湖北省荆州中学、宜昌一中、龙泉中学三校2020届高三联考数学(理)试题
湖北省荆州中学、宜昌一中、龙泉中学三校2020届高三数学联考试题文

湖北省荆州中学、宜昌⼀中、龙泉中学三校2020届⾼三数学联考试题⽂届⾼三数学联考试题宜昌⼀中、龙泉中学三校2020湖北省荆州中学、⽂分钟。
150分,考试⽤时120本试卷共 2 页,共 22 题。
满分⼀、选择题:(本⼤题共12⼩题,每⼩题5分,共60分。
在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的。
请将正确的答案填涂在答题卡上。
)z2a的虚部为 1.已知为纯虚数,则复数为实数,若复数3)i9)?(az?(a??i?3D.66 C.A.3B.22?3y?}x{3?0},B?x|A?{x|x?2x?A?B? 2.已知,则[?3,?3][3,3][2,[1,2]3].. D. C B.A ln x y?e的定义域和值域相同的是3.下列函数中,其定义域和值域与函数1x?yy?10xy?x?ln y D. B.A. C.x0.20.4,log40.5,3的⼤⼩顺序是 4.三个数0.40.20.40.20.434?log0.5?0.53<4log?A.. B0.40.40.40.20.40.23DC..0.40.4*a10a??S N?na?a??aa则5.数列,且,满⾜815nn??11n?2nn A.95 B.190 C.380 D.150x f(x)?e?ln|x|的⼤致图象为 6.函数A B C Dlog x,x?1?2?f(x)?fxxf)≤2的解集为 =,则不等式(.已知函数7()?1,x?1?1?x?- 1 -1141,4??,1,??,.A . B.C??22,4,01. Da225?64?a?aa??a}{a?)tan(?.已知数列8为等⽐数列,且,则7243n333?33??. B C A... D 312?xx cos f(x)?sin x?3sin,则下列结论正确的是.函数92,?)xff(x)(上单调递增 BA.的最⼤值为1.在??6377??,0)xy)?f(fy?(x?x的图象关于点C..的图象关于直线对称 D??1212??对称.下列判断正确的是10?1sin”的充分不必要条件A.“”是“62x?0,则xy?0”的逆否命题为真B.命题“若xx R??x R??x?020?2”,”的否定是“,C.命题“00p??q”为真命题 p为真命题,命题q为假命题,则命题“D.若命题a2(1,2)1a ln x?f(x)?x? 11.已知函数在的取值范围是内不是单调函数,则实数2,8??,28,2,8?2,8??... BDA. C2ca0??B)42?2a(sin B?cos a bCBA ABC?、、,.,12在满⾜中,⾓、、的对边长分别b?2?ABC 的⾯积为,则22232 C A. B..3 D.分,共54⼆、填空题(本⼤题共⼩题,每⼩题分)20- 2 -ba ebe,,e3a3e2e⽅向上的投影为,则为单位向量且夹⾓为13.已知,设在221124 __ ___.1tan??),sincos?(0,.已知14,则.5n1log(S?2)?n?}}{a{aS 的通项公式项和,且.已知的前为数列,则数列15n2nnn 为.x?e?a,x?1?f(x)?a的取值范围为有最⼩值,则实数. 16.若函数?23?x?3x,x?1 ??三、解答题:(本⼤题共6⼩题,共70分,解答应写出⽂字说明,证明过程或演算步骤)17.(本⼩题满分12分)a,a}a{2a?a32a?a?的等差中项.已知等⽐数列是,且满⾜342231n{a}(Ⅰ)求数列的通项公式;n1{b}S log b?a?.(Ⅱ)若,求的前n项和为n n2nn a n分).(本⼩题满分12182b?3c cos C ca?CbABC?BA. ,,且的对边分别为,在,中,⾓,cos A3a A的值;(Ⅰ)求⾓πAM? 7?ABC BC?B的⾯积,求,. 边上的中线(Ⅱ)若⾓6- 3 -19.(本⼩题满分12分)ABCDBCBCDCBC EADABBD边的⊥//是,⊥, ,1如图,在直⾓梯形点中,BCDAC DEAEABDBDABD, 沿,折起,使平⾯,⊥平⾯得到,连接中点, 将△如图2所⽰的⼏何体.ADC AB;(Ⅰ)求证:⊥平⾯1?AD BADE的距离.到平⾯,求点,(Ⅱ)若2AB?AD DCBEECB图12图分).(本⼩题满分122022yx??1(m?1)ABBlx=-M,于点,过点作直线交椭交直线2椭圆的左、右顶点分别为,m?2m P.圆于另⼀点(Ⅰ)求该椭圆的离⼼率的取值范围;- 4 -OM?OP是否为定值,若是,求出该定值,若不是,说,判断(Ⅱ)若该椭圆的长轴长为4明理由.21.(本⼩题满分12分)12x?m cos x1,g(x)??(fx)?x?2sin x.已知函数20,)xf(上的单调区间;在(Ⅰ)求0,)g(x m上存在最⼩值.(Ⅱ)当1>时,证明:在(⼆)选考题:共10分.请考⽣在第22,23题中任选⼀题作答.如果多做,按所做的第⼀题记分.22.(本⼩题满分10分)选修4—4:极坐标与参数⽅程cosxxOyP(x,y):C经过上任意⼀点(在平⾯直⾓坐标系中,将曲线为参数) ?1?sin?y?- 5 -?x3x'??C O x轴的⾮负半轴为极后得到曲线伸缩变换为极点,的图形.以坐标原点2y2'y8(2cos)l:sin轴,取相同的单位长度建⽴极坐标系,已知直线.C l的普通⽅程;(Ⅰ)求曲线和直线2C lPPP的距离的最⼤值及取得最⼤值时点到直线(Ⅱ)点上的任意⼀点,为曲线求点2的坐标.:不等式选讲4—5).(本⼩题满分10分选修234x??g(x)k?3x1|?|3x?|?f(x)|已知函数.,4?)f(x3k??求不等式的解集;时(Ⅰ)当,1k??,?x?)(x)f(x?gk1?k??求且当(Ⅱ)设,的取值范围.,时,都有?33??- 6 -宜昌⼀中、荆州中学、龙泉中学三校联盟⾼三11⽉联考⽂科数学参考答案⼀、选择题1-5 DBABD 6-10 BBCBD 11-12 AB⼆填空题324n2?2?a a?e?n不给分,若只写2 15 16. 13 14..(.)n23三.解答题17.解:设公⽐为q…………………………………………………………………………1分222a?a?3a2a?aq?3aq2?q?3q,解得得q=1或2………由 3,∴213111分a?2a?2a,a a?a是(⼜=)的等差中项即2334242aa,⽅程⽆解,舍去; (4)分 +2)=2若q=1,则2(11aaaa=2+8+2)=2若q=2,则2(4,解得1111n-1n a?aq?2∴………………………………………………………………6分n11n2-n log a? b?(2)∵=2nn a nn?1n(n?1)2-2n(n?1)n?1-S?-2-?2n1-222∴………………………………12分)因为1, 18.解析:(Ca cos A3c)cos?3(2b?由正弦定理得,CA cos A?3sin C(2sin B?3sin)cos??CA?3sin?. (4)A2sin B3sin A cos CC cos?cos A?3sin??Csin?AsinB??C-A-B=,因为,所以所以.B3sin2sin B cos A??),(0B?sinB?0,,所以因为?3AA0.……………6,所以所以,因为分?cos A62?π2C?A?B?BCAC?)知2( .8,所以,.……………分)由(136- 7 -1xMC?x?AC,⼜,则设7.AM?2AMC中,由余弦定理在222得,?ACAM?MC2?AC?MC cos Cxx22o2,7)?x?()?2x??cos120(2即解得2?x22?2123.x?sin?S ...................................................... 1 2故分ABC?32BCDBCD BD?ABDABD,平⾯平⾯Ⅰ19. () 因为平⾯,⊥平⾯DCDC ABDBD分⊥平⾯⼜……………………⊥1,所以DC ABAB?ABD因为⊥分平⾯………………………2,所以DC DADAB?AD⊥⼜∩ADC AB 6所以分⊥平⾯.…………………………………………1?AD3BD?? (Ⅱ).,2?ABBDC ABD~△,依题意△A CDAB CD2??6?CD?所以,即.分…………7BDAD13D3BC?故……………………………6分.CBE BCADCAC EABAB, , 由于⊥平⾯为,的中点⊥3BCBC32DEAE?S得,所以,同理ADE2222231DC ABD?CD?V? S.,所以⊥平⾯因为ABDBCDA?33dADEB, 的距离为到平⾯设点311??V??dS?VV, 则BCD??ADEBDEB?ADEAA6236?d所以…………………… 11分,26ADEB分12即点到平⾯的距离为.……………………2- 8 -=∵=e==., (2)分)解:20 (Ⅰ=∴,1,⼜0.∴e...................................................................... 5(0,)分∈=∴m=∵2, .......................................... 椭圆的长轴长为62分4, (2)证明:A-BM-yPxy), 设),(易知((2,2,0),,(2,0),Ⅰ0Ⅰ=-xyy=),,((2,则),0ⅠⅠx+yy=-BMx-y=-, 即直线(的⽅程为2),022=+yx4,代⼊椭圆⽅程22=x-+x-=x+ 4......................................... 得(10,由韦达定理得)28分Ⅰ=∴∴xy=, .............................................................. 9,分ⅠⅠ==+=-x+yy.=-∴ ........................................ 212分4·ⅠⅠ0xfx,π),得0,即,21.(1)令′()=0∈(xfxfx)变化如下:),当变化时,(′(xxf0 ) - +′(xf最⼩值减)增(fx)的单调递减区间为所以函数分)…………………(,单调递增区间为5 (- 9 -。
湖北省荆门市龙泉中学、宜昌一中2020届高三9月联考数学(理)试题 含答案

龙泉中学、宜昌一中2020届高三年级9月联合考试理科数学试题一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.tan165=( )A .2-B .2-C .2D .22.已知集合1{|0}xA x x-=≥, {|lg(21)}B x y x ==-,则=B A ( ) A .1(0,)2 B .1(,1)2 C .1(,1]2 D .1[,1]23.命题“对任意2[1,2),0x x a ∈-<”为真命题的一个充分不必要条件可以是( )A .4a ≥B .4a >C .1a ≥D .1a > 4.函数()sin ln ||f x x x x =+在区间[2,2]ππ-上的大致图象为( )5.已知R 上的单调函数log ,3()7,3a x x f x mx x ≥⎧=⎨+<⎩满足(2)1f =,则实数a 的取值范围是( )A .(0,]3B .(0,1)C .3D . 6.电流强度I (单位:安)随时间t (单位:秒)变化的函数sin()(0,0,0)2I A t A πωϕωϕ=+>><<的图象如图所示,则当0.01t =秒时,电流强度是( )A .5-安B .5安C .安D .10安 7.围棋棋盘共19行19列,361个格点,每个格点上可能出现“黑”“白”“空”三种情况,因此有3613种不同的情况;而我国北宋学者沈括在他的著作《梦溪笔谈》中,也讨论过这个问题,他分析得出一局围棋不同的变化大约有“连书万字五十二”种,即5210000,下列数据最接近36152310000的是( ) (lg30.477≈) A .3710- B .3610- C .3510- D .3410-8.如图,四边形OABC 是边长为2的正方形,曲线段DE 所在的曲线方程为1xy =,现向该正方形内抛掷1枚豆子,则该枚豆子落在阴影部分的概率为 ( )A .32ln 24- B .12ln 24+ C . 52ln 24- D .12ln 24-+ 9.sin 70cos 430-= ( )A .8B .8-C.-D.10.已知(2)f x +是偶函数,()f x 在(]2-∞,上单调递减,(0)0f =,则(23)0f x ->的解集是( ) A .2()(2)3-∞+∞,, B .2(2)3, C .22()33-, D .22()()33-∞-+∞,,11.已知函数⎪⎩⎪⎨⎧≤+-=0,230>,2ln )(2x x x x x x x x f 的图像上有且仅有四个不同的关于直线1-=y 对称的点在1)(-=kx x g 的图像上,则k 的取值范围是( )A .)43,31( B .)43,21( C .)1,31( D .)1,21(12.若对任意的[1,5]x ∈,存在实数a ,使226(,0)x x ax b x a R b ≤++≤∈>恒成立,则实数b 的最大值为( )A .9B .10C .11D .12 二、填空题:本大题共4小题,每小题5分.13.在平面直角坐标系xoy 中,以ox 轴为始边作角α,角4πα+的终边经过点(2,1)P -.则sin2α= .14.已知tan()7cos()2ππαα-=+,11cos()14αβ+=-,,(0,)2παβ∈,则β= ___ _. 15.已知函数2()ln f x x ax x =++有两个不同的零点,则实数a 的取值范围是 .16.已知函数()f x ,对于任意实数[,]x a b ∈,当0a x b ≤≤时,记0|()()|f x f x -的最大值为[,]0()a b D x .①若2()(1)f x x =-,则[0,3](2)D = ;②若22,0,()21,0,x x x f x x x ⎧--≤⎪=⎨-->⎪⎩则[,2](1)a a D +-的取值范围是 .三、解答题:本大题共6大题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题12分)已知:p 1x 和2x 是方程2:20p x mx --=的两个实根,不等式21253a a x x --≥-对任意的[1,1]m ∈-恒成立,:q 关于x 的方程2210ax x ++=的解集有唯一子集,若p 或q 为真,p 且q 为假,求实数a 的取值范围.18. (本小题12分)已知函数44()2cos sin 1f x x x x ωωω=+-+ (其中01ω<<),若点(,1)6π-是函数()f x 图象的一个对称中心.(1)求()f x 的解析式,并求()f x 的最小正周期; (2) 将函数()y f x =的图象向左平移6π个单位,再将所得图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数()y g x =的图象,用 “五点作图法”作出函数()f x 在区间[,3]ππ-上的图象.19.(本小题12分)自2018年9月6日美拟对华2000亿美元的输美商品加征关税以来,中美贸易战逐步升级,我国某种出口产品的关税税率为t ,市场价格x (单位:千元)与市场供应量p (单位:万件)之间近似满足关系式:2(1)()2kt x b p --=,其中,k b 均为常数.当关税税率75%t =时,若市场价格为5千元,则市场供应量约为1万件;若市场价格为7千元,则市场供应量约为2万件.(1)试确定,k b 的值;(2)市场需求量q (单位:万件)与市场价格x 近似满足关系式:2x q -=,当p q =时,市场价格称为市场平衡价格,当市场平衡价格不超过4千元时,试确定关税税率的最大值. 20.(本小题12分)已知抛物线2:2(0)C y px p =>的焦点为F ,A 为C 上位于第一象限的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D . (1)若当点A 的横坐标为3,且ADF ∆为等边三角形,求C 的方程;(2)对于(1)中求出的抛物线C ,若点001(,0)()2D x x ≥,记点B 关于x 轴的对称点为E ,AE 交x 轴于点P ,且AP BP ⊥,求证:点P 的坐标为0(,0)x -,并求点P 到直线AB 的距离d 的取值范围.21.(本小题12分)已知函数R a ax ax e x x f x∈+++=,221)1()(2. (1)讨论)(x f 极值点的个数;(2)若)2(00-≠x x 是)(x f 的一个极值点,且-2e >)2(-f ,证明: 1<)(0x f .请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题10分)【选修4-4:坐标系与参数方程】以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点M 的直角坐标为(1,0),若直线l cos()104πθ+-=,曲线C 的参数方程是244x m y m ⎧=⎨=⎩,(m 为参数).(1)求直线l 的直角坐标方程和曲线C 的普通方程; (2)设直线l 与曲线C 交于,A B 两点,求11MA MB+.23.(本小题10分)【选修4-5:不等式选讲】已知函数2()4f x x ax =++,()11g x x x =++-.(1)求不等式()3g x ≥的解集;(2)若21[2,2],[2,2]x x ∀∈-∃-,使得不等式12()()f x g x ≤成立,求实数a 的取值范围.龙泉中学、宜昌一中2020届高三年级9月联合考试理科数学试题(参考答案)B C B B C A B A C D D A 13. 35- 14.3π15. (1,0)- 16. 3; [1,4] 17.【解析】若p 真,因为12,x x 是方程220x mx --=的两个实根,所以12x x m +=,122x x ⋅=-所以12x x -==,所以当[1,1]m ∈-时,12max3x x -=, (3)分所以由不等式21253a a x x --≥-对任意的[1,1]m ∈-恒成立,所以6a ≥或1a ≤- ……5分若q 真,则2210ax x ++=的解集为空集,2240a ∆=-<,………………………7分解得:1a > ………………………8分因为p 或q 为真,p 且q 为假,所以p 与q 一真一假. ……………………9分若p真q假,则有6a ≥或1a ≤-且1a ≤, 得1a ≤- ……………………10分若p假q真,则有16a -<<且1a >, 得16a << …………………11分综上知,实数a的取值范围是(,1](1,6)-∞-. ……………………12分18.