2018年高考数学考点通关练第三章三角函数解三角形与平面向量28平面向量的数量积及应用试题理

合集下载

2018年高考考点完全题数学文考点通关练习题 第三章 三

2018年高考考点完全题数学文考点通关练习题 第三章 三

考点测试20 函数y =A sin(ωx +φ)的图象和性质一、基础小题1.将函数y =sin x 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得各点向右平行移动π10个单位长度,所得图象的函数解析式是( )A .y =sin ⎝ ⎛⎭⎪⎫2x -π10B .y =sin ⎝ ⎛⎭⎪⎫12x -π20C .y =sin ⎝ ⎛⎭⎪⎫2x -π5D .y =sin ⎝ ⎛⎭⎪⎫12x -π10 答案 B解析 将函数y =sin x 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到y =sin 12x ,再把所得各点向右平行移动π10个单位长度,所得图象的函数解析式是y =sin ⎣⎢⎡⎦⎥⎤12⎝ ⎛⎭⎪⎫x -π10=sin ⎝ ⎛⎭⎪⎫12x -π20.故选B.2.若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=( )A.23B.32 C .2 D .3 答案 B解析 由题意知f (x )的一条对称轴为x =π3,和它相邻的一个对称中心为原点,则f (x )的周期T =4π3,从而ω=32.3.函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫x ∈R ,ω>0,|φ|<π2的部分图象如图所示,则函数f (x )的解析式为( )A .f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4B .f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4C .f (x )=sin ⎝ ⎛⎭⎪⎫4x +π4D .f (x )=sin ⎝ ⎛⎭⎪⎫4x -π4 答案 A解析 由题图可知,函数y =f (x )的最小正周期为T =2πω=⎝ ⎛⎭⎪⎫3π8-π8×4=π,所以ω=2,又函数f (x )的图象经过点⎝ ⎛⎭⎪⎫π8,1,所以sin ⎝ ⎛⎭⎪⎫π4+φ=1,则π4+φ=2k π+π2(k ∈Z ),解得φ=2k π+π4,又|φ|<π2,所以φ=π4,即函数f (x )=sin ⎝⎛⎭⎪⎫2x +π4,故选A.4.函数y =2sin ⎝ ⎛⎭⎪⎫π6x -π3(0≤x ≤9)的最大值与最小值之和为( )A .2- 3B .0C .-1D .-1- 3 答案 A解析 ∵0≤x ≤9,∴-π3≤π6x -π3≤7π6,∴-32≤sin ⎝ ⎛⎭⎪⎫π6x -π3≤1,∴-3≤2sin ⎝ ⎛⎭⎪⎫π6x -π3≤2,∴函数y =2sin ⎝⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为2- 3. 5.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则φ=( )A.π4 B.π3 C.π2 D.3π4答案 A解析 由题意可知函数f (x )的周期T =2×⎝⎛⎭⎪⎫5π4-π4=2π,故ω=1,∴f (x )=sin(x+φ),令x +φ=k π+π2(k ∈Z ),将x =π4代入可得φ=k π+π4(k ∈Z ),∵0<φ<π,∴φ=π4.6.已知函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π6(ω>0)的最小正周期为4π,则( ) A .函数f (x )的图象关于点⎝ ⎛⎭⎪⎫π3,0对称 B .函数f (x )的图象关于直线x =π3对称C .函数f (x )的图象向右平移π3个单位后,图象关于原点对称D .函数f (x )在区间(0,π)内单调递增 答案 C解析 因为函数的周期T =2πω=4π,所以ω=12,所以f (x )=sin ⎝ ⎛⎭⎪⎫12x +π6.当x =π3时,f ⎝ ⎛⎭⎪⎫π3=sin ⎝⎛⎭⎪⎫12×π3+π6=sin π3=32,所以A 、B 错误.将函数f (x )的图象向右平移π3个单位后得到g (x )=sin ⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎪⎫x -π3+π6=sin x 2的图象,关于原点对称,所以C 正确.由-π2+2k π≤12x +π6≤π2+2k π(k ∈Z ),得-4π3+4k π≤x ≤2π3+4k π(k ∈Z ),所以f (x )=sin ⎝ ⎛⎭⎪⎫12x +π6的单调递增区间为⎣⎢⎡ -4π3+4k π,⎦⎥⎤2π3+4k π,k ∈Z ,当k =0时,增区间为⎣⎢⎡⎦⎥⎤-4π3,2π3,所以D 错误.故选C.7.已知函数f (x )=sin(2x +φ),其中φ为实数.若f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对x ∈R 恒成立,且f ⎝ ⎛⎭⎪⎫π2>f (π),则f (x )的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ) B.⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z )C.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ) D.⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ) 答案 C解析 由f (x )=sin(2x +φ),且f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对x ∈R 恒成立,∴f ⎝ ⎛⎭⎪⎫π6=±1,即sin ⎝ ⎛⎭⎪⎫2×π6+φ=±1.∴π3+φ=k π+π2(k ∈Z ).∴φ=k π+π6(k ∈Z ). 又f ⎝ ⎛⎭⎪⎫π2>f (π),即sin(π+φ)>sin(2π+φ), ∴-sin φ>sin φ.∴sin φ<0.∴对于φ=k π+π6(k ∈Z ),k 为奇数.∴f (x )=sin(2x +φ)=sin ⎝ ⎛⎭⎪⎫2x +k π+π6 =-sin ⎝⎛⎭⎪⎫2x +π6.∴由2k π+π2≤2x +π6≤2k π+3π2(k ∈Z ),得k π+π6≤x ≤k π+2π3(k ∈Z ),∴f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ).8.已知函数f (x )=2sin(ωx +φ)对任意x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则f ⎝ ⎛⎭⎪⎫π6=________.答案 ±2解析 函数f (x )=2sin(ωx +φ)对任意x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则其对称轴为x =π6,所以f ⎝ ⎛⎭⎪⎫π6=±2.二、高考小题9.将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移14个周期后,所得图象对应的函数为( )A .y =2sin ⎝ ⎛⎭⎪⎫2x +π4B .y =2sin ⎝ ⎛⎭⎪⎫2x +π3C .y =2sin ⎝ ⎛⎭⎪⎫2x -π4D .y =2sin ⎝⎛⎭⎪⎫2x -π3 答案 D解析 该函数的周期为π,将其图象向右平移π4个单位后,得到的图象对应的函数为y=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π4+π6=2sin ⎝ ⎛⎭⎪⎫2x -π3,故选D.10.为了得到函数y =sin ⎝⎛⎭⎪⎫x +π3的图象,只需把函数y =sin x 的图象上所有的点( )A .向左平行移动π3个单位长度B .向右平行移动π3个单位长度C .向上平行移动π3个单位长度D .向下平行移动π3个单位长度答案 A解析 根据“左加右减”的原则可知,把函数y =sin x 的图象上所有的点向左平行移动π3个单位长度可得y =sin ⎝⎛⎭⎪⎫x +π3的图象.故选A.11.函数y =A sin(ωx +φ)的部分图象如图所示,则( )A .y =2sin ⎝ ⎛⎭⎪⎫2x -π6B .y =2sin ⎝⎛⎭⎪⎫2x -π3 C .y =2sin ⎝ ⎛⎭⎪⎫x +π6 D .y =2sin ⎝⎛⎭⎪⎫x +π3 答案 A解析 由图易知A =2,因为周期T 满足T 2=π3-⎝ ⎛⎭⎪⎫-π6,所以T =π,ω=2πT=2.由x=π3时,y =2,可知2×π3+φ=π2+2k π(k ∈Z ),所以φ=-π6+2k π(k ∈Z ),结合选项可知函数解析式为y =2sin ⎝⎛⎭⎪⎫2x -π6.12.已知函数f (x )=sin2ωx 2+12sin ωx -12(ω>0),x ∈R .若f (x )在区间(π,2π)内没有零点,则ω的取值范围是( )A.⎝ ⎛⎦⎥⎤0,18B.⎝ ⎛⎦⎥⎤0,14∪⎣⎢⎡⎭⎪⎫58,1C.⎝ ⎛⎦⎥⎤0,58 D.⎝ ⎛⎦⎥⎤0,18∪⎣⎢⎡⎦⎥⎤14,58 答案 D解析 f (x )=1-cos ωx 2+12sin ωx -12=12(sin ωx -cos ωx )=22sin ⎝⎛⎭⎪⎫ωx -π4,∵x ∈(π,2π),ω>0,∴ωx -π4∈⎝⎛⎭⎪⎫ωπ-π4,2ωπ-π4,∵f (x )在区间(π,2π)内没有零点,∴有以下两种情况: ①⎝⎛⎭⎪⎫ωπ-π4,2ωπ-π4⊆(2k π,2k π+π),k ∈Z , 则有⎩⎪⎨⎪⎧ωπ-π4≥2k π,2ωπ-π4≤2k π+π,k ∈Z ,得ω∈⎣⎢⎡⎦⎥⎤2k +14,k +58,k ∈Z ,当k =0时,ω∈⎣⎢⎡⎦⎥⎤14,58;②⎝⎛⎭⎪⎫ωπ-π4,2ωπ-π4⊆(2k π+π,2k π+2π),k ∈Z , 则有⎩⎪⎨⎪⎧ωπ-π4≥2k π+π,2ωπ-π4≤2k π+2π,k ∈Z ,得ω∈⎣⎢⎡⎦⎥⎤2k +54,k +98,k ∈Z ,当k =-1时,ω∈⎣⎢⎡⎦⎥⎤-34,18,又ω>0,∴ω∈⎝ ⎛⎦⎥⎤0,18.综上,ω∈⎝ ⎛⎦⎥⎤0,18∪⎣⎢⎡⎦⎥⎤14,58,故选D.13.函数y =sin x -3cos x 的图象可由函数y =2sin x 的图象至少向右平移________个单位长度得到.答案π3解析 函数y =sin x -3cos x =2sin ⎝⎛⎭⎪⎫x -π3的图象可由函数y =2sin x 的图象至少向右平移π3个单位长度得到.三、模拟小题14.已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,为了得到函数g (x )=A sin ωx 的图象,只需要将y =f (x )的图象( )A .向左平移π3个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向右平移π6个单位长度答案 D解析 根据函数f (x )=A sin(ωx +φ)( A >0,ω>0,|φ|<π2)的部分图象,可得A =2,T 4=2πω·14=π3-π12,求得ω=2.再根据五点法作图可得2·π12+φ=π2,求得φ=π3,∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π3,g (x )=2sin2x ,故把f (x )=2sin ⎝⎛⎭⎪⎫2x +π3的图象向右平移π6个单位长度,可得g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π6+π3=2sin2x 的图象,故选D.15.将函数y =cos2x 的图象向左平移π4个单位长度,得到函数y =f (x )·cos x 的图象,则f (x )的表达式可以是( )A .f (x )=-2sin xB .f (x )=2sin xC .f (x )=22sin2x D .f (x )=22(sin2x +cos2x ) 答案 A解析 由题意得,将函数y =cos2x 的图象向左平移π4个单位长度后,所得图象对应的函数解析式为y =cos2⎝ ⎛⎭⎪⎫x +π4=cos ⎝ ⎛⎭⎪⎫2x +π2=-sin2x =-2sin x ·cos x ,故f (x )的表达式可以是f (x )=-2sin x ,故选A.16.已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为4π,且f ⎝ ⎛⎭⎪⎫π3=1,则f (x )图象的一个对称中心是( )A.⎝ ⎛⎭⎪⎫-2π3,0B.⎝ ⎛⎭⎪⎫-π3,0C.⎝⎛⎭⎪⎫2π3,0D.⎝⎛⎭⎪⎫5π3,0答案 A解析 由f (x )=sin(ωx +φ)的最小正周期为4π,得ω=12,∵f ⎝ ⎛⎭⎪⎫π3=1,∴12×π3+φ=π2+2m π(m ∈Z ),即φ=π3+2m π(m ∈Z ).由|φ|<π2,得φ=π3,故f (x )=sin ⎝ ⎛⎭⎪⎫12x +π3.令12x +π3=k π(k ∈Z ),得x =2k π-2π3(k ∈Z ),故f (x )图象的对称中心为(2k π-2π3,0)(k ∈Z ),当k =0时,f (x )的对称中心为⎝ ⎛⎭⎪⎫-2π3,0,故选A.17.已知函数f (x )=sin ωx +3cos ωx (ω>0),f ⎝ ⎛⎭⎪⎫π6+f ⎝ ⎛⎭⎪⎫π2=0,且f (x )在区间⎝ ⎛⎭⎪⎫π6,π2上递减,则ω=( ) A .3 B .2 C .6 D .5 答案 B解析 ∵f (x )在⎝ ⎛⎭⎪⎫π6,π2上单调递减,且f ⎝ ⎛⎭⎪⎫π6+f ⎝ ⎛⎭⎪⎫π2=0,∴f π6+π22=0,∵f (x )=sin ωx +3cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π3,∴f π6+π22=f ⎝ ⎛⎭⎪⎫π3=2sin ⎝ ⎛⎭⎪⎫π3ω+π3=0,∴π3ω+π3=k π(k ∈Z ),又12·2πω≥π2-π6,ω>0,∴ω=2.18. 如图,函数f (x )=A sin(ωx +φ)(其中A >0,ω>0,⎭⎪⎫|φ|≤π2与坐标轴的三个交点P 、Q 、R 满足P (1,0),∠PQR =π4,M (2,-2)为线段QR 的中点,则A 的值为( )A .2 3 B.733 C.833 D .4 3答案 C解析 依题意得,点Q 的横坐标是4,R 的纵坐标是-4,T =2πω=2|PQ |=6,ω=π3,A sin φ=-4.f ⎝⎛⎭⎪⎫1+42=A sin ⎝ ⎛⎭⎪⎫π3×52+φ=A >0,即sin ⎝ ⎛⎭⎪⎫5π6+φ=1.又|φ|≤π2,π3≤5π6+φ≤4π3,因此5π6+φ=π2,φ=-π3,A sin ⎝ ⎛⎭⎪⎫-π3=-4,A =833,选C.19.已知函数f (x )=A sin(ωx +φ)(A ,ω,φ均为正的常数)的最小正周期为π,当x =2π3时,函数f (x )取得最小值,则下列结论正确的是( ) A .f (2)<f (-2)<f (0) B .f (0)<f (2)<f (-2) C .f (-2)<f (0)<f (2) D .f (2)<f (0)<f (-2)答案 A解析 ∵ω>0,∴T =2πω=π,∴ω=2.又A >0,∴f ⎝⎛⎭⎪⎫2π3=-A ,即sin ⎝ ⎛⎭⎪⎫4π3+φ=-1,得φ+4π3=2k π+3π2,k ∈Z ,即φ=2k π+π6,k ∈Z , 又∵φ>0,∴可取f (x )=A sin ⎝⎛⎭⎪⎫2x +π6, ∴f (2)=A sin ⎝⎛⎭⎪⎫4+π6,f (-2)=A sin ⎝⎛⎭⎪⎫-4+π6,f (0)=A sin π6.∵π<4+π6<3π2,∴f (2)<0.∵-7π6<-4+π6<-π,且y =sin x 在⎝ ⎛⎭⎪⎫-7π6,-π上为减函数,∴sin ⎝⎛⎭⎪⎫-4+π6<sin ⎝ ⎛⎭⎪⎫-7π6=sin π6,且sin ⎝⎛⎭⎪⎫-4+π6>sin(-π)=0,从而有0<f (-2)<f (0).故有f (2)<f (-2)<f (0).一、高考大题1.设f (x )=23sin(π-x )sin x -(sin x -cos x )2. (1)求f (x )的单调递增区间;(2)把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移π3个单位,得到函数y =g (x )的图象,求g ⎝ ⎛⎭⎪⎫π6的值.解 (1)f (x )=23sin(π-x )sin x -(sin x -cos x )2 =23sin 2x -(1-2sin x cos x ) =3(1-cos2x )+sin2x -1 =sin2x -3cos2x +3-1 =2sin ⎝⎛⎭⎪⎫2x -π3+3-1. 由2k π-π2≤2x -π3≤2k π+π2(k ∈Z ),得k π-π12≤x ≤k π+5π12(k ∈Z ).所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ).⎝ ⎛⎭⎪⎫或⎝ ⎛⎭⎪⎫k π-π12,k π+5π12 k ∈Z(2)由(1)知f (x )=2sin ⎝⎛⎭⎪⎫2x -π3+3-1.把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =2sin ⎝⎛⎭⎪⎫x -π3+3-1的图象,再把得到的图象向左平移π3个单位,得到y =2sin x +3-1的图象,即g (x )=2sin x +3-1.所以g ⎝ ⎛⎭⎪⎫π6=2sin π6+3-1= 3. 2.某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝⎛⎭⎪⎫5π12,0,求θ的最小值.解 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数表达式为f (x )=5sin ⎝ ⎛⎭⎪⎫2x -6. (2)由(1)知f (x )=5sin ⎝ ⎛⎭⎪⎫2x -π6, 则g (x )=5sin ⎝⎛⎭⎪⎫2x +2θ-π6. 因为函数y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +2θ-π6=k π,k ∈Z ,解得x =k π2+π12-θ,k ∈Z . 由于函数y =g (x )的图象关于点⎝⎛⎭⎪⎫5π12,0成中心对称,所以令k π2+π12-θ=5π12,k ∈Z , 解得θ=k π2-π3,k ∈Z . 由θ>0可知,当k =1时,θ取得最小值π6.3.已知函数f (x )=3sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ<π2的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f ⎝ ⎛⎭⎪⎫α2=34⎝ ⎛⎭⎪⎫π6<α<2π3,求cos ⎝⎛⎭⎪⎫α+3π2的值.解 (1)因f (x )的图象上相邻两个最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT=2.又因为f (x )的图象关于直线x =π3对称,所以2·π3+φ=k π+π2,k =0,±1,±2,….因-π2≤φ<π2得k =0,所以φ=π2-2π3=-π6.(2)由(1)得f ⎝ ⎛⎭⎪⎫α2=3sin ⎝ ⎛⎭⎪⎫2·α2-π6=34,所以sin ⎝ ⎛⎭⎪⎫α-π6=14.由π6<α<2π3得,0<α-π6<π2, 所以cos ⎝⎛⎭⎪⎫α-π6=1-sin 2⎝⎛⎭⎪⎫α-π6=1-⎝ ⎛⎭⎪⎫142=154.因此cos ⎝ ⎛⎭⎪⎫α+3π2=sin α=sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α-π6+π6=sin ⎝ ⎛⎭⎪⎫α-π6cos π6+cos ⎝ ⎛⎭⎪⎫α-π6sin π6=14×32+154×12=3+158.二、模拟大题4.已知函数f (x )=12sin ωx +32cos ωx (ω>0)的最小正周期为π.(1)求ω的值,并在下面提供的直角坐标系中画出函数y =f (x )在区间上的图象;(2)函数y =f (x )的图象可由函数y =sin x 的图象经过怎样的变换得到? 解 (1)函数可化为f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π3, 因为T =π,所以2πω=π,即ω=2,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3. 列表如下:(2)将函数y =sin x (x ∈R )图象上的所有点向左平移π3个单位长度,得到函数y =sin ⎝ ⎛⎭⎪⎫x +π3(x ∈R )的图象,再将所得图象上的所有点的横坐标缩短到原来的12(纵坐标不变),可得函数f (x )=sin ⎝⎛⎭⎪⎫2x +π3(x ∈R )的图象.5.函数f (x )=cos(πx +φ)⎝⎛⎭⎪⎫0<φ<π2的部分图象如图所示.(1)写出φ及图中x 0的值;(2)设g (x )=f (x )+f ⎝ ⎛⎭⎪⎫x +13,求函数g (x )在区间⎣⎢⎡ -12,⎦⎥⎤13上的最大值和最小值.解 (1)因为32=cos(0+φ),0<φ<π2,所以φ=π6, 因为32=cos ⎝⎛⎭⎪⎫πx 0+π6,所以2π-π6=πx 0+π6,可得x 0=53.(2)由题意可得f ⎝ ⎛⎭⎪⎫x +13=cos ⎣⎢⎡⎦⎥⎤π⎝ ⎛⎭⎪⎫x +13+π6=cos ⎝⎛⎭⎪⎫πx +π2=-sin πx . 所以g (x )=f (x )+f ⎝ ⎛⎭⎪⎫x +13=cos ⎝ ⎛⎭⎪⎫πx +π6-sin πx=cos πx cos π6-sin πx sin π6-sin πx=32cos πx -12sin πx -sin πx =32cos πx -32sin πx=3cos ⎝⎛⎭⎪⎫πx +π3. 因为x ∈⎣⎢⎡⎦⎥⎤-12,13,所以-π6≤πx +π3≤2π3,所以当πx +π3=0,即x =-13时,g (x )取得最大值3;当πx +π3=2π3,即x =13时,g (x )取得最小值-32.6.已知平面向量a =(cos φ,sin φ),b =(cos x ,sin x ),其中0<φ<π,且函数f (x )=(a·b )cos x +sin(φ-x )sin x 的图象过点⎝ ⎛⎭⎪⎫π6,1.(1)求φ的值;(2)将函数y =f (x )的图象向右平移π6个单位长度,得到函数y =g (x )的图象,求函数y=g (x )的单调递减区间.解 (1)∵a·b =cos φcos x +sin φsin x =cos(φ-x ), ∴f (x )=(a·b )cos x +sin(φ-x )sin x =cos(φ-x )cos x +sin(φ-x )sin x =cos(φ-x -x ) =cos(2x -φ),∴f ⎝ ⎛⎭⎪⎫π6=cos ⎝ ⎛⎭⎪⎫π3-φ=1,而0<φ<π,∴φ=π3. (2)由(1)得,f (x )=cos ⎝⎛⎭⎪⎫2x -π3,于是g (x )=cos ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π6-π3=cos ⎝ ⎛⎭⎪⎫2x -2π3, ∴g (x )的单调递减区间为2k π≤2x -2π3≤2k π+π,k ∈Z ,解得k π+π3≤x ≤k π+5π6,k ∈Z , ∴g (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π3,k π+5π6,k ∈Z . 7.已知函数f (x )=sin 2ωx +(23sin ωx -cos ωx )cos ωx -λ的图象关于直线x =π对称,其中ω,λ为常数,且ω∈⎝ ⎛⎭⎪⎫12,1. (1)求函数f (x )的最小正周期;(2)若存在x 0∈⎣⎢⎡⎦⎥⎤0,3π5,使f (x 0)=0,求λ的取值范围.解 (1)f (x )=3sin2ωx -cos2ωx -λ=2sin ⎝ ⎛⎭⎪⎫2ωx -π6-λ. 因为f (x )的图象关于直线x =π对称, 则2ωπ-π6=k π+π2,即ω=k 2+13(k ∈Z ).因为ω∈⎝ ⎛⎭⎪⎫12,1,则k =1,ω=56.所以f (x )的最小正周期T =2π2ω=6π5. (2)令f (x )=0,则λ=2sin ⎝ ⎛⎭⎪⎫53x -π6.由0≤x ≤3π5得-π6≤53x -π6≤5π6,则-12≤sin ⎝ ⎛⎭⎪⎫53x -π6≤1.据题意,方程λ=2sin ⎝ ⎛⎭⎪⎫53x -π6在⎣⎢⎡⎦⎥⎤0,3π5内有解,所以λ的取值范围是.。

