初中数学总复习(填空60题)
初中数学总复习试题及答案

初中总复习考试数学试题及答案一、选择题,每小题4分,共40分1.﹣2的相反数是()A.﹣ B.C.﹣2 D.22.下列计算正确的是()A.a4+a4=2a4B.a2•a3=a6C.(a4)3=a7D.a6÷a2=a33.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.在英文单词“parallcl“(平行)中任意选择一个字母是“a“的概率为()A.B.C.D.5.某个关于x的一元一次不等式组的解集在数轴上表示如图,则该解集是()A.﹣2<x<3 B.﹣2<x≤3 C.﹣2≤x<3 D.﹣2≤x≤36.如图,∠1=65°,CD∥EB,则∠B的度数为()A.65° B.105°C.110°D.115°7.如图,点A(2,t)在第一象限,OA与x轴所夹锐角为α,tanα=2,则t值为()A.4 B.3 C.3 D.18.下列命题为真命题的是()A.若a2=b2,则a=bB.等角的补角相等C.n边形的外角和为(n﹣2)•180°D.若x甲=x乙,S2甲>S2乙,则甲数据更稳定9.甲、乙二人做某种零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,若设乙每小时做x个,则可列方程()A.B.C.D.10.若,则在同一直角坐标系中,直线y=与双曲线y=的交点个数为()A.0 B.1 C.2 D.3二、填空题,每小题3分,共18分11.分解因式:x2﹣6x= .12.2015年我国农村义务教育营养改善计划惠及学生人数达32090000人,将32090000用科学记数法表示为.13.已知一个圆锥的底面半径为2,母线长为5,则这个圆锥的侧面积为(结果保留π).14.如图,将正方形纸片按如图折叠,AM为折痕,点B落在对角线AC上的点E处,则∠CME= .15.如图,Rt△ABC,∠C=90°,BC=3,点O在AB上,OB=2,以OB长为半径的⊙O与AC相切于点D,交BC于点F,OE⊥BC于点E,则弦BF的长为.16.棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,图(1)几何体表面积为6,图(2)几何体表面积为18,则图(3)中所示几何体的表面积为.三、解答题17.计算: +(3﹣π)0﹣2sin60°+(﹣1)2016+||.18.先化简,再求值:﹣,其中x=.19.解方程组:.20.如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.21.某校在“6.26国际禁毒月”前组织七年级全体学生320人进行了一次“毒品预防知识”竞赛,赛后随机抽取了部分学生成绩进行统计,制作如下频数分布表和频数分布直方图,请根据图表提供的信息,解答下列问题少分数段(x表示分数)频数频率50≤x<6060≤x<7070≤x<8048A0.1B0.380≤x<90 10 0.2590≤x<100 6 0.15(1)表中a= ,b ,并补全直方图(2)若用扇形统计图描述此成绩分布情况,则分数段60≤x<70对应扇形的圆心角度数是;(3)请估计该年级分数在80≤x<100的学生有多少人?22.如图所示,在两墙(足够长)夹角为60°,的空地上,某花店老板准备用30m长的篱笆(可弯折)围成一个封闭花园(要求:①该篱笆要全部用尽;②两墙须作为花园的两边使用;③面积计算结果均精确到个位)(1)按上述要求,店里三位员工分别想围成等边三角形、直角三角形、菱形的花园,图(1)表示30m长的篱笆,请你用此篱笆分别在图(2)、图(3)、图(4)上帮助他们画出指定的图形,并在图下方的横线上写出相应的花园面积;(2)按上述要求,店老板决定把花园围成扇形,请计算该扇形面积(不要求画图);并直接写出上述四个图形中面积最大的图形名称.23.某厂家在甲、乙两家商场销售同一商品所获利润分别为y甲,y乙(单位:元),y甲,y乙与销售数量x(单位:件)的函数关系如图所示,请根据图象解决下列问题;(1)分别求出y甲,y乙与x的函数关系式;(2)现厂家分配该商品800件给甲商场,400件给乙商场,当甲、乙商场售完这批商品,厂家可获得总利润是多少元?24.如图(1)矩形ABCD中,AB=2,BC=5,BP=1,∠MPN=90°将∠MPN绕点P从PB处开始按顺时针方向旋转,PM交AB(或AD)于点E,PN交边AD(或CD)于点F,当PN旋转至PC 处时,∠MPN的旋转随即停止(1)特殊情形:如图(2),发现当PM过点A时,PN也恰好过点D,此时,△ABP △PCD (填:“≌”或“~”(2)类比探究:如图(3)在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由;(3)拓展延伸:设AE=t,△EPF面积为S,试确定S关于t的函数关系式;当S=4.2时,求所对应的t的值.25.如图,在直角坐标系中,抛物线y=a(x﹣)2+与⊙M交于A,B,C,D四点,点A,B在x轴上,点C坐标为(0,﹣2).(1)求a值及A,B两点坐标;(2)点P(m,n)是抛物线上的动点,当∠CPD为锐角是,请求出m的取值围;(3)点e是抛物线的顶点,⊙M沿cd所在直线平移,点C,D的对应点分别为点C′,D′,顺次连接A,C′,D′,E四点,四边形AC′D′E(只要考虑凸四边形)的周长是否存在最小值?若存在,请求出此时圆心M′的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题,每小题4分,共40分1.﹣2的相反数是()A.﹣ B.C.﹣2 D.2【考点】相反数.【分析】依据相反数的定义求解即可.【解答】解:﹣2的相反数是2.故选:D.2.下列计算正确的是()A.a4+a4=2a4B.a2•a3=a6C.