【解析】(1) 2222()2(cos sin )(cos sin )1f x x x x x x ωωωωω=+-++2cos 212sin(2)16x x x πωωω=++=++ ………………………1分因为点(,1)6π-是函数()f x 图象的一个对称中心,所以36k ωπππ-+=,k Z ∈,所以132k ω=-+,k Z ∈ (2)分因为01ω<<,所以10,2k ω==, 所以()2sin()16f x x π=++ (4)分最小正周期2T π= ………………………5分(2)由(1)知,()2sin()16f x x π=++,向左平移6π个单位得2sin()13y x π=++,再将所得图象上各点的横坐标伸长为原来的2倍,纵坐标不变1()2sin()123g x x π=++ ………………………7分当[,3]x ππ∈-时,列表如下: ………………………10分则函数()f x 在区间[,3]ππ-上的图象如图所示: ………………………12分19.【解析】(1)由已知22(10.75)(5)(10.75)(7)1222k b k b ----⎧=⎪⎨=⎪⎩得22(10.75)(5)0(10.75)(7)1k b k b ⎧--=⎪⎨--=⎪⎩,解得5,1b k == ………………………6分(2)当p q =时,2(1)(5)22t x x ---=,所以2(1)(5)t x x --=- ,故211125(5)10x t x x x=+=+-+- ………………………9分 而25()f x x x=+在(0,4]上单调递减, 所以当4x =时,()f x 有最小值414此时,112510t x x=++-取得最大值5, ………………………11分 故,当4x =时,关税税率的最大值为500% ………………………12分20.【解析】(1)由题知(,0)2p F ,32p FA =+,则(3,0)D p +,FD 的中点坐标为33(,0)24p+,则33324p+=,解得2p =,故C 的方程为24y x =. …………………………4分 (2)依题可设直线AB 的方程为0(0)x my x m =+≠,1122(,),(,)A x y B x y ,则22(,)E x y -,由204y x x my x ⎧=⎨=+⎩消去x ,得20440y my x --=, (5)分 因为012x ≥,所以2016160m x ∆=+>, 124y y m +=,1204y y x ⋅=-, …………………………6分设P 的坐标为(,0)P x ,则22(,)P PE x x y =--,11(,)P PA x x y =--, 由题知//PE PA ,所以2112()()0P P x x y x x y -⋅+-⋅=,即2221121212211212()()44P y y y y y y y y x y x y y y x +++=+==, …………………………7分显然1240y y m +=≠,所以1204P y y x x ==-,即证00P x x +=, 由题知EPB ∆为等腰直角三角形,所以1AP k =,即12121y y x x +=-,也即12221211()4y y y y +=-, 所以124y y -=,所以21212()416y y y y +-⋅=.即220161616m x +=,201m x =-, 01x <, (10)分又因为012x ≥,所以0112x ≤<,d ===t =∈,202x t =-,22(2)42t d t t t -==-,易知4()2f t t t =-在上是减函数,所以2)d ∈. …………………………12分21.【解析】(1))(x f 的定义域为R ,()(2)()xf x x e a '=++ ……………………………1分若0a ≥,则0x e a +>,所以当(,2)x ∈-∞-时,()0f x '<;当(2,)x ∈-+∞时,()0f x '>,所以)(x f 在(,2)-∞-上递减,在(2,)-+∞递增所以2x =-为)(x f 唯一的极小值点,无极大值,故此时)(x f 有一个极值点.……………2分若0a <,令()(2)()0xf x x e a '=++=,则12x =-,2ln()x a =-当2a e -<-时,12x x <,则当1(,)x x ∈-∞时,()0f x '>;当12(,)x x x ∈时,()0f x '<;当2(,)x x ∈+∞时,()0f x '>.所以12,x x 分别为)(x f 的极大值点和极小值点,故此时)(x f 有2个极值点.…………………3分当2a e -=-时,12x x =, ()(2)()0xf x x e a '=++≥且恒不为0,此时)(x f 在R 上单调递增,无极值点 ……………………………………………4分当20e a --<<时,12x x >,则当2(,)x x ∈-∞时,()0f x '>;当21(,)x x x ∈时,()0f x '<; 当1(,)x x ∈+∞时,()0f x '>.所以12,x x 分别为)(x f 的极小值点和极大值点,故此时)(x f 有2个极值点.…………………5分综上,当2a e -=-时,)(x f 无极值点;当0a ≥时,)(x f 有1个极值点; 当2a e -<-或20e a --<<时,)(x f 有2个极值点.…………………6分(2)证明:若00(2)x x ≠-是)(x f 的一个极值点,由(1)可知22(,)(,0)a e e --∈-∞--又22(2)2f e a e ---=-->,所以2(,)a e -∈-∞-,且02x ≠-,…………………7分则0ln()x a =-,所以201()(ln())[ln ()2ln()2]2f x f a a a a =-=-+--, 令ln()(2,)t a =-∈-+∞,则t a e =-,所以21()(ln())(22)2t g t f a e t t =-=-+-故1()(4)2t g t t t e '=-+ …………………10分又因为(2,)t ∈-+∞,所以40t +>,令()0g t '=,得0t =.当(2,0)t ∈-时,()0g t '>,()g t 单调递增,当(0,)t ∈+∞时,()0g t '<,()g t 单调递减 所以0t =是()g t 唯一的极大值点,也是最大值点,即()(0)1g t g ≤=, 故(ln())1f a -≤,即0()1f x ≤ …………………12分22.【解析】(1cos()104πθ+-=,得cos sin 10ρθρθ--=,由cos ,sin x y ρθρθ==,得10x y --=, …………………2分因为244x m y m⎧=⎨=⎩,消去m 得24y x =,所以直线l 的直角坐标方程为10x y --=,曲线C 的普通方程为24y x =. (5)分(2)点M 的直角坐标为(1,0),点M 在直线l 上,设直线l的参数方程为12x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),代入24y x =,得280t --=, …………………7分设点,A B 对应的参数分别为12,t t,则12t t +=128t t =-, 所以1212111||||t t MA MB t t -+====. …………………10分23.【解析】(1)()3g x …,即|1||1|3x x ++-…, 不等式等价于1(1)(1)3x x x -⎧⎨-+--⎩……或11(1)(1)3x x x -<<⎧⎨+--⎩…或1113x x x ⎧⎨++-⎩……, 解得32x ≤-或32x ≥, …………………4分 所以()3g x ≥的解集为33|22x x x ⎧⎫≤-≥⎨⎬⎩⎭或. …………………5分 (2)因为21[2,2],[2,2]x x ∀∈-∃∈-,使得12()()f x g x ≤成立,所以min min ()()([2,2])f x g x x ≤∈-, …………………6分 又min ()2g x =,所以min ()2([2,2])f x x ≤∈-,当22a -≤-,即4a ≥时,min ()(2)424822f x f a a =-=-+=-≤,解得3a ≥,所以4a ≥; 当22a -≥,即4a ≤-时,min ()(2)424822f x f a a ==++=+≤,解得3a ≤-,所以4a ≤-; 当222a -<-<,即44a -<<时22min ()()42242a a a f x f =-=-+≤,解得a ≥a ≤-,所以4a -<≤-或4a ≤<,综上,实数a 的取值范围为(,[22,)-∞-+∞. …………………10分。
湖北省宜昌一中、龙泉中学2020届高三6月联考数学(理科)试题(解析版)

2020年高考数学模拟试卷(理科)(6月份)一、选择题(共12小题).1.已知a 是实数,z =a−i1+i是纯虚数,则z 的虚部为( ) A .1B .﹣1C .iD .﹣i2.已知集合A ={x |x 2+x ﹣2<0},集合B ={x|1x<1},则A ∩B =( ) A .∅B .{x |x <1}C .{x |0<x <1}D .{x |﹣2<x <0}3.“lnx >lny ”是“(13)x <(12)y ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.斐波拉契数列,指的是这样一个数列:1,1,2,3,5,8,13,21,…,在数学上,斐波拉契数列{a n }定义如下:a 1=a 2=1,a n =a n ﹣1+a n ﹣2(n ≥3,n ∈N ),随着n 的增大,a n a n+1越来越逼近黄金分割√5−12≈0.618,故此数列也称黄金分割数列,而以a n +1、a n 为长和宽的长方形称为“最美长方形”,已知某“最美长方形”的面积约为200平方厘米,则该长方形的长大约是( ) A .20厘米B .19厘米C .18厘米D .17厘米5.设S n 是等差数列{a n }的前n 项和,若S 2S 4=13,则S 3S 6等于( )A .316B .13C .516D .7166.函数f (x )=e x ﹣x 2﹣2x 的图象大致为( )A.B.C.D.7.已知函数f(x)=|sin x|(x≥0),方程f(x)=kx恰有三个根,记最大的根为θ,则(1+θ2)sin2θθ=()A.﹣2B.12C.1D.28.为了让居民了解垃圾分类,养成垃圾分类的习惯,让绿色环保理念深入人心.某市将垃圾分为四类:可回收物,餐厨垃圾,有害垃圾和其他垃圾.某班按此四类由9位同学组成四个宣传小组,其中可回收物宣传小组有3位同学,其余三个宣传小组各有2位同学.现从这9位同学中选派5人到某小区进行宣传活动,则每个宣传小组至少选派1人的概率为()A.27B.37C.821D.20219.设抛物线y2=4x的焦点为F,过点F的直线l与抛物线相交于A,B,点A在第一象限,且|AF|﹣|BF|=32,则|AF||BF|=()A.32B.2C.3D.410.某几何体的三视图如图所示,其中网格纸上小正方形的边长为1,则该几何体的外接球的表面积为()A.16πB.12πC.9πD.8π11.已知函数f(x)满足x2f′(x)+2xf(x)=1+lnx,f(e)=1e,当x>0时,下列说法正确的是()①f(x)只有一个零点;②f(x)有两个零点;③f(x)有一个极小值点;④f(x)有一个极大值点A.①③B.①④C.②③D.②④12.已知梯形ABCD满足AB∥CD,∠BAD=45°,以A,D为焦点的双曲线Γ经过B,C 两点.若CD=7AB,则双曲线Γ的离心率为()A.3√24B.3√34C.3√54D.3+√54二、填空题(本大题共4小题,每小题5分,共20分)13.在三角形ABC中,|AB→|=5,AB→⋅AC→=8,则AB→⋅BC→=.14.若(3√x−1√x)n的展开式中各项系数之和为64,则展开式的常数项为.15.在数列{a n},{b n}中,a n+1=2(a n+b n)+2√a n2+b n2,b n+1=2(a n+b n﹣2√a n2+b n2,a1=b1=1,设数列{c n}满足c n=1a n+1bn,则数列{c n}的前10项和S10=.16.四面体P﹣ABC中,PA=√2,PB=PC=AB=AC=2,BC=2√2,动点Q在△ABC的内部(含边界),设∠PAQ =α,二面角P ﹣BC ﹣A 的平面角的大小为β,△APQ 和△BCQ 的面积分别为S 1和S 2,且满足S 1S 2=√3sinα4sinβ,则S 2的最大值为 . 三、解答题:(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,2c cos A =2b ﹣a . (Ⅰ)求角C ;(Ⅱ)如图,若点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足,且DE =√2,求BD 的长.18.如图,在矩形ABCD 中,将△ACD 沿对角线AC 折起,使点D 到达点P 的位置,且平面ABP ⊥平面ABC . (Ⅰ)求证:AP ⊥PB ;(Ⅱ)若直线PC 与平面ABP 所成角的正弦值为34,求二面角P ﹣AC ﹣B 的余弦值.19.已知圆O :x 2+y 2=3,直线PA 与圆O 相切于点A ,直线PB 垂直y 轴于点B ,且|PB |=2|PA |.(Ⅰ)求点P 的轨迹E 的方程;(Ⅱ)过点(1,0)且与x 轴不重合的直线与轨迹E 相交于P ,Q 两点,在x 轴上是否存在定点D ,使得x 轴是∠PDQ 的角平分线,若存在,求出D 点坐标,若不存在,说明理由.20.某工厂的一台某型号机器有2种工作状态:正常状态和故障状态.若机器处于故障状态,则停机检修.为了检查机器工作状态是否正常,工厂随机统计了该机器以往正常工作状态下生产的1000个产品的质量指标值,得出如图1所示频率分布直方图.由统计结果可以认为,这种产品的质量指标值服从正态分布N(μ,σ2),其中μ近似为这1000个产品的质量指标值的平均数x,σ2近似为这1000个产品的质量指标值的方差s2(同一组中的数据用该组区间中点值为代表).若产品的质量指标值全部在(μ﹣3σ,μ+3σ)之内,就认为机器处于正常状态,否则,认为机器处于故障状态.(1)下面是检验员在一天内从该机器生产的产品中随机抽取10件测得的质量指标值:294555636773788793113请判断该机器是否出现故障?(2)若机器出现故障,有2种检修方案可供选择:方案一:加急检修,检修公司会在当天排除故障,费用为700元;方案二:常规检修,检修公司会在七天内的任意一天来排除故障,费用为200元;现需决策在机器出现故障时,该工厂选择何种方案进行检修,为此搜集检修公司对该型号机器近100单常规检修在第i(i=1,2,…,7)天检修的单数,得到如图2所示柱状图,将第i天常规检修单数的频率代替概率.已知该机器正常工作一天可收益200元,故障机器检修当天不工作,若机器出现故障,该选择哪种检修方案?附:√188≈13.71,√208≈14.42,√228≈15.10. 21.已知函数f (x )=(x ﹣1)2﹣alnx (a <0). (Ⅰ)讨论f (x )的单调性;(Ⅱ)若f (x )存在两个极值点x 1,x 2(x 1<x 2),且关于x 的方程f (x )=b (b ∈R )恰有三个实数根x 3,x 4,x 5(x 3<x 4<x 5),求证:2(x 2﹣x 1)>x 5﹣x 3.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.(本小题满分10分)[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,直线l 的参数方程为{x =m +ty =√3t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2=41+sin 2θ.(Ⅰ)求l 的普通方程和C 的直角坐标方程;(Ⅱ)直线l 上的点P (m ,0)为曲线C 内的点,且直线l 与曲线C 交于A ,B ,且|PA |•|PB |=2,求m 的值. [选修4-5:不等式选讲]23.若对于实数x ,y 有|1﹣2x |≤4,|3y +1|≤3. (Ⅰ)求|x +y −16|的最大值M ;(Ⅱ)在(Ⅰ)的条件下,若正实数a ,b 满足1a +2b=M ,证明:(a +1)(b +2)≥509.参考答案一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的答案填涂在答题卡上.) 1.已知a 是实数,z =a−i1+i是纯虚数,则z 的虚部为( ) A .1B .﹣1C .iD .﹣i【分析】利用复数代数形式的乘除运算化简,由实部为0且虚部不为0求得a ,进一步求得z 得答案.解:∵z =a−i1+i =(a−i)(1−i)(1+i)(1−i)=a−12−a+12i 是纯虚数,∴{a−12=0−a+12≠0,即a =1, ∴z =﹣i . 则z 的虚部为﹣1. 故选:B .2.已知集合A ={x |x 2+x ﹣2<0},集合B ={x|1x<1},则A ∩B =( ) A .∅B .{x |x <1}C .{x |0<x <1}D .{x |﹣2<x <0}【分析】求出集合A ,B ,由此能求出A ∩B . 解:因为集合A ={x |x 2+x ﹣2<0}={x |﹣2<x <1}, 集合B ={x|1x <1}={x |x <0或x >1},所以A ∩B ={x |﹣2<x <0}, 故选:D .3.“lnx >lny ”是“(13)x <(12)y ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【分析】由lnx >lny ,结合对数式与指数式的性质可得(13)x <(12)y ,反之,举例说明不成立,再由充分必要条件的判断得答案.解:由lnx >lny ,得x >y >0,此时(13)x <(13)y <(12)y ,反之,由(13)x <(12)y 成立,可以取x =﹣1,y =﹣2,不能推出lnx >lny ,∴“lnx >lny ”是“(13)x <(12)y ”的充分不必要条件.故选:A .4.斐波拉契数列,指的是这样一个数列:1,1,2,3,5,8,13,21,…,在数学上,斐波拉契数列{a n }定义如下:a 1=a 2=1,a n =a n ﹣1+a n ﹣2(n ≥3,n ∈N ),随着n 的增大,a n a n+1越来越逼近黄金分割√5−12≈0.618,故此数列也称黄金分割数列,而以a n +1、a n 为长和宽的长方形称为“最美长方形”,已知某“最美长方形”的面积约为200平方厘米,则该长方形的长大约是( ) A .20厘米B .19厘米C .18厘米D .17厘米【分析】因为由已知有a na n+1=√5−12≈0.618,又a n •a n +1=200,得0.618a n +12≈200,进而解得a n +1. 