2018年高考数学文科考点过关习题第三章三角函数解三角形与平面向量20和答案

2018年高考数学文科考点过关习题第三章三角函数解三角形与平面向量20和答案

考点测试20 函数y =Asin(ωx+φ)的图象和性质一、基础小题1.将函数y =sin x 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得各点向右平行移动π10个单位长度,所得图象的函数解析式是( ) A .y =sin ⎝ ⎛⎭⎪⎫2x -π10B .y =sin ⎝ ⎛⎭⎪⎫12x -π20C .y =sin ⎝ ⎛⎭⎪⎫2x -π5D .y =sin ⎝ ⎛⎭⎪⎫12x -π10答案 B解析 将函数y =sin x 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到y =sin 12x ,再把所得各点向右平行移动π10个单位长度,所得图象的函数解析式是y =sin ⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎪⎫x -π10=sin ⎝ ⎛⎭⎪⎫12x -π20.故选B.2.若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=( )A.23B.32 C .2 D .3 答案 B解析 由题意知f (x )的一条对称轴为x =π3,和它相邻的一个对称中心为原点,则f (x )的周期T =4π3,从而ω=32.3.函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫x ∈R ,ω>0,|φ|<π2的部分图象如图所示,则函数f (x )的解析式为( )A .f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4B .f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4C .f (x )=sin⎝ ⎛⎭⎪⎫4x +π4 D .f (x )=sin ⎝⎛⎭⎪⎫4x -π4 答案 A解析 由题图可知,函数y =f (x )的最小正周期为T =2πω=⎝⎛⎭⎪⎫3π8-π8×4=π,所以ω=2,又函数f (x )的图象经过点⎝ ⎛⎭⎪⎫π8,1,所以sin ⎝ ⎛⎭⎪⎫π4+φ=1,则π4+φ=2k π+π2(k ∈Z ),解得φ=2k π+π4,又|φ|<π2,所以φ=π4,即函数f (x )=sin ⎝⎛⎭⎪⎫2x +π4,故选A. 4.函数y =2sin ⎝ ⎛⎭⎪⎫π6x -π3(0≤x ≤9)的最大值与最小值之和为( )A .2- 3B .0C .-1D .-1- 3 答案 A解析 ∵0≤x ≤9,∴-π3≤π6x -π3≤7π6, ∴-32≤sin ⎝ ⎛⎭⎪⎫π6x -π3≤1,∴-3≤2sin ⎝ ⎛⎭⎪⎫π6x -π3≤2,∴函数y =2sin ⎝⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为2- 3. 5.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则φ=( )A.π4 B.π3 C.π2 D.3π4答案 A解析 由题意可知函数f (x )的周期T =2×⎝ ⎛⎭⎪⎫5π4-π4=2π,故ω=1,∴f (x )=sin(x +φ),令x +φ=k π+π2(k ∈Z ),将x =π4代入可得φ=k π+π4(k ∈Z ),∵0<φ<π,∴φ=π4. 6.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0)的最小正周期为4π,则( )A .函数f (x )的图象关于点⎝ ⎛⎭⎪⎫π3,0对称B .函数f (x )的图象关于直线x =π3对称 C .函数f (x )的图象向右平移π3个单位后,图象关于原点对称D .函数f (x )在区间(0,π)内单调递增 答案 C解析 因为函数的周期T =2πω=4π,所以ω=12,所以f (x )=sin ⎝ ⎛⎭⎪⎫12x +π6.当x =π3时,f ⎝ ⎛⎭⎪⎫π3=sin ⎝ ⎛⎭⎪⎫12×π3+π6=sin π3=32,所以A 、B 错误.将函数f (x )的图象向右平移π3个单位后得到g (x )=sin ⎣⎢⎡⎦⎥⎤12⎝ ⎛⎭⎪⎫x -π3+π6=sin x 2的图象,关于原点对称,所以C 正确.由-π2+2k π≤12x +π6≤π2+2k π(k ∈Z ),得-4π3+4k π≤x ≤2π3+4k π(k ∈Z ),所以f (x )=sin ⎝ ⎛⎭⎪⎫12x +π6的单调递增区间为⎣⎢⎡ -4π3+4k π,⎦⎥⎤2π3+4k π,k ∈Z ,当k =0时,增区间为⎣⎢⎡⎦⎥⎤-4π3,2π3,所以D 错误.故选C.7.已知函数f (x )=sin(2x +φ),其中φ为实数.若f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对x∈R 恒成立,且f ⎝ ⎛⎭⎪⎫π2>f (π),则f (x )的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z )B.⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ) C.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z )D.⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z )答案 C解析 由f (x )=sin(2x +φ),且f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对x ∈R 恒成立,∴f ⎝ ⎛⎭⎪⎫π6=±1,即sin ⎝ ⎛⎭⎪⎫2×π6+φ=±1.∴π3+φ=k π+π2(k ∈Z ).∴φ=k π+π6(k ∈Z ). 又f ⎝ ⎛⎭⎪⎫π2>f (π),即sin(π+φ)>sin(2π+φ),∴-sin φ>sin φ.∴sin φ<0. ∴对于φ=k π+π6(k ∈Z ),k 为奇数. ∴f (x )=sin(2x +φ)=sin ⎝ ⎛⎭⎪⎫2x +k π+π6=-sin ⎝ ⎛⎭⎪⎫2x +π6.∴由2k π+π2≤2x +π6≤2k π+3π2(k ∈Z ),得k π+π6≤x ≤k π+2π3(k ∈Z ),∴f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ).8.已知函数f (x )=2sin(ωx +φ)对任意x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则f ⎝ ⎛⎭⎪⎫π6=________.答案 ±2解析 函数f (x )=2sin(ωx +φ)对任意x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则其对称轴为x =π6,所以f ⎝ ⎛⎭⎪⎫π6=±2.二、高考小题9.将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移14个周期后,所得图象对应的函数为( )A .y =2sin ⎝ ⎛⎭⎪⎫2x +π4B .y =2sin ⎝ ⎛⎭⎪⎫2x +π3C .y =2sin ⎝⎛⎭⎪⎫2x -π4D .y =2sin ⎝⎛⎭⎪⎫2x -π3答案 D解析 该函数的周期为π,将其图象向右平移π4个单位后,得到的图象对应的函数为y =2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π4+π6=2sin ⎝ ⎛⎭⎪⎫2x -π3,故选D. 10.为了得到函数y =sin ⎝ ⎛⎭⎪⎫x +π3的图象,只需把函数y =sin x 的图象上所有的点( )A .向左平行移动π3个单位长度B .向右平行移动π3个单位长度 C .向上平行移动π3个单位长度 D .向下平行移动π3个单位长度 答案 A解析 根据“左加右减”的原则可知,把函数y =sin x 的图象上所有的点向左平行移动π3个单位长度可得y =sin ⎝⎛⎭⎪⎫x +π3的图象.故选A.11.函数y =A sin(ωx +φ)的部分图象如图所示,则( )A .y =2sin ⎝ ⎛⎭⎪⎫2x -π6B .y =2sin ⎝⎛⎭⎪⎫2x -π3C .y =2sin ⎝ ⎛⎭⎪⎫x +π6D .y =2sin ⎝⎛⎭⎪⎫x +π3 答案 A解析 由图易知A =2,因为周期T 满足T 2=π3-⎝ ⎛⎭⎪⎫-π6,所以T =π,ω=2πT =2.由x =π3时,y =2,可知2×π3+φ=π2+2k π(k ∈Z ),所以φ=-π6+2k π(k ∈Z ),结合选项可知函数解析式为y =2sin ⎝⎛⎭⎪⎫2x -π6.12.已知函数f (x )=sin 2ωx 2+12sin ωx -12(ω>0),x ∈R .若f (x )在区间(π,2π)内没有零点,则ω的取值范围是( )A.⎝ ⎛⎦⎥⎤0,18B.⎝ ⎛⎦⎥⎤0,14∪⎣⎢⎡⎭⎪⎫58,1C.⎝ ⎛⎦⎥⎤0,58D.⎝⎛⎦⎥⎤0,18∪⎣⎢⎡⎦⎥⎤14,58答案 D 解析 f (x )=1-cos ωx 2+12sin ωx -12=12(sin ωx -cos ωx )=22sin ⎝⎛⎭⎪⎫ωx -π4,∵x ∈(π,2π),ω>0,∴ωx -π4∈⎝ ⎛⎭⎪⎫ωπ-π4,2ωπ-π4, ∵f (x )在区间(π,2π)内没有零点,∴有以下两种情况: ①⎝ ⎛⎭⎪⎫ωπ-π4,2ωπ-π4⊆(2k π,2k π+π),k ∈Z ,则有⎩⎪⎨⎪⎧ωπ-π4≥2k π,2ωπ-π4≤2k π+π,k ∈Z ,得ω∈⎣⎢⎡⎦⎥⎤2k +14,k +58,k ∈Z ,当k =0时,ω∈⎣⎢⎡⎦⎥⎤14,58;②⎝ ⎛⎭⎪⎫ωπ-π4,2ωπ-π4⊆(2k π+π,2k π+2π),k ∈Z ,则有⎩⎪⎨⎪⎧ωπ-π4≥2k π+π,2ωπ-π4≤2k π+2π,k ∈Z ,得ω∈⎣⎢⎡⎦⎥⎤2k +54,k +98,k ∈Z ,当k =-1时,ω∈⎣⎢⎡⎦⎥⎤-34,18,又ω>0,∴ω∈⎝ ⎛⎦⎥⎤0,18. 综上,ω∈⎝⎛⎦⎥⎤0,18∪⎣⎢⎡⎦⎥⎤14,58,故选D.13.函数y =sin x -3cos x 的图象可由函数y =2sin x 的图象至少向右平移________个单位长度得到.答案π3解析 函数y =sin x -3cos x =2sin⎝ ⎛⎭⎪⎫x -π3的图象可由函数y =2sin x 的图象至少向右平移π3个单位长度得到.三、模拟小题14.已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,为了得到函数g (x )=A sin ωx 的图象,只需要将y =f (x )的图象( )A .向左平移π3个单位长度 B .向右平移π3个单位长度C .向左平移π6个单位长度D .向右平移π6个单位长度 答案 D解析 根据函数f (x )=A sin(ωx +φ)( A >0,ω>0,|φ|<π2)的部分图象,可得A =2,T 4=2πω·14=π3-π12,求得ω=2.再根据五点法作图可得2·π12+φ=π2,求得φ=π3,∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π3,g (x )=2sin2x ,故把f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3的图象向右平移π6个单位长度,可得g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π6+π3=2sin2x 的图象,故选D.15.将函数y =cos2x 的图象向左平移π4个单位长度,得到函数y =f (x )·cos x 的图象,则f (x )的表达式可以是( )A .f (x )=-2sin xB .f (x )=2sin xC .f (x )=22sin2x D .f (x )=22(sin2x +cos2x ) 答案 A解析 由题意得,将函数y =cos2x 的图象向左平移π4个单位长度后,所得图象对应的函数解析式为y =cos2⎝ ⎛⎭⎪⎫x +π4=cos ⎝ ⎛⎭⎪⎫2x +π2=-sin2x =-2sin x ·cos x ,故f (x )的表达式可以是f (x )=-2sin x ,故选A.16.已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为4π,且f ⎝ ⎛⎭⎪⎫π3=1,则f (x )图象的一个对称中心是( )A.⎝ ⎛⎭⎪⎫-2π3,0 B.⎝ ⎛⎭⎪⎫-π3,0 C.⎝ ⎛⎭⎪⎫2π3,0 D.⎝ ⎛⎭⎪⎫5π3,0 答案 A解析 由f (x )=sin(ωx +φ)的最小正周期为4π,得ω=12,∵f ⎝ ⎛⎭⎪⎫π3=1,∴12×π3+φ=π2+2m π(m ∈Z ),即φ=π3+2m π(m ∈Z ).由|φ|<π2,得φ=π3,故f (x )=sin ⎝ ⎛⎭⎪⎫12x +π3.令12x +π3=k π(k ∈Z ),得x =2k π-2π3(k ∈Z ),故f (x )图象的对称中心为(2k π-2π3,0)(k ∈Z ),当k =0时,f (x )的对称中心为⎝ ⎛⎭⎪⎫-2π3,0,故选A.17.已知函数f (x )=sin ωx +3cos ωx (ω>0),f ⎝ ⎛⎭⎪⎫π6+f ⎝ ⎛⎭⎪⎫π2=0,且f (x )在区间⎝ ⎛⎭⎪⎫π6,π2上递减,则ω=( )A .3B .2C .6D .5 答案 B解析 ∵f (x )在⎝ ⎛⎭⎪⎫π6,π2上单调递减,且f ⎝ ⎛⎭⎪⎫π6+f ⎝ ⎛⎭⎪⎫π2=0,∴f π6+π22=0,∵f (x )=sin ωx +3cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π3,∴f π6+π22=f ⎝ ⎛⎭⎪⎫π3=2sin ⎝ ⎛⎭⎪⎫π3ω+π3=0,∴π3ω+π3=k π(k ∈Z ),又12·2πω≥π2-π6,ω>0,∴ω=2.18. 如图,函数f (x )=A sin(ωx +φ)( 其中A >0,ω>0,⎭⎪⎫|φ|≤π2与坐标轴的三个交点P 、Q 、R 满足P (1,0),∠PQR =π4,M (2,-2)为线段QR 的中点,则A 的值为()A .2 3 B.733 C.833D .4 3 答案 C解析 依题意得,点Q 的横坐标是4,R 的纵坐标是-4,T =2πω=2|PQ |=6,ω=π3,A sin φ=-4.f ⎝⎛⎭⎪⎫1+42=A sin ⎝ ⎛⎭⎪⎫π3×52+φ=A >0,即sin ⎝⎛⎭⎪⎫5π6+φ=1.又|φ|≤π2,π3≤5π6+φ≤4π3,因此5π6+φ=π2,φ=-π3,A sin ⎝ ⎛⎭⎪⎫-π3=-4,A =833,选C.19.已知函数f (x )=A sin(ωx +φ)(A ,ω,φ均为正的常数)的最小正周期为π,当x =2π3时,函数f (x )取得最小值,则下列结论正确的是( ) A .f (2)<f (-2)<f (0) B .f (0)<f (2)<f (-2) C .f (-2)<f (0)<f (2) D .f (2)<f (0)<f (-2)答案 A解析 ∵ω>0,∴T =2πω=π,∴ω=2.又A >0,∴f ⎝ ⎛⎭⎪⎫2π3=-A ,即sin ⎝ ⎛⎭⎪⎫4π3+φ=-1,得φ+4π3=2k π+3π2,k ∈Z ,即φ=2k π+π6,k ∈Z ,又∵φ>0,∴可取f (x )=A sin ⎝ ⎛⎭⎪⎫2x +π6,∴f (2)=A sin ⎝⎛⎭⎪⎫4+π6,f (-2)=A sin ⎝ ⎛⎭⎪⎫-4+π6,f (0)=A sin π6. ∵π<4+π6<3π2,∴f (2)<0. ∵-7π6<-4+π6<-π,且y =sin x 在⎝⎛⎭⎪⎫-7π6,-π上为减函数,∴sin ⎝ ⎛⎭⎪⎫-4+π6<sin ⎝ ⎛⎭⎪⎫-7π6=sin π6,且sin ⎝ ⎛⎭⎪⎫-4+π6>sin(-π)=0,从而有0<f (-2)<f (0).故有f (2)<f (-2)<f (0).一、高考大题1.设f (x )=23sin(π-x )sin x -(sin x -cos x )2. (1)求f (x )的单调递增区间;(2)把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移π3个单位,得到函数y =g (x )的图象,求g ⎝ ⎛⎭⎪⎫π6的值. 解 (1)f (x )=23sin(π-x )sin x -(sin x -cos x )2 =23sin 2x -(1-2sin x cos x ) =3(1-cos2x )+sin2x -1 =sin2x -3cos2x +3-1 =2sin ⎝ ⎛⎭⎪⎫2x -π3+3-1.由2k π-π2≤2x -π3≤2k π+π2(k ∈Z ),得k π-π12≤x ≤k π+5π12(k ∈Z ). 所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ). ⎝ ⎛⎭⎪⎫或⎝⎛⎭⎪⎫k π-π12,k π+5π12k ∈Z(2)由(1)知f (x )=2sin ⎝⎛⎭⎪⎫2x -π3+3-1.把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变), 得到y =2sin ⎝ ⎛⎭⎪⎫x -π3+3-1的图象,再把得到的图象向左平移π3个单位, 得到y =2sin x +3-1的图象, 即g (x )=2sin x +3-1.所以g ⎝ ⎛⎭⎪⎫π6=2sin π6+3-1= 3.2.某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝ ⎛⎭⎪⎫5π12,0,求θ的最小值.解 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6. 数据补全如下表:且函数表达式为f (x )=5sin ⎝⎛⎭⎪⎫2x -6. (2)由(1)知f (x )=5sin ⎝ ⎛⎭⎪⎫2x -π6,则g (x )=5sin ⎝⎛⎭⎪⎫2x +2θ-π6.因为函数y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +2θ-π6=k π,k ∈Z ,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝ ⎛⎭⎪⎫5π12,0成中心对称, 所以令k π2+π12-θ=5π12,k ∈Z , 解得θ=k π2-π3,k ∈Z .由θ>0可知,当k =1时,θ取得最小值π6. 3.已知函数f (x )=3sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,-π2≤φ<π2的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π. (1)求ω和φ的值;(2)若f ⎝ ⎛⎭⎪⎫α2=34⎝ ⎛⎭⎪⎫π6<α<2π3,求cos ⎝⎛⎭⎪⎫α+3π2的值.解 (1)因f (x )的图象上相邻两个最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT=2.又因为f (x )的图象关于直线x =π3对称, 所以2·π3+φ=k π+π2,k =0,±1,±2,….因-π2≤φ<π2得k =0,所以φ=π2-2π3=-π6. (2)由(1)得f ⎝ ⎛⎭⎪⎫α2=3sin ⎝⎛⎭⎪⎫2·α2-π6=34, 所以sin ⎝ ⎛⎭⎪⎫α-π6=14.由π6<α<2π3得,0<α-π6<π2, 所以cos ⎝⎛⎭⎪⎫α-π6=1-sin 2⎝⎛⎭⎪⎫α-π6=1-⎝ ⎛⎭⎪⎫142=154.因此cos ⎝⎛⎭⎪⎫α+3π2=sin α=sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α-π6+π6 =sin ⎝ ⎛⎭⎪⎫α-π6cos π6+cos ⎝ ⎛⎭⎪⎫α-π6sin π6=14×32+154×12=3+158.二、模拟大题4.已知函数f (x )=12sin ωx +32cos ωx (ω>0)的最小正周期为π.(1)求ω的值,并在下面提供的直角坐标系中画出函数y =f (x )在区间上的图象;(2)函数y =f (x )的图象可由函数y =sin x 的图象经过怎样的变换得到? 解 (1)函数可化为f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π3,因为T =π,所以2πω=π,即ω=2,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3.列表如下:(2)将函数y =sin x (x ∈R )图象上的所有点向左平移π3个单位长度,得到函数y =sin ⎝ ⎛⎭⎪⎫x +π3(x ∈R )的图象,再将所得图象上的所有点的横坐标缩短到原来的12(纵坐标不变),可得函数f (x )=sin⎝ ⎛⎭⎪⎫2x +π3(x ∈R )的图象. 5.函数f (x )=cos(πx +φ)⎝⎛⎭⎪⎫0<φ<π2的部分图象如图所示.(1)写出φ及图中x 0的值;(2)设g (x )=f (x )+f ⎝ ⎛⎭⎪⎫x +13,求函数g (x )在区间⎣⎢⎡ -12,⎦⎥⎤13上的最大值和最小值.解 (1)因为32=cos(0+φ),0<φ<π2,所以φ=π6,因为32=cos ⎝⎛⎭⎪⎫πx 0+π6,所以2π-π6=πx 0+π6,可得x 0=53.(2)由题意可得f ⎝ ⎛⎭⎪⎫x +13=cos⎣⎢⎡⎦⎥⎤π⎝ ⎛⎭⎪⎫x +13+π6 =cos ⎝⎛⎭⎪⎫πx +π2=-sinπx .所以g (x )=f (x )+f ⎝ ⎛⎭⎪⎫x +13=cos ⎝ ⎛⎭⎪⎫πx +π6-sinπx=cosπx cosπ6-sinπx sin π6-sin πx =32cosπx -12sinπx -sinπx =32cosπx -32sinπx =3cos ⎝⎛⎭⎪⎫πx +π3.因为x ∈⎣⎢⎡⎦⎥⎤-12,13,所以-π6≤πx +π3≤2π3,所以当πx +π3=0,即x =-13时,g (x )取得最大值3;当πx +π3=2π3,即x =13时,g (x )取得最小值-32. 6.已知平面向量a =(cos φ,sin φ),b =(cos x ,sin x ),其中0<φ<π,且函数f (x )=(a·b )cos x +sin(φ-x )sin x 的图象过点⎝ ⎛⎭⎪⎫π6,1.(1)求φ的值;(2)将函数y =f (x )的图象向右平移π6个单位长度,得到函数y =g (x )的图象,求函数y =g (x )的单调递减区间.解 (1)∵a·b =cos φcos x +sin φsin x =cos(φ-x ), ∴f (x )=(a·b )cos x +sin(φ-x )sin x =cos(φ-x )cos x +sin(φ-x )sin x =cos(φ-x -x ) =cos(2x -φ),∴f ⎝ ⎛⎭⎪⎫π6=cos ⎝ ⎛⎭⎪⎫π3-φ=1,而0<φ<π,∴φ=π3.(2)由(1)得,f (x )=cos ⎝⎛⎭⎪⎫2x -π3,于是g (x )=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6-π3=cos ⎝ ⎛⎭⎪⎫2x -2π3,∴g (x )的单调递减区间为2k π≤2x -2π3≤2k π+π,k ∈Z ,解得k π+π3≤x ≤k π+5π6,k ∈Z , ∴g (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π3,k π+5π6,k ∈Z .7.已知函数f (x )=sin 2ωx +(23sin ωx -cos ωx )cos ωx -λ的图象关于直线x =π对称,其中ω,λ为常数,且ω∈⎝ ⎛⎭⎪⎫12,1.(1)求函数f (x )的最小正周期;(2)若存在x 0∈⎣⎢⎡⎦⎥⎤0,3π5,使f (x 0)=0,求λ的取值范围.解 (1)f (x )=3sin2ωx -cos2ωx -λ=2sin ⎝ ⎛⎭⎪⎫2ωx -π6-λ.因为f (x )的图象关于直线x =π对称, 则2ωπ-π6=k π+π2,即ω=k 2+13(k ∈Z ). 因为ω∈⎝ ⎛⎭⎪⎫12,1,则k =1,ω=56.所以f (x )的最小正周期T =2π2ω=6π5. (2)令f (x )=0,则λ=2sin ⎝ ⎛⎭⎪⎫53x -π6.由0≤x ≤3π5得-π6≤53x -π6≤5π6, 则-12≤sin ⎝ ⎛⎭⎪⎫53x -π6≤1.据题意,方程λ=2sin ⎝ ⎛⎭⎪⎫53x -π6在⎣⎢⎡⎦⎥⎤0,3π5内有解,所以λ的取值范围是.。

