-11-23 20:47:00 点击:212 ZB (坐标正算) 1. Lb1 1 2. {L} 3.SMNARCL 4. K=L-S 5. R=0=>X“X”=M+KcosA▲ 6. Y“Y”=N+KsinA▲ 7. Z“FW”=A▲ 8.Goto 4△R≠0=>Abs K≤C=>Goto 2△R≠0=>K>C=>Goto 3△ R≠0=>K<0=>Abs K>C=>Goto 1△ 9. Lb1 2 10. O=90K2÷(πRC) 11. G=K3÷(6RC)-K?7÷(336(RC)3+K?11÷(42240(RC)?5-K?15÷9676800(RC)?7)+K?19÷(3530096640(RC)?9) 12. F=K-K?5÷((40(RC)2)-K?9÷(3456(RC)?4)+K?13÷(599040(RC)?6)-K?17÷(40320×4532(RC)?8) 13. J=0=>X“X”=M+GsinA+cosA▲ 14. Y“Y”=N+FsinA- cosA▲ 15. Z“FW”=A-O▲ Goto 4△ 16.J≠0=>X“X”=M+F cosA-GsinA▲ 17.Y“Y”=N+G cosA+F sinA▲ 18.Z“FW”=A+O▲ Goto 4△ 19.LbI 3 20.B=90(2K-C)÷(лR) 21.U=C÷2-C3÷(240R2)+R sinB+C?5÷(34560R?4)-C?7÷(599040 R?6) 22.V=C2÷(24R)+R(1-cosB)-C?4÷(2688R3)+C?6÷(42240 R?5) 23.J=0=>X“X”=M+UcosA+VsinA▲ Y“Y”=N+U sinA-V cosA▲ Z“FW”=A-B▲ Goto 4△ 24.J≠0=>X“X”=M+U cosA-VsinA▲ Y“Y”=N+U sinA+V cosA▲ Z“FW”=A+B▲ Goto 4△ 25.Lb1 4 26.{D}:{T} 27.D=0 => Goto 1△ 28.D≠0=>X“LX”=X+Dcos(T+Z)▲

5800-9860计算器坐标正反算通用程序

5800-9860计算器坐标正反算通用程序 1. 坐标正算主程序(命名为ZBZS) 第1行:Lbl 0:”K=”?K:”BIAN=”? Z:”α=”?B 第2行:Prog “A” 第3行:”X=”:N+Zcos(F+B)◢ 第4行:”Y=”:E+Zsin(F+B)◢ 第5行:”F=”:F◢ 第6行:Goto 0 K——计算点的里程 BIAN——计算点到中桩的距离(左负右正) α——取前右夹角为正 2. 坐标反算桩号和偏距主程序(命名为ZBFS) 第1行:”X1=”? C:”Y1=”?D: ”K1=”?K 第2行:Lbl 0:Prog “A” 第3行:Pol(C-N,D-E) 第4行:List Ans[1]→I 第5行:List Ans[2]→J 第6行:Icos(F-J)→S:K+S→K 第7行:Abs(S)>0.0001=>Goto 0 第8行:”K1=”:K◢ 第9行:”BIAN=”:Isin(J-F)→Z◢ X1——取样点的X坐标 Y1——取样点的Y坐标 K1——输入时为计算起始点(在线路内即可),输出时为反算点的桩号 Z——偏距(左负右正) 3. 计算坐标子程序(命名为XYF) 为了简洁,本程序由数据库直接调用,上述中的正反算主程序不直接调用此程序第1行:K-A→S:(Q-P)÷L→I 第2行:N+∫(cos(F+X(2P+XI)×90÷π),0,S)→N 第3行:E+∫(sin(F+X(2P+XI)×90÷π),0,S)→E 第4行:F+S(2P+SI)×90÷π→F 4. 数据库(命名为A)