解:由已知有a na n+1=√5−12≈0.618, 得:a n ≈0.618a n +1, 由a n •a n +1=200, 得0.618a n +12≈200,即a n +12≈323.62, 由于172=289,182=324, 所以a n +1≈18(厘米), 故选:C .5.设S n 是等差数列{a n }的前n 项和,若S 2S 4=13,则S 3S 6等于( )A .316B .13C .516D .716【分析】设等差数列{a n }的首项为a 1,公差为d ,由S 2S 4=13得到首项与公差的关系,再把S 3,S 6用含有d 的代数式表示,则答案可求. 解:设等差数列{a n }的首项为a 1,公差为d , 由S 2S 4=13,得3(2a 1+d )=4a 1+6d ,即a 1=32d .∴S 3=3a 1+3d =92d +3d =152d ,S 6=6a 1+6×5d 2=182d +302d =48d2. ∴S 3S 6=152d 482d =516.故选:C .6.函数f (x )=e x ﹣x 2﹣2x 的图象大致为( )A .B .C .D .【分析】通过图象,判断函数y =e x 与函数y =x 2+2x 的图象交点个数,进而求得函数f (x )的零点个数,结合选项即可得解.解:作出函数y =e x 与函数y =x 2+2x 的图象如下图所示,由图象可知,函数y =e x 与函数y =x 2+2x 的图象有3个交点,则函数f (x )=e x ﹣x 2﹣2x 有3个零点,观察选项可知,只有选项B 符合题意. 故选:B .7.已知函数f (x )=|sin x |(x ≥0),方程f (x )=kx 恰有三个根,记最大的根为θ,则(1+θ2)sin2θθ=( )A .﹣2B .12C .1D .2【分析】依题意,函数f (x )在x =θ处的切线为y =kx ,且θ∈(π,3π2),利用导数的几何意义可得{k =−cosθkθ=−sinθ,再化简所求式子即可得解.解:如图,要使方程f (x )=kx 恰有三个根,且最大的根为θ,则函数f (x )在x =θ处的切线为y =kx ,显然θ∈(π,3π2),而x ∈(π,3π2),f(x)=−sinx ,f′(x)=−cosx ,∴{k =−cosθkθ=−sinθ, ∴(1+θ2)sin2θθ=(1+θ2)⋅2sinθcosθθ=(1+θ2)⋅2(−kθ)⋅(−k)θ=(1+θ2)⋅2k 2=2k 2+2(k θ)2=2(cos 2θ+sin 2θ)=2. 故选:D .8.为了让居民了解垃圾分类,养成垃圾分类的习惯,让绿色环保理念深入人心.某市将垃圾分为四类:可回收物,餐厨垃圾,有害垃圾和其他垃圾.某班按此四类由9位同学组成四个宣传小组,其中可回收物宣传小组有3位同学,其余三个宣传小组各有2位同学.现从这9位同学中选派5人到某小区进行宣传活动,则每个宣传小组至少选派1人的概率为( )A .27B .37C .821D .2021【分析】基本事件总数n =C 95=126,每个宣传小组至少选派1人包含的基本事件个数:m =C 31C 21C 21C 21C 52=120,由此能求出每个宣传小组至少选派1人的概率.解:某市将垃圾分为四类:可回收物,餐厨垃圾,有害垃圾和其他垃圾. 某班按此四类由9位同学组成四个宣传小组,其中可回收物宣传小组有3位同学,其余三个宣传小组各有2位同学. 现从这9位同学中选派5人到某小区进行宣传活动,基本事件总数n=C95=126,每个宣传小组至少选派1人包含的基本事件个数:m=C31C21C21C21C52=120,则每个宣传小组至少选派1人的概率为P=mn=120126=2021.故选:D.9.设抛物线y2=4x的焦点为F,过点F的直线l与抛物线相交于A,B,点A在第一象限,且|AF|﹣|BF|=32,则|AF||BF|=()A.32B.2C.3D.4【分析】过A,B分别作准线的垂线,再过B作AA'的垂线,由抛物线的性质及三角形相似可得对应边成比例,求出|AF|,|BF|的值,进而求出比值.解:设|BF|=m,则由|AF|﹣|BF|=32可得|AF|=32+m,由抛物线的方程可得:F(1,0),过A,B分别作准线的垂线交于A',B',过B作AA'的垂线交AA',OF分别于C,D点,则△BFD∽△BAC,所以BFAB=DFAC,即m32+2m=2−m32,解得:m=32,所以AFBF =32+3232=2,故选:B.10.某几何体的三视图如图所示,其中网格纸上小正方形的边长为1,则该几何体的外接球的表面积为()A.16πB.12πC.9πD.8π【分析】首先把三视图转换为几何体,进一步求出三棱锥体的外接球的半径,进一步求出球的表面积.解:根据几何体的三视图转换为直观图为:该几何体为底面为等腰直角三角形,高为2的三棱锥体.如图所示:所以该三棱锥体的外接球的球心为O,外接球的半径为OA=r,则:r2=(2−r)2+(√2)2,解得r2=94.故S=4π×94=9π.故选:C.11.已知函数f(x)满足x2f′(x)+2xf(x)=1+lnx,f(e)=1e,当x>0时,下列说法正确的是()①f(x)只有一个零点;②f(x)有两个零点;③f(x)有一个极小值点;④f(x)有一个极大值点A.①③B.①④C.②③D.②④【分析】令g(x)=x2f(x),则g'(x)=1+lnx,所以g(x)=x•lnx+C,即f(x)=xlnx+C x2,由f(e)=e+Ce2=1e,解得C=0,所以f(x)=lnxx,求导得f′(x)=1−lnxx2,利用导数可求出函数f(x)的单调区间,进而得f(x)在x=e处取得极大值f(e)=1e,而这也是最大值,从而可对③和④作出判断;又f(1)=0,且当x>e时,f(x)>0恒成立,所以f(x)只有一个零点为x=1,从而可对①和②作出判断.解:令g(x)=x2f(x),则g'(x)=x2f′(x)+2xf(x)=1+lnx,∴g(x)=x•lnx+C,即x2f(x)=x•lnx+C,∴f(x)=xlnx+C x2,∵f(e)=e+Ce2=1e,∴C=0,∴f(x)=lnxx,f′(x)=1−lnxx2,当0<x<e时,f'(x)>0,f(x)单调递增;当x>e时,f'(x)<0,f(x)单调递减,∴f(x)在x=e处取得极大值f(e)=1e,而这也是最大值,即③错误,④正确;又∵f(1)=0,且当x>e时,f(x)>0恒成立,∴f(x)只有一个零点为x=1,即①正确,②错误.∴正确的有①④,故选:B.12.已知梯形ABCD满足AB∥CD,∠BAD=45°,以A,D为焦点的双曲线Γ经过B,C两点.若CD=7AB,则双曲线Γ的离心率为()A.3√24B.3√34C.3√54D.3+√54【分析】先画出大致图象,结合双曲线的定义以及余弦定理求得a,c之间的关系即可得到结论.解:如图:连接AC,BD;设双曲线的焦距AD=2c;实轴长为2a;则BD﹣AB=AC﹣AD=2a;设AB=m,则CD=7m,BD=2a+m,AC=2a+7m,依题意,∠BAD=45°,∠ADC=135°,在△ABD中,由余弦定理及题设可得:(2a+m)2=m2+4c2﹣2√2mc;在△ACD中,由余弦定理及题设可得:(2a+7m)2=49m2+4c2+14√2mc;整理得:√2(c2﹣a2)=m(√2a+c);√2(c2﹣a2)=7m(√2a﹣c);两式相结合得:√2a+c=7(√2a﹣c)⇒6√2a=8c;∴双曲线Γ的离心率为e=ca=3√24;故选:A.二、填空题(本大题共4小题,每小题5分,共20分)13.在三角形ABC中,|AB→|=5,AB→⋅AC→=8,则AB→⋅BC→=﹣17.【分析】直接利用向量的数量积转化求解即可.解:在三角形ABC中,|AB→|=5,AB→⋅AC→=8,可得AB→⋅(AB→+BC→)=AB→2+AB→⋅BC→=25+AB→⋅BC→=8,则AB→⋅BC→=−17.故答案为:﹣17.14.若(3√x−1√x)n的展开式中各项系数之和为64,则展开式的常数项为﹣540.【分析】依据各项系数之和为2n,列出方程求出n,利用二项展开式的通项公式求出常数项.解:若(3√x√x)n的展开式中各项系数之和为2n=64,解得n=6,则展开式的常数项为C63(3√x)3⋅1√x)3=−540,故答案为:﹣540.15.在数列{a n},{b n}中,a n+1=2(a n+b n)+2√a n2+b n2,b n+1=2(a n+b n﹣2√a n2+b n2,a1=b1=1,设数列{c n}满足c n=1a n+1bn,则数列{c n}的前10项和S10=1023256.【分析】首先求出a n+b n=2×4n−1=22n−1和a n b n=1×8n−1=8n−1,进一步求出数列{c n}的通项公式,最后求出数列的和.解:数列{a n},{b n}中,a n+1=2(a n+b n)+2√a n2+b n2,①,b n+1=2(a n+b n)﹣2√a n2+b n2,②所以①+②得:a n +1+b n +1=4(a n +b n ),整理得a n+1+b n+1a n +b n=4(常数),所以数列{a n +b n }是以a 1+b 1=2为首项,4为公比的等比数列. 所以a n +b n =2×4n−1=22n−1.①×②得:a n+1b n+1=4(a n +b n )2−4(a n 2+b n 2)=8a n b n , 所以a n+1b n+1a n b n=8(常数),故数列{a n b n }是以a 1b 1=1为首项,8为公比的等比数列,所以a n b n =1×8n−1=8n−1,由于数列{c n }满足c n =1a n +1b n =22n−18n−1=22﹣n ,所以S 10=2(1−1210)1−12=1023256,故答案为:1023256.16.四面体P ﹣ABC 中,PA =√2,PB =PC =AB =AC =2,BC =2√2,动点Q 在△ABC 的内部(含边界),设∠PAQ =α,二面角P ﹣BC ﹣A 的平面角的大小为β,△APQ 和△BCQ 的面积分别为S 1和S 2,且满足S 1S 2=√3sinα4sinβ,则S 2的最大值为 4﹣2√2 . 【分析】取BC 的中点M ,由题意可得AM =PM =PA =√2,所以β=∠PMA =60°,作QH ⊥BC 于M ,所以S 1S 2=12AP⋅AQ⋅sinα12BC⋅QH =√3sinα4sinβ=√3sinα4⋅√32=12sin α,而BC =2PA=2√2,可得AQ =QH ,即Q 为三角形ABC 内的一条抛物线,当Q 在AB 或AC 上时,S 2最大,求出S 2的最大值.解:取BC 的中点M ,连接AM ,PM ,因为PB =PC =AB =AC 可得AM ⊥BC ,PM ⊥BC ,且PA =√2,PB =PC =AB =AC =2,BC =2√2,所以AM =PM =PA =√2,所以β=∠PMA=60°,作QH⊥BC于M,所以S1S2=12AP⋅AQ⋅sinα12BC⋅QH=√3sinα4sinβ=√3sinα4⋅√32=12sinα,而BC=2PA=2√2,所以可得AQ=QH,所以Q的轨迹是△ABC内的一条抛物线,当Q在AB或AC上时,S2最大,此时AQ=QH=2(√2−1),S2=4﹣2√2.故答案为:4﹣2√2三、解答题:(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.已知△ABC的内角A,B,C的对边分别为a,b,c,且a=2,2c cos A=2b﹣a.(Ⅰ)求角C;(Ⅱ)如图,若点D在边AC上,AD=DB,DE⊥AB,E为垂足,且DE=√2,求BD 的长.【分析】(I)由正弦定理结合和差角公式进行化简可求cos C,进而可求C;(II )由已知结合正弦定理可求AB ,然后结合勾股定理即可求解. 解:(I )∵2c cos A =2b ﹣a .由正弦定理可得,2sin C cos A =2sin B ﹣sin A ,所以2sin C cos A =2sin (A +C )﹣sin A =2sin A cos C +2sin C cos A ﹣sin A , 因为sin A ≠0,故cos C =12,C ∈(0,π),故C =13π;(II )设BD =AD =x ,在△ABC 中,由正弦定理可得,2sinA=AB sinC,所以AB =√62x ,在Rt △ADE 中,由勾股定理可得,x 2=(√64)2+√22,解可得x =BD =4√55.18.如图,在矩形ABCD 中,将△ACD 沿对角线AC 折起,使点D 到达点P 的位置,且平面ABP ⊥平面ABC . (Ⅰ)求证:AP ⊥PB ;(Ⅱ)若直线PC 与平面ABP 所成角的正弦值为34,求二面角P ﹣AC ﹣B 的余弦值.【分析】(Ⅰ)由四边形ABCD 是矩形,得AB ⊥BC ,推导出BC ⊥平面ABP ,BC ⊥AP ,从而AP ⊥PC ,进而AP ⊥平面PBC ,由此能证明AP ⊥PB .(Ⅱ)过P 作PO ⊥AB 于点O ,则PO ⊥平面ABC ,以OB 所在直线为x 轴,过O 作y 轴平行于BC ,OP 为z 轴,建立空间直角坐标系,利用向量法能求出二面角P ﹣AC ﹣B 的余弦值.解:(Ⅰ)证明:由四边形ABCD 是矩形,得AB ⊥BC , 根据平面ABP ⊥平面ABC ,平面ABP ∩平面ABC =AB , 得BC ⊥平面ABP ,则BC ⊥AP ,又AP ⊥PC ,根据BC ∩PC =C ,是AP ⊥平面PBC , ∵PB ⊂平面PBC ,∴AP ⊥PB .(Ⅱ)解:过P 作PO ⊥AB 于点O ,∵平面ABP ⊥平面ABC , ∴PO ⊥平面ABC ,以OB 所在直线为x 轴,过O 作y 轴平行于BC , OP 为z 轴,建立如图所示空间直角坐标系,由(Ⅰ)知CB ⊥平面ABP ,∴∠CPB 是直线PC 与平面ABP 所成角,即sin ∠CPB =34,在△PBC 中,sin ∠CBP =CB CP =34, 设CB =3,则CP =4,PB =√42−32=√7,∵PO ⊥平面ABC ,∴可取平面ABC 的一个法向量m →=(0,0,1),由(Ⅰ)知,AP ⊥PB ,∴在直角三角形APB 中,PO ⊥AB ,AP =3,AB =4,PB =√7,∴AO =94,BO =74,PO =3√74,∴P (0,0,3√74),A (−94,0,0),C (74,3,0),AC →=(4,3,0),AP →=(94,0,3√74),设平面PAC 的法向量n →=(x ,y ,z ),则由{n →⋅AC →=4x +3y =0n →⋅AP →=94x +3√74z =0,取x =﹣3,则n =(﹣3,4,√7), 则cos <m →,n →>=m →⋅n →|m →|⋅|n →|=97√9+16+817=916, ∵二面角P ﹣AC ﹣B 的平面角是锐角,∴二面角P ﹣AC ﹣B 的余弦值为916.19.已知圆O :x 2+y 2=3,直线PA 与圆O 相切于点A ,直线PB 垂直y 轴于点B ,且|PB |=2|PA |.(Ⅰ)求点P 的轨迹E 的方程;(Ⅱ)过点(1,0)且与x 轴不重合的直线与轨迹E 相交于P ,Q 两点,在x 轴上是否存在定点D ,使得x 轴是∠PDQ 的角平分线,若存在,求出D 点坐标,若不存在,说明理由.【分析】(Ⅰ)设P (x ,y ),则|PA |2=x 2+y 2﹣3,|PB |2=x 2,代入|PB |=2|PA |即可得到点P 的轨迹E 的方程;(Ⅱ)设直线l 的方程为:x =my +1,与椭圆方程联立,利用韦达定理得到y 1+y 2=−6m 4+3m 2,y 1⋅y 2=−94+3m 2,代入k PD +k QD =0,化简整理得2my 1y 2+(1−x 0)(y 1+y 2)=−18m4+3m 2−6m(1−x 0)4+3m 2=0,解得:x 0=4,所以存在定点D (4,0),使得x 轴是∠PDQ 的角平分线.解:(Ⅰ)设P (x ,y ),则|PA |2=|PO |2﹣3=x 2+y 2﹣3,|PB |2=x 2, 由|PB |=2|PA |得:x 2=4(x 2+y 2﹣3),化简得x 24+y 23=1(x ≠0),∴点P 的轨迹E 的方程为:x 24+y 23=1(x ≠0);(Ⅱ)设直线l 的方程为:x =my +1,P (x 1,y 1),Q (x 2,y 2),联立方程{x 24+y 23=1x =my +1,整理得:(4+3m 2)y 2+6my ﹣9=0,∴y 1+y 2=−6m 4+3m 2,y 1⋅y 2=−94+3m 2, 假设存在定点D (x 0,0),使得x 轴是∠PDQ 的角平分线,则k PD +k QD =0, ∴y 1x 1−x 0+y 2x 2−x 0=0,∴y 1my 1+1−x 0+y 2my 2+1−x 0=0,∴y 1(my 2+1−x 0)+y 2(my 1+1−x 0)(my 1+1−x 0)(my 2+1−x 0)=0,∴2my 1y 2+(1−x 0)(y 1+y 2)(my 1+1−x 0)(my 2+1−x 0)=0,即2my 1y 2+(1−x 0)(y 1+y 2)=−18m4+3m 2−6m(1−x 0)4+3m 2=0,解得:x 0=4,所以存在定点D (4,0),使得x 轴是∠PDQ 的角平分线.20.某工厂的一台某型号机器有2种工作状态:正常状态和故障状态.若机器处于故障状态,则停机检修.为了检查机器工作状态是否正常,工厂随机统计了该机器以往正常工作状态下生产的1000个产品的质量指标值,得出如图1所示频率分布直方图.由统计结果可以认为,这种产品的质量指标值服从正态分布N (μ,σ2),其中μ近似为这1000个产品的质量指标值的平均数x ,σ2近似为这1000个产品的质量指标值的方差s 2(同一组中的数据用该组区间中点值为代表).若产品的质量指标值全部在(μ﹣3σ,μ+3σ)之内,就认为机器处于正常状态,否则,认为机器处于故障状态.(1)下面是检验员在一天内从该机器生产的产品中随机抽取10件测得的质量指标值:294555636773788793113请判断该机器是否出现故障?(2)若机器出现故障,有2种检修方案可供选择:方案一:加急检修,检修公司会在当天排除故障,费用为700元;方案二:常规检修,检修公司会在七天内的任意一天来排除故障,费用为200元;现需决策在机器出现故障时,该工厂选择何种方案进行检修,为此搜集检修公司对该型号机器近100单常规检修在第i(i=1,2,…,7)天检修的单数,得到如图2所示柱状图,将第i天常规检修单数的频率代替概率.