固体物理复习题
初中固体物理试题及答案

初中固体物理试题及答案一、选择题(每题2分,共20分)1. 固体的三种基本类型是()。
A. 晶体、非晶体、准晶体B. 晶体、非晶体、多晶体C. 晶体、非晶体、单晶体D. 晶体、多晶体、准晶体答案:A2. 晶体的特点是()。
A. 无规则排列B. 规则排列C. 部分规则排列D. 完全无序排列答案:B3. 非晶体与晶体的主要区别在于()。
A. 原子排列方式B. 原子大小C. 原子种类D. 原子数量答案:A4. 晶体的熔点通常比非晶体的熔点()。
A. 低B. 高C. 相同D. 不可比较答案:B5. 准晶体是一种介于晶体和非晶体之间的固体,其特点是()。
A. 完全无序排列B. 长程有序但不具备周期性C. 规则排列D. 完全有序排列答案:B6. 晶体的X射线衍射图样是()。
A. 无规则的斑点B. 规则的点状图案C. 连续的曲线D. 无规则的条纹答案:B7. 固体的热膨胀系数是指()。
A. 固体在加热时体积不变B. 固体在加热时体积变化的比率C. 固体在冷却时体积变化的比率D. 固体在加热时质量变化的比率答案:B8. 固体的导电性主要取决于()。
A. 原子的质量B. 原子的排列方式C. 原子的体积D. 原子的数量答案:B9. 金属导电的原因是()。
A. 金属内部有自由移动的电子B. 金属内部有自由移动的原子C. 金属内部有自由移动的离子D. 金属内部有自由移动的分子答案:A10. 半导体的导电性介于()之间。
A. 金属和绝缘体B. 金属和非金属C. 非金属和绝缘体D. 金属和晶体答案:A二、填空题(每题2分,共20分)1. 晶体的三种基本类型是单晶体、多晶体和________。
答案:准晶体2. 晶体的原子排列具有________性。
答案:长程有序3. 非晶体的原子排列具有________性。
答案:短程有序4. 晶体的熔点较高是因为其内部________。
答案:原子排列紧密5. 准晶体的原子排列具有________性。
初中固体物理试题及答案

初中固体物理试题及答案一、选择题(每题2分,共20分)1. 固体物质的分子排列特点是:A. 无规则排列B. 规则排列C. 部分规则排列D. 完全无序排列答案:B2. 固体物质的分子间作用力是:A. 引力B. 斥力C. 引力和斥力D. 无作用力答案:C3. 下列物质中,属于晶体的是:A. 玻璃B. 橡胶C. 食盐D. 沥青答案:C4. 晶体与非晶体的主要区别在于:A. 颜色B. 形状C. 熔点D. 分子排列答案:D5. 固体物质的熔化过程需要:A. 吸收热量B. 放出热量C. 保持热量不变D. 无法判断答案:A6. 固体物质的硬度与下列哪项因素有关:A. 分子间作用力B. 分子质量C. 分子体积D. 分子形状答案:A7. 固体物质的导电性与下列哪项因素有关:A. 分子间作用力B. 分子运动速度C. 电子的自由移动D. 分子的排列方式答案:C8. 晶体的熔点与下列哪项因素有关:A. 晶体的纯度B. 晶体的颜色C. 晶体的形状D. 晶体的密度答案:A9. 固体物质的热膨胀现象说明:A. 分子间距离不变B. 分子间距离减小C. 分子间距离增大D. 分子间距离先增大后减小答案:C10. 固体物质的热传导性与下列哪项因素有关:A. 分子间作用力B. 分子运动速度C. 电子的自由移动D. 分子的排列方式答案:A二、填空题(每空1分,共20分)1. 固体物质的分子排列特点是________,而非晶体物质的分子排列特点是________。
答案:规则排列;无规则排列2. 固体物质的熔化过程中,分子间________,分子间距离________。
答案:作用力减弱;增大3. 晶体的熔点与________有关,而非晶体没有固定的熔点。
答案:晶体的纯度4. 固体物质的硬度与分子间________有关,分子间作用力越强,硬度越大。
答案:作用力5. 固体物质的热膨胀现象是由于温度升高,分子间距离________。
答案:增大三、简答题(每题10分,共30分)1. 简述晶体与非晶体的区别。
高校物理专业固体物理学期末考试试卷及答案

