28.2解直角三角形3.doc
2015年人教版28.2_解直角三角形(二)(三)提高训练(含答案)

28.2 解直角三角形(二)1.如图1,在△ABC中,∠C=90°,点D在BC上,CD=3,AD=BC,且cos∠ADC=3/5,则BD的长是( ) A.4 B.3 C.2 D.1a图1 图2图3 图42,图2在离地面高度5 m处引拉线固定电线杆,拉线与地面成60°角,则AC=____,AD=____.(用根号表示)3.如图3,初三年级某同学要测量校园内的旗杆AB的高度.在地面上C点用测角仪测得旗杆顶A 点的仰角为∠AFE=60°,再沿着直线BC后退8米到D,在D点又测得旗杆顶A的仰角∠AGE=45°.已知测角仪的高度为1.6米,求旗杆AB的高度.(3的近似值取1.7,结果保留1位小数)4.如图4,在比水面高2 m的A地,观测河对岸有一直立树BC的顶部B的仰角为30°,它在水中的倒影B′C顶部B′的俯角是45°,求树高BC.(结果保留根号)5.如图5,两建筑物的水平距离为a米,从A点测得D点的俯角为α,测得C点的俯角为β,则较低建筑物CD的高度为( ) A.a B.atanα C.a(s inα-cosα) D.a(tanβ-tanα)图5 图6 图7 图86.有人说,数学家就是不用爬树或把树砍倒就能够知道树高的人.小敏想知道校园内一棵大树的高度(如图6),他测得CB=10米,∠ACB=50°,请你帮他算出树高AB,约为________________米.(注:①树垂直于地面;②供选用数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)7.如图7,塔AB和楼CD的水平距离为80米,从楼顶C处及楼底D处测得塔顶A的仰角分别是45°和60°.求塔高与楼高.(精确到0.01米)(参考数据2=1.414 21,3=1.732 05)8.如图8,某船向正东方向航行,在A处望见某岛C在北偏东60°方向,前进6海里到B点,测得该岛在北偏东30°方向.已知该岛周围6海里内有暗礁,若该船继续向东航行,有无触礁危险?请说明理由.(参考数据:3≈1.732)9.如图9,武当山风景管理区,为提高游客到某景点的安全性,决定将到达该景点的步行台阶进行改善,把倾角由44°减至32°,已知原台阶AB的长为5米(BC所在地面为水平面).(1)改善后的台阶会加长多少?(2)改善后的台阶多占多长一段地面?(精确到0.01米)(sin44°= 0.6946 ,sin32°)= 0.5299, tan32° = 0.6248)图910.如图10,某海关缉私艇巡逻到达A处时接到情报,在A处北偏西60°方向的B处发现一艘可疑船只正以24海里/时的速度向正东方向前进,上级命令要对可疑船只进行检查,该艇立即沿北偏西45°的方向快速前进,经过1个小时的航行,恰好在C处截住可疑船只,求该艇的速度.(结果保留整数,6=2.449,3=1.732,2=1.414)图1028.2 解直角三角形(三)一、课前预习 (5分钟训练)1.在下列情况下,可解的直角三角形是( ) A.已知b=3,∠C=90° B.已知∠C=90°,∠B=46°C.已知a=3,b=6,∠C=90°D.已知∠B=15°,∠A=65°2.如图1,用测倾仪测得校园内旗杆顶点A 的仰角α=45°,仪器高CD =1.2 m ,测倾仪底部中心位置D 到旗杆根部B 的距离DB=9.8 m ,这时旗杆AB 的高为________ m.3.有一大坝其横截面为一等腰梯形,它的上底为6 m ,下底为10 m ,高为32 m,则坡角为_______. 二、课中强化(10分钟训练)1树被风折断,折断部分与地面夹角为30°,树尖着地处与树根的距离是35米,则原树高是____ m. 2.一等腰三角形顶角为100°,底边长为12,则它的面积是______________ (tan40° = 0.8391). 3.如图2,在Rt △ABC 中,∠C=90°,AD 平分∠CAB,CD=3,BD=32,求AB 及∠B.4.如图3,已知线段AB 、CD 分别表示甲、乙两幢楼的高,AB ⊥BD ,CD ⊥BD ,从甲楼顶部A 处测得乙楼顶部C 的仰角α=30°,测得乙楼底部D 的俯角β=60°,已知甲楼高AB=24 m , 求乙楼CD 的高.三、课后巩固(30分钟训练)1.菱形ABCD 的对角线AC 长为10 cm,∠BAC=30°,那么AD 为( ) A.3310B.33C.3315 D.32.Rt △ABC 中,∠C=90°,CD 是斜边AB 上的中线,BC=4,CD=3,则∠A≈_________. sinA≈0.666 73.如图4所示,为了测量河流某一段的宽度,在河北岸选了一点A ,在河南岸选相距200米的B 、C 两点,分别测得∠ABC=60°,∠ACB=45°.求这段河的宽度.(精确到0.1米)4.如图4,高速公路路基的横断面为梯形,高为4 m ,上底宽为16 m ,路基两边斜坡的坡度分别为i=1∶1,i′=1∶2,求路基下底宽.图45.为缓解“停车难”问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图(图5).按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE.(精确到0.1 m )(,,)图56.如图6,某校九年级3班的学习小组进行测量小山高度的实验活动.部分同学在山脚下点A 测得山腰上一点D 的仰角为30°,并测得AD 的长度为180米;另一部分同学在山顶点B 测得山脚点A 的俯角为45°,山腰点D 的俯角为60°,请你帮助他们计算出小山的高度BC.(计算过程和结果不取近似值)图628.2 解直角三角形(二)参考答案1.如图1,在△ABC 中,∠C=90°,点D 在BC 上,CD=3,AD=BC,且cos ∠ADC=53,则BD 的长是()图1A.4B.3C.2D.1解析:求BD 需求BC,而BC=AD,在Rt △ADC 中,已知一角一边,可求出AD. 在Rt △ADC 中,CD=3,且cos ∠ADC=53,∴AD=5,∴BC=AD=5.∴BD=2. 答案:C2.如图2,在离地面高度 5 m 处引拉线固定电线杆,拉线与地面成60°角,则AC=______,AD=__________.(用根号表示)图2解析:在Rt △ABD 中,∠A=60°,CD=5,∴AC=331060sin =︒CD ,AD=33560tan =︒CD .