第1行:K≤175.191=>Stop 第2行: 175.191→A:428513.730→N:557954.037→E:92°26′40″→F:0→P:1/240→Q:70.417→L: K≤A+L =>GoTo 1(第一缓和曲线,圆半径为240) 第3行:245.607→A: 428507.298→N:558024.092→E: 100°50′59.4″→F: 1/240→P:1/240→Q: 72.915→L: K≤A+L =>Goto 1(第圆曲线,半径为240) 第4行:318.522→A: 428482.988→N:558092.538→E: 118°15′25.2″→F: 1/240→P: 0→Q: 55.104 →L: K≤A+L =>Goto 1(第二缓和曲线,圆半径为240) 第5行:373.627→A:428453.283→N:558138.912→E:124°50′4.5″→F:0→P:- 1/180→Q:67.222→L: K≤A+L=>Goto 1:Stop(第一缓和曲线,圆半径为180) 第6行:Lbl 1:Prog “XYF” A——曲线段起点的里程 N——曲线段起点的x坐标 E——曲线段起点的y坐标 F——曲线段起点的坐标方位角 P——曲线段起点的曲率(左负右正) Q——曲线段终点的曲率(左负右正) L——曲线段长度(尽量使用长度,为计算断链方便) 说明: (1)在9860中,程序中所有公式和部分函数结果均存储在List Ans列表数组中,要想多次调用最好随公式取出结果,并赋给变量。 (2)正算主程序可以计算一般边桩的坐标,如要计算类似涵洞端墙的坐标需增加第二偏距和转角两个变量。 (3)程序规定,左偏曲线曲率(半径倒数)输入负值,右偏曲线曲率输入正值,直线上点曲率输入0,例如直线段,线元起点和终点均输入0,第一缓和曲线分别输入0和圆半径的倒数,圆曲线均输入半径倒数,第二缓和曲线分别输入圆半径倒数和0,卵形曲线分别输 入对应圆半径的倒数 (4)若是从大里程向小里程的反方向计算,则曲率取正方向时的负值,方位角减去(或加上)180度。 (5)有多个匝道的项目,可随时更改正反算主程序中的红色字体部分来调用其它线路的数据 (6)反算桩号偏差为1mm (7)可以计算任意线型的任意点坐标

线路上点坐标反算其里程桩号及中桩距

一、ZUOBIAO—ZH(由线路上任意点坐标计算相应的桩号、中桩距[偏左或偏右的距离]) 主程序: AbsJ“Fixmc?”=7?Fixm:Goto1△{ABFHGRQ}:A“X-JD”:B“Y-JD”:G“A0”:G<0?Q=1△G>0?Q=-1△F=AbsG:Prog“S3”:G=F:R“R”:O“Gra0(ZY-JD)”:F=O:Prog“S3”:F=F:H“L-ZY”:S=R÷COS(G÷2):M“X(YXIAN)”=A+Scos(F+180°+Q×(90°-G÷2))◢N“Y(YIAN)”=B+Ssin(F+180°+Q×(90°-G÷2))◢L=2πR÷360°×G:F=F- Q×90°+180°:F<0?F=F+360°△F>360° ?F=F-360°:≠?F=F△Lbl1:{CD}:C“X”:D“Y”:POL(M-C,N-D):T=J: T=Ans+180°:P=I:U=T-F:-Q×U≦0?Prog“T”:Goto1△-Q×U>0?Prog“U”:Goto1△ (主程序完) 子程序: 1、V Pol(A—C,B—D):T=J:T=Ans+180°:P=I:U=T-(F+90°Q):E“LI”=H+Rtan(G ÷2)-PcosU◢K“B”=-Psin(u)◢ 2、W Pol(A—C,B—D):T=J:T=Ans+180°:P=I:U=T-(F-GQ-90°Q):E“LI”=H+L+(PcosU-Rtan(G÷2))◢K“B”=Psin(u)◢ 3、T Abs U≤180°?Prog“V”△A bs U>180°?U=T+360°-F:U>G?Prog“W”:≠?Prog“X”△ 4、U AbsU>180°?Prog“V”:≠?AbsU≤G?Prog“X”⊿AbsU>G?Prog“W”⊿5、X E“LI”=H-Q(2πR÷360°×U)◢K“B”=Q(P-R)◢ 说明: 一、本程序用于计算直线与圆曲线组合的线路上由点坐标计算相应桩号及其从中桩左、右偏移量。 二、输入:X-JD、Y-JD:交点坐标 A0:转向角(以十进制的形式,即13°25′30″按13.2530 的形式输入,左拐曲线取“-”值,右拐曲线取“+”值) R:半径 Gra0(ZY-JD):ZY点至JD方向坐标方位角,输入形式同A0(转向角) L-ZY:ZY点桩号 X,Y:所要计算点的坐标 三、显示:X(YXIAN)、Y(YXIAN):圆心坐标 LI:计算所得桩号 B:所计算点至中桩的距离,负值为左偏量,正值为右偏量,0为中桩

计算坐标与坐标方位角基本公式

二 计算坐标与坐标方位角的基本公式 控制测量的主要目的是通过测量和计算求出控制点的坐标,控制点的坐标是根据边长及方位角计算出来的。下面介绍计算坐标与坐标方位角的基本公式,这些公式是矿山测量工中最基本最常用的公式。 一、坐标正算和坐标反算公式 1.坐标正算 根据已知点的坐标和已知点到待定点的坐标方位角、边长计算待定点的坐标,这种计算在测量中称为坐标正算。 如图5—5所示,已知A 点的坐标为A x 、A y ,A 到B 的边长和坐标方位角分别为AB S 和AB α,则待定点B 的坐标为 AB A B AB A B y y y x x x ?+=?+= } (5—1) 式中 AB x ? 、AB y ?——坐标增量。 由图5—5可知 AB AB AB AB AB AB S y S x ααsin cos =?=? } (5—2) 式中 AB S ——水平边长; AB α——坐标方位角。 将式(5-2)代入式(5-1),则有 AB AB A B AB AB A B S y y S x x ααsin cos +=+= }