高校物理专业固体物理学期末考试试卷及答案一、选择题(每题2分,共40分)1. 下列哪种材料是典型的固体?A. 水B. 空气C. 玻璃D. 油2. 表征物质导电性质的关键因素是:A. 导热系数B. 形变C. 导电子数D. 电阻率3. 相互作用力程远大于它的大小尺度的物质状态是:A. 液体B. 气体C. 等离子体D. 固体4. 根据原子内部粒子组织排列方式的不同,将固体分为晶体和非晶态,以下哪种属于非晶态?A. 钻石B. 石英C. 玻璃D. 铜5. 材料的抗拉强度指的是:A. 材料在拉伸过程中发生断裂的能力B. 材料的硬度C. 材料的耐磨性D. 材料的延展性(以下为第6题至第40题的选项省略)二、填空题(每题3分,共30分)1. 固体的最基本由原子、分子或离子组成的单位结构叫作_____________。
2. 点阵是固体晶体结构中原子、离子或分子的_____________组成的排列方式。
3. 若一堆物体在某种温度下开始熔化,则该温度即为该物质的_____________点。
4. 固体由于结构的紧密性,其密度通常较_____________。
5. 金属中导电电子为材料的_____________。
6. 非晶态材料的特点是_____________无规律的原子组织结构。
(以下为第7题至第30题的空格省略)三、问答题(共30分)1. 简述固体物理学研究的基本内容和意义。
解答:固体物理学研究的基本内容主要包括固体材料的结构、性质和应用等方面。
它通过研究固体的微观结构和宏观性质,探索物质内部的相互作用和运动规律,从而深入了解固体物质的特性和行为。
固体物理学的研究对于提高材料的功能和性能具有重要意义。
通过深入研究固体的结构和性质,我们可以开发出更好的材料,改善材料的导电、导热、机械强度等性能,为社会发展和工业生产提供重要支持。
同时,固体物理学的研究还能够为其他领域的科学研究提供基础和支撑,如电子学、光学、磁学等。
固体物理期末考试题及答案

固体物理期末考试题及答案一、选择题(每题2分,共20分)1. 晶体中原子排列的周期性结构被称为:A. 晶格B. 晶胞C. 晶面D. 晶向答案:A2. 描述固体中电子行为的基本理论是:A. 经典力学B. 量子力学C. 相对论D. 电磁学答案:B3. 以下哪项不是固体物理中的晶体缺陷:A. 点缺陷B. 线缺陷C. 面缺陷D. 体缺陷答案:D4. 固体物理中,晶格振动的量子称为:A. 声子B. 光子C. 电子D. 空穴答案:A5. 以下哪个不是固体的电子能带结构:A. 价带B. 导带C. 禁带D. 散射带答案:D二、简答题(每题10分,共30分)6. 解释什么是晶格常数,并举例说明。
晶格常数是晶体中最小重复单元的尺寸,通常用来描述晶体的周期性结构。
例如,立方晶系的晶格常数a是指立方体的边长。
7. 简述能带理论的基本概念。
能带理论是量子力学在固体物理中的应用,它描述了固体中电子的能量分布。
在固体中,电子的能量不是连续的,而是分成一系列的能带。
价带是电子能量较低的区域,导带是电子能量较高的区域,而禁带是两带之间的能量区域,电子不能存在。
8. 什么是费米能级,它在固体物理中有什么意义?费米能级是固体中电子的最高占据能级,它与温度有关,但与电子的化学势相等。
在绝对零度时,费米能级位于导带的底部,它决定了固体的导电性质。
三、计算题(每题15分,共30分)9. 假设一个一维单原子链的原子质量为m,相邻原子之间的弹簧常数为k。
求该链的声子频率。
解:一维单原子链的声子频率可以通过下面的公式计算:\[ \omega = 2 \sqrt{\frac{k}{m}} \]10. 给定一个半导体的电子亲和能为Ea,工作温度为T,求该半导体在该温度下的费米-狄拉克分布函数。
解:费米-狄拉克分布函数定义为:\[ f(E) = \frac{1}{e^{\frac{E-E_F}{kT}} + 1} \] 其中,E是电子的能量,E_F是费米能级,k是玻尔兹曼常数,T 是温度。
固体物理复习题答案完整版

一·简答题1.晶格常数为a 的体心立方、面心立方结构,分别表示出它们的基矢、原胞体积以及最近邻的格点数。