2018年高考数学 考点通关练 第三章 三角函数、解三角形与平面向量 28 平面向量的数量积及应用 理

2018年高考数学 考点通关练 第三章 三角函数、解三角形与平面向量 28 平面向量的数量积及应用 理

2.在 Rt△ABC 中,∠C=90°,AC=4,则A→B·A→C等于
(
)
A.-16
B.-8
C.8
D.16
解析
因为
→ cosA=|A→C
|,故A→B·A→C=|A→B||A→C|cosA=|A→C|2
|AB|
=16,故选 D.
3.已知向量 a=(2,7),b=(x,-3),且 a 与 b 的夹角为
π 的夹角为___3_____.
解析 由|a|=|b|=2,(a+2b)·(a-b)=-2,得 a·b=2, cos〈a,b〉=|aa|·|bb|=2× 2 2=12,所以〈a,b〉=π3.
8.在平行四边形 ABCD 中,∠A=π3,边 AB,AD 的长
→ 分别为 2,1.若 M,N 分别是边 BC,CD 上的点,且满足|B→M|=
|O→A|=|A→B|=1,故△OAB 为等边三角形,所以∠ABC=60°.




→ BA

→ BC






为|→ BA|cos∠ABC

1×cos60°=12.故选 A.
17. [2016·昆明三中模拟]如图,在等腰直角△ABO 中,
设O→A=a,O→B=b,OA=1,OB=1,C 为 AB 上靠近点 A 的
=-356A→B2-356A→C2+2366A→B·A→C =-356(A→B2+A→C2)+2366A→B·A→C =-356×229+2366×4 =6732=78.
三、模拟小题
15.[2017·安徽皖江名校联考]在△ABC 中,已知向量A→B
=(2,2),|A→C|=2,A→B·A→C=-4,则△ABC 的面积为(

2018年高考数学(理)二轮复习 :专题三 三角函数、解三角形与平面向量 第3讲 平面向量(精品)

2018年高考数学(理)二轮复习 :专题三 三角函数、解三角形与平面向量  第3讲 平面向量(精品)

D.18(a+b)
押题依据 平面向量基本定理是向量表示的基本依据,而向量表示(用基
底或坐标)是向量应用的基础.
1234
押题依据 解析 答案
2.如图,BC,DE 是半径为 1 的圆 O 的两条直径,B→F=
2F→O,则F→D·F→E等于
A.-34
√B.-89
C.-14
D.-49
押题依据 数量积是平面向量最重要的概念,平面向量数量积的运算是高
考的必考内容,和平面几何知识的结合是向量考查的常见形式.
1234
押题依据 解析 答案
3.在△ABC 中,A→B=(cos 32°,cos 58°),B→C=(sin 60°sin 118°,sin 120°sin 208°),
则△ABC 的面积为
1 A.4
√B.38
3 C. 2
3 D. 4
押题依据 平面向量作为数学解题工具,通过向量的运算给出条件解决三 角函数问题已成为近几年高考的热点.
思维升华 运算过程中重视数形结合,结合图形分析向量间的关系.
思维升华 解析 答案
跟踪演练 1 (1)(2017·河北省衡水中学三调)在△ABC 中,A→N=14N→C,P 是直
线 BN 上的一点,若A→P=mA→B+25A→C,则实数 m 的值为
A.-4
√B.-1
C二中期中)已知平面向量a=(1,2),b=(-2,m),
例 1 (1)(2017 届河南息县第一高级中学检测)已知平行四边形 ABCD 的对角
线分别为 AC,BD,且A→E=2E→C,点 F 是 BD 上靠近 D 的四等分点,则
A.F→E=-112A→B-152A→D
B.F→E=112A→B-152A→D

