数学1.3简单的逻辑联结词教案一新选修21

合集下载

【人教A版高中数学选修2-1教案 】《1.3简单的逻辑联结词“1.3.3非”》教案

【人教A版高中数学选修2-1教案 】《1.3简单的逻辑联结词“1.3.3非”》教案

《1.3简单的逻辑联结词“1.3.3非”》教案一、教学目标:1.知识与技能:(1)掌握逻辑联结词“非”的含义(2)正确应用逻辑联结词“非”解决问题(3)掌握真值表并会应用真值表解决问题2.过程与方法:观察和思考中,在解题和证明题中,本节课要特别注重学生思维能力中严密性品质的培养.3.情感态度价值:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.二、教学重难点:1.重点:通过数学实例,了解逻辑联结词“非”的含义,使学生能正确地表述相关数学内容.2.难点:(1)正确理解命题“¬P”真假的规定和判定.(2)简洁、准确地表述命题“¬P”.三、教具准备:与教材内容相关的资料。

四、教学设想:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.五、教学过程:学生探究过程:1.思考、分析问题1:下列各组命题中的两个命题间有什么关系?(1)①35能被5整除;②35不能被5整除;(2)①方程x2+x+1=0有实数根。

②方程x2+x+1=0无实数根。

学生很容易看到,在每组命题中,命题②是命题①的否定。

2.归纳定义一般地,对一个命题p全盘否定,就得到一个新命题,记作¬p读作“非p”或“p的否定”。

3.命题“¬p”与命题p的真假间的关系命题“¬p”与命题p的真假之间有什么联系?引导学生分析前面所举例子中命题p与命题¬p的真假性,概括出这两个命题的真假之间的关系的一般规律。

例如:在上面的例子中,第(1)组命题中,命题①是真命题,而命题②是假命题。

第(2)组命题中,命题①是假命题,而命题②是真命题。

由此可以看出,既然命题¬P是命题P的否定,那么¬P与P不能同时为真命题,也不能同时为假命题,也就是说,若p是真命题,则¬p必是假命题;若p是假命题,则¬p必是真命题;4.命题的否定与否命题的区别让学生思考:命题的否定与原命题的否命题有什么区别?命题的否定是否定命题的结论,而命题的否命题是对原命题的条件和结论同时进行否定,因此在解题时应分请命题的条件和结论。

2019-2020学年高中数学 1.3简单的逻辑联结词教学设计 新人教A版选修2-1.doc

2019-2020学年高中数学 1.3简单的逻辑联结词教学设计 新人教A版选修2-1.doc

2019-2020学年高中数学 1.3简单的逻辑联结词教学设计新人教A版选修2-1(一)教学目标1.知识与技能目标:(1)掌握逻辑联结词“或、且”的含义(2)正确应用逻辑联结词“或、且”解决问题(3)掌握真值表并会应用真值表解决问题2.过程与方法目标:在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养.3.情感态度价值观目标:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.(二)教学重点与难点重点:通过数学实例,了解逻辑联结词“或、且”的含义,使学生能正确地表述相关数学内容。

难点:1、正确理解命题“P∧q”“P∨q”真假的规定和判定.2、简洁、准确地表述命题“P ∧q”“P∨q”.教具准备:与教材内容相关的资料。

教学设想:在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养.(三)教学过程学生探究过程:1、引入在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的数学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.在数学中,有时会使用一些联结词,如“且”“或”“非”。

在生活用语中,我们也使用这些联结词,但表达的含义和用法与数学中的含义和用法不尽相同。

下面介绍数学中使用联结词“且”“或”“非”联结命题时的含义和用法。

为叙述简便,今后常用小写字母p,q,r,s,…表示命题。

(注意与上节学习命题的条件p 与结论q的区别)2、思考、分析问题1:下列各组命题中,三个命题间有什么关系?(1)①12能被3整除;②12能被4整除;③12能被3整除且能被4整除。