(答案参考教材P7-8)(1)体心立方基矢:123()2()2()2ai j k a i j k ai j k ααα=+-=-++=-+,体积:312a ,最近邻格点数:8(2)面心立方基矢:123()2()2()2a i j a j k ak i ααα=+=+=+,体积:314a ,最近邻格点数:122.习题1.5、证明倒格子矢量112233G h b h b h b =++垂直于密勒指数为123()h h h 的晶面系。
证明:因为33121323,a aa a CA CB h h h h =-=-,112233G h b h b h b =++ 利用2i j ij a b πδ⋅=,容易证明12312300h h h h h h G CA G CB ⋅=⋅=所以,倒格子矢量112233G h b h b h b =++垂直于密勒指数为123()h h h 的晶面系。
3.习题 1.6、对于简单立方晶格,证明密勒指数为(,,)h k l 的晶面系,面间距d 满足:22222()d a h k l =++,其中a 为立方边长;解:简单立方晶格:123a a a ⊥⊥,123,,a ai a aj a ak ===由倒格子基矢的定义:2311232a a b a a a π⨯=⋅⨯,3121232a a b a a a π⨯=⋅⨯,1231232a a b a a a π⨯=⋅⨯倒格子基矢:123222,,b i b j b k a a aπππ=== 倒格子矢量:123G hb kb lb =++,222G hi k j l k a a aπππ=++ 晶面族()hkl 的面间距:2d Gπ=2221()()()h k l a a a=++4.习题1.9、画出立方晶格(111)面、(100)面、(110)面,并指出(111)面与(100)面、(111)面与(110)面的交线的晶向。
固体物理学考试题及答案

固体物理学考试题及答案一、选择题(每题2分,共20分)1. 固体物理学中,描述晶体中原子排列的周期性规律的数学表达式是()。
A. 布洛赫定理B. 薛定谔方程C. 泡利不相容原理D. 费米-狄拉克统计答案:A2. 固体中电子的能带结构是由()决定的。
A. 原子的核外电子B. 晶体的周期性势场C. 原子的核电荷D. 原子的电子云答案:B3. 在固体物理学中,金属导电的原因是()。
A. 金属中存在自由电子B. 金属原子的电子云重叠C. 金属原子的价电子可以自由移动D. 金属原子的电子云完全重叠答案:C4. 半导体材料的导电性介于导体和绝缘体之间,这是因为()。
A. 半导体材料中没有自由电子B. 半导体材料的能带结构中存在带隙C. 半导体材料的原子排列无序D. 半导体材料的电子云完全重叠答案:B5. 固体物理学中,描述固体中电子的波动性的数学表达式是()。
A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 热力学第一定律答案:A6. 固体中声子的概念是由()提出的。
A. 爱因斯坦B. 德拜C. 玻尔D. 费米答案:B7. 固体中电子的费米能级是指()。
A. 电子在固体中的最大能量B. 电子在固体中的最小能量C. 电子在固体中的平均水平能量D. 电子在固体中的动能答案:A8. 固体物理学中,描述固体中电子的分布的统计规律是()。
A. 麦克斯韦-玻尔兹曼统计B. 费米-狄拉克统计C. 玻色-爱因斯坦统计D. 高斯统计答案:B9. 固体中电子的能带理论是由()提出的。
A. 薛定谔B. 泡利C. 费米D. 索末菲答案:D10. 固体中电子的跃迁导致()的发射或吸收。
A. 光子B. 声子C. 电子D. 质子答案:A二、填空题(每题2分,共20分)1. 固体物理学中,晶体的周期性势场是由原子的______产生的。
答案:周期性排列2. 固体中电子的能带结构中,导带和价带之间的能量区域称为______。
答案:带隙3. 金属导电的原因是金属原子的价电子可以______。
固体物理复习题