答案:33103353.如图3,初三年级某同学要测量校园内的旗杆AB 的高度.在地面上C 点用测角仪测得旗杆顶A 点的仰角为∠AFE=60°,再沿着直线BC 后退8米到D ,在D 点又测得旗杆顶A 的仰角∠AGE=45°.已知测角仪的高度为1.6米,求旗杆AB 的高度.(3的近似值取1.7,结果保留1位小数)图3解:设EF 为x 米, 在Rt △AEF 中,∠AFE=60°, ∴AE=EF·tan60°=3x ,在Rt △AGE 中,∠AGE=45°, ∴AE=GE·tan45°=GE=8+x. ∴3x=8+x.解之,得x=4+43.∴AE=12+43≈18.8.∴AB=20.4(米). 答:旗杆AB 高20.4米.4.如图4,在比水面高2 m 的A 地,观测河对岸有一直立树BC 的顶部B 的仰角为30°,它在水中的倒影B′C 顶部B′的俯角是45°,求树高BC.(结果保留根号)图4解Rt △AEB 与Rt △AEB′,得AE 与BE 、EB′的关系,解关于x 的方程可求得答案. 解:设树高BC=x(m),过A 作AE ⊥BC 于E ,在Rt △ABE 中,BE=x -2,∠BAE=30°,cot ∠BAE=BEAE,∴AE=BE·cot ∠BAE=(x -2)·3=3 (x -2).∵∠B′AE=45°,AE ⊥BC. ∴B′E=AE=3(x -2).又∵B′E=B′C+EC=BC+AD=x+2, ∴3(x -2)=x+2.∴x=(4+23)(m).答:树高BC 为(4+23) m.5.如图5,两建筑物的水平距离为a 米,从A 点测得D 点的俯角为α,测得C 点的俯角为β,则较低建筑物CD 的高度为()图5A.aB.atanαC.a(sinα-cosα)D.a(tanβ-tanα) 解析:过D 点作AB 的垂线交AB 于E 点,在 Rt △ADE 中,∠ADE=α,DE=a, ∴AE=a·tanα.在Rt △ABC 中,∠ACB=β,BC=a, ∴AB=a·tan β.∴CD=AB -AE=a·tan β-a·tan α. 答案:D6.有人说,数学家就是不用爬树或把树砍倒就能够知道树高的人.小敏想知道校园内一棵大树的高度(如图6),他测得CB=10米,∠ACB=50°,请你帮他算出树高AB,约为________________米. (注:①树垂直于地面;②供选用数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)图6解析:AB=BC·tanC=12(米). 答案:127.如图7,塔AB 和楼CD 的水平距离为80米,从楼顶C 处及楼底D 处测得塔顶A 的仰角分别是45°和60°.求塔高与楼高.(精确到0.01米)(参考数据2=1.414 21,3=1.732 05)图7解:在Rt △ABD 中,BD=80米,∠BDA=60°,∴AB=BD·tan60°=803≈138.56(米). Rt △AEC 中,EC=BD=80,∠ACE=45°, ∴AE=CE=80(米).∴CD=AB -AE≈58.56(米).答:塔高与楼高分别为138.56米、58.56米.8.如图8,某船向正东方向航行,在A 处望见某岛C 在北偏东60°方向,前进6海里到B 点,测得该岛在北偏东30°方向.已知该岛周围6海里内有暗礁,若该船继续向东航行,有无触礁危险?请说明理由.(参考数据:3≈1.732)图8解:继续向东行驶,有触礁的危险. 过点C 作CD 垂直AB 的延长线于D,∵∠CAB=30°,∠CBD=60°,∴∠BCD=30°. 设CD 的长为x,则tan ∠CBD=BDxBD CD =,∴BD=33x. ∴tan ∠CAB=tan30°=x x AD CD 33633+==.∴x=33.∴x≈5.2<6.∴继续向东行驶,有触礁的危险.9.如图9,武当山风景管理区,为提高游客到某景点的安全性,决定将到达该景点的步行台阶进行改善,把倾角由44°减至32°,已知原台阶AB 的长为5米(BC 所在地面为水平面). (1)改善后的台阶会加长多少?(精确到0.01米) (2)改善后的台阶多占多长一段地面?(精确到0.01米)图9解:(1)如图,在Rt △ABC 中,AC=AB·sin44°=5sin 44°≈3.473. 在Rt △ACD 中,AD=︒=︒32sin 473.332sin AC ≈6.554.∴AD -AB=6.554-5≈1.55.即改善后的台阶会加长1.55米, (2)如图,在Rt △ABC 中, BC=ABcos44°=5cos44°≈3.597. 在Rt △ACD 中,CD=︒=︒32tan 473.332tan AC ≈5.558,∴BD=CD -BC=5.558-3.597≈1.96,即改善后的台阶多占1.96米长的一段地面.10.如图10,某海关缉私艇巡逻到达A 处时接到情报,在A 处北偏西60°方向的B 处发现一艘可疑船只正以24海里/时的速度向正东方向前进,上级命令要对可疑船只进行检查,该艇立即沿北偏西45°的方向快速前进,经过1个小时的航行,恰好在C 处截住可疑船只,求该艇的速度.(结果保留整数,6=2.449,3=1.732,2=1.414)图10解:设OA 的长为x ,由于点C 在点A 的北偏西45°的方向上,∴OC=OA=x.根据题意,得tan30°=312243324=⇒+==⇒+x xxx x x +12.AC 2=x 2+x 2⇒AC=22x x +,∴AC≈46(海里).答:该艇的速度是46海里/时.28.2 解直角三角形(三)参考答案一、课前预习 (5分钟训练)1.在下列情况下,可解的直角三角形是( )A.已知b=3,∠C=90°B.已知∠C=90°,∠B=46°C.已知a=3,b=6,∠C=90°D.已知∠B=15°,∠A=65°解析:一般地,已知两边、已知一个锐角一边、已知一个锐角和两个边的关系或已知三边的关系的直角三角形可解.∴C 正确. 答案:C2.如图-1,用测倾仪测得校园内旗杆顶点A 的仰角α=45°,仪器高CD =1.2 m ,测倾仪底部中心位置D 到旗杆根部B 的距离DB=9.8 m ,这时旗杆AB 的高为________ m.图1解:过C 点作AB的垂线,垂足为E点,在Rt △ACE 中,∠ACE=α=45°,BD=9.8,∴AE=9.8.∴AB=AE+CD=11(m). 答案:113.有一大坝其横截面为一等腰梯形,它的上底为6 m ,下底为10 m ,高为32m,则坡角为_______.