2018年高考考点完全题数学文考点通关练习题 第三章 三

2018年高考考点完全题数学文考点通关练习题 第三章 三

考点测试19 三角函数的图象和性质一、基础小题1.已知f (x )=sin ⎝ ⎛⎭⎪⎫x +π2,g (x )=cos ⎝⎛⎭⎪⎫x -π2,则f (x )的图象( )A .与g (x )的图象相同B .与g (x )的图象关于y 轴对称C .向左平移π2个单位,得到g (x )的图象D .向右平移π2个单位,得到g (x )的图象答案 D解析 因为g (x )=cos ⎝ ⎛⎭⎪⎫x -π2=cos ⎝ ⎛⎭⎪⎫π2-x =sin x ,所以f (x )向右平移π2个单位,可得到g (x )的图象,故选D.2.函数f (x )=cos ⎝ ⎛⎭⎪⎫x +π4-cos ⎝⎛⎭⎪⎫x -π4是( ) A .周期为π的偶函数 B .周期为2π的偶函数 C .周期为π的奇函数 D .周期为2π的奇函数答案 D解析 f (x )=cos ⎝ ⎛⎭⎪⎫x +π4-cos ⎝⎛⎭⎪⎫x -π4=-2sin x ,所以函数f (x )是周期为2π的奇函数.3.函数y =sin 2x +sin x -1的值域为( ) A .B.⎣⎢⎡⎦⎥⎤-54,-1C.⎣⎢⎡⎦⎥⎤-54,1D.⎣⎢⎡⎦⎥⎤-1,54答案 C解析 (数形结合法)y =sin 2x +sin x -1,令sin x =t ,则有y =t 2+t -1,t ∈,画出函数图象如图所示,从图象可以看出,当t =-12及t =1时,函数取最值,代入y =t 2+t -1可得y ∈⎣⎢⎡⎦⎥⎤-54,1.4.已知函数f (x )=sin x +a cos x 的图象关于直线x =5π3对称,则实数a 的值为( )A .- 3B .-33 C. 2 D.22答案 B解析 由题意知f (0)=f ⎝⎛⎭⎪⎫10π3,解得a =-33.故选B.5.函数y =2sin ⎝ ⎛⎭⎪⎫π6-2x (x ∈)的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤-π,-5π6 B.⎣⎢⎡⎦⎥⎤-π3,0C.⎣⎢⎡⎦⎥⎤-2π3,-π6D.⎣⎢⎡⎦⎥⎤-π3,-π6答案 C解析 因为y =2sin ⎝⎛⎭⎪⎫π6-2x =-2sin ⎝ ⎛⎭⎪⎫2x -π6,所以函数y =2sin ⎝ ⎛⎭⎪⎫π6-2x 的单调递增区间就是函数y =sin ⎝ ⎛⎭⎪⎫2x -π6的单调递减区间.由π2+2k π≤2x -π6≤3π2+2k π(k ∈Z ),解得π3+k π≤x ≤5π6+k π(k ∈Z ),即函数y =2sin ⎝ ⎛⎭⎪⎫π6-2x 的单调递增区间为⎣⎢⎡ π3+k π,⎦⎥⎤5π6+k π(k ∈Z ),又x ∈,所以k =-1,故函数y =2sin ⎝ ⎛⎭⎪⎫π6-2x (x ∈)的单调递增区间为⎣⎢⎡⎦⎥⎤-2π3,-π6.6.使函数f (x )=sin(2x +φ)为R 上的奇函数的φ的值可以是( ) A.π4 B.π2 C .π D.3π2答案 C解析 若f (x )是R 上的奇函数,则必须满足f (0)=0,即sin φ=0.∴φ=k π(k ∈Z ),故选C.7.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6,其中x ∈⎣⎢⎡⎦⎥⎤-π3,a ,若f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1,则a的取值范围是( )A.⎝⎛⎦⎥⎤0,π3B.⎣⎢⎡⎦⎥⎤π3,π2C.⎣⎢⎡⎦⎥⎤π2,2π3D.⎣⎢⎡⎦⎥⎤π3,π答案 D解析 若-π3≤x ≤a ,则-π6≤x +π6≤a +π6.因为当x +π6=-π6或x +π6=7π6时,sin ⎝ ⎛⎭⎪⎫x +π6=-12,当x +π6=π2时,sin ⎝ ⎛⎭⎪⎫x +π6=1,所以要使f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1,则有π2≤a +π6≤7π6,即π3≤a ≤π,即a 的取值范围是⎣⎢⎡⎦⎥⎤π3,π.故选D. 8.函数y =lg sin2x +9-x 2的定义域为________.答案 ⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-3≤x <-π2或0<x <π2解析 由⎩⎪⎨⎪⎧sin2x >0,9-x 2≥0得⎩⎪⎨⎪⎧2k π<2x <2k π+π,k ∈Z ,-3≤x ≤3.∴-3≤x <-π2或0<x <π2.∴函数y =lg sin2x +9-x 2的定义域为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-3≤x <-π2或0<x <π2.二、高考小题9.函数f (x )=cos2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为( )A .4B .5C .6D .7 答案 B解析 f (x )=1-2sin 2x +6sin x =-2⎝ ⎛⎭⎪⎫sin x -322+112,因为sin x ∈,所以当sin x =1时,f (x )取得最大值5,故选B.10.函数f (x )=(3sin x +cos x )(3cos x -sin x )的最小正周期是( ) A.π2 B .π C.3π2D .2π 答案 B解析 ∵f (x )=(3sin x +cos x )(3cos x -sin x )=4sin ⎝ ⎛⎭⎪⎫x +π6·cos ⎝⎛⎭⎪⎫x +π6=2sin ⎝⎛⎭⎪⎫2x +π3,∴T =2π2=π,故选B.11.函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝ ⎛⎭⎪⎫2k -14,2k +34,k ∈Z 答案 D解析 由题图可知T 2=54-14=1,所以T =2.结合题图可知,在⎣⎢⎡⎦⎥⎤-34,54(f (x )的一个周期)内,函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫-14,34.由f (x )是以2为周期的周期函数可知,f (x )的单调递减区间为⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z ,故选D. 12.下列函数中,最小正周期为π且图象关于原点对称的函数是( ) A .y =cos ⎝ ⎛⎭⎪⎫2x +π2 B .y =sin ⎝ ⎛⎭⎪⎫2x +π2C .y =sin2x +cos2xD .y =sin x +cos x答案 A解析 选项A ,y =cos ⎝⎛⎭⎪⎫2x +π2=-sin2x ,符合题意,故选A.13.定义在区间上的函数y =sin2x 的图象与y =cos x 的图象的交点个数是________. 答案 7解析 在同一平面直角坐标系中作出y =sin2x 与y =cos x 在区间上的图象(如图).由图象可知,共有7个交点.三、模拟小题14.函数f (x )=2x -4sin x ,x ∈⎣⎢⎡⎦⎥⎤-π2,π2的图象大致是( )答案 D解析 函数f (x )=2x -4sin x 为奇函数,所以其图象关于原点对称,故A 、B 错误.又令f ′(x )=2-4cos x =0,即cos x =12,解得x =±π3,所以x =±π3为函数的极值点,所以只有D 项符合条件.故选D.15.若函数f (x )=A sin2ωx (A >0,ω>0)在x =1处取得最大值,则函数f (x +1)为( ) A .偶函数B .奇函数C .既是奇函数又是偶函数D .非奇非偶函数答案 A解析 因为f (x )=A sin2ωx 在x =1处取得最大值,故f (1)=A ,即sin2ω=1,所以2ω=π2+2k π,k ∈Z .因此,f (x +1)=A sin(2ωx +2ω)=A sin ⎝ ⎛⎭⎪⎫2ωx +π2+2k π=A cos2ωx ,故f (x +1)是偶函数.16.函数f (x )=sin x +x 在区间已知函数f (x )=2m sin x -n cos x ,直线x =π3是函数f (x )图象的一条对称轴,则nm=( )A.332 B. 3 C .-233 D.33答案 C解析 若x =π3是函数f (x )图象的一条对称轴,则x =π3是函数f (x )的极值点.f ′(x )=2m cos x +n sin x ,故f ′⎝ ⎛⎭⎪⎫π3=2m cos π3+n sin π3=m +32n =0,所以n m =-233.18.已知定义在R 上的函数f (x )满足:当sin x ≤cos x 时,f (x )=cos x ,当sin x >cos x时,f (x )=sin x .给出以下结论: ①f (x )是周期函数; ②f (x )的最小值为-1;③当且仅当x =2k π(k ∈Z )时,f (x )取得最小值; ④当且仅当2k π-π2<x <(2k +1)π(k ∈Z )时,f (x )>0;⑤f (x )的图象上相邻两个最低点的距离是2π. 其中正确的结论序号是________. 答案 ①④⑤解析 易知函数f (x )是周期为2π的周期函数. 函数f (x )在一个周期内的图象如图所示. 由图象可得,f (x )的最小值为-22,当且仅当x =2k π+5π4(k ∈Z )时,f (x )取得最小值;当且仅当2k π-π2<x <(2k +1)π(k ∈Z )时,f (x )>0;f (x )的图象上相邻两个最低点的距离是2π.所以正确的结论的序号是①④⑤.一、高考大题1.已知函数f (x )=2sin ωx cos ωx +cos2ωx (ω>0)的最小正周期为π. (1)求ω的值;(2)求f (x )的单调递增区间.解 (1)因为f (x )=2sin ωx cos ωx +cos2ωx =sin2ωx +cos2ωx =2sin ⎝⎛⎭⎪⎫2ωx +π4, 所以f (x )的最小正周期T =2π2ω=πω.依题意,πω=π,解得ω=1.(2)由(1)知f (x )=2sin ⎝⎛⎭⎪⎫2x +π4. 函数y =sin x 的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ).由2k π-π2≤2x +π4≤2k π+π2(k ∈Z ),得k π-3π8≤x ≤k π+π8(k ∈Z ).所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8(k ∈Z ).2.已知函数f (x )=(sin x +cos x )2+cos2x . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.解 (1)因为f (x )=sin 2x +cos 2x +2sin x cos x +cos2x =1+sin2x +cos2x =2sin ⎝ ⎛⎭⎪⎫2x +π4+1,所以函数f (x )的最小正周期T =2π2=π.(2)由(1)知f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4+1. 当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x +π4∈⎣⎢⎡⎦⎥⎤π4,5π4,由正弦函数y =sin x 在⎣⎢⎡⎦⎥⎤π4,5π4上的图象知,当2x +π4=π2,即x =π8时,f (x )取最大值2+1;当2x +π4=5π4,即x =π2时,f (x )取最小值0.综上,f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值为2+1,最小值为0.二、模拟大题3.已知函数f (x )=6cos 4x +5sin 2x -4cos2x ,求f (x )的定义域,判断它的奇偶性,并求其值域.解 由cos2x ≠0得2x ≠k π+π2,k ∈Z ,解得x ≠k π2+π4,k ∈Z ,所以f (x )的定义域为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x ∈R ,且x ≠k π2+π4,k ∈Z .因为f (x )的定义域关于原点对称,且 f (-x )=6cos4-x +5sin2-x -4-2x=6cos 4x +5sin 2x -4cos2x =f (x ).所以f (x )是偶函数, 当x ≠k π2+π4,k ∈Z 时, f (x )=6cos 4x +5sin 2x -4cos2x =6cos 4x +5-5cos 2x -42cos 2x -1=2x -2x -2cos 2x -1=3cos 2x -1.所以f (x )的值域为⎩⎨⎧y ⎪⎪⎪⎭⎬⎫-1≤y <12或12<y ≤2.4.已知函数f (x )=sin x -cos x ,x ∈R . (1)求函数f (x )的最小正周期;(2)若函数f (x )在x =x 0处取得最大值,求f (x 0)+f (2x 0)+f (3x 0)的值.解 (1)f (x )=sin x -cos x =2sin ⎝⎛⎭⎪⎫x -π4,∴f (x )的最小正周期为2π. (2)依题意,x 0=2k π+3π4(k ∈Z ),由周期性,f (x 0)+f (2x 0)+f (3x 0)=⎝ ⎛⎭⎪⎫sin 3π4-cos 3π4+⎝ ⎛⎭⎪⎫sin 3π2-cos 3π2+⎝ ⎛⎭⎪⎫sin 9π4-cos 9π4=2-1.5.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8.(1)求φ的值;(2)求函数y =f (x )的单调递增区间.解 (1)由f ⎝ ⎛⎭⎪⎫π8=±1得sin ⎝ ⎛⎭⎪⎫π4+φ=±1,∵-π<φ<0, ∴-3π4<φ+π4<π4,∴φ+π4=-π2,φ=-3π4. (2)由(1)得f (x )=sin ⎝⎛⎭⎪⎫2x -3π4,令-π2+2k π≤2x -3π4≤π2+2k π,k ∈Z ,可解得π8+k π≤x ≤5π8+k π,k ∈Z .因此y =f (x )的单调增区间为⎣⎢⎡⎦⎥⎤π8+k π,5π8+k π,k ∈Z .6.已知函数f (x )=2sin x sin ⎝⎛⎭⎪⎫x +π6.(1)求函数f (x )的最小正周期和单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,求函数f (x )的值域.解 (1)f (x )=2sin x ⎝ ⎛⎭⎪⎫32sin x +12cos x=3×1-cos2x 2+12sin2x =sin ⎝⎛⎭⎪⎫2x -π3+32 函数f (x )的最小正周期为T =π.由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,解得-π12+k π≤x ≤5π12+k π,k ∈Z ,所以函数f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-π12+k π,5π12+k π,k ∈Z .(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,sin ⎝ ⎛⎭⎪⎫2x -π3∈⎣⎢⎡⎦⎥⎤-32,1,f (x )∈⎣⎢⎡⎦⎥⎤0,1+32.。

2018年高考数学(理二轮复习讲学案考前专题三 三角函数、解三角形与平面向量 第3讲平面向量(含答案解析)

2018年高考数学(理二轮复习讲学案考前专题三 三角函数、解三角形与平面向量 第3讲平面向量(含答案解析)