已知该机器正常工作一天可收益200元,故障机器检修当天不工作,若机器出现故障,该选择哪种检修方案?附:√188≈13.71,√208≈14.42,√228≈15.10.【分析】(1)由图1可估计1000个产品的质量指标值的平均数x=70和方差s2=188,所以μ=70,σ=√188≈13.71,从而得到产品的质量指标值允许落在的范围为(28.87,111.13),由于抽取产品质量指标值出现了113,不在(28.87,111.13)之内,故机器处于故障状态;(2)方案一:工厂需要支付检修费和损失收益之和为700+200=900元;方案二:设损失收益为X元,则X的可能取值为200,400,600,800,1000,1200,1400,然后由图2可得出每个X的取值所对应的概率,求出数学期望,可得工厂需要支付检修费和损失收益之和为200+732=932元,由于900<932,故若机器出现故障,该选择加急检修方案.解:(1)由图1可估计1000个产品的质量指标值的平均数x和方差s2分别为x=40×0.04+50×0.08+60×0.24+70×0.30+80×0.20+90×0.10+100×0.04=70,s2=(﹣30)2×0.04+(﹣20)2×0.08+(﹣10)2×0.24+02×0.30+102×0.20+202×0.10+302×0.04=188,∴μ=70,σ=√188≈13.71,∴μ﹣3σ≈28.87,μ+3σ≈111.13,∴产品的质量指标值允许落在的范围为(28.87,111.13),又抽取产品质量指标值出现了113,不在(28.87,111.13)之内,故可判断该机器处于故障状态.(2)方案一:工厂需要支付检修费和损失收益之和为700+200=900元;方案二:设损失收益为X元,则X的可能取值为200,400,600,800,1000,1200,1400,∴X的分布列为:X200400600800100012001400 P0.070.180.250.200.150.120.03数学期望E(X)=200×0.07+400×0.18+600×0.25+800×0.20+1000×0.15+1200×0.12+1400×0.03=732元,故工厂需要支付检修费和损失收益之和为200+732=932元,∵900<932,∴当机器出现故障时,选择加急检修更为适合.21.已知函数f(x)=(x﹣1)2﹣alnx(a<0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f (x )存在两个极值点x 1,x 2(x 1<x 2),且关于x 的方程f (x )=b (b ∈R )恰有三个实数根x 3,x 4,x 5(x 3<x 4<x 5),求证:2(x 2﹣x 1)>x 5﹣x 3.【分析】(Ⅰ)求导得f ′(x )=2x 2−2x−a x,令f ′(x )=0,即2x 2﹣2x ﹣a =0,△=4+8a ,分两种情况①△≤0,②△>0,讨论f (x )单调性.(Ⅱ)证明:由题意得−12<a <0,画出草图,知0<x 3<x 1<x 4<x 2<x 5,0<x 1<x 2<1,要证:2(x 2﹣x 1)>x 5﹣x 3,即证:2(x 2﹣x 1)>(x 5+x 4)﹣(x 3+x 4);只需证:{x 5+x 4<2x 2x 3+x 4>2x 1,先证:x 3+x 4>2x 1.法一:即证x 4>2x 1﹣x 3,由(1)f (x )单调递减,只需证f (x 4)<f (2x 1﹣x 3),即证:f (x 3)<f (2x 1﹣x 3),令g (x )=f (x )﹣f (2x 1﹣x ),0<x <x 1,求导数,分析单调性,最值得g (x )<g (x 1)=0,故f (x )<f (2x 1﹣x ),在(0,x 1)恒成立,f (x 3)<f (2x 1﹣x 3)得证,同理可以证明:x 3+x 4<2x 2,综上,2(x 2﹣x 1)>x 5﹣x 3,得证.法二:由题可得{(x 3−1)2−alnx 3=b(x 4−1)2−alnx 4=b (x 5−1)2−alnx 5=b,即{(x 4−x 3)(x 4+x 3−2)=a(lnx 4−lnx 3)①(x 5−x 4)(x 5+x 4−2)=a(lnx 5−lnx 4)②,由①式得a x 4+x 3−2=x 4−x 3lnx 4−lnx 3,先证x 4−x 3lnx 4−lnx 3<x 4+x 32,令h (t )=lnt −2(t−1)t+1,(t >1),先求导得h (t )在(1,+∞)上单调递增,从而h (t )>h (1)=0,取t =x4x 5>1,故ax 4+x 3−2<x 4+x 32,即x 4+x 3>1−√2a +1=2x 1,同理可得a x 5+x 4−2=x 5−x 4lnx 5−lnx 4<x 5+x 42,即x 5+x 4<1+√2a +1=2x 2,综上,2(x 2﹣x 1)>x 5﹣x 3,得证.解:(Ⅰ)由题意得f ′(x )=2(x ﹣1)−a x =2x 2−2x−a x,令f ′(x )=0,即2x 2﹣2x ﹣a =0,△=4+8a ,①当a ≤−12时,△≤0,f ′(x )≥0,函数f (x )在(0,+∞)上单调递增,②当−12<a <0时,△>0,2x 2﹣2x ﹣a =0的两根为x 1=1−√2a+12,x 2=1+√2a+12且0<x 1=1−√2a+12<x 2,当x ∈(0,1−√2a+12),(1+√2a+12,+∞)时,f ′(x )>0,f (x )单调递增, 当x ∈(1−√2a+12,1+√2a+12)时,f ′(x )<0,f (x )单调递减,综上,当a ≤−12时,函数f (x )在(0,+∞)上单调递增,当−12<a <0时,当x ∈(0,1−√2a+12),(1+√2a+12,+∞)时,f (x )单调递增, 当x ∈(1−√2a+12,1+√2a+12)时,f (x )单调递减,(Ⅱ)证明:由题意得−12<a <0,0<x 3<x 1<x 4<x 2<x 5,0<x 1<x 2<1,要证:2(x 2﹣x 1)>x 5﹣x 3,即证:2(x 2﹣x 1)>(x 5+x 4)﹣(x 3+x 4);只需证:{x 5+x 4<2x 2x 3+x 4>2x 1先证:x 3+x 4>2x 1. 法一:即证x 4>2x 1﹣x 3,又由(1)知f (x )在(x 1,x 2)上单调递减, 只需证f (x 4)<f (2x 1﹣x 3),而f (x 4)=f (x 3),即证:f (x 3)<f (2x 1﹣x 3), 令g (x )=f (x )﹣f (2x 1﹣x ),0<x <x 1,g ′(x )=f ′(x )+f ′(2x 1﹣x )=2x ﹣2−ax +2(2x 1﹣x )﹣2−a2x 1−x ,=4(x 1﹣1)−a x −a2x 1−x=4(x 1−1)(2x 1x−x 2)−2ax 1x(2x 1−x)又2(x 1﹣1)−a x 1=0,即x 1﹣1=a2x 1,那么,g ′(x )=2a x 1(2x 1x−x 2−x 12)x(2x 1−x)=−2a x 1(x−x 1)2x(2x 1−x),而0<x <x 1,且−12<a <0, 则g ′(x )>0,故g (x )在(0,x 1)单调递增,则g (x )<g (x 1)=0, 故f (x )<f (2x 1﹣x ),在(0,x 1)恒成立, 又0<x 3<x 1,则f (x 3)<f (2x 1﹣x 3)得证, 同理可以证明:x 3+x 4<2x 2, 综上,2(x 2﹣x 1)>x 5﹣x 3,得证.法二:由方程f (x )=b 恰有三个实数根x 3,x 4,x 5(x 3<x 4<x 5),可得{(x 3−1)2−alnx 3=b(x 4−1)2−alnx 4=b (x 5−1)2−alnx 5=b ,即{(x 4−x 3)(x 4+x 3−2)=a(lnx 4−lnx 3)①(x 5−x 4)(x 5+x 4−2)=a(lnx 5−lnx 4)②,由①式得a x 4+x 3−2=x 4−x 3lnx 4−lnx 3,先证x 4−x 3lnx 4−lnx 3<x 4+x 32,令h (t )=lnt −2(t−1)t+1,(t >1), h ′(t )=(t−1)2t(t+1)2>0,所以h (t )在(1,+∞)上单调递增,从而h (t )>h (1)=0,取t =x4x 5>1,则有x 4−x 3lnx 4−lnx 3<x 4+x 32,故ax 4+x 3−2<x 4+x 32,从而(x 4+x 3)2﹣2(x 4+x 3)<2a ,即(x 4+x 3﹣1)2<2a +1, 即x 4+x 3>1−√2a +1=2x 1, 同理可得ax 5+x 4−2=x 5−x 4lnx 5−lnx 4<x 5+x 42,即x 5+x 4<1+√2a +1=2x 2,综上,2(x 2﹣x 1)>x 5﹣x 3,得证. 一、选择题22.在平面直角坐标系xOy 中,直线l 的参数方程为{x =m +ty =√3t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2=41+sin 2θ.(Ⅰ)求l 的普通方程和C 的直角坐标方程;(Ⅱ)直线l 上的点P (m ,0)为曲线C 内的点,且直线l 与曲线C 交于A ,B ,且|PA |•|PB |=2,求m 的值.【分析】(Ⅰ)把曲线C 的极坐标方程变形,结合极坐标与直角坐标的互化公式可得曲线C 的直角坐标方程,直接把直线参数方程中的参数消去,可得直线的普通方程; (Ⅱ)化直线的参数方程为标准形式,代入曲线C 的直角坐标方程,得到关于t 的一元二次方程,由根与系数的关系结合参数t 的几何意义求解m 值. 【解答】(Ⅰ)∵曲线C 的极坐标方程为ρ2=42,∴ρ2+ρ2sin 2θ=4, 即x 2+2y 2=4,得x 24+y 22=1.∴曲线C 的直角坐标方程为x 24+y 22=1.直线l 的参数方程为{x =m +ty =√3t (t 为参数),消去参数t ,可得直线l 的普通方程为√3x −y −√3m =0;(Ⅱ)设直线l 的参数方程为{x =m +12t′y =√32t′,代入椭圆方程,得74(t′)2+mt′+m 2−4=0.再设A ,B 对应的参数分别为t ′1,t ′2,则t′1t′2=4(m 2−4)7.又点P (m ,0)为曲线C 内的点,∴m 2<4,即﹣2<m <2.由|PA |•|PB |=|t ′1t ′2|=4|m 2−4|7=2,解得m =±√22.[选修4-5:不等式选讲]23.若对于实数x ,y 有|1﹣2x |≤4,|3y +1|≤3. (Ⅰ)求|x +y −16|的最大值M ;(Ⅱ)在(Ⅰ)的条件下,若正实数a ,b 满足1a+2b=M ,证明:(a +1)(b +2)≥509. 【分析】(Ⅰ)由|x +y −16|=|12(2x −1)+13(3y +1)|,利用绝对值的不等式放缩即可求得最大值;(Ⅱ)由(Ⅰ)知,1a +2b=3,得2a +b =3ab ≥2√2ab ,求解ab 的最小值,即可证明(a +1)(b +2)≥509. 【解答】(Ⅰ)解:|x +y −16|=|12(2x −1)+13(3y +1)|≤12|2x −1|+13|3y +1|≤12×4+13×3=3, 当{x =52y =23或{x =−32y =−43时等号成立, ∴|x +y −16|的最大值M 为3.(Ⅱ)证明:由(Ⅰ)知,1a+2b=3,∴2a +b =3ab ≥2√2ab ,得ab ≥89.∴(a +1)(b +2)=2a +b +ab +2=4ab +2≥4×89+2=509.。
湖北剩州中学宜昌一中龙泉中学三校2020届高三数学联考试题文201912050170

湖北省荆州中学、宜昌一中、龙泉中学三校2020届高三数学联考试题文本试卷共 2 页,共 22 题。
满分150分,考试用时120分钟。
一、选择题:(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
请将正确的答案填涂在答题卡上。
)1.已知a 为实数,若复数2(9)(3)i z a a =-++为纯虚数,则复数z 的虚部为 A .3 B .6i C .3± D .6 2.已知}3|{},032|{22-==≤-+=x y x B x x x A ,则=⋂B AA .]2,1[B .]3,3[--C .]3,3[D .]3,2[3.下列函数中,其定义域和值域与函数ln xy e =的定义域和值域相同的是A .y=B .ln y x =C .y x =D .10xy =4.三个数0.20.40.44,3,log 0.5的大小顺序是A .0.40.20.43<4log 0.5<B .0.20.40.4log 0.543<<C .0.40.20.4log 0.534<<D .0.40.20.43<log 0.5<45.数列{}n a 满足()*211N n n n n a a a a n +++-=-∈,且810a =,则15S =A .95B .190C .380D .1506.函数()e ln ||xf x x =⋅的大致图象为A B C D7.已知函数f (x )=2log ,1()1,11x x f x x x≥⎧⎪=⎨<⎪-⎩,则不等式f (x )≤2的解集为A .B .[]1,1,42⎛⎤-∞ ⎥⎝⎦C .(]1,1,42⎛⎤-∞ ⎥⎝⎦D .(][],01,4-∞8.已知数列}{n a 为等比数列,且6427432-=-=a a a a ,则=⋅)32tan(5πa A .3- B .3± C .3 D .33- 9.函数21()sin cos 2f x x x x =+,则下列结论正确的是 A .()f x 的最大值为1B .()f x 在,63ππ⎛⎤-⎥⎝⎦上单调递增 C .()y f x =的图象关于直线712x π=对称 D .()y f x =的图象关于点7,012π⎛⎫⎪⎝⎭对称10.下列判断正确的是A .“1sin 2α=”是“6πα=”的充分不必要条件B .命题“若0,0x xy ≠≠则”的逆否命题为真C .命题“x R ∀∈,20x>”的否定是“0x R ∃∈,020x >”D .若命题p 为真命题,命题q 为假命题,则命题“p q ∧⌝”为真命题 11.已知函数2()ln 1f x x a x =-+在(1,2)内不是单调函数,则实数a 的取值范围是A .()2,8B .[]2,8C .(][),28,-∞⋃+∞D .[)2,8D二、填空题(本大题共4小题,每小题5分,共20分) 13.已知12,e e 为单位向量且夹角为4π,设12232,3a e e b e =+=,则a 在b 方向上的投影为__ ___.14.已知1(0,),sin cos 5απαα∈+=,则tan α= . 15.已知n S 为数列{}n a 的前n 项和,且2log (2)1n S n +=+,则数列{}n a 的通项公式为 .16.若函数32,1()3,1x e a x f x x x x ⎧->⎪=⎨-+≤⎪⎩有最小值,则实数a 的取值范围为 . 三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)已知等比数列{}n a 满足23132a a a =+,且23+a 是42,a a 的等差中项. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若nn n a a b 1log 2+=,求}{n b 的前n 项和为n S .18.(本小题满分12分)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,ccos cos CA =. (Ⅰ)求角A 的值; (Ⅱ)若角π6B =,BC边上的中线AM =ABC ∆的面积.19.(本小题满分12分)如图1,在直角梯形ABCD 中,AD //BC ,AB ⊥BC ,BD ⊥DC , 点E 是BC 边的中点, 将△ABD 沿BD 折起,使平面ABD ⊥平面BCD ,连接AE ,AC ,DE , 得到如图2所示的几何体. (Ⅰ)求证:AB ⊥平面ADC ; (Ⅱ)若1AD =,AB =,求点B 到平面ADE 的距离.B A图1图220.(本小题满分12分)椭圆221(1)2x y m m m+=>+的左、右顶点分别为A ,B ,过点B 作直线l 交直线x=-2于点M ,交椭圆于另一点P .(Ⅰ)求该椭圆的离心率的取值范围;(Ⅱ)若该椭圆的长轴长为4,判断OM OP ⋅是否为定值,若是,求出该定值,若不是,说明理由.21.(本小题满分12分)已知函数21()2sin 1,()cos 2f x x xg x x m x =-+=+. (Ⅰ)求()f x 在()0,π上的单调区间;(Ⅱ)当m >1时,证明:()g x 在()0,π上存在最小值.(二)选考题:共10分.请考生在第22,23题中任选一题作答.如果多做,按所做的第一题记分.22.(本小题满分10分)选修4—4:极坐标与参数方程在平面直角坐标系xOy 中,将曲线1cos :sin x C y θθ=⎧⎨=⎩(θ为参数) 上任意一点(,)P x y 经过伸缩变换''2x y y⎧=⎪⎨=⎪⎩后得到曲线2C 的图形.以坐标原点O 为极点,x 轴的非负半轴为极轴,取相同的单位长度建立极坐标系,已知直线:(2cos sin )8l ρθθ-=. (Ⅰ)求曲线2C 和直线l 的普通方程;(Ⅱ)点P 为曲线2C 上的任意一点,求点P 到直线l 的距离的最大值及取得最大值时点P 的坐标.23.(本小题满分10分)选修4—5:不等式选讲已知函数|3||13|)(k x x x f ++-=,4)(+=x x g . (Ⅰ)当3-=k 时,求不等式()4f x ≥的解集; (Ⅱ)设1->k ,且当⎪⎭⎫⎢⎣⎡-∈31,3k x 时,都有()()f x g x ≤,求k 的取值范围.宜昌一中、荆州中学、龙泉中学三校联盟高三11月联考 文科数学参考答案一、选择题1-5 DBABD 6-10 BBCBD 11-12 AB 二 填空题13.22+ 14.43- 15.2n n a = (2,n 若只写不给分 ) 16.a e ≤ 三.解答题17.解:设公比为q…………………………………………………………………………1分由23132a a a =+得q a q a a 121132=+,∴q q 322=+,解得q=1或2 (3)分又23+a 是42,a a 的等差中项即2(23+a )=42a a +若q=1,则2(1a +2)=21a ,方程无解,舍去;…………………………… 4分 若q=2,则2(41a +2)=21a +81a ,解得1a =2∴nn n q a a 21-1== ………………………………………………………………6分(2)∵nn n a a b 1log 2+==n n-2∴21)(n -2-12-21+=+n S n n 21)(n -2-21+=+n n ………………………………12分18.