大学物理部分答案 主编 周志坚

合集下载

大学物理[上册]课后习题答案解析

大学物理[上册]课后习题答案解析

习题解答 习题一1-1|r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同?t d d v 和td d v 有无不同?其不同在哪里?试举例说明.解:〔1r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r-=∆;〔2t d d r 是速度的模,即t d d r ==v ts d d . trd d 只是速度在径向上的分量. ∵有rr ˆr =〔式中r ˆ叫做单位矢,则tˆr ˆt r t d d d d d d rrr += 式中trd d 就是速度径向上的分量, ∴tr t d d d d 与r 不同如题1-1图所示. 题1-1图<3>t d d v 表示加速度的模,即t v a d d =,tv d d 是加速度a 在切向上的分量.∵有ττ(v =v 表轨道节线方向单位矢,所以式中dt dv就是加速度的切向分量. <tt r d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论> 1-2 设质点的运动方程为x =x <t >,y =y <t >,在计算质点的速度和加速度时,有人先求出r=22y x +,然后根据v =tr d d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,故它们的模即为而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作其二,可能是将22d d d d t r t r 与误作速度与加速度的模。

在1-1题中已说明trd d 不是速度的模,而只是速度在径向上的分量,同样,22d d tr也不是加速度的模,它只是加速度在径向分量中的一部分⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=222d d d d t r t r a θ径。

大学物理第五版上册标准答案

大学物理第五版上册标准答案

1—1 分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P ′点,各量关系如图所示, 其中路程Δs =PP ′, 位移大小|Δr |=PP ′,而Δr =|r |—|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B ).(2) 由于|Δr |≠Δs ,故tst ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故tst d d d d =r ,即|v |=v .由此可见,应选(C). 1-2 分析与解trd d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r表示速度矢量;在自然坐标系中速度大小可用公式tsd d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D ).1-3 分析与解td d v表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;tr d d 在极坐标系中表示径向速率v r (如题1 —2 所述);t s d d 在自然坐标系中表示质点的速率v ;而td d v表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D).1—4 分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B ).1—5 分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h ,t 时刻定滑轮距小船的绳长为l ,则小船的运动方程为22h l x -=,其中绳长l 随时间t 而变化.小船速度22d d d d h l t l ltx-==v ,式中tld d 表示绳长l 随时间的变化率,其大小即为v 0,代入整理后为θlh l cos /0220v v v =-=,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C).1-6 分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t =4。

(完整版)大学物理课后习题答案详解

(完整版)大学物理课后习题答案详解

r r r r r r rr、⎰ dt⎰0 dx = ⎰ v e⎰v v1122v v d tv v d tvg 2 g h d tdt [v 2 + ( g t ) 2 ] 12 (v 2 + 2 g h ) 12第一章质点运动学1、(习题 1.1):一质点在 xOy 平面内运动,运动函数为 x = 2 t, y = 4 t 2 - 8 。

(1)求质点 的轨道方程;(2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。

解:(1)由 x=2t 得,y=4t 2-8可得: r y=x 2-8r 即轨道曲线(2)质点的位置 : r = 2ti + (4t 2 - 8) jr r rr r 由 v = d r / d t 则速度: v = 2i + 8tjr r rr 由 a = d v / d t 则加速度: a = 8 jrr r r r r r r 则当 t=1s 时,有 r = 2i - 4 j , v = 2i + 8 j , a = 8 j r当 t=2s 时,有r = 4i + 8 j , v = 2i +16 j , a = 8 j 2 (习题 1.2): 质点沿 x 在轴正向运动,加速度 a = -kv , k 为常数.设从原点出发时速度为 v ,求运动方程 x = x(t ) .解:dv = -kvdt v1 v 0 vd v = ⎰ t - k dt 0v = v e - k tdx x= v e -k t0 t0 -k t d t x = v0 (1 - e -k t )k3、一质点沿 x 轴运动,其加速度为 a = 4 t (SI),已知 t = 0 时,质点位于 x 0=10 m 处,初速 度 v 0 = 0.试求其位置和时间的关系式.解:a = d v /d t = 4 td v = 4 t d tv 0d v = ⎰t 4t d t v = 2 t 2v = d x /d t = 2 t 2⎰x d x = ⎰t 2t 2 d t x = 2 t 3 /3+10 (SI)x4、一质量为 m 的小球在高度 h 处以初速度 v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; d r d v d v (3)落地前瞬时小球的 ,,.d td td t解:(1)x = v t式(1)v v v y = h - gt 2 式(2)r (t ) = v t i + (h - gt 2 ) j0 (2)联立式(1)、式(2)得y = h -vd r(3) = v i - gt j而落地所用时间t =0 gx 22v 22hgvd r所以 = v i - 2gh jvd vdv g 2t= - g j v = v 2 + v 2 = v 2 + (-gt) 2= =x y 0 0vv v d rv d v 2) v = [(2t )2+ 4] 2 = 2(t 2+ 1)2t t 2 + 1, V a = a - a = m + M m + Mvg gvv v 5、 已知质点位矢随时间变化的函数形式为 r = t 2i + 2tj ,式中 r 的单位为 m , 的单位为 s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