解:设坡角为α,则坡度=tanα=3)610(2132=-,∴坡角为60°.答案:60°二、课中强化(10分钟训练)1.有一棵树被风折断,折断部分与地面夹角为30°,树尖着地处与树根的距离是35米,则原树高是_______________ m.解析:如图,在Rt △ABC 中,∠A=30°,∠C=90°,AC=35,∴AB=AACcos =10,BC=AC·tanA=5.∴原树高为15米.答案:152.一等腰三角形顶角为100°,底边长为12,则它的面积是_________________.解析:如图所示,作CD ⊥A B ,在Rt △ADC 中,得AD=6,∠ACD=50°,∴CD≈5.03,∴面积为30.18.答案:30.183.如图28-2-3-2,在Rt △ABC 中,∠C=90°,AD 平分∠CAB,CD=3,BD=32,求AB 及∠B.图2解:过D 点作DE ⊥AB 于E 点,设AC=x ,则AE=x.在Rt △BED 中,得到BE=3,又由AB 2=AC 2+BC 2,得(3+x )2=x 2+27,解得x=3,AB=6, sinB=21,∴∠B=30°.4.如图3,已知线段AB 、CD 分别表示甲、乙两幢楼的高,AB ⊥BD ,CD ⊥BD ,从甲楼顶部A 处测得乙楼顶部C 的仰角α=30°,测得乙楼底部D 的俯角β=60°,已知甲楼高AB=24 m ,求乙楼CD 的高.图3解:过点A 作AE ⊥CD ,在Rt △ABD 中,∠ADB=β,AB=24,∴BD=38.在Rt △AEC中,∠CAE=α,BD=38,∴CE=8.∴CD=CE+AB=32(米).三、课后巩固(30分钟训练)1.菱形ABCD 的对角线AC 长为10 cm,∠BAC=30°,那么AD 为( )A.3310 B.33 C.3315 D.3解析:如图,∵AC ⊥BD,∴AD=331030cos 5=︒. 答案:A2.在Rt △ABC 中,∠C=90°,CD 是斜边AB 上的中线,BC=4,CD=3,则∠A≈_________.解析:由CD=3,得AB=6,∴sinA≈0.666 7.∴∠A≈41.8°. 答案:41.8°3.如图4所示,为了测量河流某一段的宽度,在河北岸选了一点A ,在河南岸选相距200米的B 、C 两点,分别测得∠ABC=60°,∠ACB=45°.求这段河的宽度.(精确到0.1米) 解:过A 作BC 的垂线,垂足为D. 在Rt △ADB 中,∠B=60°, ∴∠BAD=30°.∴BD=AD·tan30°=33AD. 在Rt △ADC 中,∠C=45°,∴CD=AD. 又∵BC=200,∴BD+CD=33AD+AD=200. ∴AD=331200≈126.8(米).答:这段河宽约为126.8米.4.如图4,高速公路路基的横断面为梯形,高为4 m ,上底宽为16 m ,路基两边斜坡的坡度分别为i=1∶1,i′=1∶2,求路基下底宽.图4解:作高AE 、DF ,则BE=4,CF=8. ∴CB=28(米).5.为缓解“停车难”问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图(图5).按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE.(精确到0.1 m )图5解:在Rt △ABD 中,AB=9,∠BAD=18°, ∴BD≈2.9.∴CD=2.4.在Rt △CDE 中,∠DCE=18°, ∴CE≈2.3(米). 答:略.6.如图6,某校九年级3班的学习小组进行测量小山高度的实验活动.部分同学在山脚下点A 测得山腰上一点D 的仰角为30°,并测得AD 的长度为180米;另一部分同学在山顶点B 测得山脚点A 的俯角为45°,山腰点D 的俯角为60°,请你帮助他们计算出小山的高度BC.(计算过程和结果不取近似值)图6解:如图,作DE ⊥AC 于E,DF ⊥BC 于F,设山高为x 米,在Rt △ADE 中,DE=90,AE=390,∴DF=x-390,BF=x-90.在Rt △BFD 中,DF ∶BF=tan30°, ∴x=90+390(米).。
天津市大港区第六中学九年级数学教案:28.2解直角三角形

《天津市大港区第六中学九年级数学教案:28.2解直角三角形》
1ห้องสมุดไป่ตู้教学重点
(1)理解并掌握直角三角形的边角关系,特别是锐角三角函数(正弦、余弦、正切)的定义及其在解直角三角形中的应用。
举例:通过具体直角三角形的图形,讲解正弦、余弦、正切的定义,如正弦是对边比斜边,余弦是邻边比斜边,正切是对边比邻边。
(2)学会使用锐角三角函数解直角三角形,包括已知两边一角和已知一角两边的情况。
举例:给出具体的直角三角形问题,如已知斜边和一个锐角求其他两边,或已知两边求第三边和锐角。
(3)掌握在实际问题中构建直角三角形模型,运用锐角三角函数解决问题的方法。
举例:引入实际生活中的问题,如测量旗杆高度、计算物体在斜面上的重力分解等。
四、教学流程
《天津市大港区第六中学九年级数学教案:28.2解直角三角形》
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《解直角三角形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要测量高度或距离的情况?”(如测量树的高度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索解直角三角形的奥秘。
五、教学反思
在今天的课堂中,我们探讨了解直角三角形的相关知识。回顾整个教学过程,我觉得有几个方面值得反思。
首先,关于导入新课的部分,通过提出与生活相关的问题,激发了学生的兴趣。我发现他们对于解决实际问题非常感兴趣,这也促使他们在后续的学习中更加投入。在以后的教学中,我需要继续寻找更多贴近生活的案例,让学生感受到数学的实用价值。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解解直角三角形的基本概念。解直角三角形是利用锐角三角函数来求解直角三角形中未知角度和边长的方法。它在工程测量、建筑设计等领域有着广泛的应用。
28.2 解直角三角形的应用举例

a
热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,
15m,这栋楼有多高?