解析:(1)因为(2)cos cos b A C =,由正弦定理得(2sin )cos cos B C A A C =,即2sin cos cos cos B A A C C A =()A C =+ . ……………4分 因为B A C π=--,所以()sinB sin A C =+,所以2sin cos B A B =. 因为0()B π∈,,所以0sinB ≠,所以cos A =,因为0A π<<,所以6A π=. ……………6分(2)由(1)知π6A B ==,所以AC BC =,23C π=. …………….8分设AC x =,则12MC x =,又AM = 在AMC 中,由余弦定理得2222cos ,AC MC AC MC C AM +-⋅=即222()2cos120,22x x x x +-⋅⋅=o解得x =故212sin 23ABC S x π∆== ...................................................... 12分19. (Ⅰ) 因为平面ABD ⊥平面BCD ,平面ABD平面BCD BD =,又BD ⊥DC ,所以DC ⊥平面ABD ……………………1分 因为AB ⊂平面ABD ,所以DC ⊥AB ………………………2分 又AD ⊥AB DC ∩AD D =所以AB ⊥平面ADC . …………………………………………6分 (Ⅱ)2AB =1AD =.BD ∴=依题意△ABD ~△BDC ,所以AB CD AD BD ==.CD ∴= …………7分 故3BC =. ……………………………6分 由于AB ⊥平面ADC ,AB ⊥AC , E 为BC 的中点, 得AE 322BC ==,同理DE 322==BC ,所以 22=ADE S 因为DC ⊥平面ABD ,所以3331=⋅=-ABD BCD A S CD V . 设点B 到平面ADE 的距离为d , 则632131====⋅---BCD A BDE A ADE B ADE V V V S d , 所以26=d ……………………11分, 即点B 到平面ADE 的距离为26. ……………………12分 EDCA20.(Ⅰ)解:∵e====, .............................................. 2分又m>1,∴0<e<=,∴e∈(0,)....................................................................... 5分(2)证明:∵椭圆的长轴长为2=4,∴m=2, .......................................... 6分易知A(-2,0),B(2,0),设M(-2,y0),P(xⅠ,yⅠ),则=(xⅠ,yⅠ),=(-2,y0),直线BM的方程为y=-(x-2),即y=-x+y0,代入椭圆方程x2+2y2=4,得(1+)x2-x+-4=0,由韦达定理得2xⅠ=......................................... 8分∴xⅠ=,∴yⅠ=, .............................................................. 9分∴·=-2xⅠ+y0yⅠ=-+==4. ........................................ 12分21.(1)令f′(x)=0,即,x∈(0,π),得当x变化时,f′(x),f(x)变化如下:所以函数f(x)的单调递减区间为,单调递增区间为…………………(5分)(2)因为,所以g ′(x )=x -m sin x令h (x )=g ′(x )=x -m sin x ,则h ′(x )=1-m cos x ……………(6分) 因为m >Ⅰ,所以所以h ′(x )=1-m cos x =0,即在(0,π)内有唯一解x 0当x ∈(0,x 0)时,h ′(x )<0,当x ∈(x 0,π)时,h ′(x )>0,所以h (x )在(0,x 0)上单调递减,在(x 0,π)上单调递增.……………(8分) 所以h (x 0)<h (0)=0,又因为h (π)=π>0所以h (x )=x -m sin x 在(x 0,π)⊆(0,π)内有唯一零点x Ⅰ……………(10分) 当x ∈(0,x Ⅰ)时,h (x )<0即g ′(x )<0,当x ∈(x Ⅰ,π)时,h (x )>0即g ′(x )>0,所以g (x )在(0,x Ⅰ)上单调递减,在(x Ⅰ,π)上单调递增.所以函数g (x )在x =x Ⅰ处取得最小值即m >1时,函数g (x )在(0,π)上存在最小值……………………………………(12分) 22.(本小题满分Ⅰ0分)选修4—4:极坐标与参数方程解:(I)由已知有''2sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),消去θ得22''134x y +=. 将sin cos x y ρθρθ=⎧⎨=⎩代入直线l 的方程得82:=-y x l∴ 曲线2C 的方程为22''134x y +=,直线l 的普通方程为:280l x y --=. ………5分(II )由(I )可设点P 为)sin 2,cos 3(θθ,[0,2)θπ∈.则点P 到直线l 的距离为:5|8)3sin(4|5|8sin 2cos 32|+-=--=πθθθd- 11 - 故当sin()13πθ-=,即5=6πθ时d 取最大值5512. 此时点P 的坐标为)1,23(-. ……………………………………10分 23.(本小题满分Ⅰ0分)选修4—5:不等式选讲解:(I )当3k =-时,⎪⎪⎪⎩⎪⎪⎪⎨⎧>-≤≤<+-=1 46131 231 46)(x x x x x x f ,,,, 故不等式4)(≥x f 可化为:1644x x >⎧⎨-≥⎩或11324x ⎧≤≤⎪⎨⎪≥⎩或13644x x ⎧<⎪⎨⎪-+≥⎩ 解得:403x x ≤≥或 ∴ 所求解集为:403x x x ⎧⎫≤≥⎨⎬⎩⎭或. ……………………………………5分 (II )当⎪⎭⎫⎢⎣⎡-∈31,3k x 时,由1k >-有:310,30x x k -<+≥ ∴ k x f +=1)(不等式)()(x g x f ≤可变形为:41+≤+x k故3k x ≤+对1,33k x ⎡⎫∈-⎪⎢⎣⎭恒成立,即33k k ≤-+,解得94k ≤ 而1k >-,故914k -<≤. ∴ k 的取值范围是:91,4⎛⎤- ⎥⎝⎦ ………………………………………………10分。
湖北省宜昌一中、龙泉中学2020届高三6月联考(理数试题)

湖北省宜昌一中、龙泉中学2020届高三6月联考数 学(文科)本试卷共4 页,共 23 题。
满分150分,考试用时120分钟。
注意事项:1. 答题前,考生务必将自己的姓名.准考证号填在答题卡上.2. 选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效.3. 填空题和解答题答在答题卡上每题对应的答题区域内,答在试题卷上无效.一、选择题:(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
请将正确的答案填涂在答题卡上。
) 1.已知a 是实数,1a iz i-=+是纯虚数,则z 的虚部为 A .1 B .1- C .i D .i -2.已知集合{}220A x x x =+-<,集合11B x x ⎧⎫=<⎨⎬⎩⎭,则A B =IA .∅B .{}1x x <C .{}01x x <<D .{}20x x -<<3.“ln ln x y >”是“1132x y⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.斐波拉契数列,指的是这样一个数列:1,1,2,3,5,8,13,21,…,在数学上,斐波拉契数列{}n a 定义如下:121a a ==,()123,n n n a a a n n N --=+≥∈,随着n 的增大,1nn a a +越来越逼近黄金0.618≈,故此数列也称黄金分割数列,而以1n a +、n a 为长和宽的长方形称为“最 美长方形”,已知某“最美长方形”的面积约为200平方厘米,则该长方形的长大约是 A .20厘米 B .19厘米 C .18厘米 D .17厘米5.设n S 是等差数列{}n a 的前n 项和,若2413S S =,则36SS 等于 A .316 B .13 C .516 D .7166.函数()2e 2x f x x x =--的图象大致为7.已知函数()()sin 0f x x x =≥,方程()f x kx =恰有三个根,记最大的根为θ,则()21sin 2θθθ+=A .2-B .12C .1D .2 8.为了让居民了解垃圾分类,养成垃圾分类的习惯,让绿色环保理念深入人心.某市将垃圾分为四类:可回收物,餐厨垃圾,有害垃圾和其他垃圾.某班按此四类由9位同学组成四个宣传小组,其中可回收物宣传小组有3位同学,其余三个宣传小组各有2位同学.现从这9位同学中选派5人到某小区进行宣传活动,则每个宣传小组至少选派1人的概率为A .27 B .37 C .821 D .10219.设抛物线24y x =的焦点为F ,过点F 的直线l 与抛物线相交于,A B ,点A 在第一象限,且32AF BF -=,则AF BF = A .32B .2C .3D .410.某几何体的三视图如图所示,其中网格纸上小正方形的边 长为1,则该几何体的外接球的表面积为A .16πB .12πC .9πD .8π11.已知函数()f x 满足()()221ln x f x xf x x '+=+,()1f e e=,当0x >时,下列说法正确的是①()f x 只有一个零点; ②()f x 有两个零点;③()f x 有一个极小值点; ④()f x 有一个极大值点.A .①③B .①④C .②③D .②④ 12.已知梯形ABCD 满足,45AB CD BAD ∠=︒∥,以,A D 为焦点的双曲线Γ经过,B C 两点. 若7CD AB =,则双曲线Γ的离心率为 A 32 B 33 C 35 D 35+二、填空题(本大题共4小题,每小题5分,共20分)13.在三角形ABC 中,5AB =u u u r ,8AB AC ⋅=u u u r u u u r ,则AB BC ⋅=u u u r u u u r_____.14.若13nx x ⎛⎫ ⎪⎝⎭的展开式中各项系数之和为64,则展开式中的常数项是_____. 15.在数列{}{},n n a b 中,()22122n n n n n a a b a b +=+++()22122n n n n nb a b a b +=+-+111a b ==,设数列{}nc 满足11n n nc a b =+,则数列{}n c 的前10项和10S =_________. 16.四面体P ABC -中,2PA =,2PB PC AB AC ====,22BC =Q 在ABC ∆的内部(含边界),设PAQ α∠=,二面角P BC A --的平面角的大小为β,APQ ∆和BCQ ∆的面积分别为1S 和2S ,且满足123sin S S α=,则2S 的最大值为 .三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,且2,2cos 2a c A b a ==-. (Ⅰ)求角C ;(Ⅱ)如图,若点D 在边AC 上,AD DB =,DE AB ⊥,E 为垂足,且2DE =,求BD 的长.18.(本小题满分12分)如图,在矩形ABCD 中,将ACD △沿对角线AC 折起,使点D 到达点P 的位置,且平面ABP ⊥平面ABC .(Ⅰ)求证:AP PB ⊥;(Ⅱ)若直线PC 与平面ABP 所成角的正弦值为34,求二面角P AC B --的余弦值.19.(本小题满分12分)已知圆22:3O x y +=,直线PA 与圆O 相切于点A ,直线PB 垂直y 轴于点B ,且2PB PA =.(Ⅰ)求点P 的轨迹E 的方程;(Ⅱ)过点()1,0且与x 轴不重合的直线与轨迹E 相交于,P Q 两点,在x 轴上是否存在定点D ,使得x 轴是PDQ ∠的角平分线,若存在,求出D 点坐标,若不存在,说明理由.20.(本小题满分12分)某工厂的一台某型号机器有2种工作状态:正常状态和故障状态.若机器处于故障状态,则停机检修.为了检查机器工作状态是否正常,工厂随机统计了该机器以往正常工作状态下生产的1000个产品的质量指标值,得出如图1所示频率分布直方图.由统计结果可以认为,这种产品的质量指标值服从正态分布N 2(,)μσ,其中μ近似为这1000个产品的质量指标值的平均数x ,σ2近似为这1000个产品的质量指标值的方差s 2 (同一组中的数据用该组区间中点值为代表).若产品的质量指标值全部在(3,3)μσμσ-+之内,就认为机器处于正常状态,否则,认为机器处于故障状态.(Ⅰ)下面是检验员在一天内从该机器生产的产品中随机抽取10件测得的质量指标值:29 45 55 63 67 73 78 87 93 113 请判断该机器是否出现故障?(Ⅱ)若机器出现故障,有2种检修方案可供选择:方案一:加急检修,检修公司会在当天排除故障,费用为700元;方案二:常规检修,检修公司会在七天内的任意一天来排除故障,费用为200元. 现需决策在机器出现故障时,该工厂选择何种方案进行检修,为此搜集检修公司对该型号 机器近100单常规检修在第i (i =1,2,…,7)天检修的单数,得到如图2所示柱状图,将 第i 天常规检修单数的频率代替概率.已知该机器正常工作一天可收益200元,故障机器 检修当天不工作,若机器出现故障,该选择哪种检修方案?13.7114.4215.10≈≈≈ 21.(本小题满分12分) 已知函数()()()21ln 0f x x a x a =--<. (Ⅰ)讨论()f x 的单调性;(Ⅱ)若()f x 存在两个极值点()1212,x x x x <,且关于x 的方程()()f x b b R =∈恰有三个实数根3x ,4x ,5x ()345x x x <<,求证:()21532x x x x ->-.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.(本小题满分10分)22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为,,x m t y =+⎧⎪⎨=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2241sin ρθ=+. (Ⅰ)求l 的普通方程和C 的直角坐标方程; (Ⅱ)直线l 上的点(),0P m 为曲线C 内的点,且直线l 与曲线C 交于,A B ,且2PA PB ⋅=, 求m 的值.23.选修4-5:不等式选讲若对于实数x ,y 有|12|4x -≤,|31|3y +≤. (Ⅰ)求16x y +-的最大值M ; (Ⅱ)在(Ⅰ)的条件下,若正实数a ,b 满足12M a b +=,证明:50(1)(2)9a b ++≥.。
【解析】湖北省荆州中学、宜昌一中、龙泉中学三校2020届高三期中联考理综化学试题

1.《厉害了,我的国》展示了中国五年来探索太空,开发深海,建设世界第一流的高铁、桥梁、码头,5G 技术联通世界等取得的举世瞩目的成就。
它们与化学有着密切联系。
下列说法正确的是A. 为打造生态文明建设,我国近年来大力发展核电、光电、风电、水电,电能属一次能源B. 大飞机C919采用大量先进复合材料、铝锂合金等,铝锂合金属于金属材料C. 我国提出网络强国战略,光缆线路总长超过三千万公里,光缆的主要成分是晶体硅D. “神舟十一号”宇宙飞船返回舱外表面使用的高温结构陶瓷的主要成分是硅酸盐【答案】B【详解】A .电能不是一次能源,属于二次能源,故A 错误;B .铝锂合金属于金属材料,故B 正确;C .二氧化硅具有良好的光学特性,是制造光缆的主要原料,故C 错误;D .新型无机非金属材料在性能上比传统无机非金属材料有了很大的提高,可适用于不同的要求。
如高温结构陶瓷、压电陶瓷、透明陶瓷、超导陶瓷等都属于新型无机非金属材料,故D 错误;故答案B 。
2.以某硫酸渣(含Fe 2O 3、SiO 2等)为原料制备铁黄(FeOOH)的一种工艺流程如下:下列说法不正确...的是 A. “酸溶”中加热或搅拌或适当增大硫酸浓度均可加快溶解速度B. 滤渣的主要成分是SiO 2和FeC. “沉铁”过程中生成Fe(OH)2的化学方程式为FeSO 4+2NH 4HCO 3=Fe(OH)2↓+ (NH 4)2SO 4+ 2CO 2↑。
D. “氧化”Fe(OH)2浆液时,可用氯气代替空气【答案】D【分析】 硫酸渣用硫酸酸浸时,氧化铁溶解生成硫酸铁,加入铁粉,则溶液变为硫酸亚铁溶液,过滤,滤渣为过量的铁粉和未溶解的二氧化硅,滤液中加入碳酸氢铵,发生双水解反应生成二氧化碳和氢氧化亚铁,据此解答。
【详解】A. “酸溶”中加热或搅拌或适当增大硫酸浓度均可加快溶解速度,A正确;B. 根据分析可知,滤渣的主要成分是SiO2和Fe,B正确;C. “沉铁”过程中硫酸亚铁与碳酸氢铵双水解生成Fe(OH)2的化学方程式为:FeSO4+2NH4HCO3=Fe(OH)2↓+ (NH4)2SO4+ 2CO2↑,C正确;D. “氧化”Fe(OH)2浆液时,若用氯气代替空气,导致制备的铁黄含量偏低且含有杂质,D错误;答案为D。
2020届湖北省宜昌一中、龙泉中学高三下学期6月联考数学(理)试题及解析

【答案】C
【解析】
因为由已知有 0.618,又 ,得0.618 ≈200,进而解得 .
【详解】解:由已知有 0.618,
得: ,
由 ,
得0.618 ≈200,
即 ,
由于172=289,182=324,
所以an+1≈18(厘米),
故选:C.
5.设Sn是等差数列{an}的前n项和,若 ,则 等于( )
2020届湖北省宜昌一中、龙泉中学高三下学期6月联考
数学(理)试题
★祝考试顺利★
(含答案)
一、选择题(共12小题).
1.已知 是实数, 是纯虚数,则 的虚部为( )
A. 1B. C. D.
【答案】B
【解析】
利用复数的除法运算化简,且结合纯虚数定义求得 ,进而得 的虚部.
【详解】由复数的除法运算化简可得 ,
C 充要条件D. 既不充分也不必要条件
【答案】A
【解析】
利用对数函数,指数函数和幂函数的单调性,根据逻辑条件的定义判断.
【详解】由 ,得 ,此时 ,
反之 成立时,可以取 , ,不能推出
故选:A.