大学物理1-6章课后习题答案1

大学物理1-6章课后习题答案1

二、课后习题解答1-1、一飞轮直径为0.2m ,质量为5.00kg ,t 边缘饶一轻绳,现用恒力拉绳子的一端,使其有静止均匀地加速,经0.50s 转速达10转/s 。

假定飞轮可看作实心圆柱体。

求; 飞轮的角加速度及在这段时间转过的转数 拉力及拉力所做的功从拉动后t=10s 时飞轮的角速度及边缘上一点的速度和切向加速度及发向速度。

解:,/1058.1,/6.12,/126,/1026.1)3(3.4921212125232202s m r a s m r a s m r v s t J J J J A t n t t z z z ⨯======⨯====-=ωβωβωωωωτ1-2、有一根长为l 、质量为m 的匀质细杆,两端各牢固的连接一个质量为m 的小球,整个系统可绕一过O 点并垂直于杆的水平轴无摩察的转动,如图。

当系统转到水平位置时,求: 系统所受的和力矩 系统的转动惯量 系统的角加速度解: (1)设垂直纸面向里为z 轴的正方向(即力矩的正方向),合力矩为两小球及杆的重力矩之和。

mgl M M M M lmg r g dr rg rgdm M l mlmg M lmg M F r M z z zz l l l l z zzz 4341243,4190,4/34/24/34/0=+'+'=∴======'-='=⨯=--⎰⎰杆右左杆右左杆所受重力矩:其中两小球所受重力矩:ρρρθ224/34/34/34/24/34/222483748731)41(,)43()2(ml J J J J ml r dr r dm r J l m J l m J z z zz l l l l l l z z z=+'+'=∴====='='---⎰⎰杆右左杆右左杆的转动惯量:两小球的转动惯量:转动惯量之和,小球的转动惯量和杆的系统的转动惯量等于两λλ(3)由转动定理lg J M J M z z z z 3736==⇒=ββ1-3、有一质量为m 1、 m 2(m 1>m 2)两物体分别悬挂在两个半径不同的组 合轮上,如图。

大学物理总习题答案

大学物理总习题答案

dt
v
m
v
kt
ln v = − t
v0
m0

v
=
v0
e−
k m
t
1.14 质量为 m 的快艇在速度达到 v0 时关闭发动机,受到阻力而减速,阻力大小与速度的平方成正比,即 f = −kv2 .证明它在水面上再行驶距离 x 时的速度为 v = v0 e−kx/m .
解答:利用隐函数的求导法则
f a=
= − k v2
1.10 某质点的运动规律为 x = A cos ωt, y = B sin ωt,其中 A, B, ω 都是常量.证明 r × v 是常矢量.
解答:
r = ix + jy = iA cos ωt + jB sin ωt
v
=
dx i+
dt
dy j
dt
= −iωA sin ωt + jωB cos ωt
位移 Δx = OA 下方的面积 = 4 m AB 阶段的加速度 a = Δv/Δt = (6 − 4)/(4 − 2) = 1 m/s2 位移 Δx = AB 下方的面积 = 10 m BC 阶段的加速度 a = Δv/Δt = (2 − 6)/(6 − 4) = −2 m/s2 位移 Δx = BC 下方的面积 = 8 m
dt 1 + 2t
v0 = 8, v2 = 1.6
根据定量定理,
I = Δp = mv2 − mv0 = −3.2 N · s
速度和坐标.
解答:加速度 任意时刻的坐标
dv a(10) =
= 4 − π2 cos πt
= 4 − π2
dt t=10
t=10