年级: 九年级 学科: 数学 命题人: 王金涛 审核人: 叶书生
东 辛 店 中 学 验 标 题
(满分: 20 时间: 10 分钟 成绩: )
必做题:(共1题,每题10分)
1、为促进我市经济快速发展,加快道路建设,某高速公路建设工程中,需修建隧道AB. 如图, 在山外一点C 测得BC 距离为求隧道AB 的长.(参考数据: )
选做题:(共1题,每题10分)
2、如图,河对岸有一水塔AB ,在C 处测得塔顶A 的仰角为30°,向塔前进12米到达D ,在D 处测得A 的仰角为45°,求水塔AB 的高(结果保留根号)。
28.2解直角三角形(3)学案

28.2解直角三角形(3)学案一.基础训练。
1、锐角三角函数值的变化规律:(1)锐角的正弦值或正切值随角度的增大而 (或减小而 )(2)锐角的余弦值或余切值随角度的增大而 (或减小而 )2、在Rt △ABC 中,各边的长度都扩大两倍,那么锐角A 的各三角函数值( )(A ) 都扩大两倍(B )都缩小两倍(C )没有变化(D )不能确定3、sin30°的值等于( )。
A 、21 B 、22 C 、23 D 、 1 4、已知∠A 是锐角,且sinA=32,那么∠A 等于( ) A .30° B .45° C .60° D .75°5、Rt △ABC 中,AB =8,3sin 4A,∠C =90°,则AC =_____________。
6、当锐角A<600时,下列结论不正确的是( ) (A)sinA< (B)cosA< (C)tanA< (D)cotA>二.新知探究。
1、坡度与坡角: 坡面的铅直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),一般用i 表示。
即i= ,常写成i=1:m 的形式如i=1:2.5把坡面与水平面的夹角α叫做坡角.结合图形思考,坡度i 与坡角α之间具有什么关系?2、一段坡面的坡角为60°,则坡度i=______;3、某坡面的坡度为1:3,则坡角是_______度.4、如图,已知梯形ABCD 中,AD ∥BC ,∠B =30°,∠C =60°, AD =4,AB =33,则下底BC的长为 __________.AD60°30°BC三.应用提高。
1、如图,一艘海轮位于灯塔P的北偏东65 方向,距离灯塔80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34 方向上的Array B处.这时,海轮所在的B处距离灯塔P有多远?2、同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图6-33 水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB 的坡度i=1∶3,斜坡CD的坡度i=1∶2.5,求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长(精确到0.1m)3、利用土埂修筑一条渠道,在埂中间挖去深为0.6米的一块(图阴影部分是挖去部分),已知渠道内坡度为1∶1.5,渠道底面宽BC为0.5米,求:①横断面(等腰梯形)ABCD的面积;②修一条长为100米的渠道要挖去的土方数.4、庞亮和李强相约周六去登山,庞亮从北坡山脚C处出发,以24米/分钟的速度攀登,同时李强从南坡山脚B处出发。
28.2.1解直角三角形Word文档

28.2 解直角三角形及其应用28.2.1 解直角三角形要点感知 由直角三角形中除直角外的已知元素,求出未知元素的过程,叫做解直角三角形,解直角三角形的依据(∠C=90°):(1)三边之间的关系: (勾股定理); (2)两锐角之间的关系: ;(3)边角之间关系:sinA= ,sinB= ;cosA= ,cosB= ;tanA= ,tanB= . 例1.根据下列所给条件解直角三角形,结果不能确定的是( ) ①已知一直角边及其对角;②已知两锐角;③已知两直角边; ④已知斜边和一锐角;⑤已知一直角边和斜边.A.②③B.②④C.只有②D.②④⑤点拨: 第2小题要过点A 作BC 的垂线,构造两个直角三角形,再解直角三角形;第3小题要注意解直角三角形中已知的两元素不包括直角. 例2 Rt △ABC 中,∠C=90°,c=24,b=312,解这个直角三角形.点拨:直角三角形除直角外的其它五个元素中,已知其中任何两个元素(必有一边),即可求出其它三个元素.例3.已知,如图:△ABC 是等腰直角三角形,∠ABC=90°,AB=10,D 为△ABC 外一点,连结AD 、BD ,过D 作DH ⊥AB ,垂足为H ,交AC 于E.①若△ABD 是等边三角形,求DE 的长;②若BD=AB ,且tan ∠HDB=34,求DE 的长.点拨: 求出AB 的长,根据等腰三角形“三线合一”可求出AH 和BH 等 于AB 的二分之一,然后在直角三角形AHD 和AHE ,可利用tan ∠DAH 和 tan ∠EAH 求出DH 和EH 的长,从而求出DE 的长;第②小题思路和方法同上. 知识点1 已知两边解直角三角形1.在△ABC 中,∠C=90°,AC=3,AB=4,欲求∠A 的值,最适宜的做法是( ) A.计算tanA 的值求出 B.计算sinA 的值求出 C.计算cosA 的值求出D.先根据sinB 求出∠B ,再利用90°-∠B 求出2.在Rt △ABC 中,∠C=90°,a=4,b=3,则cosA 的值是3.在Rt △ABC 中,∠C=90°,a=20,c=20,2则∠A= ,∠B= ,b= .4.如图,在Rt △ABC 中,∠C=90°,已知BC=26,AC=62,解此直角三角形. 知识点2 已知一边一锐角解直角三角形5.在Rt △ABC 中,∠C=90°,AB=6,cosB=32,则BC 的长为( ) A.4 B.25 C.131318 D.131312 6.如果等腰三角形的底角为30°,腰长为6 cm ,那么这个三角形的面积为( ) A.4.5 cm 2 B.93 cm 2 C.183 cm 2 D.36 cm 27.在Rt △ABC 中,CA=CB ,AB=92,点D 在BC 边上,连接AD ,若tan ∠CAD=31,则BD 的长为 .8.在Rt △ABC 中,∠C=90°,c=83,∠A=60°,解这个直角三角形. 9.在Rt △ABC 中,∠C=90°,∠B=45°,AC=4,解此直角三角形.10.在Rt △ABC 中,∠C=90°,已知∠A ,b ,解此直角三角形就是要求出( ) A.c B.a ,cC.∠B ,a ,cD.∠B ,a ,c ,△ABC 的面积11.在Rt △ABC 中,若∠C=90°,AC=1,BC=2,则下列结论中正确的是( ) A.sinB=55B.cosB=52C.tanB=2D.cosB=2112.如图,在Rt △ABC 中,∠C=90°,∠B=37°,BC=32,则AC= .(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)13.如图,在菱形ABCD 中,DE ⊥AB 于点E ,cosA=53,BE=4,则tan ∠DBE 的值是 .14.根据下列条件解Rt △ABC(∠C=90°).(1)∠A=30°,b=3;(2)c=4,b=22.15.如图,△ABC 中,∠C=90°,点D 在AC 上,已知∠BDC=45°,BD=102,AB=20.求∠A 的度数.16.如图,在△ABC 中,∠A=30°,∠B=45°,AC=23, 求AB 的长.。
28.2解直角三角形(方向角及坡比问题)2014年3月18日

解: (1 ) 过点 A 作 AD 垂直于
BC ,垂足为
D
ABC
30
0
, AB 160 米
AD 80 米 100 米 ,
在 Rt ABD 中,解得
所以受噪声影响。
以点 A 为圆心, 100 米长为半径画圆弧分别
线段 EF 为受影响的路段 .