(a4)3=a7D.a6÷a2=a3【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】A、原式合并同类项得到结果,即可作出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可作出判断;C、原式利用幂的乘方运算法则计算得到结果,即可作出判断;D、原式利用同底数幂的除法法则计算得到结果,即可作出判断.【解答】解:A、原式=2a4,正确;B、原式=a5,错误;C、原式=a12,错误;D、原式=a4,错误,故选A3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】用排除法:既能沿某一条直线对折两部分能够完全重合,又旋转180°后能与自身重合的图形【解答】解:A选项对应的图形只是中心对称图形;B选项对应的图形既不是轴对称图形,也不是中心对称图形;C选项对应的图形只是轴对称图形;D选项对应的图形既是轴对称图形,又是中心对称图形故:选D4.在英文单词“parallcl“(平行)中任意选择一个字母是“a“的概率为()A.B.C.D.【考点】概率公式.【分析】可先找出单词中字母的个数,再找出a的个数,用a的个数除以总个数即可得出本题的答案.【解答】解:单词中共有8个字母,a有两个,所以在英文单词“parallcl“(平行)中任意选择一个字母是“a“的概率==,故选C.5.某个关于x的一元一次不等式组的解集在数轴上表示如图,则该解集是()A.﹣2<x<3 B.﹣2<x≤3 C.﹣2≤x<3 D.﹣2≤x≤3【考点】在数轴上表示不等式的解集.【分析】根据数轴可知解集表示﹣2和3之间(包括3)的点表示的部分,据此即可求解.【解答】解:表示的解集是:﹣2<x≤3.故选B.6.如图,∠1=65°,CD∥EB,则∠B的度数为()A.65° B.105°C.110°D.115°【考点】平行线的性质.【分析】根据对顶角相等求出∠2=65°,然后跟据CD∥EB,判断出∠B=180°﹣65°=115°.【解答】解:如图,∵∠1=65°,∴∠2=65°,∵CD∥EB,∴∠B=180°﹣65°=115°,故选D.7.如图,点A(2,t)在第一象限,OA与x轴所夹锐角为α,tanα=2,则t值为()A.4 B.3 C.3 D.1【考点】点的坐标;解直角三角形.【分析】根据A的坐标,利用锐角三角函数定义求出t的值即可.【解答】解:∵点A(2,t)在第一象限,OA与x轴所夹锐角为α,tanα=2,∴=2,则t=4,故选A8.下列命题为真命题的是()A.若a2=b2,则a=bB.等角的补角相等C.n边形的外角和为(n﹣2)•180°D.若x甲=x乙,S2甲>S2乙,则甲数据更稳定【考点】命题与定理.【分析】根据等式性质、补角、三角形的外角和以及方差的定义即可作出正确的判断.【解答】解:A、a2=b2,则a=±b,此选项错误;B、等角的补角相等,此选项正确;C、n边形的外角和为360°,此选项错误;D、x甲=x乙,S2甲>S2乙,则乙数据更稳定,此选项错误;故选B.9.甲、乙二人做某种零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,若设乙每小时做x个,则可列方程()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】设乙每小时做x个零件,则甲每小时做(x+6)个零件,根据题意可得,甲做90个所用的时间与乙做60个所用的时间相等,据此列方程.【解答】解:设乙每小时做x个零件,则甲每小时做(x+6)个零件,由题意得: =,故选:C.10.若,则在同一直角坐标系中,直线y=与双曲线y=的交点个数为()A.0 B.1 C.2 D.3【考点】反比例函数与一次函数的交点问题.【分析】联立直线和双曲线解析式可得方程组,消去y整理成关于x的一元二次方程,再由不等式组可求得a的取值围,从而可判定一元二次方程根的个数,则可得出直线与双曲线的交点个数.【解答】解:联立直线和双曲线解析式可得,消去y整理可得x2﹣ax﹣(2a+1)=0,该方程判别式为△=(﹣a)2﹣4××[﹣(2a+1)]=a2+2a+1=(a+1)2,解不等式组,可得a<﹣2,∴(a+1)2>0,即△>0,∴方程x2﹣ax﹣(2a+1)=0有两个不相等的实数根,∴直线y=与双曲线y=有两个交点,故选C.二、填空题,每小题3分,共18分11.分解因式:x2﹣6x= x(x﹣6).【考点】因式分解-提公因式法.【分析】首先找出公因式,进而提取公因式得出答案.【解答】解:x2﹣6x=x(x﹣6).故答案为:x(x﹣6).12.2015年我国农村义务教育营养改善计划惠及学生人数达32090000人,将32090000用科学记数法表示为 3.209×107.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将32090000用科学记数法表示为3.209×107.故答案为:3.209×107.13.已知一个圆锥的底面半径为2,母线长为5,则这个圆锥的侧面积为10π(结果保留π).【考点】圆锥的计算.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径为2,则底面周长=4π,圆锥的侧面积=×4π×5=10π.故答案为:10π.14.如图,将正方形纸片按如图折叠,AM为折痕,点B落在对角线AC上的点E处,则∠CME= 45°.【考点】正方形的性质.【分析】由正方形的性质和折叠的性质即可得出结果.【解答】解:∵四边形ABCD是正方形,∴∠B=90°,∠ACB=45°,由折叠的性质得:∠AEM=∠B=90°,∴∠CEM=90°,∴∠CME=90°﹣45°=45°;故答案为:45°.15.如图,Rt△ABC,∠C=90°,BC=3,点O在AB上,OB=2,以OB长为半径的⊙O与AC相切于点D,交BC于点F,OE⊥BC于点E,则弦BF的长为 2 .【考点】切线的性质;勾股定理;垂径定理.【分析】连接OD,首先证明四边形OECD是矩形,从而得到BE的长,然后利用垂径定理求得BF的长即可.