固体物理复习题一、名词解释1、布拉菲格子2、共价键的方向性和饱和性3、布洛赫波函数4、简单格子和复式格子5、声子6、p3杂化轨道7、费米面8、第一布里渊区9、倒格子二、证明1、只考虑近邻相互作用(待定力常数为)和简谐近似下,试证明一维单原子链晶格振动波的色散关系为:(q)2Minaq2采用周期性边界条件讨论q的取值,并说明它和介质弹性波波矢取值的差异。
2、利用线性谐振子模型证明两个极性分子间的吸引能与它们之间距离的六次方成正比。
3、证明一维晶格的布洛赫定理。
24、证明倒格矢G晶面(h1h2h3),并且G(d为晶面(h1h2h3)的面间距)dE(kG)E(k)E(k)E(k)5、证明能带的对称性:n,nhnn三、简答2、金刚石结构有几支格波几支声学波几支光学波设晶体有N个原胞,晶格振动模式数为多少3、试用能带论阐述导体、绝缘体、半导体中电子在能带中填充的特点.4、原子间的排斥作用和吸引作用有何关系?起主导的范围是什么?5、什么是原胞?什么是单胞?二者有何区别?6、金刚石结构的晶体为何种布拉维格子?配位数是多少?每个原胞有几个原子?该晶体的倒格子是什么类型7、、什么是原子的电离能、亲和能和负电性?8、石墨中是电子还是电子导致石墨的导电性?简述原因。
9、什么是简正模?什么是格波?格波和弹性波之间有什么区别?10、解释布里渊区的物理意义,在布里渊区边界上能带有何特点四、计算1、晶格常数为a的体心立方格子的倒格子为什么格子?并给出晶格常数。
2、一维简单正方晶格,晶格常数为a,每个原胞有一个原子,每个原子只有一个态价电子,使用近束缚紧似,只计入近邻相互作用。
(1)求出电子组成的能带的E(k)函数;(2)求出能带带顶和带底的位置和能量值;如果换成二维结果又如何?如果换成体心立方结果又如何?3、利用线性谐振子模型讨论两个极性分子间的吸引能与它们之间距离的六次方成正比。
4、求金刚石结构的几何结构因子消光条件。
固体物理期末复习题目

固体物理期末复习题目一、名词解释:1、晶体;2、非晶体;3、点阵;4、晶格;5、格点;6、晶体的周期性;7、晶体的对称性8、密勒指数;9、倒格子;10、配位数;11、致密度;12、固体物理学元胞;13、结晶学元胞;14、布拉菲格子;15、复式格子;16、声子;17、布洛赫波;18、布里渊区;19、格波;20、电子的有效质量二、计算证明题1. 晶体点阵中的一个平面hkl ,试证:(1)晶格的两个相邻平行平面(这些平面通过格点)之间的距离为2||hkl d K π=此处123K hb kb lb =++;(2)利用上述关系证明,对于简单立方格子,22d l =+ a 为晶格常数;(3)说明什么样的晶面容易解理,为什么?2、金刚石晶胞的立方边长为m 101056.3-?,求最近邻原子间的距离、平均每立方厘米中的原子数和金刚石的密度。
(碳原子的重量为2310*99.1-g )3. 试证:在晶体中由于受到周期性的限制,只能有1、2、3、4、6重旋转对称轴,5重和大于6重的对称轴不存在。
4、晶体点阵中的一个平面.hkl(a )证明倒易点阵矢量321b l b k b h G ++=垂直于这个平面。
(b )证明正格子原胞体积与倒格子原胞体积互为倒数5. 证明体心立方格子和面心立方格子互为正、倒格子。
6. 在六角空间格子中选取一平行六面体为原胞,试求:(1)基矢321,,a a a的表示式;(2)原胞的体积;(3)倒格子基矢321,,b b b 。
7、氪原子组成惰性晶体为体心立方结构,其总势能可写为()- ??=6612122R A R A N R U σσε,其中N 为氪原子数,R 为最近邻原子间距离,点阵和A 6=12.25,A 12=9.11;设雷纳德—琼斯系数ε=0.014eV ,σ=3.65。
求:(1)平衡时原子间最近距离R 0及点阵常数a ;(2)每个原子的结合能(eV )。
8. 设两原子间的互作用能可表示为()n m r r r u βα+-=式中,第一项为引力能;第二项为排斥能;βα,均为正常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固体物理复习题
第一章