(2)①27是7的倍数;②27是9的倍数;③27是7的倍数或是9的倍数。

学生很容易看到,在第(1)组命题中,命题③是由命题①②使用联结词“且”联结得到的新命题,在第(2)组命题中,命题③是由命题①②使用联结词“或”联结得到的新命题,。

人教版高中数学1-1选修1.3简单的逻辑联结词教案(4)

人教版高中数学1-1选修1.3简单的逻辑联结词教案(4)

简易逻辑知识系统及其结构
这一大节首先给出命题和含有“或”、“且”、“非”的复合命题的意义,介绍了判断含有“或”、“且”、“非”的复合命题的真假的方法.然后讲述了四种命题及其相互关系,并且在初中教学的基础上,结合四种命题的知识,进一步讲解反证法.通过若干实例,讲述了充分条件、必要条件和充要条件的有关知识.
教学中应注意结合具体实例,特别是初中代数、几何中的有关命题,帮助学生理解、归纳出抽象的概念及法则.然后,再指导学生运用这些概念和法则去分析、判断、研究具体的数学命题.教学中还应注意由浅入深,循序渐近,把握好尺度,难度要适当.
知识结构图
命题
逻辑联词
复合命题
选言命题联言命题命题的否定假言命题
(或) (且) (非) … (如果那么)
四种命题
真值表复合命题真假的判断反证法。

人教版高中数学1-1选修1.3简单的逻辑联结词教案(6)

人教版高中数学1-1选修1.3简单的逻辑联结词教案(6)

逻辑联结词教学目的:知识目标:(1)了解“或”“且”“非”的复合命题的构成;(2)理解逻辑联结词“或”“且”“非”的含义。

(3)判断复合命题的真假。

能力目标:(1)重视基础知识的教学、基本技能的训练和能力的培养;(2)启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;(3)通过教师指导发现知识结论,培养学生抽象概括能力和逻辑思维能力;德育目标:激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神。

教学重点:判断复合命题的真假。

教学难点:对逻辑联结词“或”“且”“非”的含义的理解授课类型:新授课课时安排:2课时教具:多媒体、实物投影仪教学过程:一、复习提问:1.命题:可以判断真假的语句叫命题。

2.真命题,假命题3.例如:判断下列语句是否是命题,如果是,是真命题还是假命题?①12>5 ②3是12 的约数③0.5是整数④3是12 的约数吗?⑤x>5二、新课引入:看下面的例子:⑥10可以被2或5整除;⑦菱形的对角线互相垂直且平分;⑧0.5是非整数这里的“或”“且”“非”叫做什么呢?三、讲授新课:(一) 逻辑联结词1.逻辑联结词:“或”“且”“非”这些词就叫做逻辑联结词。

2.简单命题:不含逻辑联结词的命题。

如①②③3.复合命题:由简单命题与逻辑联结词构成的命题。

如⑥⑦⑧常用小写的拉丁字母p,q,r,s,……表示命题故复合命题有三种形式:p或q;p且q;非p4.逻辑联结词“或”“且”“非”与集合的“交”“并”“补”的关系:例如:指出下列命题是简单命题还是复合命题?若是复合命题,指出它的形式及构成它的简单命题。