第3讲 平面向量1.考查平面向量的基本定理及基本运算,多以熟知的平面图形为背景进行考查,多为选择题、填空题,难度为中低档.2.考查平面向量的数量积,以选择题、填空题为主,难度为低档;向量作为工具,还常与三角函数、解三角形、不等式、解析几何结合,以解答题形式出现.热点一 平面向量的线性运算1.在平面向量的化简或运算中,要根据平面向量基本定理选好基底,变形要有方向不能盲目转化.2.在用三角形加法法则时,要保证“首尾相接”,结果向量是第一个向量的起点指向最后一个向量终点所得的向量;在用三角形减法法则时,要保证“同起点”,结果向量的方向是指向被减向量.例1 (1)(2017届河南息县第一高级中学检测)已知平行四边形ABCD 的对角线分别为AC ,BD ,且AE →=2EC →,点F 是BD 上靠近D 的四等分点,则( )A.FE →=-112AB →-512AD →B.FE →=112AB →-512AD →C.FE →=512AB →-112AD →D.FE →=-512AB →-112AD →答案 C解析 AE →=2EC →,点F 是BD 上靠近D 的四等分点, ∴FO →=14DB →,OE →=16AC →,∴FE →=FO →+OE →=14DB →+16AC →,∵AB →+AD →=AC →,AD →-AB →=BD →, ∴FE →=14(AB →-AD →)+16(AB →+AD →)=512AB →-112AD →.故选C. (2)(2017届湖南师大附中月考)O 为△ABC 内一点,且2OA →+OB →+OC →=0,AD →=tAC →,若B ,O ,D 三点共线,则t 的值为( )A.13B.14C.12D.23 答案 A解析 由AD →=tAC →,得OD →-OA →=t (OC →-OA →), 所以OD →=tOC →+(1-t )OA →,因为B ,O ,D 三点共线,所以BO →=λOD →, 则2OA →+OC →=λt OC →+(1-t )λOA →,故有⎩⎪⎨⎪⎧2=(1-t )λ,1=λt ,t =13,故选A.思维升华 (1)对于平面向量的线性运算,要先选择一组基底,同时注意平面向量基本定理的灵活运用. (2)运算过程中重视数形结合,结合图形分析向量间的关系.跟踪演练1 (1)(2017·河北省衡水中学三调)在△ABC 中,AN →=14NC →,P 是直线BN 上的一点,若AP →=mAB →+25AC →,则实数m 的值为( ) A .-4 B .-1C .1 D .4 答案 B解析 因为AP →=AB →+BP →=AB →+kBN →=AB →+k ⎝ ⎛⎭⎪⎫15AC →-AB →=(1-k )AB →+k 5AC →,且AP →=mAB →+25AC →,所以⎩⎪⎨⎪⎧1-k =m ,k 5=25,解得k =2,m =-1,故选B.(2)(2017届福建连城县二中期中)已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b 等于( ) A .(-5,-10) B .(-4,-8) C .(-3,-6) D .(-2,-4)答案 B解析 因为a =(1,2),b =(-2,m ),且a ∥b ,所以m +4=0,m =-4,2a +3b =2(1,2)+3(-2,-4)=(-4,-8),故选B. 热点二 平面向量的数量积1.数量积的定义:a ·b =|a ||b |cos θ. 2.三个结论(1)若a =(x ,y ),则|a |=a ·a =x 2+y 2.(2)若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 2-x 1)2+(y 2-y 1)2.(3)若非零向量a =(x 1,y 1),非零向量b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22. 例2 (1)(2017届湖北省部分重点中学联考)若等边△ABC 的边长为3,平面内一点M 满足CM →=13CB →+12CA →,则AM →·MB →的值为( ) A .2 B .-152C.152 D. -2答案 A解析 因为AM →=CM →-CA →,MB →=CB →-CM →,则AM →·MB →=⎝ ⎛⎭⎪⎫13CB →-12CA →⎝ ⎛⎭⎪⎫23CB →-12CA →,即AM →·MB →=29CB →2-12CA →·CB →+14CA →2=2-94+94=2,故选A.(2)(2017届河北省衡水中学六调)已知向量a ,b 满足|a |=1,|b |=2,a -b =(3,2),则|a +2b |等于( ) A .2 2 B.17 C.15 D .2 5答案 B解析 向量a ,b 满足|a |=1,|b |=2,a -b =(3,2), 可得|a -b |2=5,即|a |2+|b |2-2a ·b =5,解得a ·b =0. |a +2b |2=|a |2+4|b |2+4a ·b =1+16=17, 所以|a +2b |=17.故选B.思维升华 (1)数量积的计算通常有三种方法:数量积的定义,坐标运算,数量积的几何意义. (2)可以利用数量积求向量的模和夹角,向量要分解成题中模和夹角已知的向量进行计算.跟踪演练2 (1)(2017·全国Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA →·(PB →+PC →)的最小值是( )A .-2B .-32C .-43 D .-1答案 B解析 方法一 (解析法)建立平面直角坐标系如图①所示,则A ,B ,C 三点的坐标分别为A (0,3),B (-1,0),C (1,0).图①设P 点的坐标为(x ,y ), 则PA →=(-x ,3-y ), PB →=(-1-x ,-y ), PC →=(1-x ,-y ),∴PA →·(PB →+PC →)=(-x ,3-y )·(-2x ,-2y ) =2(x 2+y 2-3y )=2⎣⎢⎡⎦⎥⎤x 2+⎝ ⎛⎭⎪⎫y -322-34≥2×⎝ ⎛⎭⎪⎫-34=-32.当且仅当x =0,y =32时,PA →·(PB →+PC →)取得最小值,最小值为-32.故选B. 方法二 (几何法)如图②所示,PB →+PC →=2PD →(D 为BC 的中点),则PA →·(PB →+PC →)=2PA →·PD →.图②要使PA →·PD →最小,则PA →与PD →方向相反,即点P 在线段AD 上,则(2PA →·PD →)min =-2|PA →||PD →|,问题转化为求|PA →|·|PD →|的最大值.又|PA →|+|PD →|=|AD →|=2×32=3,∴|PA →||PD →|≤⎝ ⎛⎭⎪⎫|PA →|+|PD →|22=⎝ ⎛⎭⎪⎫322=34, 当且仅当|PA →|=|PD →|时取等号,∴[PA →·(PB →+PC →)]min =(2PA →·PD →)min =-2×34=-32.故选B.(2)(2017届湖北重点中学联考)已知向量a ,b 满足|a |=2,|b |=1,a 与b 的夹角为2π3,则|a +2b |=________.答案 2解析 因为|a |=2,|b |=1,〈a ,b 〉=2π3,故a ·b =2cos 〈a ,b 〉=-1,则(a +2b )2=a 2+4a ·b +4b 2=4-4+4=4,即|a +2b |=2. 热点三 平面向量与三角函数平面向量作为解决问题的工具,具有代数形式和几何形式的“双重型”,高考常在平面向量与三角函数的交汇处命题,通过向量运算作为题目条件.例3 (2017·江苏)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π].(1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. 解 (1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b , 所以-3cos x =3sin x .若cos x =0,则sin x =0,与sin 2x +cos 2x =1矛盾, 故cos x ≠0. 于是tan x =-33. 又x ∈[0,π],所以x =5π6.(2)f (x )=a·b =(cos x ,sin x )·(3,-3)=3cos x -3sin x =23cos ⎝⎛⎭⎪⎫x +π6.因为x ∈[0,π],所以x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,从而-1≤cos ⎝⎛⎭⎪⎫x +π6≤32,于是,当x +π6=π6,即x =0时,f (x )取得最大值3;当x +π6=π,即x =5π6时,f (x )取得最小值-2 3.思维升华 在平面向量与三角函数的综合问题中,一方面用平面向量的语言表述三角函数中的问题,如利用向量平行、垂直的条件表述三角函数式之间的关系,利用向量模表述三角函数之间的关系等;另一方面可以利用三角函数的知识解决平面向量问题,在解决此类问题的过程中,只要根据题目的具体要求,在向量和三角函数之间建立起联系,就可以根据向量或者三角函数的知识解决问题.跟踪演练3 已知平面向量a =(sin x ,cos x ),b =(sin x ,-cos x ),c =(-cos x ,-sin x ),x ∈R ,函数f (x )=a·(b -c ).(1)求函数f (x )的单调递减区间; (2)若f ⎝ ⎛⎭⎪⎫α2=22,求sin α的值. 解 (1)因为a =(sin x ,cos x ),b =(sin x ,-cos x ),c =(-cos x ,-sin x ),所以b -c =(sin x +cos x ,sin x -cos x ),f (x )=a·(b -c )=sin x (sin x +cos x )+cos x (sin x -cos x )=sin 2x +2sin x cos x -cos 2x =sin 2x -cos 2x =2sin ⎝⎛⎭⎪⎫2x -π4.当2k π+π2≤2x -π4≤2k π+3π2,k ∈Z ,即k π+3π8≤x ≤k π+7π8,k ∈Z 时,函数f (x )为减函数.所以函数f (x )的单调递减区间是⎣⎢⎡⎦⎥⎤k π+3π8,k π+7π8,k ∈Z .(2)由(1)知,f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4,又f ⎝ ⎛⎭⎪⎫α2=22,则2sin ⎝ ⎛⎭⎪⎫α-π4=22,sin ⎝ ⎛⎭⎪⎫α-π4=12. 因为sin 2⎝ ⎛⎭⎪⎫α-π4+cos 2⎝ ⎛⎭⎪⎫α-π4=1, 所以cos ⎝⎛⎭⎪⎫α-π4=±32. 又sin α=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π4+π4=sin ⎝ ⎛⎭⎪⎫α-π4cos π4+cos ⎝ ⎛⎭⎪⎫α-π4sin π4,所以当cos ⎝ ⎛⎭⎪⎫α-π4=32时, sin α=12×22+32×22=2+64;当cos ⎝⎛⎭⎪⎫α-π4=-32时, sin α=12×22-32×22=2-64.综上,sin α=2±64.真题体验1.(2017·北京改编)设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m·n <0”的___________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”) 答案 充分不必要解析 方法一 由题意知|m |≠0,|n |≠0. 设m 与n 的夹角为θ. 若存在负数λ,使得m =λn , 则m 与n 反向共线,θ=180°,∴m ·n =|m ||n |cos θ=-|m ||n |<0.当90°<θ<180°时,m ·n <0,此时不存在负数λ,使得m =λn . 故“存在负数λ,使得m =λn ”是“m ·n <0”的充分不必要条件. 方法二 ∵m =λn ,∴m ·n =λn ·n =λ|n |2. ∴当λ<0,n ≠0时,m ·n <0.反之,由m ·n =|m ||n |cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝ ⎛⎦⎥⎤π2,π,当〈m ,n 〉∈⎝ ⎛⎭⎪⎫π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分不必要条件.2.(2017·山东)已知e 1,e 2是互相垂直的单位向量,若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________. 答案33解析 由题意知|e 1|=|e 2|=1,e 1·e 2=0,|3e 1-e 2|=(3e 1-e 2)2=3e 21-23e 1·e 2+e 22=3-0+1=2. 同理|e 1+λe 2|=1+λ2.所以cos 60°=(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2||e 1+λe 2|=3e 21+(3λ-1)e 1·e 2-λe 2221+λ2=3-λ21+λ2=12, 解得λ=33. 3.(2017·天津)在△ABC 中,∠A =60°,AB =3,AC =2.若BD →=2DC →,AE →=λAC →-AB →(λ∈R ),且AD →·AE →=-4,则λ的值为________.答案311解析 由题意知|AB →|=3,|AC →|=2,AB →·AC →=3×2×cos 60°=3,AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →,∴AD →·AE →=⎝ ⎛⎭⎪⎫13AB →+23AC →·(λAC →-AB →)=λ-23AB →·AC →-13AB →2+2λ3AC →2=λ-23×3-13×32+2λ3×22=113λ-5=-4,解得λ=311.4.(2017·北京)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO →·AP →的最大值为________. 答案 6解析 方法一 根据题意作出图象,如图所示,A (-2,0),P (x ,y ). 由点P 向x 轴作垂线交x 轴于点Q ,则点Q 的坐标为(x,0).AO →·AP →=|AO →||AP →|cos θ,|AO →|=2,|AP →|=(x +2)2+y 2, cos θ=|AQ →||AP →|=x +2(x +2)2+y 2, 所以AO →·AP →=2(x +2)=2x +4.