概念部分:
1、晶体:是一种组成粒子在空间排列具有周期性,表现为长城有序且平移对称性的固体。
2、布拉菲格子(点阵):晶体内部结构可以看成是由一些相同点子在空间做规则的周期性的无限分布。
沿三个不同方向通过点阵中的结点作平行的直线族,把结点包括无遗,点阵便构成一个三维网格。
这种三维格子称为晶格,又称为布拉菲格子,结点又称格点。
(P4-P5)
3、原胞:以三个不同方向的周期为边长的平行六面体中体积最小的重复单元。
(P5)
4、晶胞:能同时反映晶体对称性和周期性特征的重复单元。
(P5-P6)
5、密勒指数:在晶胞基矢坐标系中求出的面指数称为密勒指数。
以三个互质的整数表示为(hkl )。
(P11)
6、倒格子:由式'=2l h πμ⋅R K 得到,l R 和h'K 的量纲是互为倒逆的,l R 是格点的位置矢量,称为正格矢,h'K 称为倒格矢,1122h'
h h h =++K b b b ,其中2312[]πΩ⨯=a a b ,3122[]πΩ⨯=a a b ,1232[]πΩ⨯=a a b (Ω表示晶格原胞体积)是三个倒格基矢,倒格基矢平移可形成倒格子。
(P12-13)
7、晶列:通过任意两格点作一直线,这一直线称为晶列。
(P9)
8、晶面指数:任一晶面族的面指数,可以由晶面族中任一晶面在基矢坐标轴上截距系数的倒数求出,表示为(rst)。
(P11)
9、密堆积:最紧密的堆积称为密堆积,密堆积对应最大的配位数。
(P4) 简答部分:
1、原胞与晶胞的区别。
答:原胞只考虑点阵周期性的最小重复单元,而晶胞是同时可以反应晶体的周期性与对称性的重复单元。
晶胞的体积是原胞体积的整数倍。
2、什么是宏观对称性?
答:一个晶体在经过某一变换后,晶格在空间的分布保持不变,与原来重合,这便体现了晶体的宏观对称性,这种变换称为对称操作。
3、简述几何结构因子的意义。
答:几何结构因子是指原胞内所有原子在某一方向上引起的散射波的总振幅与某一电子在该方向上所引起的散射波的振幅之比(P30)。
表达式为:
21()e j t
i j j F f πλ⋅==∑
s r s
强调:证明:面心立方的倒格子是体心立方。
见第一章课后习题7.
第二章
1、晶体的结合类型,特点、共性(电离能、结合能)。
(P42-45)
答:(1)共价结合。
(2)离子结合。
(3)金属结合。
(4)分子结合。
(5)氢键结合。
记住结合类型就可以了,其他内容可不记,稍稍了解即可。
第三章
概念部分:
1、长光学支格波:讨论一维复式格子,由两种不同原子构成的一维格子中存在
两种不同独立的格波。
一种频率高于另一种频率。
将满足0q →时,
0ω→条件的波称为长声学支格波,将满足0q →时,1
22M βω⎛⎫→ ⎪⎝⎭
的波称为长光学支格波,其中12
12M M M M M =+,是两个不同原子的约化质量。
2、长声学支格波:讨论一维简单晶格,认为原子在格点附近做近似简谐振动,在任一时刻,原子的位移具有一定的周期性,即原子的位移构成了波,称为格波。
可解出原子振动圆频率()q ω,当0q →时,0ω→,这种格波称为声学支格波,在0q →的条件下,称为长声学支格波。
3、声子:声子是晶格振动能量的量子,是假想的等效为携带能量为ω ,动量为 q 的粒子,事实上,它并不携带真实的动量。
声子具有等价性,即波矢为q 的声子和波矢为m +q K 的声子是等价的,具有相同的波格的解。
(P80)
4、爱因斯坦模型:爱因斯坦模型将晶体中N 个原子看作3N 个谐振子,假定晶体中所有的原子都是以相同的频率作振动,即认为3N 个谐振子是全同的。
5、德拜模型:德拜模型固体视为中的原子看作在各向同性的介质中的单独的、不相互作用的量子谐振子。
其基本思想是把格波作为弹性波处理,即当做长声学波处理。
故在深低温下,与实验相符。
6、模式数:波矢相同,频率不同,或频率相同,波矢不同的振动属于不同的振动模式。
波格振动模式数等于晶体所有原子的自由度数之和。
7、波矢数与原胞数目的关系:晶格振动的波矢数等于晶体的原胞数。
简答部分:
1、长声学支格波与长光学支格波本质上有什么区别?