①24既是8的倍数,也是6的倍数;②李强是篮球运动员或跳高运动员;③平行线不平行。

1,2练习:教材P26(二)判断复合命题的真假1.“非p”形式的复合命题真假:显然,当p为真时,非p为假;当p为假时,非p为真。

2019-2020年高中数学《1.3 简单的逻辑联结词》教案2 新人教A版选修1-1

2019-2020年高中数学《1.3 简单的逻辑联结词》教案2 新人教A版选修1-1

2019-2020年高中数学《1.3 简单的逻辑联结词》教案2 新人教A版选修1-12019-2020年高中数学《1.3 算法案例》教案1 新人教A版必修3教学分析在学生学习了算法的初步知识,理解了表示算法的算法步骤、程序框图和程序三种不同方式以后,再结合典型算法案例,让学生经历设计算法解决问题的全过程,体验算法在解决问题中的重要作用,体会算法的基本思想,提高逻辑思维能力,发展有条理地思考与数学表达能力.三维目标1.理解算法案例的算法步骤和程序框图.2.引导学生得出自己设计的算法程序.3. 体会算法的基本思想,提高逻辑思维能力,发展有条理地思考与数学表达能力.重点难点教学重点:引导学生得出自己设计的算法步骤、程序框图和算法程序.教学难点:体会算法的基本思想,提高逻辑思维能力,发展有条理地思考与数学表达能力. 课时安排3课时教学过程第1课时案例1 辗转相除法与更相减损术导入新课思路1(情境导入)大家喜欢打乒乓球吧,由于东、西方文化及身体条件的不同,西方人喜欢横握拍打球,东方人喜欢直握拍打球,对于同一个问题,东、西方人处理问题方式是有所不同的.在小学,我们学过求两个正整数的最大公约数的方法:先用两个数公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来. 当两个数公有的质因数较大时(如与6 105),使用上述方法求最大公约数就比较困难.下面我们介绍两种不同的算法——辗转相除法与更相减损术,由此可以体会东、西方文化的差异.思路2(直接导入)前面我们学习了算法步骤、程序框图和算法语句.今天我们将通过辗转相除法与更相减损术来进一步体会算法的思想.推进新课新知探究提出问题(1)怎样用短除法求最大公约数?(2)怎样用穷举法(也叫枚举法)求最大公约数?(3)怎样用辗转相除法求最大公约数?(4)怎样用更相减损术求最大公约数?讨论结果:(1)短除法求两个正整数的最大公约数的步骤:先用两个数公有的质因数连续去除,一直除到所得的商是两个互质数为止,然后把所有的除数连乘起来.(2)穷举法(也叫枚举法)穷举法求两个正整数的最大公约数的解题步骤:从两个数中较小数开始由大到小列举,直到找到公约数立即中断列举,得到的公约数便是最大公约数.(3)辗转相除法辗转相除法求两个数的最大公约数,其算法步骤可以描述如下:第一步,给定两个正整数m,n.第二步,求余数r:计算m除以n,将所得余数存放到变量r中.第三步,更新被除数和余数:m=n,n=r.第四步,判断余数r是否为0.若余数为0,则输出结果;否则转向第二步继续循环执行.如此循环,直到得到结果为止. 这种算法是由欧几里得在公元前300年左右首先提出的,因而又叫欧几里得算法.(4)更相减损术我国早期也有解决求最大公约数问题的算法,就是更相减损术. 《九章算术》是中国古代的数学专著,其中的“更相减损术”也可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也.以等数约之.”翻译为现代语言如下:第一步,任意给定两个正整数,判断它们是否都是偶数,若是,用2约简;若不是,执行第二步.第二步,以较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数(等数)或这个数与约简的数的乘积就是所求的最大公约数.应用示例例1 用辗转相除法求8 251与6 105的最大公约数,写出算法分析,画出程序框图,写出算法程序.解:用两数中较大的数除以较小的数,求得商和余数:8 251=6 105×1+2 146.由此可得,6 105与2 146的公约数也是8 251与6 105的公约数,反过来,8 251与6 105的公约数也是6 105与2 146的公约数,所以它们的最大公约数相等.对6 105与2 146重复上述步骤:6 105=2 146×2+1 813.同理,2 146与1 813的最大公约数也是6 105与2 146的最大公约数.继续重复上述步骤:2 146=1 813×1+333,1 813=333×5+148,333=148×2+37,148=37×4.最后的除数37是148和37的最大公约数,也就是8 251与6 105的最大公约数.这就是辗转相除法.由除法的性质可以知道,对于任意两个正整数,上述除法步骤总可以在有限步之后完成,从而总可以用辗转相除法求出两个正整数的最大公约数.算法分析:从上面的例子可以看出,辗转相除法中包含重复操作的步骤,因此可以用循环结构来构造算法.算法步骤如下:第一步,给定两个正整数m,n.第二步,计算m除以n所得的余数为r.第三步,m=n,n=r.第四步,若r=0,则m,n的最大公约数等于m;否则,返回第二步.程序框图如下图:程序:INPUT m,nDOr=m MOD nm=nn=rLOOP UNTIL r=0PRINT mEND点评:从教学实践看,有些学生不能理解算法中的转化过程,例如:求8 251与6 105的最大公约数,为什么可以转化为求6 105与2 146的公约数.