4.斐波拉契数列,指的是这样一个数列:1,1,2,3,5,8,13,21,…,在数学上,斐波拉契数列{an}定义如下:a1=a2=1,an=an﹣1+an﹣2(n≥3,n∈N),随着n的增大, 越来越逼近黄金分割 0.618,故此数列也称黄金分割数列,而以an+1、an为长和宽的长方形称为“最美长方形”,已知某“最美长方形”的面积约为200平方厘米,则该长方形的长大约是( )
A. B. C. D.
【答案】C
【解析】
湖北省宜昌一中、龙泉中学2020届高三6月联考数学(理科)试题(解析版)

2020年高考数学模拟试卷(理科)(6月份)一、选择题(共12小题).1.已知a 是实数,z =a−i1+i是纯虚数,则z 的虚部为( ) A .1B .﹣1C .iD .﹣i2.已知集合A ={x |x 2+x ﹣2<0},集合B ={x|1x<1},则A ∩B =( ) A .∅B .{x |x <1}C .{x |0<x <1}D .{x |﹣2<x <0}3.“lnx >lny ”是“(13)x <(12)y ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.斐波拉契数列,指的是这样一个数列:1,1,2,3,5,8,13,21,…,在数学上,斐波拉契数列{a n }定义如下:a 1=a 2=1,a n =a n ﹣1+a n ﹣2(n ≥3,n ∈N ),随着n 的增大,a n a n+1越来越逼近黄金分割√5−12≈0.618,故此数列也称黄金分割数列,而以a n +1、a n 为长和宽的长方形称为“最美长方形”,已知某“最美长方形”的面积约为200平方厘米,则该长方形的长大约是( ) A .20厘米B .19厘米C .18厘米D .17厘米5.设S n 是等差数列{a n }的前n 项和,若S 2S 4=13,则S 3S 6等于( )A .316B .13C .516D .7166.函数f (x )=e x ﹣x 2﹣2x 的图象大致为( )A.B.C.D.7.已知函数f(x)=|sin x|(x≥0),方程f(x)=kx恰有三个根,记最大的根为θ,则(1+θ2)sin2θθ=()A.﹣2B.12C.1D.28.为了让居民了解垃圾分类,养成垃圾分类的习惯,让绿色环保理念深入人心.某市将垃圾分为四类:可回收物,餐厨垃圾,有害垃圾和其他垃圾.某班按此四类由9位同学组成四个宣传小组,其中可回收物宣传小组有3位同学,其余三个宣传小组各有2位同学.现从这9位同学中选派5人到某小区进行宣传活动,则每个宣传小组至少选派1人的概率为()A.27B.37C.821D.20219.设抛物线y2=4x的焦点为F,过点F的直线l与抛物线相交于A,B,点A在第一象限,且|AF|﹣|BF|=32,则|AF||BF|=()A.32B.2C.3D.410.某几何体的三视图如图所示,其中网格纸上小正方形的边长为1,则该几何体的外接球的表面积为()A.16πB.12πC.9πD.8π11.已知函数f(x)满足x2f′(x)+2xf(x)=1+lnx,f(e)=1e,当x>0时,下列说法正确的是()①f(x)只有一个零点;②f(x)有两个零点;③f(x)有一个极小值点;④f(x)有一个极大值点A.①③B.①④C.②③D.②④12.已知梯形ABCD满足AB∥CD,∠BAD=45°,以A,D为焦点的双曲线Γ经过B,C 两点.若CD=7AB,则双曲线Γ的离心率为()A.3√24B.3√34C.3√54D.3+√54二、填空题(本大题共4小题,每小题5分,共20分)13.在三角形ABC中,|AB→|=5,AB→⋅AC→=8,则AB→⋅BC→=.14.若(3√x−1√x)n的展开式中各项系数之和为64,则展开式的常数项为.15.在数列{a n},{b n}中,a n+1=2(a n+b n)+2√a n2+b n2,b n+1=2(a n+b n﹣2√a n2+b n2,a1=b1=1,设数列{c n}满足c n=1a n+1bn,则数列{c n}的前10项和S10=.16.四面体P﹣ABC中,PA=√2,PB=PC=AB=AC=2,BC=2√2,动点Q在△ABC的内部(含边界),设∠PAQ =α,二面角P ﹣BC ﹣A 的平面角的大小为β,△APQ 和△BCQ 的面积分别为S 1和S 2,且满足S 1S 2=√3sinα4sinβ,则S 2的最大值为 . 三、解答题:(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,2c cos A =2b ﹣a . (Ⅰ)求角C ;(Ⅱ)如图,若点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足,且DE =√2,求BD 的长.18.如图,在矩形ABCD 中,将△ACD 沿对角线AC 折起,使点D 到达点P 的位置,且平面ABP ⊥平面ABC . (Ⅰ)求证:AP ⊥PB ;(Ⅱ)若直线PC 与平面ABP 所成角的正弦值为34,求二面角P ﹣AC ﹣B 的余弦值.19.已知圆O :x 2+y 2=3,直线PA 与圆O 相切于点A ,直线PB 垂直y 轴于点B ,且|PB |=2|PA |.(Ⅰ)求点P 的轨迹E 的方程;(Ⅱ)过点(1,0)且与x 轴不重合的直线与轨迹E 相交于P ,Q 两点,在x 轴上是否存在定点D ,使得x 轴是∠PDQ 的角平分线,若存在,求出D 点坐标,若不存在,说明理由.20.某工厂的一台某型号机器有2种工作状态:正常状态和故障状态.若机器处于故障状态,则停机检修.为了检查机器工作状态是否正常,工厂随机统计了该机器以往正常工作状态下生产的1000个产品的质量指标值,得出如图1所示频率分布直方图.由统计结果可以认为,这种产品的质量指标值服从正态分布N(μ,σ2),其中μ近似为这1000个产品的质量指标值的平均数x,σ2近似为这1000个产品的质量指标值的方差s2(同一组中的数据用该组区间中点值为代表).若产品的质量指标值全部在(μ﹣3σ,μ+3σ)之内,就认为机器处于正常状态,否则,认为机器处于故障状态.(1)下面是检验员在一天内从该机器生产的产品中随机抽取10件测得的质量指标值:294555636773788793113请判断该机器是否出现故障?(2)若机器出现故障,有2种检修方案可供选择:方案一:加急检修,检修公司会在当天排除故障,费用为700元;方案二:常规检修,检修公司会在七天内的任意一天来排除故障,费用为200元;现需决策在机器出现故障时,该工厂选择何种方案进行检修,为此搜集检修公司对该型号机器近100单常规检修在第i(i=1,2,…,7)天检修的单数,得到如图2所示柱状图,将第i天常规检修单数的频率代替概率.已知该机器正常工作一天可收益200元,故障机器检修当天不工作,若机器出现故障,该选择哪种检修方案?附:√188≈13.71,√208≈14.42,√228≈15.10. 21.已知函数f (x )=(x ﹣1)2﹣alnx (a <0). (Ⅰ)讨论f (x )的单调性;(Ⅱ)若f (x )存在两个极值点x 1,x 2(x 1<x 2),且关于x 的方程f (x )=b (b ∈R )恰有三个实数根x 3,x 4,x 5(x 3<x 4<x 5),求证:2(x 2﹣x 1)>x 5﹣x 3.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.(本小题满分10分)[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,直线l 的参数方程为{x =m +ty =√3t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2=41+sin 2θ.(Ⅰ)求l 的普通方程和C 的直角坐标方程;(Ⅱ)直线l 上的点P (m ,0)为曲线C 内的点,且直线l 与曲线C 交于A ,B ,且|PA |•|PB |=2,求m 的值. [选修4-5:不等式选讲]23.若对于实数x ,y 有|1﹣2x |≤4,|3y +1|≤3. (Ⅰ)求|x +y −16|的最大值M ;(Ⅱ)在(Ⅰ)的条件下,若正实数a ,b 满足1a +2b=M ,证明:(a +1)(b +2)≥509.参考答案一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的答案填涂在答题卡上.) 1.已知a 是实数,z =a−i1+i是纯虚数,则z 的虚部为( ) A .1B .﹣1C .iD .﹣i【分析】利用复数代数形式的乘除运算化简,由实部为0且虚部不为0求得a ,进一步求得z 得答案.解:∵z =a−i1+i =(a−i)(1−i)(1+i)(1−i)=a−12−a+12i 是纯虚数,∴{a−12=0−a+12≠0,即a =1, ∴z =﹣i . 则z 的虚部为﹣1. 故选:B .2.已知集合A ={x |x 2+x ﹣2<0},集合B ={x|1x<1},则A ∩B =( ) A .∅B .{x |x <1}C .{x |0<x <1}D .{x |﹣2<x <0}【分析】求出集合A ,B ,由此能求出A ∩B . 解:因为集合A ={x |x 2+x ﹣2<0}={x |﹣2<x <1}, 集合B ={x|1x <1}={x |x <0或x >1},所以A ∩B ={x |﹣2<x <0}, 故选:D .3.“lnx >lny ”是“(13)x <(12)y ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【分析】由lnx >lny ,结合对数式与指数式的性质可得(13)x <(12)y ,反之,举例说明不成立,再由充分必要条件的判断得答案.解:由lnx >lny ,得x >y >0,此时(13)x <(13)y <(12)y ,反之,由(13)x <(12)y 成立,可以取x =﹣1,y =﹣2,不能推出lnx >lny ,∴“lnx >lny ”是“(13)x <(12)y ”的充分不必要条件.故选:A .4.斐波拉契数列,指的是这样一个数列:1,1,2,3,5,8,13,21,…,在数学上,斐波拉契数列{a n }定义如下:a 1=a 2=1,a n =a n ﹣1+a n ﹣2(n ≥3,n ∈N ),随着n 的增大,a n a n+1越来越逼近黄金分割√5−12≈0.618,故此数列也称黄金分割数列,而以a n +1、a n 为长和宽的长方形称为“最美长方形”,已知某“最美长方形”的面积约为200平方厘米,则该长方形的长大约是( ) A .20厘米B .19厘米C .18厘米D .17厘米【分析】因为由已知有a na n+1=√5−12≈0.618,又a n •a n +1=200,得0.618a n +12≈200,进而解得a n +1. 解:由已知有a na n+1=√5−12≈0.618, 得:a n ≈0.618a n +1, 由a n •a n +1=200, 得0.618a n +12≈200,即a n +12≈323.62, 由于172=289,182=324, 所以a n +1≈18(厘米), 故选:C .5.设S n 是等差数列{a n }的前n 项和,若S 2S 4=13,则S 3S 6等于( )A .316B .13C .516D .716【分析】设等差数列{a n }的首项为a 1,公差为d ,由S 2S 4=13得到首项与公差的关系,再把S 3,S 6用含有d 的代数式表示,则答案可求. 解:设等差数列{a n }的首项为a 1,公差为d , 由S 2S 4=13,得3(2a 1+d )=4a 1+6d ,即a 1=32d .∴S 3=3a 1+3d =92d +3d =152d ,S 6=6a 1+6×5d 2=182d +302d =48d2. ∴S 3S 6=152d 482d =516.故选:C .6.函数f (x )=e x ﹣x 2﹣2x 的图象大致为( )A .B .C .D .【分析】通过图象,判断函数y =e x 与函数y =x 2+2x 的图象交点个数,进而求得函数f (x )的零点个数,结合选项即可得解.解:作出函数y =e x 与函数y =x 2+2x 的图象如下图所示,由图象可知,函数y =e x 与函数y =x 2+2x 的图象有3个交点,则函数f (x )=e x ﹣x 2﹣2x 有3个零点,观察选项可知,只有选项B 符合题意. 故选:B .7.已知函数f (x )=|sin x |(x ≥0),方程f (x )=kx 恰有三个根,记最大的根为θ,则(1+θ2)sin2θθ=( )A .﹣2B .12C .1D .2【分析】依题意,函数f (x )在x =θ处的切线为y =kx ,且θ∈(π,3π2),利用导数的几何意义可得{k =−cosθkθ=−sinθ,再化简所求式子即可得解.解:如图,要使方程f (x )=kx 恰有三个根,且最大的根为θ,则函数f (x )在x =θ处的切线为y =kx ,显然θ∈(π,3π2),而x ∈(π,3π2),f(x)=−sinx ,f′(x)=−cosx ,∴{k =−cosθkθ=−sinθ, ∴(1+θ2)sin2θθ=(1+θ2)⋅2sinθcosθθ=(1+θ2)⋅2(−kθ)⋅(−k)θ=(1+θ2)⋅2k 2=2k 2+2(k θ)2=2(cos 2θ+sin 2θ)=2. 故选:D .8.为了让居民了解垃圾分类,养成垃圾分类的习惯,让绿色环保理念深入人心.某市将垃圾分为四类:可回收物,餐厨垃圾,有害垃圾和其他垃圾.某班按此四类由9位同学组成四个宣传小组,其中可回收物宣传小组有3位同学,其余三个宣传小组各有2位同学.现从这9位同学中选派5人到某小区进行宣传活动,则每个宣传小组至少选派1人的概率为( )A .27B .37C .821D .2021【分析】基本事件总数n =C 95=126,每个宣传小组至少选派1人包含的基本事件个数:m =C 31C 21C 21C 21C 52=120,由此能求出每个宣传小组至少选派1人的概率.解:某市将垃圾分为四类:可回收物,餐厨垃圾,有害垃圾和其他垃圾. 某班按此四类由9位同学组成四个宣传小组,其中可回收物宣传小组有3位同学,其余三个宣传小组各有2位同学. 现从这9位同学中选派5人到某小区进行宣传活动,基本事件总数n=C95=126,每个宣传小组至少选派1人包含的基本事件个数:m=C31C21C21C21C52=120,则每个宣传小组至少选派1人的概率为P=mn=120126=2021.故选:D.9.设抛物线y2=4x的焦点为F,过点F的直线l与抛物线相交于A,B,点A在第一象限,且|AF|﹣|BF|=32,则|AF||BF|=()A.32B.2C.3D.4【分析】过A,B分别作准线的垂线,再过B作AA'的垂线,由抛物线的性质及三角形相似可得对应边成比例,求出|AF|,|BF|的值,进而求出比值.解:设|BF|=m,则由|AF|﹣|BF|=32可得|AF|=32+m,由抛物线的方程可得:F(1,0),过A,B分别作准线的垂线交于A',B',过B作AA'的垂线交AA',OF分别于C,D点,则△BFD∽△BAC,所以BFAB=DFAC,即m32+2m=2−m32,解得:m=32,所以AFBF =32+3232=2,故选:B.10.某几何体的三视图如图所示,其中网格纸上小正方形的边长为1,则该几何体的外接球的表面积为()A.16πB.12πC.9πD.8π【分析】首先把三视图转换为几何体,进一步求出三棱锥体的外接球的半径,进一步求出球的表面积.解:根据几何体的三视图转换为直观图为:该几何体为底面为等腰直角三角形,高为2的三棱锥体.如图所示:所以该三棱锥体的外接球的球心为O,外接球的半径为OA=r,则:r2=(2−r)2+(√2)2,解得r2=94.故S=4π×94=9π.故选:C.11.已知函数f(x)满足x2f′(x)+2xf(x)=1+lnx,f(e)=1e,当x>0时,下列说法正确的是()①f(x)只有一个零点;②f(x)有两个零点;③f(x)有一个极小值点;④f(x)有一个极大值点A.①③B.①④C.②③D.②④【分析】令g(x)=x2f(x),则g'(x)=1+lnx,所以g(x)=x•lnx+C,即f(x)=xlnx+C x2,由f(e)=e+Ce2=1e,解得C=0,所以f(x)=lnxx,求导得f′(x)=1−lnxx2,利用导数可求出函数f(x)的单调区间,进而得f(x)在x=e处取得极大值f(e)=1e,而这也是最大值,从而可对③和④作出判断;又f(1)=0,且当x>e时,f(x)>0恒成立,所以f(x)只有一个零点为x=1,从而可对①和②作出判断.解:令g(x)=x2f(x),则g'(x)=x2f′(x)+2xf(x)=1+lnx,∴g(x)=x•lnx+C,即x2f(x)=x•lnx+C,∴f(x)=xlnx+C x2,∵f(e)=e+Ce2=1e,∴C=0,∴f(x)=lnxx,f′(x)=1−lnxx2,当0<x<e时,f'(x)>0,f(x)单调递增;当x>e时,f'(x)<0,f(x)单调递减,∴f(x)在x=e处取得极大值f(e)=1e,而这也是最大值,即③错误,④正确;又∵f(1)=0,且当x>e时,f(x)>0恒成立,∴f(x)只有一个零点为x=1,即①正确,②错误.∴正确的有①④,故选:B.12.已知梯形ABCD满足AB∥CD,∠BAD=45°,以A,D为焦点的双曲线Γ经过B,C两点.若CD=7AB,则双曲线Γ的离心率为()A.3√24B.3√34C.3√54D.3+√54【分析】先画出大致图象,结合双曲线的定义以及余弦定理求得a,c之间的关系即可得到结论.解:如图:连接AC,BD;设双曲线的焦距AD=2c;实轴长为2a;则BD﹣AB=AC﹣AD=2a;设AB=m,则CD=7m,BD=2a+m,AC=2a+7m,依题意,∠BAD=45°,∠ADC=135°,在△ABD中,由余弦定理及题设可得:(2a+m)2=m2+4c2﹣2√2mc;在△ACD中,由余弦定理及题设可得:(2a+7m)2=49m2+4c2+14√2mc;整理得:√2(c2﹣a2)=m(√2a+c);√2(c2﹣a2)=7m(√2a﹣c);两式相结合得:√2a+c=7(√2a﹣c)⇒6√2a=8c;∴双曲线Γ的离心率为e=ca=3√24;故选:A.二、填空题(本大题共4小题,每小题5分,共20分)13.在三角形ABC中,|AB→|=5,AB→⋅AC→=8,则AB→⋅BC→=﹣17.【分析】直接利用向量的数量积转化求解即可.解:在三角形ABC中,|AB→|=5,AB→⋅AC→=8,可得AB→⋅(AB→+BC→)=AB→2+AB→⋅BC→=25+AB→⋅BC→=8,则AB→⋅BC→=−17.故答案为:﹣17.14.若(3√x−1√x)n的展开式中各项系数之和为64,则展开式的常数项为﹣540.【分析】依据各项系数之和为2n,列出方程求出n,利用二项展开式的通项公式求出常数项.解:若(3√x√x)n的展开式中各项系数之和为2n=64,解得n=6,则展开式的常数项为C63(3√x)3⋅1√x)3=−540,故答案为:﹣540.15.在数列{a n},{b n}中,a n+1=2(a n+b n)+2√a n2+b n2,b n+1=2(a n+b n﹣2√a n2+b n2,a1=b1=1,设数列{c n}满足c n=1a n+1bn,则数列{c n}的前10项和S10=1023256.【分析】首先求出a n+b n=2×4n−1=22n−1和a n b n=1×8n−1=8n−1,进一步求出数列{c n}的通项公式,最后求出数列的和.解:数列{a n},{b n}中,a n+1=2(a n+b n)+2√a n2+b n2,①,b n+1=2(a n+b n)﹣2√a n2+b n2,②所以①+②得:a n +1+b n +1=4(a n +b n ),整理得a n+1+b n+1a n +b n=4(常数),所以数列{a n +b n }是以a 1+b 1=2为首项,4为公比的等比数列. 所以a n +b n =2×4n−1=22n−1.