答:长光学支格波的特征是每个原胞内的不同原子做相对振动,振动频率较高,它包含了晶格振动频率最高的振动模式,是一种保持质心不变的振动模式。
长声
学支格波的特征是原胞内的相邻原子位移相同(无相对位移),原胞内不同原子以相同振幅和位相做整体运动,振动频率较低,它包含了晶格振动频率最低的振动模式,波速是一常数。
任何晶体都存在声学支格波,但简单晶格(非复式格子)晶体不存在光学支格波。
2、简述爱因斯坦模型和模型的不足之处。
答:爱因斯坦模型将晶体中N 个原子看作3N 个谐振子,假定晶体中所有的原子都是以相同的频率作振动,即认为3N 个谐振子是全同的。
爱因斯坦将所有的波格都视为光学波,没有考虑长声学波在甚低温时对热容的主要贡献,故在甚低温时与实验偏差很大。
3、简述德拜模型,并说明为什么在甚低温时与实验结果相符。
答:德拜模型固体视为中的原子看作在各向同性的介质中的单独的、不相互作用的量子谐振子。
其基本思想是把格波作为弹性波处理,即当做长声学波处理。
在甚低温下,由波格平均热动能公式()e 1B k T E n ωω
ωω==- 可知,光学波(复
式格子中)和高频的声学波对热容的贡献均可忽略,决定晶体热容的主要是长声学波。
对故在甚低温下,德拜模型与实验相符。
强调:一维简单格子的色散关系。
见第三章课后习题12.
第五章
1、布洛赫定理的内容:晶体中电子的波函数是按晶格周期调幅的平面波,即电
子的波函数具有如下形式:()e ()i k k u ψ= k r r r ,()()k k n u u =+r r R ,
其中k 为电子的波矢,n R 是格矢112233=n n n n ++R a a a 。
(P154)
2、近自由电子的近似内容:关于金属中传导电子的运动,把晶体中的电子看成是弱周期场中接近自由电子运动的一种极端情况。
3、布里渊区(重点是第一布里渊区的概念):在倒格空间中以任意一个倒格点为原点,作原点和其他倒格点连线的中垂面(或中垂线),这些中垂面(或中垂线)未成的一系列的区域称为布里渊区。
其中最靠近原点的一组中垂面(或中垂线)所围的闭合区称为第一布里渊区。
4、紧束缚的内容、结论、应用计算:紧束缚模型认为晶体中电子态与组成晶体的原子,在其自由原子态时差别不大,晶体电子的波函数可以用原子轨道的线性
组合表示。
即有:()e n i at S s
n E E C s J α=--∑ 最近邻
k R k 其中n R 表示最近邻格
矢。
应用计算见第五章课后习题4、6 5、电子的平均速度、有效质量、加速度:平均速度为1
()k E ∇ v =k ,平均加
速度为21
[]k k E ∇∇ a =F ,有效质量为22m E
k k αβαβ*=∂∂∂。
6、能带理论分析:晶体中的电子不再束缚于个别原子,而在一个具有晶格周期性的势场中作共有化运动,对应孤立原子中电子的一个能级,在晶体中该类电子的能级形成一个带,称为能带。
晶体中电子的能带在波矢空间内具有反演对称性,且是倒格子的周期函数。
(P154)。