(5—3) 当A 点的坐标A x 、A y 和边长AB S 及其坐标方位角AB α为已知时,就可以用上述公式计算出待定点B 的坐标。式(5—2)是计算坐标增量的基本公式,式(5—3)是计算坐标的基本公式,称为坐标正算公式。 从图5—5可以看出AB x ?是边长AB S 在x 轴上的投影长度, AB y ?是边长AB S 在 y 轴上的投影长度,边长是有向线段,是在 实地由A 量到B 得到的正值。而公式中的坐标方位角可以从0°到360°变化,根据三角函数定义,坐标方位角的正弦值和余弦值就有正负两种 情况,其正负符号取决于坐标方位角所在的象限,如图5—6所示。从式(5—2)知,由于三角函数值的正负决定了坐标增量的正负,其符号归纳成表5—3。

测绘技术之坐标反算与正算

5.3坐标反算 坐标反算,就是根据直线两个端点的已知坐标,计算直线的边长和坐标方位角的工作。如图5.3所示,若A、B为两已知点,其坐标分别为(XA,YA)和(XB,YB),根据三角函数,可以得出直线的边长和坐标方位角计算公式: tgα=△YAB/△XAB=(YB-YA)/(XB-XA) αAB =tg-1 (△YAB/△XAB)= tg-1 ((YB-YA)/(XB-XA)) /td> DAB=△YAB/sin αAB=XAB/cos αAB 或 (5.6) DAB=√(△X2+△Y2) 应当注意,按公式(5.5)用计算器计算时显示的反正切函数值在-90°~+90°之间,而坐标方位角范围是0°~360°,所以按(5.5)式反算方位角时,要根据ΔX、ΔY的正负符号确定直线AB 所在的象限,从而得出正确的坐标方位角。如使用fx140等类型的计算器,可使用功能转换键 INV 和极坐标与直角坐标换算键P→R以及x←→y键直接计算求得方位角。按键顺序为: ΔX INV R→P ΔY =显示D X←→y 显示α。 例5.2 已知B点坐标为(1536.86 ,837.54),A点坐标为(1429.55,772.73),求距离DBA和坐标方位角αBA。 解:先计算出坐标增量: ΔXBA=1429.55-1536.86=-107.31 ΔYBA=772.73-837.54=-64.81 直接用计算器计算: 按-107.31 INV P→R -64.81 =显示125.36(距离DBA); 按 x←→y 显示211°07′53″(坐标方位角αBA)。 5.2 坐标正算 坐标正算,就是根据直线的边长、坐标方位角和一个端点的坐标,计算直线另一个端点的坐标的工作。如图5.3所示,设直线AB的边长DAB和一个端点A的坐标XA、YA为已知,则直线另一个端点B 的坐标为: XB=XA+ΔXAB (5.1) YB=YA+ΔYAB (5.2) 式中,ΔXAB、ΔYAB称为坐标增量,也就是直线两端点A、B的坐标值之差。由图5.3中,根据三角函数,可写出坐标增量的计算公式为: 图5.3 ΔXAB=DAB·cosαAB (5.3)

坐标转换计算方式

72绝对坐标转换为相对坐标在直线段施工测量中,可以把绝对坐标转换为相对坐标进行放线测量,此方法比较快捷实用。 如,已知直线段线路中线A点的里程与绝对坐标X1,Y1.和其直线A点至线路前进方向的方位角a。同样已知附近的控制点Q的绝对坐标QX1,QY1.那么现在为了使用方便,要将其Q点的绝对坐标转换为相对于直线段的相对坐标,计算方法如下: 根据以上所知,根据坐标发算可以得出点A至控制点Q 的距离为L,以及点A至控制点Q方向的方位角简称R。已知线路中心线前进方向的方位角a,那么由点A至线路前进方向,和点A至控制点Q方向就形成一个夹角r,r=R-a。现在做控制点到线路中线的垂直线Y,(也就是所谓的Y坐标数据)。根据直角三角形计算方式得出Y=SIN r×L(L,是点A至点Q的距离)那么相对于线路X的坐标计算方式(X坐标表示里程)。X=COSr×L+A点里程。 即得出控制点Q相对于直线的相对坐标。 例题:例如,ZDK400至ZDK700为直线段,已知里程400的线路中心线坐标X=22580.40165 Y=27356.42893 里程700的线路中心线坐标X=22558.58105 Y=27655.63522 欲求J2点X=22562.1789 Y=27510.4874相对于400至700的相对坐标,图示如下:

解:根据已知,经过坐标反算可以求得点A至点B的坐标方位角为94 10 16 AB距离为300。 A 至D的坐标方位角为96 44 45.26 距离为155.132 那么可求得角FAD=2 34 29.26 因现已知AD=155.132 角FAD=2 24 29.26 根据三角函数可计算DF=sinfa d×AD=0.045×155.132=6.969 AF=cosfad×AD=0.999×155.132=154.975

公路路线座标正反算(积分公式)通用程序

公路路线座标正反算 由于现在计算机普及,计算机功能日益强大,宜采用较简单的积分公式,便于计算机处理。 单线元通用积分公式如下 M = (1.0/Re-1.0/Rs)/Ls; x=∫{cos(Ta + L/Rs + 0.5*M *L*L),0,L}; y=∫{sin(Ta +L/Rs + 0.5*M *L*L),0,L}; a(i)= Ta +L/Rs + 0.5*M *L*L Rs:缓和曲线起点半径 Re:缓和曲线止点半径 Rs,Re (NE坐标系下,右偏为正,左偏为负) Ta:缓和曲线起点的真北方位角 Ls:不完整缓和曲线长度。 此公式为缓和曲线在坐标系下任意位置的通用积分公式,能完全适应缓和曲线左偏、右偏、Rs >Re 、Rs NE”:“2.NE=>SZ”:?Q:?S:Prog“QXJS-SUB0”↙ Lbl 0:Q=1 => Goto1:Q=2 => Goto2:↙ Lbl 1:?Z:Prog“QXJS-SUB1”:“N=”:N◢“E=”:E◢“F=”:F◢Goto4↙ Lbl 2: “N=”:?B: “E=”:1?C:B→N: C→E:Prog“QXJS-SUB2”: “S=”:S◢“Z=”:Z◢Go

to4↙ QXJS-SUB0 数据库子程序 Goto1↙同时保存多个曲线时的指针 Lbl 1 IF S<***(线元终点里程):Then***→A(线元起点方位角):***→O(线元起点里程):***→U(线元起点X):***→V(线元起点Y):***→P(线元起点曲率半径): ***→R(线元终点曲率半径): ***→L(线元起点至终点长度): Return:IfEnd↙IF S<***:Then***→A:***→O:***→U:***→V:***→P:***→R: ***→L: Return:IfE nd↙ ………………………..为了便于解读,每增加一个线元增加一行语句,每增加一条曲线增加一个Lbl,每增加一个工程增加一个文件。 QXJS-SUB1 正算子程序 0.5(1÷R-1÷P)÷L→D:S-O→X↙ U+∫(cos(A+(X÷P+DX2)×180÷π,0,X)→N↙ V+∫(sin(A+(X÷P+DX2)×180÷π,0,X)→E↙ A+(X÷P+ DX2)×180÷π→F↙ N+Zcos(F+90) →N:E+Zsin(F+90) →E QXJS-SUB2 反算子程序 Lbl 1:0→Z:1→Q:Prog“QXJS-SUB0”: Prog“QXJS-SUB1”↙ Pol(N-B+10^(-46), E-C+10^(-46)):Isin(F-90-J) →W:S+W→S↙ Abs(W)>0.0001 => Goto1↙ Lbl 2: 0→Z:Prog“QXJS-SUB1”:(C-E) ÷sin(F+90) →Z 三、使用说明 1、规定 (1) 以道路中线的前进方向(即里程增大的方向)区分左右;当曲线半径在左时,P、R取负值,当曲线半径在右时,P、R取正值,当曲线半径为无穷大(即直线)时,P、R以10的45次代替。

坐标正反算

一、坐标正算与坐标反算 1、坐标正算 已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。如图6-6 所示,点的坐标可由下式计算: 式中、为两导线点坐标之差,称为坐标增量,即: 【例题6-1】已知点A坐标,=1000、=1000、方位角 =35°17'36.5",两点水平距离=200.416,计算点的坐标? 35o17'36.5"=1163.580 35o17'36.5"=1115.793 2、坐标反算 已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。如图6-6可知,由下式计算水平距离与坐标方位角。 (6-3) (6-4)式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。

【例题6-2】=3712232.528、=523620.436、 =3712227.860、=523611.598,计算坐标方位角计算坐标方位角 、水平距离。 =62°09'29.4"+180°=242°09'29.4" 注意:一直线有两个方向,存在两个方位角,式中:、 的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。 坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。 【例题6-3】坐标反算,已知=2365.16、=1181.77、 =1771.03、=1719.24,试计算坐标方位角、水平距离。 键入1771.03-2365.16按等号键[=]等于纵坐标增量,按储存键[], 键入1719.24-1181.77按等号键[=]等于横坐标增量,按[]键输入,按[]显示横坐标增量,按[]键输入,按第二功能键[2ndF],

相关文档
最新文档