因为8 251=6 105×1+2 146,可以化为8 251-6 105×1=2 164,所以公约数能够整除等式两边的数,即6 105与2 146的公约数也是8 251与6 105的公约数.变式训练你能用当型循环结构构造算法,求两个正整数的最大公约数吗?试画出程序框图和程序.解:当型循环结构的程序框图如下图:程序:INPUT m,nr=1WHILE r>0r=m MOD nm=nn=rWENDPRINT mEND例2 用更相减损术求98与63的最大公约数.解:由于63不是偶数,把98和63以大数减小数,并辗转相减,如下图所示.98-63=3563-35=2835-28=728-7=2121-7=1414-7=7所以,98和63的最大公约数等于7.点评:更相减损术与辗转相除法的比较:尽管两种算法分别于东、西方古代数学名著,但是二者的算理却是相似的,有异曲同工之妙.主要区别在于辗转相除法进行的是除法运算,即辗转相除;而更相减损术进行的是减法运算,即辗转相减,但是实质都是一个不断的递归过程.变式训练用辗转相除法或者更相减损术求三个数324,243,135的最大公约数.解:324=243×1+81,243=81×3+0,则324与243的最大公约数为81.又135=81×1+54,81=54×1+27,54=27×2+0,则 81 与 135的最大公约数为27.所以,三个数324、243、135的最大公约数为27.另法:324-243=81,243-81=162,162-81=81,则324与243的最大公约数为81.135-81=54,81-54=27,54-27=27,则81与135的最大公约数为27.所以,三个数324、243.135的最大公约数为27.例3 (1)用辗转相除法求123和48的最大公约数.(2)用更相减损术求80和36的最大公约数.解:(1)辗转相除法求最大公约数的过程如下:123=2×48+27,48=1×27+21,27=1×21+6,21=3×6+3,6=2×3+0,最后6能被3整除,得123和48的最大公约数为3.(2)我们将80作为大数,36作为小数,因为80和36都是偶数,要除公因数2.80÷2=40,36÷2=18.40和18都是偶数,要除公因数2.40÷2=20,18÷2=9.下面来求20与9的最大公约数,20-9=11,11-9=2,9-2=7,7-2=5,5-2=3,3-2=1,2-1=1,可得80和36的最大公约数为22×1=4.点评:对比两种方法控制好算法的结束,辗转相除法是到达余数为0,更相减损术是到达减数和差相等.变式训练分别用辗转相除法和更相减损术求1 734,816的最大公约数.解:辗转相除法:1 734=816×2+102,816=102×8(余0),∴1 734与816的最大公约数是102.更相减损术:因为两数皆为偶数,首先除以2得到867,408,再求867与408的最大公约数.867-408=459,459-408=51,408-51=357,357-51=306,306-51=255,255-51=204,204-51=153,153-51=102,102-51=51.∴1 734与816的最大公约数是51×2=102.利用更相减损术可另解:1 734-816=918,918-816=102,816-102=714,714-102=612,612-102=510,510-102=408,408-102=306,306-102=204,204-102=102.∴1 734与816的最大公约数是102.知能训练求319,377,116的最大公约数.解:377=319×1+58,319=58×5+29,58=29×2.∴377与319的最大公约数为29,再求29与116的最大公约数.116=29×4.∴29与116的最大公约数为29.∴377,319,116的最大公约数为29.拓展提升试写出利用更相减损术求两个正整数的最大公约数的程序.解:更相减损术程序:INPUT “m,n=”;m,nWHILE m<>nIF m>n THENm=m-nELSEm=n-mEND IFWENDPRINT mEND课堂小结(1)用辗转相除法求最大公约数.(2)用更相减损术求最大公约数.思想方法:递归思想.作业分别用辗转相除法和更相减损术求261,319的最大公约数.分析:本题主要考查辗转相除法和更相减损术及其应用.使用辗转相除法可依据m=nq+r,反复执行,直到r=0为止;用更相减损术就是根据m-n=r,反复执行,直到n=r为止.解:辗转相除法:319=261×1+58,261=58×4+29,58=29×2.∴319与261的最大公约数是29.更相减损术:319-261=58,261-58=203,203-58=145,145-58=87,87-58=29,58-29=29,∴319与261的最大公约数是29.设计感想数学不仅是一门科学,也是一种文化,本节的引入从东、西方文化的不同开始,逐步向学生渗透数学文化.从知识方面主要学习用两种方法求两个正整数的最大公约数,从思想方法方面,主要学习递归思想.本节设置精彩例题,不仅让学生学到知识,而且让学生进一步体会算法的思想,培养学生的爱国主义情操.。