【解答】解:连接OD,∵OE⊥BF于点E.∴BE=BF=2,∵AC是圆的切线,∴OD⊥AC,∴∠ODC=∠C=∠OFC=90°,∴四边形ODCF是矩形,∵OD=OB=EC=2,BC=3,∴BE=BC﹣EC=BC﹣OD=3﹣2=1,∴BF=2BE=2,故答案为:2.16.棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,图(1)几何体表面积为6,图(2)几何体表面积为18,则图(3)中所示几何体的表面积为36 .【考点】规律型:图形的变化类.【分析】根据已知图形的面积得出变化规律,进而求出答案.【解答】解:∵第①个几何体的表面积为:6=3×1×(1+1),第②个几何体的表面积为18=3×2×(2+1),第③个几何体的表面积为3×3×(3+1)=36,故答案为:36.三、解答题17.计算: +(3﹣π)0﹣2sin60°+(﹣1)2016+||.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】本题涉及零指数幂、特殊角三角函数值、立方根、绝对值.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣2+1﹣2×+1+﹣1=﹣1.18.先化简,再求值:﹣,其中x=.【考点】分式的化简求值.【分析】先把分子、分母因式分解,再通分,然后把要求的式子进行化简,再代入进行计算即可.【解答】解:﹣=﹣===,把x=代入上式得:原始==+1.19.解方程组:.【考点】解二元一次方程组.【分析】利用加减消元法解二元一次方程组.【解答】解:①×2得:2x+4y=6③,③+②得:5x=10,解得:x=2,把x=2代入①得:2+2y=3,解得:y=,所以方程组的解为:.20.如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.【考点】平行四边形的判定;全等三角形的判定与性质.【分析】(1)选取①②,利用ASA判定△BEO≌△DFO即可;(2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论.【解答】证明:(1)选取①②,∵在△BEO和△DFO中,∴△BEO≌△DFO(ASA);(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.21.某校在“6.26国际禁毒月”前组织七年级全体学生320人进行了一次“毒品预防知识”竞赛,赛后随机抽取了部分学生成绩进行统计,制作如下频数分布表和频数分布直方图,请根据图表提供的信息,解答下列问题少分数段(x表示分数)频数频率50≤x<6060≤x<7070≤x<8048A0.1B0.380≤x<90 10 0.2590≤x<100 6 0.15(1)表中a= 12 ,b =0.2 ,并补全直方图(2)若用扇形统计图描述此成绩分布情况,则分数段60≤x<70对应扇形的圆心角度数是72°;(3)请估计该年级分数在80≤x<100的学生有多少人?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图.【分析】(1)先求出样本总人数,即可得出a,b的值,补全直方图即可.(2)用360°×频率即可;(3)全校总人数乘80分以上的学生频率即可.【解答】解:(1)∵调查的总人数=4÷0.1=40(人)∴a=40×0.3=12,b=8÷40=0.2;故答案为:12,0.2;补全直方图如图所示,(2)360°×0.2=72°;故答案为:72°;320×(0.25+0.15)=128(人);答:估计该年级分数在80≤x<100的学生有128人.22.如图所示,在两墙(足够长)夹角为60°,的空地上,某花店老板准备用30m长的篱笆(可弯折)围成一个封闭花园(要求:①该篱笆要全部用尽;②两墙须作为花园的两边使用;③面积计算结果均精确到个位)(1)按上述要求,店里三位员工分别想围成等边三角形、直角三角形、菱形的花园,图(1)表示30m长的篱笆,请你用此篱笆分别在图(2)、图(3)、图(4)上帮助他们画出指定的图形,并在图下方的横线上写出相应的花园面积;(2)按上述要求,店老板决定把花园围成扇形,请计算该扇形面积(不要求画图);并直接写出上述四个图形中面积最大的图形名称.【考点】作图—应用与设计作图;等边三角形的性质;菱形的性质;扇形面积的计算.【分析】(1)根据题意和基本作图作出图形,根据相应的面积公式计算即可;(2)利用扇形的弧长公式和面积公式计算即可.【解答】解:(1)如图所示:(2)设扇形的半径为R,=30,R=,扇形面积为:×30×≈430m2,上述四个图形中面积最大的图形是扇形.23.某厂家在甲、乙两家商场销售同一商品所获利润分别为y甲,y乙(单位:元),y甲,y乙与销售数量x(单位:件)的函数关系如图所示,请根据图象解决下列问题;(1)分别求出y甲,y乙与x的函数关系式;(2)现厂家分配该商品800件给甲商场,400件给乙商场,当甲、乙商场售完这批商品,厂家可获得总利润是多少元?【考点】一次函数的应用.【分析】(1)设y甲=k1x(k1≠0),把x=600,y甲=480代入即可;当0≤x≤200时,设y乙=k2x (k2≠0),把x=200,y乙=400代入即可;当x>200时,设y乙=k3x+b(k3≠0),把x=200,y =400和x=600,y乙=480代入即可;乙(2)当x=800时求出y甲,当x=400时求出y乙,即可求出答案.【解答】解:(1)设y甲=k1x(k1≠0),由图象可知:当x=600时,y甲=480,代入得:480=600k1,解得:k1=0.8,所以y甲=0.8x;当0≤x≤200时,设y乙=k2x(k2≠0),由图象可知:当x=200时,y乙=400,代入得:400=200k2,解得:k2=2,所以y乙=2x;当x>200时,设y乙=k3x+b(k3≠0),由图象可知:由图象可知:当x=200时,y乙=400,当x=600时,y乙=480,代入得:,解得:k3=0.2,b=360,所以y乙=0.2x+360;即y乙=;(2)∵当x=800时,y甲=0.8×800=640;当x=400时,y乙=0.2×400+360=440,∴640+440=1080,答:厂家可获得总利润是1080元.24.