点P 在圆x 2+y 2=1上,所以x ∈[-1,1]. 所以AO →·AP →的最大值为2+4=6.方法二 如图所示,因为点P 在圆x 2+y 2=1上, 所以可设P (cos α,sin α)(0≤α<2π), 所以AO →=(2,0),AP →=(cos α+2,sin α),AO →·AP →=2cos α+4≤2+4=6,当且仅当cos α=1,即α=0,P (1,0)时“=”号成立. 押题预测1.如图,在△ABC 中,AD →=13AB →,DE ∥BC 交AC 于E ,BC 边上的中线AM 交DE 于N ,设AB →=a ,AC →=b ,用a ,b 表示向量AN →,则AN →等于( )A.12(a +b ) B.13(a +b ) C.16(a +b ) D.18(a +b ) 押题依据 平面向量基本定理是向量表示的基本依据,而向量表示(用基底或坐标)是向量应用的基础. 答案 C解析 因为DE ∥BC ,所以DN ∥BM , 则△AND ∽△AMB ,所以AN AM =ADAB.因为AD →=13AB →,所以AN →=13AM →.因为M 为BC 的中点,所以AM →=12(AB →+AC →)=12(a +b ),所以AN →=13AM →=16(a +b ).故选C.2.如图,BC ,DE 是半径为1的圆O 的两条直径,BF →=2FO →,则FD →·FE →等于( )A .-34B .-89C .-14D .-49押题依据 数量积是平面向量最重要的概念,平面向量数量积的运算是高考的必考内容,和平面几何知识的结合是向量考查的常见形式. 答案 B解析 ∵BF →=2FO →,圆O 的半径为1,∴|FO →|=13,∴FD →·FE →=(FO →+OD →)·(FO →+OE →)=FO →2+FO →·(OE →+OD →)+OD →·OE →=⎝ ⎛⎭⎪⎫132+0-1=-89.3.在△ABC 中,AB →=(cos 32°,cos 58°),BC →=(sin 60°sin 118°,sin 120°sin 208°),则△ABC 的面积为( )A.14B.38C.32D.34押题依据 平面向量作为数学解题工具,通过向量的运算给出条件解决三角函数问题已成为近几年高考的热点. 答案 B解析 |AB →|=cos 232°+cos 258°=cos 232°+sin 232°=1,BC →=⎝⎛⎭⎪⎫32cos 28°,-32sin 28°,所以|BC →|=⎝ ⎛⎭⎪⎫32cos 28°2+⎝ ⎛⎭⎪⎫-32sin 28°2=32. 则AB →·BC →=cos 32°×32cos 28°-sin 32°×32sin 28°=32(cos 32°cos 28°-sin 32°sin 28°) =32cos(32°+28°)=32cos 60°=34,故cos 〈AB →,BC →〉=AB →·BC →|AB →||BC →|=341×32=12.又〈AB →,BC →〉∈[0°,180°],所以〈AB →,BC →〉=60°, 故B =180°-〈AB →,BC →〉=180°-60°=120°. 故△ABC 的面积为S =12·|AB →|·|BC →|sin B=12×1×32×sin 120°=38.故选B. 4.如图,在半径为1的扇形AOB 中,∠AOB =60°,C 为AB 上的动点,AB 与OC 交于点P ,则OP →·BP →的最小值是________.押题依据 本题将向量与平面几何、最值问题等有机结合,体现了高考在知识交汇点命题的方向,本题解法灵活,难度适中. 答案 -116解析 因为OP →=OB →+BP →,所以OP →·BP →=(OB →+BP →)·BP →=OB →·BP →+BP →2.又因为∠AOB =60°,OA =OB ,所以∠OBA =60°,OB =1.所以OB →·BP →=|BP →|cos 120°=-12|BP →|.所以OP →·BP →=-12|BP →|+|BP →|2=⎝ ⎛⎭⎪⎫|BP →|-142-116≥-116,当且仅当|BP →|=14时,OP →·BP →取得最小值-116.A 组 专题通关1. 设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →答案 A解析 ∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →), 即4AC →-AB →=3AD →,∴AD →=-13AB →+43AC →.2.(2017届广西省教育质量诊断性联合考试)设向量a =(1,2),b =(-3,5),c =(4,x ),若a +b =λc (λ∈R ),则λ+x 的值为( )A .-112B.112 C .-292D.292答案 C解析 由已知可得(1,2)+(-3,5)=λ(4,x )⇒⎩⎪⎨⎪⎧4λ=-2,xλ=7⇒⎩⎪⎨⎪⎧λ=-12,x =-14⇒λ+x =-292,故选C.3.已知向量a ,b ,其中a =(-1,3),且a ⊥(a -3b ),则b 在a 上的投影为( ) A.43 B .-43C.23 D .-23答案 C解析 由a =(-1,3),且a ⊥(a -3b ),得a ·(a -3b )=0=a 2-3a·b =4-3a·b ,a·b =43,所以b 在a 上的投影为a·b |a |=432=23,故选C.4.如图,在矩形ABCD 中,AB =3,BC =3,BE →=2EC →,点F 在边CD 上,若AB →·AF →=3,则AE →·BF →的值为()A .4 B.833C .0D .-4答案 D解析 如图所示,BE →=2EC →⇒BE =23BC =233,AB →·AF →=3⇒AF cos∠BAF =1⇒DF =1,以点A 为原点建立平面直角坐标系,AD 所在直线为x 轴,AB 所在直线为y 轴,则B (0,3),F (3,1),E (233,3),因此BF →=(3,-2),AE →·BF →=233×3-2×3=2-6=-4.5.在△ABC 中,AB =5,AC =6,若B =2C ,则向量BC →在BA →方向上的投影是( ) A .-75B .-77125C.77125D.75答案 B解析 由正弦定理得ACsin B=ABsin C ⇒6sin 2C =5sin C ⇒cos C =35,由余弦定理得cos C =BC 2+AC 2-AB 22AC ·BC ⇒BC =115或5,经检验知BC =5不符合,舍去,所以BC =115,cos B =AB 2+BC 2-AC 22AB ·BC =-725,则|BC →|cos B =-77125,故选B.6.(2017届吉林省普通中学调研)在等腰直角△ABC 中,AC =BC ,D 在AB 边上且满足CD →=tCA →+(1-t )CB →,若∠ACD =60°,则t 的值为( ) A.3-12 B.3-1C.3-22D.3+12答案 A解析 因为D 在AB 边上且满足CD →=tCA →+(1-t )CB →,所以BD →=tBA →,不妨设AC =BC =1,则AB =2,AD =2(1-t ),在△ACD 中,∠ACD =60°,∠CAD =45°,则∠ADC =75°,由正弦定理,得1sin 75°=2(1-t )sin 60°,解得t =3-12.故选A. 7.(2017届河南南阳一中月考)已知△ABC 的外接圆半径为1,圆心为点O ,且3OA →+4OB →+5OC →=0,则△ABC 的面积为( ) A.85 B.75C.65 D.45 答案 C解析 如图所示,|OA →|=|OB →|=|OC →|=1,由3OA →+4OB →+5OC →=0,可得3OA →+4OB →=-5OC →,两边平方可得9+24OA →·OB →+16=25,所以OA →·OB →=0,因此OA →⊥OB →.同理3OA →+5OC →=-4OB →,4OB →+5OC →=-3OA →,两边分别平方可得cos 〈OB →,OC →〉=-45,cos 〈OA →,OC →〉=-35,根据同角三角函数基本关系可得sin 〈OB →,OC →〉=35,sin 〈OA →,OC →〉=45,所以S △ABC =S △AOB +S △AOC +S △OBC=12×1×1+12×1×1×45+12×1×1×35=65,故选C. 8.已知向量OA →=(1,1),OB →=(1,a ),其中O 为原点,若向量OA →与OB →的夹角在区间⎣⎢⎡⎦⎥⎤0,π12内变化,则实数a 的取值范围是__________. 答案 ⎣⎢⎡⎦⎥⎤33,3 解析 因为OA →=(1,1),OB →=(1,a ), 所以OA →·OB →=1+a .又OA →·OB →=2·1+a 2cos θ, 故cos θ=1+a2(1+a 2), 因为θ∈⎣⎢⎡⎦⎥⎤0,π12,故cos θ∈⎣⎢⎡⎦⎥⎤6+24,1,即1+a2(1+a 2)∈⎣⎢⎡⎦⎥⎤6+24,1,解得33≤a ≤ 3. 9.(2017·辽宁省大连市双基测试)已知平面内三个单位向量OA →,OB →,OC →,〈OA →,OB →〉=60°,若OC →=mOA →+nOB →,则m +n 的最大值是______.答案233解析 由已知条件OC →=mOA →+nOB →,两边平方可得1=m 2+mn +n 2=(m +n )2-mn ,∴(m +n )2-1=mn ,根据向量加法的平行四边形法则,判断出m ,n >0,∴(m +n )2-1=mn ≤14(m +n )2,当且仅当m =n 时取等号,∴34(m +n )2≤1,则m +n ≤233,即m +n 的最大值为233. 10.(2017届陕西西安铁一中三模)已知向量m =(sin x ,-1),向量n =⎝ ⎛⎭⎪⎫3cos x ,-12,函数f (x )=(m +n )·m .(1)求f (x )的单调递减区间;(2)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,A 为锐角,a =23,c =4,且f (A )恰是f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值,求A ,b 和△ABC 的面积S . 解 (1)f (x )=(m +n )·m =sin 2x +1+3sin x cos x +12=1-cos 2x 2+1+32sin 2x +12 =32sin 2x -12cos 2x +2 =sin ⎝⎛⎭⎪⎫2x -π6+2.由2k π+π2≤2x -π6≤2k π+3π2(k ∈Z ),得k π+π3≤x ≤k π+5π6(k ∈Z ).所以f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π3,k π+5π6(k ∈Z ).(2)由(1)知f (A )=sin ⎝ ⎛⎭⎪⎫2A -π6+2, 当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-π6≤2x -π6≤5π6,由正弦函数图象可知,当2x -π6=π2时f (x )取得最大值3.所以2A -π6=π2,A =π3.由余弦定理,a 2=b 2+c 2-2bc cos A , 得12=b 2+16-2×4b ×12,所以b =2.所以S =12bc sin A =12×2×4sin 60°=2 3.B 组 能力提高11. (2017届江西师大附中、临川一中联考)在Rt△ABC 中,∠BCA =90°,CA =CB =1,P 为AB 边上的点,AP →=λAB →,若CP →·AB →≥PA →·PB →,则λ的最大值是( ) A.2+22B. 2-22C .1 D. 2答案 C解析 因为CP →=AP →-AC →=λAB →-AC →,PB →=AB →-AP →=AB →-λAB →,故由CP →·AB →≥PA →·PB →,可得2λ-1≥-2λ(1-λ),即2λ-1≥-2λ+2λ2, 也即λ2-2λ≤-12,解得1-22≤λ≤1+22,由于点P ∈AB ,所以1-22≤λ≤1, 故选C.12.(2017届荆、荆、襄、宜四地七校联考)如图,三个边长为2的等边三角形有一条边在同一直线上,边B 3C 3上有10个不同的点P 1,P 2,…,P 10, 记m i =AB →2·AP →i (i =1,2,…,10),则m 1+m 2+…+m 10的值为( )A .15 3B .45C .60 3D .180 答案 D解析 因为AB 2与B 3C 3垂直,设垂足为C ,所以AP i →在AB 2→上的投影为AC ,m i =AB 2→·AP i →=|AB 2→||AC →|=23×33=18,从而m 1+m 2+…+m 10的值为18×10=180.故选D.13.(2017届江西上饶一模)已知在Rt△AOB 中,AO =1,BO =2,如图,动点P 是在以O 点为圆心,OB 为半径的扇形内运动(含边界)且∠BOC =90°.设OP →=xOA →+yOB →,则x +y 的取值范围是__________. 答案 [-2,1]解析 由已知图形可知OP →,OA →的夹角∠AOP ∈[90°,180°],所以x ≤0,OP →,OB →的夹角∠BOP ∈[0°,90°],所以y ≥0,由平行四边形法则可知,当点P 沿着圆弧CB 由C 到B 移动时,负数x 逐渐增大,正数y 逐渐增大,所以当点P 在C 处时x +y 取得最小值,因为OC =2OA ,OC ⊥OB ,所以x =-2,y =0,所以x +y =-2,当点P 在点B 处时x +y 取得最大值,因为OA ⊥OB ,所以x =0,y =1, 所以x +y =1,所以x +y 的取值范围为[-2,1].14.(2017届云南曲靖一中月考)已知向量a =(-1,0),b =(cos α,sin α),c =(cos β,sin β). (1)求|a +c |的最大值;(2)若α=π4,且向量b 与向量(a +c )垂直,求cos β的值.解 (1)a +c =(cos β-1,sin β),|a +c |=(cos β-1)2+sin 2β=2-2cos β, 当cos β=-1时,|a +c |=2,|a +c |的最大值为2.(2)若α=π4,则b =⎝ ⎛⎭⎪⎫22,22,a +c =(cos β-1,sin β),∵向量b 与向量a +c 垂直, ∴22(cos β-1)+22sin β=0, ∴sin β+cos β=1,故sin 2β=(1-cos β)2=1-2cos β+cos 2β, cos 2β-cos β=0,∴cos β=0或1.当cos β=1时,sin β=0,a +c =(0,0)不符合条件, ∴cos β=0.。