交 BC 于 E , F 两点
1 8 .4
沿水库拦河坝的背水坡将坝顶加宽2 米,坡度由原来的1:2改为1:2.5, 已知坝高6米,坝长50米。 (1)求加宽部分横断面AFEB (2)完成这一工程需要多少方土?
F
2
A D
6Leabharlann EBNM
1.在解直角三角形及应用时经常接触到 的一些概念(方位角;坡度、坡角等)
2.实际问题向数学模型的转化
sin B PC PB
65° P
A C
34°
PB
PC sin B
72.8 sin 34
72.8 0.559
B
130.23
当海轮到达位于灯塔P的南偏东34°方向时,它距离灯塔P大约130.23海里.
气象台发布的卫星云图显示,代号为W的台风在某海岛(设为 点O)的南偏东45°方向的B点生成,测得 O B 1 0 0 6 k m . 台 风中心从点B以40km/h的速度向正北方向移动,经5h后到达海 面上的点C处.因受气旋影响,台风中心从点C开始以30km/h 的速度向北偏西60°方向继续移动.以O为原点建立如图12所示 的直角坐标系. (1)台风中心生成点B的坐标为 ,台风中心转折点C的 坐标为 ;(结果保留根号) (2)已知距台风中心20km的范围内均会受到台风的侵袭.如 果某城市(设为A点)位于点O的正北方向且处于台风中心的移 动路线上,那么台风从生成到最初侵袭该城要经过多长时间? 北
28.2.3解直角三角形(3)16页PPT文档

答:这栋楼高约为277.1m
利用解直角三角形的知识解决实际问题的 一般过程是:
1.将实际问题抽象为数学问题; (画出平面图形,转化为解直角三角形的问题)
2.根据条件的特点,适当选用锐角三角函数等去解直角三角形; 3.得到数学问题的答案;
4.得到实际问题的答案.
例1.如图,一艘海轮位于灯塔P的北偏东65°方向, 距离灯塔80海里的A处,它沿正南方向航行一段 时间后,到达位于灯塔P的南偏东34°方向上的B 处,这时,海轮所在的B处距离灯塔P有多远?(精确 到0.01海里)
答:受台风影响的时间 为20小时。
2r
t=
v
r表示台风形成区域圆 的半径 V表示风速
去年“卡努” 台风中心从我市的正东方向 300km处向北偏西60度方向移动,其他数据不变,请 问此时,我市会受到台风影响吗?若受影响,则影响 的时间又多长?
1、解直角三角形的关键是找到与已知和未知相关联 的直角三角形,当图形中没有直角三角形时,要通过 作辅助线构筑直角三角形(作某边上的高是常用的辅 助线);当问题以一个实际问题的形式给出时,要善 于读懂题意,把实际问题化归为直角三角形中的边角 关系。
2、一些解直角三角形的问题往往与其他知识联系, 所以在复习时要形成知识结构,要把解直角三角形作 为一种工具,能在解决各种数学问题时合理运用。
国外船只,除特许外,不得进入我国海洋100海里以 内的区域,如图,设A、B是我们的观察站,A和B 之 间的距离为157.73海里,海岸线是过A、B的一条直 线,一外国船只在P点,在A点测得∠BAP=450,同时 在B点测得∠ABP=600,问此时是否要向外国船只发 出警告,令其退出我国海域.
分析:从飞船上能最远直接 看到的地球上的点,应是视 线与地球相切时的切点.