如图(1)矩形ABCD中,AB=2,BC=5,BP=1,∠MPN=90°将∠MPN绕点P从PB处开始按顺时针方向旋转,PM交AB(或AD)于点E,PN交边AD(或CD)于点F,当PN旋转至PC 处时,∠MPN的旋转随即停止(1)特殊情形:如图(2),发现当PM过点A时,PN也恰好过点D,此时,△ABP ∽△PCD(填:“≌”或“~”(2)类比探究:如图(3)在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由;(3)拓展延伸:设AE=t,△EPF面积为S,试确定S关于t的函数关系式;当S=4.2时,求所对应的t的值.【考点】四边形综合题.【分析】(1)根据矩形的性质找出∠B=∠C=90°,再通过角的计算得出∠BAP=∠CPD,由此即可得出△ABP∽△PCD;(2)过点F作FH⊥PC于点H,根据矩形的性质以及角的计算找出∠B=∠FHP=90°、∠BEP=∠HPE,由此即可得出△BEP∽△HPE,根据相似三角形的性质,找出边与边之间的关系即可得出结论;(3)分点E在AB和AD上两种情况考虑,根据相似三角形的性质找出各边的长度,再利用分割图形求面积法找出S与t之间的函数关系式,令S=4.2求出t值,此题得解.【解答】解:(1)∵四边形ABCD为矩形,∴∠B=∠C=90°,∴∠BAP+∠BPA=90°.∵∠MPN=90°,∴∠BPA+∠CPD=90°,∴∠BAP=∠CPD,∴△ABP∽△PCD.故答案为:∽.(2)是定值.如图3,过点F作FH⊥PC于点H,∵矩形ABCD中,AB=2,∴∠B=∠FHP=90°,HF=AB=2,∴∠BPE+∠BEP=90°.∵∠MPN=90°,∴∠BPE+∠HPE=90°,∴∠BEP=∠HPE,∴△BEP∽△HPE,∴,∵BP=1,∴.(3)分两种情况:①如图3,当点E在AB上时,0≤t≤2.∵AE=t,AB=2,∴BE=2﹣t.由(2)可知:△BEP∽△HPE,∴,即,∴HP=4﹣2t.∵AF=BH=PB+BH=5﹣2t,∴S=S矩形ABHF﹣S△AEF﹣S△BEP﹣S△PHF=AB•AF﹣AE•AF﹣BE•PB﹣PH•FH=t2﹣4t+5(0≤t≤2).当S=4.2时,t2﹣4t+5=4.2,解得:t=2±.∵0≤t≤2,∴t=2﹣;②如图4,当点E在AD上时,0≤t≤1,过点E作EK⊥BP于点K,∵AE=t,BP=1,∴PK=1﹣t.同理可证:△PKE∽△FCP,∴,即,∴FC=2﹣2t.∴DF=CD﹣FC=2t,DE=AD﹣AE=5﹣t,∴S=S矩形EKCD﹣S△EKP﹣S△EDF﹣S△PCF=CD•DE﹣EK•KP﹣DE•DF﹣PC•FC=t2﹣2t+5(0≤t≤1).当S=4.2时,t2﹣2t+5=4.2,解得:t=1±.∵0≤t≤1,∴t=1﹣.综上所述:当点E在AB上时,S=t2﹣4t+5(0≤t≤2),当S=4.2时,t=2﹣;当点E 在AD上时,S=t2﹣2t+5(0≤t≤1),当S=4.2时,t=1﹣.25.如图,在直角坐标系中,抛物线y=a(x﹣)2+与⊙M交于A,B,C,D四点,点A,B在x轴上,点C坐标为(0,﹣2).(1)求a值及A,B两点坐标;(2)点P(m,n)是抛物线上的动点,当∠CPD为锐角是,请求出m的取值围;(3)点e是抛物线的顶点,⊙M沿cd所在直线平移,点C,D的对应点分别为点C′,D′,顺次连接A,C′,D′,E四点,四边形AC′D′E(只要考虑凸四边形)的周长是否存在最小值?若存在,请求出此时圆心M′的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把点C坐标代入抛物线解析式即可求出a,令y=0可得抛物线与x轴的交点坐标.(2)根据题意可知,当点P在圆外部的抛物线上运动时,∠CPD为锐角,由此即可解决问题.(3)存在.如图2中,将线段C′A平移至D′F,当点D′与点H重合时,四边形AC′D′E 的周长最小,求出点H坐标即可解决问题.【解答】解:(1)∵抛物线y=a(x﹣)2+经过点C(0,﹣2),∴﹣2=a(0﹣)2+,∴a=﹣,∴y=﹣(x﹣)2+,当y=0时,﹣(x﹣)2+=0,∴x1=4,x2=1,∵A、B在x轴上,∴A(1,0),B(4,0).(2)由(1)可知抛物线解析式为y=﹣(x﹣)2+,∴C、D关于对称轴x=对称,∵C(0,﹣2),∴D(5,﹣2),如图1中,连接AD、AC、CD,则CD=5,∵A(1,0),C(0,﹣2),D(5,﹣2),∴AC=,AD=2,∴AC2+AD2=CD2,∴∠CAD=90°,∴CD为⊙M的直径,∴当点P在圆外部的抛物线上运动时,∠CPD为锐角,∴m<0或1<m<4或m>5.(3)存在.如图2中,将线段C′A平移至D′F,则AF=C′D′=CD=5,∵A(1,0),∴F(6,0),作点E关于直线CD的对称点E′,连接EE′正好经过点M,交x轴于点N,∵抛物线顶点(,),直线CD为y=﹣2,∴E′(,﹣),连接E′F交直线CD于H,则当点D′与点H重合时,四边形AC′D′E的周长最小,设直线E′F的解析式为y=kx+b,∵E′(,﹣),F(6,0),∴可得y=x﹣,当y=﹣2时,x=,∴H(,﹣2),∵M(,﹣2),∴DD′=5﹣=,∵﹣=,∴M′(,﹣2)。
初中数学中考总复习:一元二次方程、分式方程的解法及应用--巩固练习题及答案(基础)