2018年高考数学考点通关练第三章三角函数、解三角形与平面向量22简单的三角恒等变换课件

2018年高考数学考点通关练第三章三角函数、解三角形与平面向量22简单的三角恒等变换课件

3 2 ∴sinθ+cosθ= 5 , 7 ∴2sinθcosθ=-25.

∵θ 是第四象限角,∴sinθ<0,cosθ>0,
∴sinθ-cosθ=-
4 2 1-2sinθcosθ=- 5 ,②
2 7 2 由①②得 sinθ=- 10 ,cosθ= 10 , 1 ∴tanθ=-7,
tanθ-1 π 4 ∴tanθ-4= =-3. 1+tanθ
1 1+ 3 6 =- . 2 3
sin180° +2α cos2α 3. · 等于( 1+cos2α cos90° +α A.-sin α C.sinα B.-cosα D.cosα
)
解析
- sin2α· cos2 α 原式= 1+ cos2 α· - sinα
2sinα· cosα· cos2α = = cosα. 2cos2 α· sin α
1 1 2-3 1 1 1=7,故选 A. 1+2×3
10.[2016· 浙江高考]已知 2cos2x+sin2x=Asin(ωx+φ)+ 1 2 b(A>0),则 A=________ ,b=________.
解析 =
∵2cos2x+sin2x=1+cos2x+sin2x 2,b=1.
π 2sin2x+4 +1,∴A=
上单调递增,故 a, b, c 的大小关系为 a<c<b.
二、高考小题 1 1 9.[2015· 重庆高考]若 tanα=3,tan(α+β)=2,则 tanβ =( ) 1 A.7 1 B.6 5 C.7 5 D.6
解析
tanα+β-tanα tanβ = tan[(α + β) - α] = = 1+tanα+β· tanα

2018年高考数学 考点通关练 第三章节 三角函数、解三角形与平面向量 26 平面向量基本定理及坐标表示讲义 文

2018年高考数学 考点通关练 第三章节 三角函数、解三角形与平面向量 26 平面向量基本定理及坐标表示讲义 文


x=14x1+x2+x3+x4,

y=14y1+y2+y3+y4,
故点 M 只有 1 个.
解法二:取特殊值,令 A1(0,0),A2(0,1),A3(1,1),A4(1,0), 则满足M→A1+M→A2+M→A3+M→A4=0 的条件的点有且仅有 1 个,即正方形 A1A2A3A4 的中心.
)
A.-3 C.-4
B.3 D.4
解析 建立如图所示的平面直
角坐标系 xAy,则A→C=(2,-2),A→B
=(1,2),A→D=(1,0),由题意可知(2, - 2) = λ(1,2) + μ(1,0) , 即
2=λ+μ, -2=2λ,


λ=-1, μ=3,
λμ=-3.故选 A.
λa+μb(λ、μ 为实数),则实数 m 的取值范围是(
)
A.(-∞,2)
B.(2,+∞)
C.(-∞,+∞)
D.(-∞,2)∪(2,+∞)
解析 由题意知向量 a,b 不共线,故 2m≠3m-2,即 m≠2.
8.已知向量A→C,A→D和A→B在正方形网格中的位置如图所
示,若A→C=λA→B+μA→D,则 λμ=(


A→B

线







±
AB →
|AB|

±
1 13
(

5,12)