①×②得:a n+1b n+1=4(a n +b n )2−4(a n 2+b n 2)=8a n b n , 所以a n+1b n+1a n b n=8(常数),故数列{a n b n }是以a 1b 1=1为首项,8为公比的等比数列,所以a n b n =1×8n−1=8n−1,由于数列{c n }满足c n =1a n +1b n =22n−18n−1=22﹣n ,所以S 10=2(1−1210)1−12=1023256,故答案为:1023256.16.四面体P ﹣ABC 中,PA =√2,PB =PC =AB =AC =2,BC =2√2,动点Q 在△ABC 的内部(含边界),设∠PAQ =α,二面角P ﹣BC ﹣A 的平面角的大小为β,△APQ 和△BCQ 的面积分别为S 1和S 2,且满足S 1S 2=√3sinα4sinβ,则S 2的最大值为 4﹣2√2 . 【分析】取BC 的中点M ,由题意可得AM =PM =PA =√2,所以β=∠PMA =60°,作QH ⊥BC 于M ,所以S 1S 2=12AP⋅AQ⋅sinα12BC⋅QH =√3sinα4sinβ=√3sinα4⋅√32=12sin α,而BC =2PA=2√2,可得AQ =QH ,即Q 为三角形ABC 内的一条抛物线,当Q 在AB 或AC 上时,S 2最大,求出S 2的最大值.解:取BC 的中点M ,连接AM ,PM ,因为PB =PC =AB =AC 可得AM ⊥BC ,PM ⊥BC ,且PA =√2,PB =PC =AB =AC =2,BC =2√2,所以AM =PM =PA =√2,所以β=∠PMA=60°,作QH⊥BC于M,所以S1S2=12AP⋅AQ⋅sinα12BC⋅QH=√3sinα4sinβ=√3sinα4⋅√32=12sinα,而BC=2PA=2√2,所以可得AQ=QH,所以Q的轨迹是△ABC内的一条抛物线,当Q在AB或AC上时,S2最大,此时AQ=QH=2(√2−1),S2=4﹣2√2.故答案为:4﹣2√2三、解答题:(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.已知△ABC的内角A,B,C的对边分别为a,b,c,且a=2,2c cos A=2b﹣a.(Ⅰ)求角C;(Ⅱ)如图,若点D在边AC上,AD=DB,DE⊥AB,E为垂足,且DE=√2,求BD 的长.【分析】(I)由正弦定理结合和差角公式进行化简可求cos C,进而可求C;(II )由已知结合正弦定理可求AB ,然后结合勾股定理即可求解. 解:(I )∵2c cos A =2b ﹣a .由正弦定理可得,2sin C cos A =2sin B ﹣sin A ,所以2sin C cos A =2sin (A +C )﹣sin A =2sin A cos C +2sin C cos A ﹣sin A , 因为sin A ≠0,故cos C =12,C ∈(0,π),故C =13π;(II )设BD =AD =x ,在△ABC 中,由正弦定理可得,2sinA=AB sinC,所以AB =√62x ,在Rt △ADE 中,由勾股定理可得,x 2=(√64)2+√22,解可得x =BD =4√55.18.如图,在矩形ABCD 中,将△ACD 沿对角线AC 折起,使点D 到达点P 的位置,且平面ABP ⊥平面ABC . (Ⅰ)求证:AP ⊥PB ;(Ⅱ)若直线PC 与平面ABP 所成角的正弦值为34,求二面角P ﹣AC ﹣B 的余弦值.【分析】(Ⅰ)由四边形ABCD 是矩形,得AB ⊥BC ,推导出BC ⊥平面ABP ,BC ⊥AP ,从而AP ⊥PC ,进而AP ⊥平面PBC ,由此能证明AP ⊥PB .(Ⅱ)过P 作PO ⊥AB 于点O ,则PO ⊥平面ABC ,以OB 所在直线为x 轴,过O 作y 轴平行于BC ,OP 为z 轴,建立空间直角坐标系,利用向量法能求出二面角P ﹣AC ﹣B 的余弦值.解:(Ⅰ)证明:由四边形ABCD 是矩形,得AB ⊥BC , 根据平面ABP ⊥平面ABC ,平面ABP ∩平面ABC =AB , 得BC ⊥平面ABP ,则BC ⊥AP ,又AP ⊥PC ,根据BC ∩PC =C ,是AP ⊥平面PBC , ∵PB ⊂平面PBC ,∴AP ⊥PB .(Ⅱ)解:过P 作PO ⊥AB 于点O ,∵平面ABP ⊥平面ABC , ∴PO ⊥平面ABC ,以OB 所在直线为x 轴,过O 作y 轴平行于BC , OP 为z 轴,建立如图所示空间直角坐标系,由(Ⅰ)知CB ⊥平面ABP ,∴∠CPB 是直线PC 与平面ABP 所成角,即sin ∠CPB =34,在△PBC 中,sin ∠CBP =CB CP =34, 设CB =3,则CP =4,PB =√42−32=√7,∵PO ⊥平面ABC ,∴可取平面ABC 的一个法向量m →=(0,0,1),由(Ⅰ)知,AP ⊥PB ,∴在直角三角形APB 中,PO ⊥AB ,AP =3,AB =4,PB =√7,∴AO =94,BO =74,PO =3√74,∴P (0,0,3√74),A (−94,0,0),C (74,3,0),AC →=(4,3,0),AP →=(94,0,3√74),设平面PAC 的法向量n →=(x ,y ,z ),则由{n →⋅AC →=4x +3y =0n →⋅AP →=94x +3√74z =0,取x =﹣3,则n =(﹣3,4,√7), 则cos <m →,n →>=m →⋅n →|m →|⋅|n →|=97√9+16+817=916, ∵二面角P ﹣AC ﹣B 的平面角是锐角,∴二面角P ﹣AC ﹣B 的余弦值为916.19.已知圆O :x 2+y 2=3,直线PA 与圆O 相切于点A ,直线PB 垂直y 轴于点B ,且|PB |=2|PA |.(Ⅰ)求点P 的轨迹E 的方程;(Ⅱ)过点(1,0)且与x 轴不重合的直线与轨迹E 相交于P ,Q 两点,在x 轴上是否存在定点D ,使得x 轴是∠PDQ 的角平分线,若存在,求出D 点坐标,若不存在,说明理由.【分析】(Ⅰ)设P (x ,y ),则|PA |2=x 2+y 2﹣3,|PB |2=x 2,代入|PB |=2|PA |即可得到点P 的轨迹E 的方程;(Ⅱ)设直线l 的方程为:x =my +1,与椭圆方程联立,利用韦达定理得到y 1+y 2=−6m 4+3m 2,y 1⋅y 2=−94+3m 2,代入k PD +k QD =0,化简整理得2my 1y 2+(1−x 0)(y 1+y 2)=−18m4+3m 2−6m(1−x 0)4+3m 2=0,解得:x 0=4,所以存在定点D (4,0),使得x 轴是∠PDQ 的角平分线.解:(Ⅰ)设P (x ,y ),则|PA |2=|PO |2﹣3=x 2+y 2﹣3,|PB |2=x 2, 由|PB |=2|PA |得:x 2=4(x 2+y 2﹣3),化简得x 24+y 23=1(x ≠0),∴点P 的轨迹E 的方程为:x 24+y 23=1(x ≠0);(Ⅱ)设直线l 的方程为:x =my +1,P (x 1,y 1),Q (x 2,y 2),联立方程{x 24+y 23=1x =my +1,整理得:(4+3m 2)y 2+6my ﹣9=0,∴y 1+y 2=−6m 4+3m 2,y 1⋅y 2=−94+3m 2, 假设存在定点D (x 0,0),使得x 轴是∠PDQ 的角平分线,则k PD +k QD =0, ∴y 1x 1−x 0+y 2x 2−x 0=0,∴y 1my 1+1−x 0+y 2my 2+1−x 0=0,∴y 1(my 2+1−x 0)+y 2(my 1+1−x 0)(my 1+1−x 0)(my 2+1−x 0)=0,∴2my 1y 2+(1−x 0)(y 1+y 2)(my 1+1−x 0)(my 2+1−x 0)=0,即2my 1y 2+(1−x 0)(y 1+y 2)=−18m4+3m 2−6m(1−x 0)4+3m 2=0,解得:x 0=4,所以存在定点D (4,0),使得x 轴是∠PDQ 的角平分线.20.某工厂的一台某型号机器有2种工作状态:正常状态和故障状态.若机器处于故障状态,则停机检修.为了检查机器工作状态是否正常,工厂随机统计了该机器以往正常工作状态下生产的1000个产品的质量指标值,得出如图1所示频率分布直方图.由统计结果可以认为,这种产品的质量指标值服从正态分布N (μ,σ2),其中μ近似为这1000个产品的质量指标值的平均数x ,σ2近似为这1000个产品的质量指标值的方差s 2(同一组中的数据用该组区间中点值为代表).若产品的质量指标值全部在(μ﹣3σ,μ+3σ)之内,就认为机器处于正常状态,否则,认为机器处于故障状态.(1)下面是检验员在一天内从该机器生产的产品中随机抽取10件测得的质量指标值:294555636773788793113请判断该机器是否出现故障?(2)若机器出现故障,有2种检修方案可供选择:方案一:加急检修,检修公司会在当天排除故障,费用为700元;方案二:常规检修,检修公司会在七天内的任意一天来排除故障,费用为200元;现需决策在机器出现故障时,该工厂选择何种方案进行检修,为此搜集检修公司对该型号机器近100单常规检修在第i(i=1,2,…,7)天检修的单数,得到如图2所示柱状图,将第i天常规检修单数的频率代替概率.已知该机器正常工作一天可收益200元,故障机器检修当天不工作,若机器出现故障,该选择哪种检修方案?附:√188≈13.71,√208≈14.42,√228≈15.10.【分析】(1)由图1可估计1000个产品的质量指标值的平均数x=70和方差s2=188,所以μ=70,σ=√188≈13.71,从而得到产品的质量指标值允许落在的范围为(28.87,111.13),由于抽取产品质量指标值出现了113,不在(28.87,111.13)之内,故机器处于故障状态;(2)方案一:工厂需要支付检修费和损失收益之和为700+200=900元;方案二:设损失收益为X元,则X的可能取值为200,400,600,800,1000,1200,1400,然后由图2可得出每个X的取值所对应的概率,求出数学期望,可得工厂需要支付检修费和损失收益之和为200+732=932元,由于900<932,故若机器出现故障,该选择加急检修方案.解:(1)由图1可估计1000个产品的质量指标值的平均数x和方差s2分别为x=40×0.04+50×0.08+60×0.24+70×0.30+80×0.20+90×0.10+100×0.04=70,s2=(﹣30)2×0.04+(﹣20)2×0.08+(﹣10)2×0.24+02×0.30+102×0.20+202×0.10+302×0.04=188,∴μ=70,σ=√188≈13.71,∴μ﹣3σ≈28.87,μ+3σ≈111.13,∴产品的质量指标值允许落在的范围为(28.87,111.13),又抽取产品质量指标值出现了113,不在(28.87,111.13)之内,故可判断该机器处于故障状态.(2)方案一:工厂需要支付检修费和损失收益之和为700+200=900元;方案二:设损失收益为X元,则X的可能取值为200,400,600,800,1000,1200,1400,∴X的分布列为:X200400600800100012001400 P0.070.180.250.200.150.120.03数学期望E(X)=200×0.07+400×0.18+600×0.25+800×0.20+1000×0.15+1200×0.12+1400×0.03=732元,故工厂需要支付检修费和损失收益之和为200+732=932元,∵900<932,∴当机器出现故障时,选择加急检修更为适合.21.已知函数f(x)=(x﹣1)2﹣alnx(a<0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f (x )存在两个极值点x 1,x 2(x 1<x 2),且关于x 的方程f (x )=b (b ∈R )恰有三个实数根x 3,x 4,x 5(x 3<x 4<x 5),求证:2(x 2﹣x 1)>x 5﹣x 3.【分析】(Ⅰ)求导得f ′(x )=2x 2−2x−a x,令f ′(x )=0,即2x 2﹣2x ﹣a =0,△=4+8a ,分两种情况①△≤0,②△>0,讨论f (x )单调性.(Ⅱ)证明:由题意得−12<a <0,画出草图,知0<x 3<x 1<x 4<x 2<x 5,0<x 1<x 2<1,要证:2(x 2﹣x 1)>x 5﹣x 3,即证:2(x 2﹣x 1)>(x 5+x 4)﹣(x 3+x 4);只需证:{x 5+x 4<2x 2x 3+x 4>2x 1,先证:x 3+x 4>2x 1.法一:即证x 4>2x 1﹣x 3,由(1)f (x )单调递减,只需证f (x 4)<f (2x 1﹣x 3),即证:f (x 3)<f (2x 1﹣x 3),令g (x )=f (x )﹣f (2x 1﹣x ),0<x <x 1,求导数,分析单调性,最值得g (x )<g (x 1)=0,故f (x )<f (2x 1﹣x ),在(0,x 1)恒成立,f (x 3)<f (2x 1﹣x 3)得证,同理可以证明:x 3+x 4<2x 2,综上,2(x 2﹣x 1)>x 5﹣x 3,得证.法二:由题可得{(x 3−1)2−alnx 3=b(x 4−1)2−alnx 4=b (x 5−1)2−alnx 5=b,即{(x 4−x 3)(x 4+x 3−2)=a(lnx 4−lnx 3)①(x 5−x 4)(x 5+x 4−2)=a(lnx 5−lnx 4)②,由①式得a x 4+x 3−2=x 4−x 3lnx 4−lnx 3,先证x 4−x 3lnx 4−lnx 3<x 4+x 32,令h (t )=lnt −2(t−1)t+1,(t >1),先求导得h (t )在(1,+∞)上单调递增,从而h (t )>h (1)=0,取t =x4x 5>1,故ax 4+x 3−2<x 4+x 32,即x 4+x 3>1−√2a +1=2x 1,同理可得a x 5+x 4−2=x 5−x 4lnx 5−lnx 4<x 5+x 42,即x 5+x 4<1+√2a +1=2x 2,综上,2(x 2﹣x 1)>x 5﹣x 3,得证.解:(Ⅰ)由题意得f ′(x )=2(x ﹣1)−a x =2x 2−2x−a x,令f ′(x )=0,即2x 2﹣2x ﹣a =0,△=4+8a ,①当a ≤−12时,△≤0,f ′(x )≥0,函数f (x )在(0,+∞)上单调递增,②当−12<a <0时,△>0,2x 2﹣2x ﹣a =0的两根为x 1=1−√2a+12,x 2=1+√2a+12且0<x 1=1−√2a+12<x 2,当x ∈(0,1−√2a+12),(1+√2a+12,+∞)时,f ′(x )>0,f (x )单调递增, 当x ∈(1−√2a+12,1+√2a+12)时,f ′(x )<0,f (x )单调递减,综上,当a ≤−12时,函数f (x )在(0,+∞)上单调递增,当−12<a <0时,当x ∈(0,1−√2a+12),(1+√2a+12,+∞)时,f (x )单调递增, 当x ∈(1−√2a+12,1+√2a+12)时,f (x )单调递减,(Ⅱ)证明:由题意得−12<a <0,0<x 3<x 1<x 4<x 2<x 5,0<x 1<x 2<1,要证:2(x 2﹣x 1)>x 5﹣x 3,即证:2(x 2﹣x 1)>(x 5+x 4)﹣(x 3+x 4);只需证:{x 5+x 4<2x 2x 3+x 4>2x 1先证:x 3+x 4>2x 1. 法一:即证x 4>2x 1﹣x 3,又由(1)知f (x )在(x 1,x 2)上单调递减, 只需证f (x 4)<f (2x 1﹣x 3),而f (x 4)=f (x 3),即证:f (x 3)<f (2x 1﹣x 3), 令g (x )=f (x )﹣f (2x 1﹣x ),0<x <x 1,g ′(x )=f ′(x )+f ′(2x 1﹣x )=2x ﹣2−ax +2(2x 1﹣x )﹣2−a2x 1−x ,=4(x 1﹣1)−a x −a2x 1−x=4(x 1−1)(2x 1x−x 2)−2ax 1x(2x 1−x)又2(x 1﹣1)−a x 1=0,即x 1﹣1=a2x 1,那么,g ′(x )=2a x 1(2x 1x−x 2−x 12)x(2x 1−x)=−2a x 1(x−x 1)2x(2x 1−x),而0<x <x 1,且−12<a <0, 则g ′(x )>0,故g (x )在(0,x 1)单调递增,则g (x )<g (x 1)=0, 故f (x )<f (2x 1﹣x ),在(0,x 1)恒成立, 又0<x 3<x 1,则f (x 3)<f (2x 1﹣x 3)得证, 同理可以证明:x 3+x 4<2x 2, 综上,2(x 2﹣x 1)>x 5﹣x 3,得证.法二:由方程f (x )=b 恰有三个实数根x 3,x 4,x 5(x 3<x 4<x 5),可得{(x 3−1)2−alnx 3=b(x 4−1)2−alnx 4=b (x 5−1)2−alnx 5=b ,即{(x 4−x 3)(x 4+x 3−2)=a(lnx 4−lnx 3)①(x 5−x 4)(x 5+x 4−2)=a(lnx 5−lnx 4)②,由①式得a x 4+x 3−2=x 4−x 3lnx 4−lnx 3,先证x 4−x 3lnx 4−lnx 3<x 4+x 32,令h (t )=lnt −2(t−1)t+1,(t >1), h ′(t )=(t−1)2t(t+1)2>0,所以h (t )在(1,+∞)上单调递增,从而h (t )>h (1)=0,取t =x4x 5>1,则有x 4−x 3lnx 4−lnx 3<x 4+x 32,故ax 4+x 3−2<x 4+x 32,从而(x 4+x 3)2﹣2(x 4+x 3)<2a ,即(x 4+x 3﹣1)2<2a +1, 即x 4+x 3>1−√2a +1=2x 1, 同理可得ax 5+x 4−2=x 5−x 4lnx 5−lnx 4<x 5+x 42,即x 5+x 4<1+√2a +1=2x 2,综上,2(x 2﹣x 1)>x 5﹣x 3,得证. 一、选择题22.在平面直角坐标系xOy 中,直线l 的参数方程为{x =m +ty =√3t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2=41+sin 2θ.(Ⅰ)求l 的普通方程和C 的直角坐标方程;(Ⅱ)直线l 上的点P (m ,0)为曲线C 内的点,且直线l 与曲线C 交于A ,B ,且|PA |•|PB |=2,求m 的值.【分析】(Ⅰ)把曲线C 的极坐标方程变形,结合极坐标与直角坐标的互化公式可得曲线C 的直角坐标方程,直接把直线参数方程中的参数消去,可得直线的普通方程; (Ⅱ)化直线的参数方程为标准形式,代入曲线C 的直角坐标方程,得到关于t 的一元二次方程,由根与系数的关系结合参数t 的几何意义求解m 值. 【解答】(Ⅰ)∵曲线C 的极坐标方程为ρ2=42,∴ρ2+ρ2sin 2θ=4, 即x 2+2y 2=4,得x 24+y 22=1.∴曲线C 的直角坐标方程为x 24+y 22=1.直线l 的参数方程为{x =m +ty =√3t (t 为参数),消去参数t ,可得直线l 的普通方程为√3x −y −√3m =0;(Ⅱ)设直线l 的参数方程为{x =m +12t′y =√32t′,代入椭圆方程,得74(t′)2+mt′+m 2−4=0.再设A ,B 对应的参数分别为t ′1,t ′2,则t′1t′2=4(m 2−4)7.又点P (m ,0)为曲线C 内的点,∴m 2<4,即﹣2<m <2.由|PA |•|PB |=|t ′1t ′2|=4|m 2−4|7=2,解得m =±√22.[选修4-5:不等式选讲]23.若对于实数x ,y 有|1﹣2x |≤4,|3y +1|≤3. (Ⅰ)求|x +y −16|的最大值M ;(Ⅱ)在(Ⅰ)的条件下,若正实数a ,b 满足1a+2b=M ,证明:(a +1)(b +2)≥509. 【分析】(Ⅰ)由|x +y −16|=|12(2x −1)+13(3y +1)|,利用绝对值的不等式放缩即可求得最大值;(Ⅱ)由(Ⅰ)知,1a +2b=3,得2a +b =3ab ≥2√2ab ,求解ab 的最小值,即可证明(a +1)(b +2)≥509. 【解答】(Ⅰ)解:|x +y −16|=|12(2x −1)+13(3y +1)|≤12|2x −1|+13|3y +1|≤12×4+13×3=3, 当{x =52y =23或{x =−32y =−43时等号成立, ∴|x +y −16|的最大值M 为3.(Ⅱ)证明:由(Ⅰ)知,1a+2b=3,∴2a +b =3ab ≥2√2ab ,得ab ≥89.∴(a +1)(b +2)=2a +b +ab +2=4ab +2≥4×89+2=509.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“宜昌一中、荆州中学、龙泉中学三校联盟”高三11月联考 理科数学试题本试卷共 2 页,共 23 题。