28.2.1 解直角三角形教案

28.2.1 解直角三角形本节是在学习锐角三角函数之后,结合已学过的三角形内角和定理和勾股定理,研究解直角三角形的问题,既能加深对锐角三角函数概念的理解,又为后续解决与其相关的实际问题打下基础.解直角三角形是结合三角形内角和定理、勾股定理等知识,利用锐角三角函数对直角三角形的三条边以及两锐角这五个要素进行求解,在解直角三角形时注意借助相应的直角三角形来寻找已知元素与未知元素的关系式.【情景导入】要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足50°≤α≤75°(见教材第85页第10题图),现有一架长6 m 的梯子.(1)使用这个梯子最高可以安全攀上多高的墙(精确到0.1 m)?(2)当梯子底端距离墙面2.4 m 时,梯子与地面所成的角α等于多少(精确到1°)?这时人是否能够安全使用这架梯子?【说明与建议】 说明:用来源于学生身边的问题吸引他们的注意力,激发他们的好奇心,体会解直角三角形来源于生活,并服务于生活,诱发学生对新知识的渴求.建议:教师引导学生思考,为本节课学习解直角三角形做好铺垫. 【归纳导入】在Rt △ABC 中,∠C =90°,∠A =20°,c =10 cm. (1)根据“直角三角形两锐角互余”得∠B =70°. (2)由sinA =ac ,得a =c ·sinA =10sin20°cm.(3)由cosA =bc,得b =c ·cosA =10cos20°cm.通过以上填空,Rt △ABC 的三条边长及三个角全部知道了,这种由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形.【说明与建议】 说明:通过解答此题说明已知直角三角形的一个锐角,可以求出另一个锐角,选择恰当的边角关系,还可以求出其他的边长.建议:让学生先自主探究,然后交流解题的方法并比较从中选择最合适的方法.命题角度1 在直角三角形中解直角三角形这类题目一般已知一边一角或两边求其他元素.注意以下知识和技巧的总结及运用: 理论依据:在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c. (1)三边之间的关系:a 2+b 2=c 2. (2)锐角之间的关系:∠A +∠B =90°.(3)边角之间的关系:sinA =a c =cosB ,cosA =b c =sinB ,tanA =a b =1tanB .(4)面积公式:S △ABC =12ab =12ch(h 为斜边上的高).提示:当所求的元素既可用乘法又可用除法求解时,一般用乘法,不用除法;既可用已知数据又可用中间数据求解时,最好用已知数据.技巧方法:1.(宜昌中考)如图,△ABC 的顶点是正方形网格的格点,则cos ∠ABC 的值为(B) A.23B.22C.43D.2232.(巴中中考)如图,点A ,B ,C 在边长为1的正方形网格格点上,下列结论错误的是(A)A .sinB =13B .sinC =255C .tanB =12D .sin 2B +sin 2C =1命题角度2 构造直角三角形再解直角三角形这类问题一般和三角形或圆的相关知识结合命题,题目没有直接告诉是直角三角形,通过条件或添加辅助线,可以证明或构造直角三角形,再根据解直角三角形的方法解答问题.3.(黑龙江中考)如图,在△ABC 中,sinB =13,tanC =2,AB =3,则AC 的长为(B)A. 2B.52C. 5D .24.如图,点A ,B 是以CD 为直径的⊙O 上的两点,分别在直径的两侧,其中点A 是CDB ︵的中点.若tan ∠ACB =2,AC =5,则BC 的长为(D)A. 5B .2 5C .1D .2命题角度3 分类讨论解不定三角形在解直角三角形问题时,如遇到直角或者某个锐角不确定时,特别是在没有给出图形的情况下,要注意分类讨论,防止漏解.5.(内江中考)已知,在△ABC 中,∠A =45°,AB =42,BC =5,则△ABC 的面积为2或14.双直角三角形所谓“双直角三角形”是指一条直角边重合,另一条直角边共线的两个直角三角形.其位置关系有两种:如图1,公共直角边为AD ,则AD =BC ·tan α·tan βtan β-tan α,我们把它叫做公式1.图1 图2 如图2,公共直角边为AD ,则AD =BC ·tan α·tan βtan β+tan α,我们把它叫做公式2.课题28.2.1 解直角三角形授课人素养目标1.了解解直角三角形的意义和条件.2.帮助学生理解直角三角形中五个元素(直角除外)的关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形.3.发展学生的数学应用意识,提高归纳能力,感受解直角三角形的策略.教学重点解直角三角形的意义以及一般方法.教学难点选择恰当的边角关系解直角三角形.授课类型新授课课时教学步骤师生活动设计意图回顾如图,在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别是a,b,c,那么除直角∠C外的两个锐角和三条边之间有如下关系:两锐角之间的关系:∠A+∠B=90°.三边之间的关系:a2+b2=c2.边角之间的关系:sinA=ac,cosA=bc,tanA=ab.回顾以前所学内容,为本节课的教学内容做好准备.活动一:创设情境、导入新课【课堂引入】意大利比萨斜塔在落成时就已倾斜,其塔顶中心点为B,塔身中心线与垂直中心线的夹角为∠A,过点B向垂直中心线引垂线,垂足为C,如图.在Rt△ABC中,∠C=90°,BC=5.2 m,AB=54.5 m,求∠A的度数.师生活动:教师呈现问题并引导学生结合图形,观察已知条件和所求角之间的关系,分析得到通过求∠A的正弦来求∠A的度数.通过实际问题,激发学生的学习兴趣,把实际问题转化为数学问题,并一般化:已知直角三角形斜边和直角边,求它的锐角的度数,通过求解的过程,初步体会解直角三角形的内涵,引入课题.活动二:实践探究、交流新知【探究新知】1.解直角三角形的定义问题:将比萨斜塔问题推广为一般的数学问题该如何求解?师生活动:已知直角三角形的斜边和一条直角边,求它的锐角的度数,利用锐角的正弦(或余弦)的概念直接求解.问题:在活动一所述的Rt△ABC中,你还能求出其他未知的边和角吗?师生活动:学生思考并说明求解思路,教师把问题一般化,给出解直角三角形的内涵:一般地,直角三角形中,除直角外,共有五个元素,即三条边和两个锐角.由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形.2.解直角三角形的方法问题:回想一下,刚才解直角三角形的过程中,用到了哪些知识?你能梳理一下直角三角形各个元素之间的关系吗?师生活动:如图,引导学生结合图形,梳理五个元素(直角除外)之间的关系,学生展示:(1)三边之间的关系:a2+b2=c2(勾股定理).(2)两锐角之间的关系:∠A+∠B=90°.(3)边角之间的关系:sinA=ac,cosA=bc,tanA=ab,sinB=ba,cosB=ac,tanB=ba.问题:从上述问题来看,在直角三角形中,知道斜边和一条直角边这两个元素,可以求出其余的三个元素.一般地,已知五个元素(直角除外)中的任意两个元素,可以求其余元素吗?教师给出结论:在直角三角形中,知道除直角外的五个元素中的两个元素(至1.有条理地梳理直角三角形除直角外的五个元素之间的关系,明确各自的作用,便于应用.2.在讨论解直角三角形的方法过程中,明确解直角三角形的条件,培养学生的逻辑思维能力.少有一个是边),就可以求出其余三个未知元素.