1.3《简单的逻辑联结词》教案(新人教选修1-1)

1.3《简单的逻辑联结词》教案(新人教选修1-1)

1.3简单的逻辑联结词[教学目标]:1.通过实例,了解简单的逻辑联结词“或”,“且”“非”的含义 2.能正确地利用“或”、“且”、“非”表述相关的教学内容. 3.能准确区分命题的否定与否命题的区别. [教学重难点]:逻辑联结词及它与日常生活中的“或”、“且”、“非”意义不同之处. [教学过程]:1、问题情景:考察下列命题:6是2的倍数或6是3的倍数 6是2的倍数且6是3的倍数2不是有理数这些命题的构成各有什么特点? 2、新课基本概念: “或”、“且”、“非”称为逻辑联结词.用p,q,r,…表示命题上述的命题构成形式可以表示如下:注意:1.“非p ”命题也叫命题p 的否定.2. “P 或q ”、“p 且q ”、“非p ”中的p,q 是命题,而“若p,则 q ” 中的p,q可以是命题,也可以不是命题,是其他语句.3.逻辑中的“或”与日常生活中的“或”是有区别的:“或”在日常生活中通常有两种解释: “不可兼有” 和“可兼有”.例如:“今天晚上要有一个人在值班室接电话,你去或他去”(不可兼有),“今天下午要留人出黑板报,你留或他留”(可兼有).在数学上一般采用“可兼有”,如x A ∈或x B ∈. 生活中如果说“苹果是长在树上或长在地里”,就觉得不妥,但在逻辑中却是可以的且是真命题。

4.举出一些生活例子说明逻辑联结词中“或”与“且”的意义.(洗衣机在甩干时,如果“到达预定时间”或“机盖被打开”,就会停机,又如电子保险门在“钥匙插入”且“密码正确”两个条件都满足时,才会开启.它们相应的电路是或门电路和与门电路)思考:命题的否定与否命题的区别?任何一个命题都有否定, 对于命题“若p,则 q ”的否定可表示为“若p,则非q ”, 命题“若p,则 q ”的否命题可表示为“若非p,则非q ”. 3例题讲解例题1分别指出下列命题的形式 (1)8≥7;(2)2是偶数且2是质数 (3)π不是整数例题2判断下列命题的真假(1)4≥3 (2)4≥4 (3)4≥54. 课堂练习(1)课本第10页练习1,2,3(2)分别写出下列各组命题的构成的“p 或q ”“p 且q ”“非p ”形式的命题,并判断它们的真假(1)p :1不是质数 q :1不是合数(2)p :四条边都相等的四边形是正方形 p :四个角相等的四边形是正方形 (3)分别指出下列命题的形式①任何一个数的平方不小于0; ②⊿ABC 是等腰直角三角形; ③菱形的对角线互相垂直平分(4)已知p :01:;22=++>mx x q m 方程有两个不等的负实数根,写出命题“若p 则q ”的否命题及命题的否定形式,并判断真假 5.课堂小结.6.作业:课本第10页习题1,2,3高中数学创新课时训练苏教版选修1-1的第三课时.。