中考总复习:一元二次方程、分式方程的解法及应用—巩固练习(基础)【巩固练习】 一、选择题1. 用配方法解方程2250x x --=时,原方程应变形为( )A .()216x +=B .()216x -= C .()229x += D .()229x -=2.关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( ) A .1 B .12C .13D .253.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B . 1k >-且0k ≠C .1k <D . 1k <且0k ≠4.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于( )A .1B .2C .1或2D .05.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( ).A .213014000x x +-= B .2653500x x +-= C .213014000x x --= D .2653500x x --=6.甲、乙两地相距S 千米,某人从甲地出发,以v 千米/小时的速度步行,走了a 小时后改乘汽车,又过b 小时到达乙地,则汽车的速度( ) A.B.C.D.二、填空题7.若ax 2+bx+c=0是关于x 的一元二次方程,则不等式3a+6>0的解集是____ ____. 8.如果方程ax 2+2x +1=0有两个不等实根,则实数a 的取值范围是___ ___.9.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为 __ .10.当m 为 时,关于x 的一元二次方程02142=-+-m x x 有两个相等的实数根;此时这两个实数根是 .11.如果分式方程1+x x =1+x m 无解, 则 m = . 12.已知关于x 的方程 x 1 - 1-x m= m 有实数根,则 m 的取值范围是 .三、解答题 13. (1)解方程:x x x x 4143412+-=---; (2)解方程:x x x x 221103+++=.14.一列火车从车站开出,预计行程450千米,当它开出3小时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地,求这列火车的速度.15.关于x 的一元二次方程1201x p x x 有两实数根=-+-、.2x (1)求p 的取值范围;(2)若p x x x x 求,9)]1(2)][1(2[2211=-+-+的值.16.如图,利用一面墙,用80米长的篱笆围成一个矩形场地(1)怎样围才能使矩形场地的面积为750平方米? (2)能否使所围的矩形场地面积为810平方米,为什么?【答案与解析】 一、选择题 1.【答案】B ;【解析】根据配方法的步骤可知在方程两边同时加上一次项系数一半的平方,整理即可得到B 项是正确的.2.【答案】C ;【解析】∵22127x x += ∴221212)22(21)7x x x x m m +-=--=(, 解得m=5(此时不满足根的判别式舍去)或m=-1.原方程化为230x x +-=,212()x x -=21212()411213.x x x x +-=+=3.【答案】B ;【解析】由题意得方程有两个不相等的实数根,则△=b 2-4ac>0,即4+4k>0.解得1k >-且0k ≠. 4.【答案】B ;【解析】有题意2320,10m m m -+=-且≠,解得2m =.5.【答案】B ;【解析】(80+2x )(50+2x )=5400,化简得2653500+-=x x . 6.【答案】B ;【解析】由已知,此人步行的路程为av 千米,所以乘车的路程为千米。
初中数学中考总复习试卷

一、选择题(每题3分,共30分)1. 下列选项中,绝对值最小的是()A. -2B. -1C. 0D. 12. 下列选项中,最简分数是()A. $\frac{2}{4}$B. $\frac{3}{5}$C. $\frac{4}{6}$D. $\frac{5}{7}$3. 已知一个等腰三角形的底边长为4cm,腰长为6cm,则该三角形的周长是()A. 14cmB. 16cmC. 18cmD. 20cm4. 下列方程中,解为x=2的是()A. 2x - 1 = 3B. 3x + 2 = 8C. 4x - 3 = 7D. 5x + 4 = 95. 下列选项中,关于一次函数y=kx+b(k≠0)的图象,当k>0,b>0时,正确的说法是()A. 图象过一、二、三象限B. 图象过一、二、四象限C. 图象过一、三、四象限D. 图象过一、二、三、四象限6. 下列选项中,关于反比例函数y=k/x(k≠0)的图象,正确的说法是()A. 图象过一、二、三象限B. 图象过一、二、四象限C. 图象过一、三、四象限D. 图象过一、二、三、四象限7. 下列选项中,关于二次函数y=ax^2+bx+c(a≠0)的图象,当a>0时,正确的说法是()A. 图象开口向上,对称轴为x=-b/2aB. 图象开口向下,对称轴为x=-b/2aC. 图象开口向上,对称轴为x=b/2aD. 图象开口向下,对称轴为x=b/2a8. 下列选项中,关于平行四边形的性质,正确的是()A. 对角线互相平分B. 对边互相平行C. 对角线互相垂直D. 对边互相垂直9. 下列选项中,关于相似三角形的性质,正确的是()A. 对应边成比例B. 对应角相等C. 对应边相等D. 对应角互补10. 下列选项中,关于圆的性质,正确的是()A. 圆的直径是圆的最长弦B. 圆的半径是圆的最短弦C. 圆的直径是圆的对称轴D. 圆的半径是圆的对称轴二、填空题(每题3分,共30分)11. $\sqrt{16}$的值是______。
初中数学书课本复习题答案

初中数学书课本复习题答案亲爱的同学们,以下是针对初中数学课本的复习题答案,希望可以帮助你们更好地复习和巩固知识点。