活动三:开放训练、体现应用【典型例题】例1(教材第73页例1)如图,在Rt△ABC中,∠C=90°,AC=2,BC=6,解这个直角三角形.解:AB=22,∠B=30°,∠A=60°.师生活动:学生在教师的引导下,思考如何求出所有未知元素.先让学生找出所有未知元素:∠A,∠B和AB,然后让学生逐一说明求每一个未知元素的方法和依据,教师引导学生选择简便的解题途径.最后给出简洁、规范的解题步骤.例2(教材第73页例2)如图,在Rt△ABC中,∠C=90°,∠B=35°,b=20,解这个直角三角形(结果保留小数点后一位).解:∠A=90°-∠B=90°-35°=55°.∵tanB=ba,∴a=btanB=20tan35°≈28.6.∵sinB=bc,∴c=bsinB=20sin35°≈34.9.师生活动:由学生代表参照例1的解题思路,分析本题的解题思路;然后由学生独立完成,再小组交流;最后由学生代表展示解题步骤.对于求c,如果学生采取不同方法,让他们展示不同方法;如果学生没有采取不同方法,教师注意引导他们思考其他解法.【变式训练】1.如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=43,则CD的值为(D)1.通过解特殊的直角三角形,训练学生解直角三角形的思路和方法,提高学生分析和解决问题的能力.2.进一步训练解一般直角三角形的思路和方法,并体会从计算简便的角度选用适当的关系式求解.3.变式训练拓展学生思维,同时增强学生对所学知识的灵活应用能力.A .2 B.45 C.43 D.65提示:延长AD ,BC ,两线交于点O ,得到两个直角三角形,解直角三角形即可. 2.在△ABC 中,若AB =10,AC =15,∠BAC =150°,则△ABC 的面积为(A) A .37.5 B .75 C .100 D .150提示:过点C 作CD ⊥AB ,交BA 的延长线于点D.在Rt △ADC 中利用特殊角求出高CD ,再计算三角形的面积.3.在Rt △ABC 中,∠C =90°,b =3,S △ABC =923,解这个直角三角形.解:如图:∵在Rt △ABC 中,∠C =90°,b =3,S △ABC =923,∴12ab =92 3. ∴a =3 3.∴tanA =a b =333= 3.∴∠A =60°.∴∠B =180°-∠A -∠C =180°-60°-90°=30°. ∴c =2b =6. 活动四:课堂检测【课堂检测】1.如图,在Rt △ABC 中,∠C =90°,AB =4,sinA =12,则BC 的长为(A)A .2B .3 C. 3 D .2 3通过设置课堂检测,进一步巩固所学新知,同时检测学习效果,做到“堂堂清”.2.在Rt △ABC 中,∠C =90°,∠B =40°,BC =3,则AC =(C) A .3sin40° B .3sin50° C .3tan40° D .3tan50°3.在Rt △ABC 中,∠C =90°,斜边中线是3 cm ,sinA =13,则S △ABC =(D)A. 2 cm 2B .2 2 cm 2C .3 2 cm 2D .4 2 cm 2提示:由中线长可以求出斜边,解直角三角形求出两直角边,再计算三角形面积.4.如图,在△ABC 中,BD ⊥AC 于点D ,AB =6,AC =53,∠A =30°.(1)求BD 和AD 的长. (2)求tanC 的值. 解:(1)∵BD ⊥AC , ∴∠ADB =90°.在Rt △ADB 中,AB =6,∠A =30°, ∴BD =12AB =3.∴AD =BDtanA=3BD =3 3. (2)CD =AC -AD =53-33=23, 在Rt △BCD 中,tanC =BD CD =323=32.学生进行当堂检测,完成后,教师进行批阅、点评、讲解. 课堂小结1.课堂总结:(1)什么叫解直角三角形?(2)两个直角三角形全等要具备什么条件?为什么在直角三角形中,已知一边和一个锐角或两边就能解直角三角形呢?教学说明:教师提问并引导学生总结归纳解直角三角形的定义以及直角三角形五元素之间的关系. 2.布置作业:教材第77页习题28.2第1题.引导学生从知识和方法两个方面总结自己的收获,理清解直角三角形的目的、条件、依据、方法,提升综合运用知识的能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
28.2解直角三角形(一)一、教育目标1、使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.2、通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.3、渗透数形结合的数学思想,培养学生良好的学习习惯. 二、教学重点、难点1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用. 三、教学步骤 (一)复习引入1.在三角形中共有几个元素?2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢? (1)边角之间关系a b A b a A c b A c a A ====cot ;tan ;cos ;sin b aB a b B c a B c b B ====cot ;tan ;cos ;sin如果用α∠表示直角三角形的一个锐角,那上述式子就可以写成. 的对边的邻边;的邻边的对边;斜边的邻边;斜边的对边αααααααααα∠∠=∠∠=∠=∠=cot tan cos sin(2)三边之间关系 a 2 +b 2 =c 2 (勾股定理) (3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用. (二)教学过程1.我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形). 3.例题例 1在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且,解这个三角形.解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演. 解 ∵tanA=a b=∴ 60B ∠=o ∴ 9030A B ∠=-∠=o o ∴C=2b= 例2在Rt △ABC 中, ∠B =35,b=20,解这个三角形. 引导学生思考分析完成后,让学生独立完成 在学生独立完成之后,选出最好方法,教师板书.35B ∠-∠=-=o o o o 解:A=909055 tan b B a =Q 2028.6tan tan35b a B ∴==≈on 2035.1sin sin 35bsi B cb c b =∴==≈oQ完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底注意:例1中的b 和例2中的c 都可以利用勾股定理或其它三角函数来计算,但计算出的值可能有些少差异,这都是正常的。