±-153,1132.
21.[2017·潍坊模拟]在△ABC 中,P,Q 分别是 AB,BC
的三等分点,且 AP=13AB,BQ=13BC,若A→B=a,A→C=b,
则P→Q=(
)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点测试28 平面向量的数量积及应用一、基础小题1.已知向量a =(-2,-1),b =(m,1),m ∈R ,若a ⊥b ,则m 的值为( ) A .-12B.12 C .2 D .-2答案 A解析 由a ⊥b ,得a ²b =0,即-2m -1=0,则m =-12.故选A.2.在Rt △ABC 中,∠C =90°,AC =4,则AB →²AC →等于 ( ) A .-16 B .-8 C .8 D .16 答案 D解析 因为cos A =|AC →||AB →|,故AB →²AC →=|AB →||AC →|cos A =|AC →|2=16,故选D.3.已知向量a =(2,7),b =(x ,-3),且a 与b 的夹角为钝角,则实数x 的取值范围为( )A .x <212B .-67<x <212C .x <67D .x <212且x ≠-67答案 D解析 由a ²b =2x -21<0,得x <212.当a 与b 共线时,2x =7-3,则x =-67.故x 的取值范围为x <212且x ≠-67.选D.4.已知|a |=3,|b |=5且a ²b =12,则a 在b 方向上的投影为( ) A.125 B .3 C .4 D .5 答案 A解析 向量a 在b 方向上的投影为|a |cos 〈a ,b 〉=a ²b |b |=125,故选A. 5.已知△ABC 为等边三角形,AB =2.设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R .若BQ →²CP →=-32,则λ等于 ( )A.12B.1±22C.1±102D.-3±222答案 A解析 以点A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,则B (2,0),C (1,3),由AP →=λAB →,得P (2λ,0),由AQ →=(1-λ)AC →,得Q (1-λ,3(1-λ)),所以BQ →²CP →=(-λ-1,3(1-λ))²(2λ-1,-3)=-(λ+1)(2λ-1)-3³3(1-λ)=-32,解得λ=12.6.已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________. 答案 3 2解析 由题意得(2a -b )2=4|a |2+|b |2-4a ²b =4+|b |2-4³1³|b |cos45°=10,即|b |2-22|b |-6=0,解得|b |=3 2.7.已知|a|=|b |=2,(a +2b )²(a -b )=-2,则向量a 与b 的夹角为________. 答案π3解析 由|a |=|b |=2,(a +2b )²(a -b )=-2,得a ²b =2,cos 〈a ,b 〉=a²b |a ||b |=22³2=12,所以〈a ,b 〉=π3. 8.在平行四边形ABCD 中,∠A =π3,边AB ,AD 的长分别为2,1.若M ,N 分别是边BC ,CD 上的点,且满足|BM →||BC →|=|CN →||CD →|,则AM →²AN →的取值范围是________.答案[2,5]解析 如图,以点A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,则B (2,0),C ⎝ ⎛⎭⎪⎫52,32,D ⎝ ⎛⎭⎪⎫12,32,设M (x 1,3(x 1-2)),N ⎝ ⎛⎭⎪⎫x 2,32,由条件可得2|BM →|=|CN →|,代入坐标化简得4x 1+x 2=212,得x 2=212-4x 1,所以AM →²AN →=(x 1,3(x 1-2))²⎝⎛⎭⎪⎫x 2,32=x 1⎝ ⎛⎭⎪⎫212-4x 1+32(x 1-2)=-4x 21+12x 1-3,x 1∈⎣⎢⎡⎦⎥⎤2,52.由二次函数的图象可知y =-4x 21+12x 1-3在x 1∈⎣⎢⎡⎦⎥⎤2,52上是减函数,所以AM →²AN →的取值范围是[2,5]. 二、高考小题9.[2016²全国卷Ⅲ]已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A .30°B .45°C .60°D .120°答案 A解析 cos ∠ABC =BA →²BC→|BA →|²|BC →|=32,所以∠ABC =30°,故选A. 10.[2016²北京高考]设a ,b 是向量,则“|a |=|b |”是“|a +b |=|a -b |”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 D解析 当|a |=|b |=0时,|a |=|b |⇔|a +b |=|a -b |;当|a |=|b |≠0时,|a +b |=|a -b |⇔(a +b )2=(a -b )2⇔a ²b =0⇔a ⊥b ,推不出|a |=|b |.同样,由|a |=|b |也不能推出a ⊥b .故选D.11.[2016²山东高考]已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13.若n ⊥(t m+n ),则实数t 的值为( )A .4B .-4 C.94 D .-94答案 B解析 因为n ⊥(t m +n ),所以t m ²n +n 2=0,所以m ²n =-n 2t,又4|m |=3|n |,所以cos 〈m ,n 〉=m ²n |m |²|n |=4m ²n 3|n |2=-43t =13,所以t =-4.故选B. 12.[2016²天津高考]已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →²BC →的值为( )A .-58B.18C.14D.118答案 B解析 建立平面直角坐标系,如图.则B ⎝ ⎛⎭⎪⎫-12,0,C ⎝ ⎛⎭⎪⎫12,0, A ⎝⎛⎭⎪⎫0,32,所以BC →=(1,0).易知DE =12AC ,则EF =14AC =14,因为∠FEC =60°,所以点F 的坐标为⎝ ⎛⎭⎪⎫18,-38,所以AF →=⎝ ⎛⎭⎪⎫18,-538,所以AF →²BC →=⎝ ⎛⎭⎪⎫18,-538²(1,0)=18.故选B.13.[2016²全国卷Ⅰ]设向量a =(m,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________.答案 -2解析 由|a +b |2=|a |2+|b |2,知a ⊥b , ∴a ²b =m +2=0,∴m =-2.14. [2016²江苏高考]如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,BA →²CA →=4,BF →²CF →=-1,则BE →²CE →的值是________.答案 78解析 由已知可得BE →=BD →+DE →=12BC →+23DA →=12BC →-23AD →=12(AC →-AB →)-13(AB →+AC →)=16AC →-56AB →, CE →=CD →+DE →=12CB →+23DA →=12CB →-23AD →=12(AB →-AC →)-13(AB →+AC →)=16AB →-56AC →, BF →=BD →+DF →=12BC →+13DA →=12(AC →-AB →)-16(AB →+AC →)=13AC →-23AB →, CF →=CD →+DF →=12CB →+13DA →=12(AB →-AC →)-16(AB →+AC →)=13AB →-23AC →, 因为BA →²CA →=4,所以AB →²AC →=4, 则BF →²CF →=⎝ ⎛⎭⎪⎫13AC →-23AB →²⎝ ⎛⎭⎪⎫13AB →-23AC →=19AB →²AC →-29AB →2-29AC →2+49AB →²AC → =59AB →²AC →-29(AB →2+AC →2) =59³4-29(AB →2+AC →2)=-1, 所以AB →2+AC →2=292, 从而BE →²CE →=⎝ ⎛⎭⎪⎫16AC →-56AB →²⎝ ⎛⎭⎪⎫16AB →-56AC →=-536AB →2-536AC →2+2636AB →²AC →=-536(AB →2+AC →2)+2636AB →²AC →=-536³292+2636³4=6372=78. 三、模拟小题15.[2017²安徽皖江名校联考]在△ABC 中,已知向量AB →=(2,2),|AC →|=2,AB →²AC →=-4,则△ABC 的面积为( )A .4B .5C .2D .3 答案 C解析 ∵AB →=(2,2),∴|AB →|=22+22=2 2.∵AB →²AC →=|AB →|²|AC →|cos A =22³2cos A =-4,∴cos A =-22,∵0<A <π,∴sin A =22,∴S △ABC =12|AB →|²|AC →|sin A =2.故选C.16.[2016²江西赣南五校二模]△ABC 的外接圆的圆心为O ,半径为1,2AO →=AB →+AC →且|OA →|=|AB →|,则向量BA →在BC →方向上的投影为( )A.12 B.32 C .-12D .-32答案 A解析 由2AO →=AB →+AC →可知O 是BC 的中点,即BC 为△ABC 外接圆的直径,所以|OA →|=|OB →|=|OC →|,由题意知|OA →|=|AB →|=1,故△OAB 为等边三角形,所以∠ABC =60°.所以向量BA →在BC →方向上的投影为|BA →|cos ∠ABC =1³cos60°=12.故选A.17. [2016²昆明三中模拟]如图,在等腰直角△ABO 中,设OA →=a ,OB →=b ,OA =1,OB=1,C 为AB 上靠近点A 的四等分点,过C 作AB 的垂线l ,设P 为垂线上任一点,OP →=p ,则p ²(b -a )=( )A .-12B.12 C .-32D.32 答案 A解析 OP →²(OB →-OA →)=OP →²AB →=(OA →+AC →+CP →)²AB →=⎝ ⎛⎭⎪⎫OA →+14AB →+CP →²AB →=OA →²AB →+14AB→2+CP →²AB →=1³2³cos 3π4+14(2)2+0=-12.∴p ²(b -a )=-12.18.[2016²滨州模拟]向量a =(2,0),b =(x ,y ),若b 与b -a 的夹角等于π6,则|b |的最大值为( )A .2B .2 3C .4 D.433答案 C解析 由题意可知a ,b 不共线且|a |=2,由a =b -(b -a ),则有|a |2=|b -a |2+|b |2-2|b -a |²|b |cos π6,即4=|b -a |2+|b |2-2|b |²|b -a |³32,即|b -a |2-3|b |²|b-a |+|b |2-4=0,则判别式Δ=(3|b |)2-4(|b |2-4)≥0,即3|b |2-4|b |2+16≥0,∴|b |2≤16,即|b |≤4,∴|b |的最大值为4.19.[2017²福建福州一中模拟]已知非零向量a ,b ,c 满足|a |=|b |=|a -b |,〈c -a ,c -b 〉=2π3,则|c ||a |的最大值为________. 答案233解析 设OA →=a ,OB →=b ,则BA →=a -b . ∵非零向量a ,b ,c 满足|a |=|b |=|a -b |, ∴△OAB 是等边三角形. 设OC →=c ,则AC →=c -a ,BC →=c -b . ∵〈c -a ,c -b 〉=2π3,∴点C 在△ABC 的外接圆上,∴当OC 为△ABC 的外接圆的直径时,|c ||a |取得最大值,为1cos30°=233.20.[2017²河北石家庄模拟]已知向量a ,b ,c 满足|a |=2,|b |=a ²b =3,若(c -2a )²(2b -3c )=0,则|b -c |的最大值是________.答案2+1解析 设a 与b 的夹角为θ,则a ²b =|a ||b |cos θ, ∴cos θ=a ²b |a ||b |=32³3=22, ∵θ∈[0,π],∴θ=π4.设OA →=a ,OB →=b ,c =(x ,y ),建立如图所示的平面直角坐标系. 则A (1,1),B (3,0),∴c -2a =(x -2,y -2),2b -3c =(6-3x ,-3y ), ∵(c -2a )²(2b -3c )=0,∴(x -2)²(6-3x )+(y -2)²(-3y )=0,即(x -2)2+(y -1)2=1,故点C 在以(2,1)为圆心,1为半径的圆上. 又知b -c =(3-x ,-y ),∴|b -c |= x -3 2+y 2≤ 3-2 2+ 0-1 2+1=2+1,即|b -c |的最大值为2+1.一、高考大题1.[2015²广东高考]在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎪⎫0,π2.(1)若m ⊥n ,求tan x 的值;(2)若m 与n 的夹角为π3,求x 的值.解 (1)∵m ⊥n ,∴m ²n =0, 故22sin x -22cos x =0,∴tan x =1. (2)∵m 与n 的夹角为π3,∴cos 〈m ,n 〉=m ²n |m |²|n |=22sin x -22cos x 1³1=12,故sin ⎝⎛⎭⎪⎫x -π4=12. 又x ∈⎝⎛⎭⎪⎫0,π2,∴x -π4∈⎝ ⎛⎭⎪⎫-π4,π4,x -π4=π6, 即x =5π12,故x 的值为5π12. 二、模拟大题2.[2017²无锡月考]如图,O 是△ABC 内一点,∠AOB =150°,∠AOC =120°,向量OA →,OB →,OC →的模分别为2,3,4.(1)求|OA →+OB →+OC →|;(2)若OC →=mOA →+nOB →,求实数m ,n 的值.解 (1)由已知条件易知OA →²OB →=|OA →|²|OB →|²cos∠AOB =-3,OA →²OC →=|OA →|²|OC →|²cos∠AOC =-4,OB →²OC →=0,∴|OA →+OB →+OC →|2=OA →2+OB →2+OC →2+2(OA →²OB →+OA →²OC →+OB →²OC →)=9,∴|OA →+OB →+OC →|=3.(2)由OC →=mOA →+nOB →,可得OA →²OC →=mOA →2+nOA →²OB →,且OB →²OC →=mOB →²OA →+nOB →2,∴⎩⎪⎨⎪⎧ 4m -3n =-4,-3m +3n =0,∴m =n =-4.3.[2016²太原一模]已知向量AB →=(6,1),BC →=(x ,y ),CD →=(-2,-3).(1)若BC →∥DA →,求x 与y 之间的关系式;(2)在(1)的条件下,若AC →⊥BD →,求x ,y 的值及四边形ABCD 的面积. 解 (1)∵AD →=AB →+BC →+CD →=(x +4,y -2), ∴DA →=-AD →=(-x -4,2-y ). 又BC →∥DA →且BC →=(x ,y ),∴x (2-y )-y (-x -4)=0,即x +2y =0.①(2)由于AC →=AB →+BC →=(x +6,y +1), BD →=BC →+CD →=(x -2,y -3),又AC →⊥BD →,∴AC →²BD →=0,即(x +6)(x -2)+(y +1)(y -3)=0.②联立①②,化简得y 2-2y -3=0.解得y =3或y =-1.故当y =3时,x =-6,此时AC →=(0,4),BD →=(-8,0),∴S 四边形ABCD =12|AC →|²|BD →|=16; 当y =-1时,x =2,此时AC →=(8,0),BD →=(0,-4),∴S 四边形ABCD =12|AC →|²|BD →|=16. 4.[2016²山西运城质检]已知向量a =⎝ ⎛⎭⎪⎫cos 3x 2,sin 3x 2,b =⎝ ⎛⎭⎪⎫cos x 2,-sin x 2,且x ∈⎣⎢⎡⎦⎥⎤-π3,π4.(1)求a²b 及|a +b|;(2)若f (x )=a²b -|a +b |,求f (x )的最大值和最小值. 解 (1)a²b =cos 3x 2cos x 2-sin 3x 2sin x 2=cos2x ,x ∈⎣⎢⎡⎦⎥⎤-π3,π4∵a +b =⎝ ⎛⎭⎪⎫cos 3x 2+cos x 2,sin 3x 2-sin x 2,∴|a +b |= ⎝ ⎛⎭⎪⎫cos 3x2+cos x22+⎝ ⎛⎭⎪⎫sin 3x 2-sin x 22=2+2cos2x =2|cos x |.∵x ∈⎣⎢⎡⎦⎥⎤-π3,π4,∴cos x >0,∴|a +b |=2cos x .(2)f (x )=cos2x -2cos x =2cos 2x -2cos x -1=2⎝ ⎛⎭⎪⎫cos x -122-32.∵x ∈⎣⎢⎡⎦⎥⎤-π3,π4,∴12≤cos x ≤1,∴当cos x =12时,f (x )取得最小值-32;当cos x =1时,f (x )取得最大值-1.。

相关文档
最新文档