一、选择题1. 已知一个数的平方是25,这个数是()A. 5B. -5C. ±5D. 25答案:C2. 下列哪个选项不是同类项?()A. 3x^2B. -2x^2C. 5x^3D. 4x^2答案:C3. 如果一个三角形的内角和为180°,那么下列哪个选项是错误的?()A. 三角形内角和定理B. 任何三角形的内角和都是180°C. 直角三角形有一个90°的角D. 等腰三角形的底角相等答案:B(因为三角形内角和定理适用于所有三角形)二、填空题1. 一个数的立方根是3,那么这个数是 _ 。
答案:272. 一个正数的平方根有两个值,它们互为相反数,如果这个正数是16,那么这两个值分别是 _ 和 _ 。
答案:4,-43. 已知一个直角三角形的两条直角边分别为3和4,那么斜边的长度是 _ 。
答案:5(根据勾股定理)三、计算题1. 计算下列表达式的值:(1) (-2)^3(2) √64答案:(1) -8(2) 82. 解下列方程:(1) 2x + 5 = 11(2) 3x - 4 = 14答案:(1) x = 3(2) x = 6四、解答题1. 一个长方体的长、宽、高分别是8厘米、6厘米和5厘米,求这个长方体的体积。
答案:体积 = 长× 宽× 高= 8 × 6 × 5 = 240立方厘米2. 一个圆的直径是14厘米,求这个圆的面积。
答案:首先求半径,半径 = 直径 / 2 = 14 / 2 = 7厘米。
然后使用圆的面积公式A = πr^2,得到面积A = π × 7^2 ≈ 153.94平方厘米。
五、应用题1. 一个班级有40名学生,其中女生占全班人数的60%,求这个班级有多少名女生。
答案:女生人数= 40 × 60% = 24名2. 某工厂生产一批零件,合格品有150件,不合格品有50件。
中考数学总复习训练 多边形与平面镶嵌(含解析)-人教版初中九年级全册数学试题

多边形与平面镶嵌一、选择题1.一个多边形的内角和是900°,则这个多边形的边数是()A.6 B.7 C.8 D.92.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.93.正十边形的每个外角等于()A.18° B.36° C.45° D.60°4.正六边形的每个内角都是()A.60° B.80° C.100°D.120°5.一个多边形的内角和与外角和相等,则这个多边形是()A.四边形B.五边形C.六边形D.八边形6.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形7.一个正多边形的每个外角都等于36°,那么它是()A.正六边形 B.正八边形 C.正十边形 D.正十二边形8.只用下列图形中的一种,能够进行平面镶嵌的是()A.正十边形 B.正八边形 C.正六边形 D.正五边形9.下列图形中,单独选用一种图形不能进行平面镶嵌的是()A.正三角形 B.正六边形 C.正方形D.正五边形10.一个多边形截取一个角后,形成另一个多边形的内角和是1620°,则原来多边形的边数是()A.10 B.11 C.12 D.以上都有可能11.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()A.30° B.36° C.38° D.45°12.如图,甲、乙两人想在正五边形ABCDE内部找一点P,使得四边形ABPE为平行四边形,其作法如下:(甲)连接BD、CE,两线段相交于P点,则P即为所求(乙)先取CD的中点M,再以A为圆心,AB长为半径画弧,交AM于P点,则P即为所求.对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确13.如图,小红做了一个实验,将正六边形ABCDEF绕点F顺时针旋转后到达A′B′C′D′E′F′的位置,所转过的度数是()A.60° B.72° C.108°D.120°二、填空题14.正n边形的一个外角的度数为60°,则n的值为.15.如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4=.16.△OAB是以正多边形相邻的两个顶点A,B与它的中心O为顶点的三角形,若△OAB的一个内角为70°,则该正多边形的边数为.17.一幅图案在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是.18.用4个全等的正八边形进行拼接,使相等的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1,用n个全等的正六边形按这种方式进行拼接,如图2,若围成一圈后中间形成一个正多边形,则n的值为.19.如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2=度.20.如图,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于.21.如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20cm2,则正八边形的面积为cm2.22.如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是.23.如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置.若正六边形的边长为2cm,则正六边形的中心O运动的路程为cm.24.如图,将正六边形绕其对称中心O旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是度.多边形与平面镶嵌参考答案与试题解析一、选择题1.一个多边形的内角和是900°,则这个多边形的边数是()A.6 B.7 C.8 D.9【考点】多边形内角与外角.【专题】计算题.【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【解答】解:设这个多边形的边数为n,则有(n﹣2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选:B.