人教版高中数学1-1选修1.3简单的逻辑联结词教案(2)

人教版高中数学1-1选修1.3简单的逻辑联结词教案(2)

简易逻辑复习总结课教案教学目标对第一章集合与简易逻辑两个单元的基础知识进行复习总结,帮助学生把这部分知识系统化,精确化,通过一些综合性例题,把知识相关联结,使学生对知识的理解和应用更加巩固和深入.教学重点和难点重点是对全章知识体系的全面了解和理解,对一些重要知识点的准确掌握.难点是对基础知识的相互沟通和联系.教学过程设计教师上课后首先对上节课布置给学生的复习总结表进行检查,并从中发现几份总结的较全面较深刻的表,在展示学生总结表的基础上,教师加以补充、修改、完善,完成第一章两个单元的总结复习.然后展示给学生.一、知识体系(一)集合(二)简易逻辑二、基础知识 (一)集合(二)简易逻辑三、综合例题{4},p、q∈E,试求p+g的值和A∪B.这时,∴p+q=-1,A∪B={2,3,4},点评:准确掌握交集,并集,补集的概念,是解题的关键.的实根的充分必要条件是ac<0.分析:方根根的状况的判断应从判别式及根与系数的关系去入手考虑,这里要注数a的值.解题时,首先求出A={0,-4},根据A∪B=A,用分类讨论的思想,分别当B={0},即方程有两个等根为零时,综合以上情况,若A∪B=A,则a≤-1,或a=1.分析:此题可先将p和q的m取值范围解出,然后再根据p或q为真,p且q为假知此题是要p和q中必一真一假时的m的取值范围.解:∵p或q为真,p且q为假.∴p为真,q为假,或p为假,q为真.解得m≥3或1<m≤2.例5、用反证法证明:若a、b、c、d均为小于1的正数,且x=4a(1-b),y=4b(1-c),z=4c(1-d),t=4d(1-a),则x、y、z、t四个数中,至少有一个不大于1.分析:结论的正面情况较多,较为复杂,但结论的反面情况唯一,而四个数都大于1,故宜用反证法.证明:假设x>1,y>1,z>1,t>1,则xyzt>1.又因xyzt=256a(1-a)·b·(1-b)·c(1-c)·d·(1-d)且a>0,b>0,c>0,d>0,1-a>0,1-b>0,1-c>0,1-d >0.∴假设不成立,原命题正确.。

1.3 简单的逻辑联结词 教案(新人教选修2-1).

1.3 简单的逻辑联结词 教案(新人教选修2-1).