大学物理周志坚计算题答案

大学物理周志坚计算题答案

Ek2略去得, :
hc
h
2EK m0 c 2
2EK m0
当 Ek m0c时2 : Ek 2 2EK m0c2
2EK m0c2 可略去,得: hc
EK
22
大学物理 教程
方物理法学 二: 第五版
直接由相对论动能与动量关系:E 2 P2c2 m02c4
p1 c
E2
m02c4

1 c
(m0c2 EK )2 m02c4
代入德布罗意公式 h
hc
p
Ek2 2EK m0 c2
当 Ek m0c时2 : Ek 2 2EK m0c2
,
Ek 2略去,得:
hc 2EK m0 c 2
h 2EK m0
当 Ek m0c时2 : Ek 2 2EK m0c2
e k
2n2 第九条明纹:k=8; 带入已知条件:
e 1.614106 m
18
大学物理 教程
物理学
第五版
相对论和量子物理
检测题:24、26、27、28
19
大学物理 物理学
教程 P第五7版33 24 解: 根据德布罗意公式: h h
p mv
所以:v h 7.28 10 6 m / s
P224 21. 大学物理 教程
物理学
第五版
解:
弹簧弹簧系数
k

F l

60 0.3
200N / m
圆频率 k 7.07rad / s
m
(1)物体在重力和弹力作用下,以静平衡位置为中心,
简谐振动,设振动方程为:x Acos(t ) (m)

大学物理周志坚第二章练习题参考答案.

大学物理周志坚第二章练习题参考答案.

P72-2.2.4
知:物体 m 在空中下落时,受重力和空气阻力 f mkv2 作用,式中k为常数。(书上的与速度平方成反比不合理) 求:物体下落的收尾( t )时的速度 v ? 解:如图所示 设初始条件为: 由牛顿方程
t0 0, v0 0;
dv m mg mkv 2 dt
P74-2.3.12 知:在光滑水平面上挖有一小孔,物体m1=0.5kg用轻绳
系住,绳另一端穿过小孔后,系住另一物体m2=0.1kg悬吊, 若m1以转速n=3r/s,在该平面内转动时,m2不动。
v r
求: m1的转动半径r=?
解:如图所示, 对m 1 :
T m1 v2 / r, v r, 2 n
P73-2.3.7
知:将一个光滑的碗绕z轴以角速率转动,若能使物体m在 碗内与碗同步转动, 并在任意高度可保持平衡。 求:碗内表面的曲面方程?
解:如图所示,m做匀速率圆周运动

ur u r r N mg ma
N cos mg 0 2 N sin man , an x
由00v?mgnma??uururr2cosmvrmgn???法向方程dsindvmmgt??切向方程离开条件0n?切向方程变形为00dddsindsindddsvvsvvgvvgrdts?????????p742313将切向方程变形cos23??00dddsindsindddsvvsvvgvvgrdts?????????coshrr???3hr?即m下降高度有几何关系
' manB N B mg s in , 且N B N B

' NB 3mg s in
P71-2.2.1
问,物体做下列运动中时,加速度不变的是? A.单摆、B.圆锥摆、C.竖直平面内匀速率圆周运动、 D.抛体运动、E.平面内匀速率圆周运动。 解:将 则得到:

大学物理下册检测题解答_周志坚

大学物理下册检测题解答_周志坚

t 0 时, x 0
v0
O


2
x
作出旋转矢量图得

2 2 x 2 10 cos(2.5t 2)
振动和波动检测题部分解答
12 一简谐振子的振动曲线如图所示,则以余弦 x 0.04 cos(t 2) 函数表示的振动方程为__________________.
o
t (s)
2
D
0.5
振动和波动检测题部分解答
解:
设O点的振动方程为
yo A cos(t )
t=0时, y 0, v 0
由旋转矢量法可得:



2
yo A cos(t ) 2
振动和波动检测题部分解答

u

T
2u
x y P A cos[ (t ) ] u 2 A cos[ (t 1)
解:
T 2s
A 0.04m
x(m)
0.04
t 0 时, x 0
作出旋转矢量图得
v0

2
o
t (s)
1 2
2
x 0.04 cos(t 2)
O
x
振动和波动检测题部分解答
13 一质点同时参与了三个简谐振动,它们 是 x1 A cos(t 3) , x2 A cos(t 5 3) 0 x3 A cos(t ) ,合振动的运动方程为___ 解:
振动波动检测题解答
一 选择题
1 轻弹簧上端固定,下系一质量为m1的物体, 稳定后在m1下面又系一质量为m2的物体,于是 弹簧又伸长了x.若将m2移去,并令其振动,振动 周期为[ B ]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档