【点评】本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.2.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.9【考点】多边形内角与外角.【分析】首先设这个多边形的边数为n,由n边形的内角和等于180°(n﹣2),即可得方程180(n ﹣2)=1080,解此方程即可求得答案.【解答】解:设这个多边形的边数为n,根据题意得:180(n﹣2)=1080,解得:n=8.故选C.【点评】此题考查了多边形的内角和公式.此题比较简单,注意熟记公式是准确求解此题的关键,注意方程思想的应用.3.正十边形的每个外角等于()A.18° B.36° C.45° D.60°【考点】多边形内角与外角.【专题】常规题型.【分析】根据正多边形的每一个外角等于多边形的外角和除以边数,计算即可得解.【解答】解:360°÷10=36°,所以,正十边形的每个外角等于36°.故选:B.【点评】本题考查了正多边形的外角和、边数、外角度数之间的关系,熟记正多边形三者之间的关系是解题的关键.4.正六边形的每个内角都是()A.60° B.80° C.100°D.120°【考点】多边形内角与外角.【专题】常规题型.【分析】先利用多边形的内角和公式(n﹣2)•180°求出正六边形的内角和,然后除以6即可;或:先利用多边形的外角和除以正多边形的边数,求出每一个外角的度数,再根据相邻的内角与外角是邻补角列式计算.【解答】解:(6﹣2)•180°=720°,所以,正六边形的每个内角都是720°÷6=120°,或:360°÷6=60°,180°﹣60°=120°.故选D.【点评】本题考查了多边形的内角与外角,利用正多边形的外角度数、边数、外角和三者之间的关系求解是此类题目常用的方法,而且求解比较简便.5.一个多边形的内角和与外角和相等,则这个多边形是()A.四边形B.五边形C.六边形D.八边形【考点】多边形内角与外角.【分析】首先设此多边形是n边形,由多边形的外角和为360°,即可得方程180(n﹣2)=360,解此方程即可求得答案.【解答】解:设此多边形是n边形,∵多边形的外角和为360°,∴180(n﹣2)=360,解得:n=4.∴这个多边形是四边形.故选A.【点评】此题考查了多边形的内角和与外角和的知识.此题难度不大,注意多边形的外角和为360°,n边形的内角和等于180°(n﹣2).6.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形【考点】多边形内角与外角.【专题】应用题.【分析】任何多边形的外角和是360度,内角和等于外角和的一半则内角和是180度,可知此多边形为三角形.【解答】解:根据题意,得(n﹣2)•180°=180°,解得:n=3.故选D.【点评】本题主要考查了已知多边形的内角和求边数,可以转化为方程的问题来解决,难度适中.7.一个正多边形的每个外角都等于36°,那么它是()A.正六边形 B.正八边形 C.正十边形 D.正十二边形【考点】多边形内角与外角.【分析】利用多边形的外角和360°,除以外角的度数,即可求得边数.【解答】解:360÷36=10.故选C.【点评】本题考查了多边形的外角和定理,理解任何多边形的外角和都是360度是关键.8.只用下列图形中的一种,能够进行平面镶嵌的是()A.正十边形 B.正八边形 C.正六边形 D.正五边形【考点】平面镶嵌(密铺).【分析】根据密铺的知识,找到一个内角能整除周角360°的正多边形即可.【解答】解:A、正十边形每个内角是180°﹣360°÷10=144°,不能整除360°,不能单独进行镶嵌,不符合题意;B、正八边形每个内角是180°﹣360°÷8=135°,不能整除360°,不能单独进行镶嵌,不符合题意;C、正六边形的每个内角是120°,能整除360°,能整除360°,可以单独进行镶嵌,符合题意;D、正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能单独进行镶嵌,不符合题意;故选:C.【点评】本题考查了平面密铺的知识,注意几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.9.下列图形中,单独选用一种图形不能进行平面镶嵌的是()A.正三角形 B.正六边形 C.正方形D.正五边形【考点】平面镶嵌(密铺).【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.360°为正多边形一个内角的整数倍才能单独镶嵌.【解答】解:A、正三角形的一个内角度数为180﹣360÷3=60°,是360°的约数,能镶嵌平面,不符合题意;B、正六边形的一个内角度数为180﹣360÷6=120°,是360°的约数,能镶嵌平面,不符合题意;C、正方形的一个内角度数为180﹣360÷4=90°,是360°的约数,能镶嵌平面,不符合题意;D、正五边形的一个内角度数为180﹣360÷5=108°,不是360°的约数,不能镶嵌平面,符合题意.故选:D.【点评】本题考查了平面密铺的知识,注意掌握只用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.10.一个多边形截取一个角后,形成另一个多边形的内角和是1620°,则原来多边形的边数是()A.10 B.11 C.12 D.以上都有可能【考点】多边形内角与外角.【专题】压轴题.【分析】首先计算截取一个角后多边形的边数,然后分三种情况讨论.因为截取一个角可能会多出一个角,也可能角的个数不变,也可能少一个角,从而得出结果.【解答】解:∵内角和是1620°的多边形是边形,又∵多边形截去一个角有三种情况.一种是从两个角的顶点截取,这样就少了一条边,即原多边形为12边形;另一种是从两个边的任意位置截,那样就多了一条边,即原多边形为10边形;还有一种就是从一个边的任意位置和一个角顶点截,那样原多边形边数不变,还是11边形.