§1.3 简单的逻辑联结词教学目标:1.通过数学实例,了解简单的逻辑联结词“或”、“且”、“非”的含义;2.能正确地利用“或”、“且”、“非”表述相关的数学内容;3.知道命题的否定与否命题的区别.教学重点及难点:1.掌握真值表的方法;2.理解逻辑联结词的含义.教学过程:一、复习回顾问题:判断下面的语句是否正确.⑴125>;⑵3是12的约数;⑶3是12的约数吗?⑷0.4是整数;⑸5x>.象⑴⑵⑷这样可以判断正确或错误的语句称为命题,⑶⑸就不是命题.二、讲授新课例1:判断下面的语句是否为命题?若是命题,指出它的真假.⑴请全体同学起立!⑵20+>;x x⑶对于任意的实数a,都有210a+>;⑷x a=-;⑸91是素数;⑹中国是世界上人口最多的国家;⑺这道数学题目有趣吗?⑻若||||-=-,则x y a bx y a b-=-;⑼任何无限小数都是无理数.我们再来看几个复杂的命题:⑴10可以被2或5整除;⑵菱形的对角线互相垂直且平分;⑶0.5非整数.这里的“或”、“且”、“非”称为逻辑联结词.我们常用小写拉丁字母p,q,r,…表示命题,上面命题⑴⑵⑶的构成形式分别是:p或q;p且q;非p.⌝”,“⌝”读作“非”(或“并非”),表示“否定”.非p也叫做命题p的否定.非p记作“p思考:下列三个命题间有什么关系?⑴12能被3整除;⑵12能被4整除;⑶12能被3整除且能被4整除.一般地,用逻辑联结词“且”把命题p 和命题q 联结起来,就得到一个新命题,记作p q ∧,读作“p 且q ”.规定:当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个是假命题时,p q∧是假命题.全真为真,有假即假.例1:将下列命题用“且”联结成新命题,并判断它的真假:⑴p :平行四边形的对角线互相平分;q :平行四边形的对角线相等.⑵p :菱形的对角线互相垂直;q :菱形的对角线互相平分.例2:用逻辑联结词“且”改写下列命题,并判断它们的真假:⑴1既是奇数,又是素数;⑵2和3都是素数.例3:分别指出下列命题的形式及构成它的简单命题.⑴24既是8的倍数,又是6的倍数;⑵李强是篮球运动员或跳水运动员;⑶平行线不相交.思考:下列三个命题间有什么关系?⑴27是7的倍数;⑵27是9的倍数;⑶27是7的倍数或是9的倍数.一般地,用逻辑联结词“或”把命题p 和命题q 联结起来,就得到一个新命题,记作:p q ∨,读作:p 或q .规定:当p 、q 两个命题中有一个是真命题时,p q ∨是真命题;当p 、q 都是假命题时,p q∨是假命题.全假为假,有真即真.例1:判断下列命题的真假:⑴22≤;⑵集合A 是A B 的子集或是A B 的子集;⑶周长相等的两个三角形全等或面积相等的两个三角形全等.思考:如果p q ∧为真命题,那么p q ∨一定是真命题吗?反之,如果p q ∨为真命题,那么p q ∧一定是真命题吗?注:逻辑联结词中的“或”相当于集合中的“并集”,它与日常用语中的“或”的含义不同.日常用语中的“或”是两个中任选一个,不能都选,而逻辑联结词中的“或”,可以是两个都选,但又不是两个都选,而是两个中至少选一个,因此,有三种可能的情况.逻辑联结词中的“且”相当于集合中的“并集”即两个必须都选.思考:下列命题间有什么关系?⑴35能被5整除;⑵35不能被5整除.一般地,对一个命题p 全盘否定,就得到一个新命题,记作:⌝p ,读作“非p ”或“p的否定”.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题.例1:写出下列命题的否定,并判断它们的真假:⑴p:sin=是周期函数;y x⑵p:32<;⑶p:空集是集合A的子集;⑷p:π是无理数;⑸p:等腰三角形的两个底角相等;⑹p:等腰三角形底边上的高和底边上的中线重合.练习:1.判断下列命题的真假:⑴12是48且是36的约数;⑵矩形的对角线互相垂直且平分.2.判断下列命题的真假:⑴47是7的倍数或49是7的倍数;⑵等腰梯形的对角线互相平分或互相垂直.3.写出下列命题的否定,然后判断它们的真假:⑴225+=;=的根;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.3 简单的逻辑联结词
教学目标:
1.通过数学实例,了解简单的逻辑联结词“或”、“且”、“非”的含义;