满分150分,考试用时120分钟。
注意事项:1. 答题前,考生务必将自己的姓名.准考证号填在答题卡上.2. 选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效.3. 填空题和解答题答在答题卡上每题对应的答题区域内,答在试题卷上无效.一、选择题:(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
请将正确的答案填涂在答题卡上。
)1.已知U R =,函数)1ln(x y -=的定义域为M ,}0|{2<-=x x x N ,则下列结论正确的是 A .MN N = B .()U MC N φ= C .M N U =D .)(N C M U ⊆2.复数z 满足:(2)i z z -⋅=(i 为虚数单位),z 为复数z 的共轭复数,则下列说法正确的是A .22i z = B .2z z ⋅= C .||2z = D .0z z += 3.下列函数中,其定义域和值域与函数ln xy e =的定义域和值域相同的是A .y=B .ln y x =C .y x =D .10xy =4.三个数0.20.40.44,3,log 0.5的大小顺序是A .0.40.20.43<4log 0.5<B .0.20.40.4log 0.543<<C .0.40.20.4log 0.534<<D .0.40.20.43<log 0.5<45.已知等比数列{}n a 的前n 项和为n S ,则“10a >”是“20190S >”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件6.在边长为2的等边三角形ABC 中,若1,3AE AC BF FC ==,则BE AF ⋅=A .23-B .43-C .83- D .2-7.《九章算术·均输》中有如下问题:“今有五人分十钱,令上二人所得与下三人等,问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分10钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为 A .43钱 B .73钱 C .83钱 D .103钱 8.2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除;(3)专项附加扣除包括①赡养老人费用 ②子女教育费用 ③继续教育费用 ④大病医疗费用等,其中前两项的扣除标准为:①赡养老人费用:每月共扣除2000元 ②子女教育费用:每个子女 每月扣除1000元.新个税政策的税率表部分内容如下:现有李某月收入18000元,膝下有两名子女,需要赡养老人,(除此之外,无其它专项附 加扣除,专项附加扣除均按标准的100%扣除),则李某月应缴纳的个税金额为 A .590元 B .690元 C .790元 D .890元 9.已知函数2()ln 1f x x a x =-+在(1,2)内不是单调函数,则实数a 的取值范围是A .()2,8B .[]2,8C .(][),28,-∞+∞D .[)2,810.已知函数()sin 26f x x π⎛⎫=-⎪⎝⎭,若方程()23f x =的解为12,x x (120x x π<<<),则()21sin x x -=A .23 B .49C11.若函数32,1()3,1xe a xf x x x x ⎧->⎪=⎨-+≤⎪⎩有最小值,则实数a 的取值范围为 A .(],1-∞ B .(],e -∞ C .(]0,1 D .(]0,e 12.{}n a 为等差数列,公差为d ,且01d <<,5()2k a k Z π≠∈,223557sin 2sin cos sin a a a a +⋅=,函数()sin(4)(0)f x d wx d w =+>在20,3π⎛⎫ ⎪⎝⎭上单调且存在020,3x π⎛⎫∈ ⎪⎝⎭,使得()f x 关于0(,0)x 对称,则w 的取值范围是 A .20,3⎛⎤ ⎥⎝⎦ B .30,2⎛⎤ ⎥⎝⎦ C .24,33⎛⎤ ⎥⎝⎦D .33,42⎛⎤⎥⎝⎦ 二、填空题(本大题共4小题,每小题5分,共20分) 13.已知1(0,),sin cos 5απαα∈+=,则tan α=_______. 14.已知命题200:,10p x R mx ∃∈+≤;命题2:,10q x R x mx ∀∈++>.若p q ∨为假命题,则 实数m 的取值范围为_________.15.在ABC ∆中,角,,A B C 的对边分别,,a b c ,满足2(sin cos )40,2a B B b -++==,则ABC ∆的面积为_________.16.函数21y x =-和ln 1y a x =-有相同的公切线,则实数a 的取值范围为_________.三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)已知ABC ∆的三个内角,,A B C 的对边分别为,,a b c ,若2cos b c b A =-. (Ⅰ)求证:2A B =;(Ⅱ)若53b c =,a =BC 边上的高.18.(本小题满分12分)已知数列{}n a 中,11a =,其前n 项的和为n S ,且当2n ≥时,满足21nn n S a S =-.(Ⅰ)求证:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列; (Ⅱ)证明:2221274n S S S +++<.19.(本小题满分12分)在四棱锥P ABCD -中,//,2AB CD CD AB =.(Ⅰ)设AC 与BD 相交于点M ,()0AN mAP m =>,且//MN 平面PCD,求实数m 的值; (Ⅱ)若,60,AB AD DP BAD PB ︒==∠=,且PD AD ⊥,求二面角A PC B --的余弦值.20.(本小题满分12分)已知抛物线2:2C x y =和直线:2l y x =-,过直线l 上任意一点P 作抛物线的两条切线, 切点分别为,A B .(Ⅰ)判断直线AB 是否过定点?若过定点,求出定点坐标;若不过定点,说明理由; (Ⅱ)求PAB ∆的面积的最小值.21.(本小题满分12分)已知2()cos 1(0)f x x mx x =+-≥.(Ⅰ)若()0f x ≥在[)0,+∞上恒成立,求实数m 的取值范围; (Ⅱ)证明:当0x ≥时,2sin cos x e x x -≥-.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.(本小题满分10分)22.选修4-4:坐标系与参数方程在极坐标系下,方程2sin 2ρθ=的图形为如图所示的“幸运四叶草”,又称为玫瑰线.(Ⅰ)当玫瑰线的0,2πθ⎡⎤∈⎢⎥⎣⎦时,求以极点为圆心的单位圆与玫瑰线的交点的极坐标;(Ⅱ)求曲线sin 4ρπθ=⎛⎫+ ⎪⎝⎭上的点M 与玫瑰线上的点N 距离的最小值及取得最小值时的 点M 、N 的极坐标.23.选修4-5:不等式选讲已知函数()223f x x a x a =-+-+,()24,g x x ax a R =++∈. (Ⅰ)当1a =时,解关于x 的不等式()4f x ≤;(Ⅱ)若对任意1x R ∈,都存在2x R ∈,使得不等式()()12f x g x >成立,求实数a 的取值范围.“宜昌一中、荆州中学、龙泉中学三校联盟”高三11月联考理科数学参考答案一、选择题: 1-4 ABAB 5-8 CDCB 9-12 ACBD二、填空题 13.43- 14.2m ≥ 15.2 16.(]0,2e 三.解答题17.解:(Ⅰ)因为2cos b c b A =-,所以sin sin 2sin cos B C B A =-,因为()C B A π=-+, 所以sin sin(())2sin sin B B A B A π=-+-.……………………2分所以sin sin cos cos sin 2sin cos B B A B A B A =+-,即sin cos sin sin cos B B A B A =-,即sin sin()B A B =-,………………………………4分 因为0B π<<,0A π<<,所以A B ππ-<-<,所以B A B =-或()B A B π=--(舍去),故2A B =.……………………………………6分 (Ⅱ)由53b c =及2cos b c b A =-得,1cos 3A =, 由余弦定理:2222cos a b c bc A =+-得222551()2333b b b b =+-⨯⨯, 解得:6,10b c ==,……………………………………………………………………………9分由1cos 3A =得,sin A =BC 边上的高为h ,则11sin 22bc A ah ⨯=⨯,即610⨯=,所以h =.…………………………………………………12分18.解:(Ⅰ)当2n ≥时,211nn n n S S S S --=-,………………………………………………2分11n n n n S S S S ---=,即1111n n S S --=,……………………………………………………………4分 从而⎭⎬⎫⎩⎨⎧n S 1构成以1为首项,1为公差的等差数列.……………………………………………6分 (Ⅱ)由(Ⅰ)可知,111(1)1n n n S S =+-⨯=,1n S n∴=.………………………………7分 则当2n ≥时222111111211n S n n n n ⎛⎫=<=- ⎪--+⎝⎭.…………………………………………9分故当2n ≥时22212111111111123224211n S S S n n ⎛⎫⎛⎫⎛⎫+++<+-+-++- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭1111137111221224n n ⎛⎫=++--<+⋅= ⎪+⎝⎭.……………………………………11分 又当1n =时,21714S =<满足题意,故2221274n S S S +++<.……………………………12分 法二:则当2n ≥时22211111n S n n n n n=<=---, 那么222121111111717142334144n S S S n n n ⎛⎫⎛⎫⎛⎫+++<++-+-+-=-< ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭ 又当1n =时,21714S =<,当时,21714S =<满足题意, 19. 解:(Ⅰ)因为//AB CD ,所以11,23AM AB AM MC CD AC ===即.…………………………1分因为//MN PCD 平面,MN ⊂平面PAC ,平面PAC平面PCD PC =,所以//MN PC . ……………………………………………………………………………………3分 所以13AN AM AP AC ==,即13m =.…………………………………………………………………5分(Ⅱ)因为,60AB AD BAD =∠=︒,可知ABD ∆为等边三角形,所以BD AD PD ==,又BP ,故222BP PD DB =+,所有PD DB ⊥. 由已知,PD AD ADBD D ⊥=,所以PD ⊥平面ABCD ,如图,以D 为坐标原点,DA DP ,的方向为,x y 轴的正方向建立空间直角坐标系,…………6分设1AB =,则1,2AB AD DP CD ====,所以(1,0,0)A ,)3,0,1(),0,1,0(),23,0,21(-C P B , 则13(,1,),(1,2PBPC =-=--,(1,1,0)PA =- 设平面PBC 的一个法向量为1111(,,)n x y z =,则有1100n PB n PC ⎧⋅=⎪⎨⋅=⎪⎩即11111120,0.x y x y ⎧-=⎪⎨+=⎪⎩ 令11x =,则112,y z =1(1n =, (8)分设平面APC 的一个法向量为2222(,,)n x y z =,则有2200n PA n PC ⎧⋅=⎪⎨⋅=⎪⎩即2222200x y x y -=⎧⎪⎨--=⎪⎩令22x y =,则22z =,即2(3,n =.…10分所以121212cos ,422n n n n nn <>===⋅11分设二面角A PC B --的平面角为θ,则cos 4θ=.………………………………………12分20.解:(Ⅰ)设点()00,P x y ,()()1122,,,A x y B x y ,由22x y =两边同时对x 求导,y x '=,则抛物线在点A 处的切线方程为11111()y x x x y x x y =-+=-,……………………1分又该切线方程经过点()00,P x y ,则0101y xx y =-,……………………………………………2分同理有0202y x x y =-,故()()1122,,,A x y B x y 均在直线00y x x y =-上,又002y x =-,则直线AB 的方程为0020x x y x --+=,……………………………………4分整理得()0120x x y --+=,恒过定点()1,2.…………………………………………………5分说明:第一问若设点()00,P x y ,然后直接写出切点线方程0022y y x x +=⋅,没有给出证明 即0020x x y x --+=,得出定点()1,2.给3分,扣2分.(Ⅱ)由题联立方程20022x y y x x x ⎧=⎨=-+⎩得2002240x x x x -+-=,120120224x x x x x x +=⎧⎨⋅=-⎩, (7)分12AB x=-==, (8)分点()00,2P x x-到直线AB:0020x x y x--+=的距离为d=, (9)分则PAB∆的面积12S AB d=⨯⨯==11分当1x=时,即()1,1P-时,PAB∆的面积最小值为12分21.解:(Ⅰ)法一:由题意()sin2f x x mx'=-+,()cos2f x x m''=-+………………1分①若21m≥,即12m≥时,()0f x''≥,则()f x'在[)0,+∞单调递增,则()(0)0f x f''≥=,则()f x在[)0,+∞单调递增,故()(0)0f x f≥=,满足题意; (3)分②若121m-<<,即1122m-<<时,存在x>,使得()0f x''=,且当()00,x x∈时,()0f x''<,则()f x'在()00,x上单调递减,则()(0)0f x f''<=,则()f x在()00,x单调递减,此时()(0)0f x f<=,舍去;…………………………………………………………………4分③若21m≤-,即12m≤-时,()0f x''<,则()f x'在[)0,+∞上单调递减,则()(0)0f x f''<=,则()f x在[)0,+∞单调递减,()(0)0f x f<=,舍去;故12m≥. (5)分法二:由题知(0)0f=,且()sin2f x x mx'=-+,(0)0f'=,()cos2f x x m''=-+ (1)分要使得()0f x≥在[)0,+∞上恒成立,则必须满足(0)0f''≥,即210m-≥,12m≥. (2)分 ① 若12m ≥时,()0f x ''≥,则()f x '在[)0,+∞单调递增,则()(0)0f x f ''≥=, 则()f x 在[)0,+∞单调递增,故()(0)0f x f ≥=,满足题意;……………………………3分 ② 若12m <时,存在()00,x x ∈时,()0f x ''<,则()f x '在()00,x 上单调递减,则()(0)0f x f ''<=,则()f x 在()00,x 单调递减,此时()(0)0f x f <=,舍去;故12m ≥.……………………………………………………………………………………………5分(Ⅱ)证明:由(Ⅰ)知,当12m ≥时,2()cos 10f x x mx =+-≥.取12m =, 则211cos 2x x -≥-,………………………………………………………………………………6分由(Ⅰ)()sin 0f x x x '=-+≥,则sin x x ≥,故211sin cos 2x x x x +-≥-, 要证2sin cos x e x x -≥-,只需证21212x e x x -≥+-.………………………………………8分令()2112x g x e x x =---,则()1x g x e x '=--,()1x g x e ''=-, 当0x ≥时,()0g x ''≥,则()g x '在[)0,+∞上单调递增,有()()00g x g ''≥=, 故()g x 在[)0,+∞单调递增,故()()00g x g ≥=, 故21102x e x x ---≥,即有21212x e x x -≥+-,得证.………………………………………12分22. 解:(Ⅰ)以极点为圆心的单位圆为1ρ=与2sin 2ρθ=联立,得2sin21θ=,……2分所以1sin 22θ=,因为0,2πθ⎡⎤∈⎢⎥⎣⎦,所以12πθ=或512π,则极坐标为1,12π⎛⎫ ⎪⎝⎭和51,12π⎛⎫⎪⎝⎭……5分(Ⅱ)曲线sin 4ρπθ=⎛⎫+ ⎪⎝⎭的直角坐标方程为4x+y=,……………………………………7分玫瑰线2sin 2ρθ=极径的最大值为2,且可于2,4N π⎛⎫⎪⎝⎭取得, 连接O ,2,4N π⎛⎫⎪⎝⎭,与4x y +=垂直且交于点4M π⎛⎫⎪⎝⎭.所以距离的最小值为2-,此时4M π⎛⎫⎪⎝⎭,2,4N π⎛⎫⎪⎝⎭.……………………………10分23.解:(Ⅰ)当1a =时,()11f x x x =-++,则()2 ,1,2, 11,2, 1.x x f x x x x -<-⎧⎪=-<⎨⎪⎩≤≥…………………2分当1x <-时,由()f x ≤4得,22x --≤4,解得21x -<-≤; 当11x -<≤时,()f x ≤4恒成立;当1x ≥时,由()f x ≤4得,2x ≤4,解得12x ≤≤.所以()f x ≤4的解集为{}22x x -≤≤.……………………………………………………5分 (Ⅱ)对任意1x ∈R ,都存在2x ∈R ,得()()12f x g x >成立,所以()()min min f x g x >.……6分因为()2223120a a a -+=-+>,所以223a a >-,且()()222223232323x a x a x a x a a a a a -+-+---+=-+=-+≥, ① 当223a x a -≤≤时,①式等号成立,即()2min 23f x a a =-+.…………………………8分又因为2222444244a a a x ax x ⎛⎫++=++-- ⎪⎝⎭≥, ②当2ax =-时,②式等号成立,即()2min 44a g x =-.………………………………………9分所以222344aa a-+>-,即a的取值范围为()2,2,5⎛⎫-∞-+∞⎪⎝⎭.……………………10分。