4.巩固练习 P91说明:解直角三角形计算上比较繁锁,条件好的学校允许用计算器.但无论是否使用计算器,都必须写出解直角三角形的整个过程.要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯. (四)总结与扩展1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.2.出示图表,请学生完成6 a=b •tanA √ B b c cos =√A B ∠-=∠0907 a =b •cotB √ B b c sin =B A ∠-=∠090√8 a=c •sinA b=c •cosA √ √A B ∠-=∠0909 a=c •cosB b=c •sinB √ B A ∠-=∠090√ 10不可求不可求不可求√√四、布置作业课题 解直角三角形(二)一、教学目标1、使学生会把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解决.2、逐步培养学生分析问题、解决问题的能力.3、渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识 二、教学重点、难点重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决.难点:实际问题转化成数学模型 三、教学过程 (一)复习引入1.直角三角形中除直角外五个元素之间具有什么关系?请学生口答. 2、在中Rt △ABC 中已知a=12 ,c=13 求角B 应该用哪个关系?请计算出来。
(二)实践探索要想使人安全地攀上斜靠在墙面上的梯子的顶端.梯子与地面所成的角一般要满足,(如图).现有一个长6m 的梯子,问:(1)使用这个梯子最高可以安全攀上多高的墙(精确到0. 1 m) (2)当梯子底端距离墙面2.4 m 时,梯子与地面所成的角等于多少(精确到1o ) 这时人是否能够安全使用这个梯子引导学生先把实际问题转化成数学模型然后分析提出的问题是数学模型中的什么量在这个数学模型中可用学到的什么知识来求未知量?几分钟后,让一个完成较好的同学示范。
(三)教学互动例3 2003年10月15日“神舟”5号载人航天飞船发射成功.当飞船完成变轨后,就在离地球表面350km的圆形轨道上运行.如图,当飞船运行到地球表面上P点的正上方时,从飞船上最远能直接看到的地球上的点在什么位置?这样的最远点与P点的距离是多少?(地球半径约为6 400 km,结果精确到0. 1 km)分析:从飞船上能最远直接看到的地球上的点,应是视线与地球相切时的切点.如图,⊙O表示地球,点F是飞船的位置,FQ是⊙O的切线,切点Q是从飞船观测地球时的最远点. 弧PQ的长就是地面上P, Q 两点间的距离.为计算弧PQ的长需先求出(即)解:在上图中,FQ是⊙O的切线,是直角三角形,弧PQ的长为由此可知,当飞船在p点正上方时,从飞船观测地球时的最远点距离P点约2 009. 6 km.(四)巩固再现P93 1,P96 1四、布置作业P96 2,3课题解直角三角形(三)一、教学目标1、使学生了解什么是仰角和俯角2、逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法.3、巩固用三角函数有关知识解决问题,学会解决观测问题.二、教学重点、难点重点:用三角函数有关知识解决观测问题难点:学会准确分析问题并将实际问题转化成数学模型三、教学过程(一)复习引入平时我们观察物体时,我们的视线相对于水平线来说可有几种情况?(三种,重叠、向上和向下)结合示意图给出仰角和俯角的概念(二)教学互动例4热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30o,看这栋离楼底部的俯角为60o,热气球与高楼的水平距离为120 m.这栋高楼有多高(结果精确到0.1m)?分析:在中,,.所以可以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC.解:如图, ,,答:这栋楼高约为277.1m.(三)巩固再现1、为测量松树AB的高度,一个人站在距松树15米的E处,测得仰角∠ACD=52°,已知人的高度是1.72米,求树高(精确到0.01米).2、在宽为30米的街道东西两旁各有一楼房,从东楼底望西楼顶仰角为45°,从西楼顶望东楼顶,俯角为10°,求西楼高(精确到0.1米).3、上午10时,我军驻某海岛上的观察所A发现海上有一艘敌军舰艇正从C处向海岛驶来,当时的俯角,经过5分钟后,舰艇到达D处,测得俯角。
已知观察所A距水面高度为80米,我军武器射程为100米,现在必须迅速计算出舰艇何时驶入我军火力射程之内,以便及时还击。
解:在直角三角形ABC和直角三角形ABD中,我们可以分别求出:(米)(米)(米)舰艇的速度为(米/分)。
设我军火力射程为米,现在需算出舰艇从D到E的时间(分钟)我军在12.5分钟之后开始还击,也就是10时17分30秒。
4、小结:谈谈本节课你的收获是什么?四、布置作业P101 7、8课题解直角三角形(四)一、教学目标1、使学生了解方位角的命名特点,能准确把握所指的方位角是指哪一个角2、逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法.3、巩固用三角函数有关知识解决问题,学会解决方位角问题.二、教学重点、难点重点:用三角函数有关知识解决方位角问题难点:学会准确分析问题并将实际问题转化成数学模型三、教学过程(一)复习引入1、叫同学们在练习薄上画出方向图(表示东南西北四个方向的)。
2、依次画出表示东南方向、西北方向、北偏东65度、南偏东34度方向的射线(二)教学互动例5如图,一艘海轮位于灯塔P的北偏东65o方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34o方向上的B处.这时,解:如图, 在中,00g=-cos(9065)PC PA=⨯80cos25≈72.8在中, .,因此.当海轮到达位于灯塔P的南偏东340方向时,它距离灯塔P大约130.23海里.海轮所在的B处距离灯塔P有多远(精确到0.01海里)?(三)巩固再现1、P95 12、上午10点整,一渔轮在小岛O的北偏东30°方向,距离等于10海里的A处,正以每小时10海里的速度向南偏东60°方向航行.那么渔轮到达小岛O的正东方向是什么时间?(精确到1分).3、如图6-32,海岛A的周围8海里内有暗礁,鱼船跟踪鱼群由西向东航行,在点B处测得海岛A位于北偏东60°,航行12海里到达点C处,又测得海岛A位于北偏东30°,如果鱼船不改变航向继续向东航行.有没有触礁的危险?四、布置作业P97 7、9课题解直角三角形(五)一、教学目标1、巩固用三角函数有关知识解决问题,学会解决坡度问题.2、逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法.3、培养学生用数学的意识,渗透理论联系实际的观点.二、教学重点、难点重点:解决有关坡度的实际问题.难点:理解坡度的有关术语.三、教学过程(一)复习引入1.讲评作业:将作业中学生普遍出现问题之处作一讲评.2.创设情境,导入新课.例同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图6-33水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=1∶3,斜坡CD的坡度i=1∶2.5,求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长(精确到0.1m).同学们因为你称他们为工程师而骄傲,满腔热情,但一见问题又手足失措,因为连题中的术语坡度、坡角等他们都不清楚.这时,教师应根据学生想学的心情,及时点拨.(二)教学互动通过前面例题的教学,学生已基本了解解实际应用题的方法,会将实际问题抽象为几何问题加以解决.但此题中提到的坡度与坡角的概念对学生来说比较生疏,同时这两个概念在实际生产、生活中又有十分重要的应用,因此本节课关键是使学生理解坡度与坡角的意义.1.坡度与坡角结合图6-34,教师讲述坡度概念,并板书:坡面的铅直高度h和水平宽度l的比叫做坡度(或叫做坡比),一般用i表示。