2.能正确地利用“或”、“且”、“非”表述相关的数学内容;
3.知道命题的否定与否命题的区别.
教学重点及难点:
1.掌握真值表的方法;
2.理解逻辑联结词的含义.
教学过程:
一、复习回顾
问题:判断下面的语句是否正确.
⑴125
>;
⑵3是12的约数;
⑶3是12的约数吗?
⑷0.4是整数;
⑸5
x>.
象⑴⑵⑷这样可以判断正确或错误的语句称为命题,⑶⑸就不是命题.
二、讲授新课
例1:判断下面的语句是否为命题?若是命题,指出它的真假.
⑴请全体同学起立!
⑵20
+>;
x x
⑶对于任意的实数a,都有210
a+>;
⑷x a
=-;
⑸91是素数;
⑹中国是世界上人口最多的国家;
⑺这道数学题目有趣吗?
⑻若||||
-=-;
-=-,则x y a b
x y a b
⑼任何无限小数都是无理数.
我们再来看几个复杂的命题:
⑴10可以被2或5整除;
⑵菱形的对角线互相垂直且平分;
⑶0.5非整数.
这里的“或”、“且”、“非”称为逻辑联结词.
我们常用小写拉丁字母p,q,r,…表示命题,上面命题⑴⑵⑶的构成形式分别是:
p或q;
p且q;
非p.
⌝”,“⌝”读作“非”(或“并非”),表示“否定”.非p也叫做命题p的否定.非p记作“p
思考:下列三个命题间有什么关系?
⑴12能被3整除;
⑵12能被4整除;
⑶12能被3整除且能被4整除.
一般地,用逻辑联结词“且”把命题p 和命题q 联结起来,就得到一个新命题,
记作p q ∧,读作“p 且q ”.
规定:当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个是假命题时,p q
∧是假命题.
全真为真,有假即假.
例1:将下列命题用“且”联结成新命题,并判断它的真假:
⑴p :平行四边形的对角线互相平分;q :平行四边形的对角线相等.
⑵p :菱形的对角线互相垂直;q :菱形的对角线互相平分.
例2:用逻辑联结词“且”改写下列命题,并判断它们的真假:
⑴1既是奇数,又是素数;
⑵2和3都是素数.
例3:分别指出下列命题的形式及构成它的简单命题.
⑴24既是8的倍数,又是6的倍数;
⑵李强是篮球运动员或跳水运动员;
⑶平行线不相交.
思考:下列三个命题间有什么关系?
⑴27是7的倍数;
⑵27是9的倍数;
⑶27是7的倍数或是9的倍数.
一般地,用逻辑联结词“或”把命题p 和命题q 联结起来,就得到一个新命题,
记作:p q ∨,读作:p 或q .
规定:当p 、q 两个命题中有一个是真命题时,p q ∨是真命题;当p 、q 都是假命题时,p q
∨是假命题.
全假为假,有真即真.
例1:判断下列命题的真假:
⑴22≤;
⑵集合A 是A B I 的子集或是A B U 的子集;
⑶周长相等的两个三角形全等或面积相等的两个三角形全等.
思考:如果p q ∧为真命题,那么p q ∨一定是真命题吗?反之,如果p q ∨为真命题,那么p q
∧一定是真命题吗?
注:逻辑联结词中的“或”相当于集合中的“并集”,它与日常用语中的“或”的含义不同.日
常用语中的“或”是两个中任选一个,不能都选,而逻辑联结词中的“或”,可以是两个
都选,但又不是两个都选,而是两个中至少选一个,因此,有三种可能的情况.
逻辑联结词中的“且”相当于集合中的“并集”即两个必须都选.
思考:下列命题间有什么关系?
⑴35能被5整除;
⑵35不能被5整除.
一般地,对一个命题p 全盘否定,就得到一个新命题,记作:⌝p ,读作“非p ”或“p
的否定”.
若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题.
例1:写出下列命题的否定,并判断它们的真假:
⑴p:sin
=是周期函数;
y x
⑵p:32
<;
⑶p:空集是集合A的子集;
⑷p:π是无理数;
⑸p:等腰三角形的两个底角相等;
⑹p:等腰三角形底边上的高和底边上的中线重合.练习:
1.判断下列命题的真假:
⑴12是48且是36的约数;
⑵矩形的对角线互相垂直且平分.
2.判断下列命题的真假:
⑴47是7的倍数或49是7的倍数;
⑵等腰梯形的对角线互相平分或互相垂直.
3.写出下列命题的否定,然后判断它们的真假:
⑴225
+=;
⑵3是方程290
x-=的根;
=-.
1。

相关文档
最新文档