综上原来多边形的边数可能为10、11、12边形,故选D.【点评】本题主要考查了多边形的内角和定理及多边形截去一个角有三种情况.11.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()A.30° B.36° C.38° D.45°【考点】平行线的性质;等腰三角形的性质;多边形内角与外角.【分析】首先根据多边形内角和计算公式计算出每一个内角的度数,再根据等腰三角形的性质计算出∠AEB,然后根据平行线的性质可得答案.【解答】解:∵ABCDE是正五边形,∴∠BAE=(5﹣2)×180°÷5=108°,∴∠AEB=(180°﹣108°)÷2=36°,∵l∥BE,∴∠1=36°,故选:B.【点评】此题主要考查了正多边形的内角和定理,以及三角形内角和定理,平行线的性质,关键是掌握多边形内角和定理:(n﹣2).180° (n≥3)且n为整数.12.如图,甲、乙两人想在正五边形ABCDE内部找一点P,使得四边形ABPE为平行四边形,其作法如下:(甲)连接BD、CE,两线段相交于P点,则P即为所求(乙)先取CD的中点M,再以A为圆心,AB长为半径画弧,交AM于P点,则P即为所求.对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【考点】平行四边形的判定.【分析】求出五边形的每个角的度数,求出∠ABP、∠AEP、∠BPE的度数,根据平行四边形的判定判断即可.【解答】解:甲正确,乙错误,理由是:如图,∵正五边形的每个内角的度数是=108°,AB=BC=CD=DE=AE,∴∠DEC=∠DCE=×(180°﹣108°)=36°,同理∠CBD=∠CDB=36°,∴∠ABP=∠AEP=108°﹣36°=72°,∴∠BPE=360°﹣108°﹣72°﹣72°=108°=∠A,∴四边形ABPE是平行四边形,即甲正确;∵∠BAE=108°,∴∠BAM=∠EAM=54°,∵AB=AE=AP,∴∠ABP=∠APB=×(180°﹣54°)=63°,∠AEP=∠APE=63°,∴∠BPE=360°﹣108°﹣63°﹣63°≠108°,即∠ABP=∠AEP,∠BAE≠∠BPE,∴四边形ABPE不是平行四边形,即乙错误;故选C.【点评】本题考查了正五边形的内角和定理,等腰三角形的性质,三角形的内角和定理,平行四边形的判定的应用,注意:有两组对角分别相等的四边形是平行四边形.13.如图,小红做了一个实验,将正六边形ABCDEF绕点F顺时针旋转后到达A′B′C′D′E′F′的位置,所转过的度数是()A.60° B.72° C.108°D.120°【考点】旋转的性质;正多边形和圆.【分析】由六边形ABCDEF是正六边形,即可求得∠AFE的度数,又由邻补角的定义,求得∠E′FE 的度数,由将正六边形ABCDEF绕点F顺时针旋转后到达A′B′C′D′E′F′的位置,可得∠EFE′是旋转角,继而求得答案.【解答】解:∵六边形ABCDEF是正六边形,∴∠AFE==120°,∴∠EFE′=180°﹣∠AFE=180°﹣120°=60°,∵将正六边形ABCDEF绕点F顺时针旋转后到达A′B′C′D′E′F′的位置,∴∠EFE′是旋转角,∴所转过的度数是60°.故选A.【点评】此题考查了正六边形的性质、旋转的性质以及旋转角的定义.此题难度不大,注意找到旋转角是解此题的关键.二、填空题14.正n边形的一个外角的度数为60°,则n的值为 6 .【考点】多边形内角与外角.【专题】探究型.【分析】先根据正n边形的一个外角的度数为60°求出其内角的度数,再根据多边形的内角和公式解答即可.【解答】解:∵正n边形的一个外角的度数为60°,∴其内角的度数为:180°﹣60°=120°,∴=120°,解得n=6.故答案为:6.【点评】本题考查的是多边形的内角与外角,熟知多边形的内角和公式是解答此题的关键.15.如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4= 300°.【考点】多边形内角与外角.【专题】数形结合.【分析】根据题意先求出∠5的度数,然后根据多边形的外角和为360°即可求出∠1+∠2+∠3+∠4的值.【解答】解:由题意得,∠5=180°﹣∠EAB=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°﹣∠5=300°.故答案为:300°.【点评】本题考查了多边形的外角和等于360°的性质以及邻补角的和等于180°的性质,是基础题,比较简单.16.△OAB是以正多边形相邻的两个顶点A,B与它的中心O为顶点的三角形,若△OAB的一个内角为70°,则该正多边形的边数为9 .【考点】正多边形和圆.【分析】分∠OAB=70°和∠AOB=70°两种情况进行讨论即可求解.【解答】解:当∠OAB=70°时,∠AOB=40°,则多边形的边数是:360÷40=9;当∠AOB=70°时,360÷70结果不是整数,故不符合条件.故答案是:9.【点评】此题主要考查正多边形的计算问题,属于常规题.17.一幅图案在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是12 .【考点】平面镶嵌(密铺).【分析】正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明可以进行平面镶嵌;反之,则说明不能进行平面镶嵌.【解答】解:∵正方形的一个内角度数为180°﹣360°÷4=90°,正六边形的一个内角度数为180°﹣360°÷6=120°,∴需要的多边形的一个内角度数为360°﹣90°﹣120°=150°,∴需要的多边形的一个外角度数为180°﹣150°=30°,∴第三个正多边形的边数为360÷30=12.故答案为:12.【点评】此题主要考查了平面镶嵌,关键是掌握多边形镶嵌成平面图形的条件:同一顶点处的几个内角之和为360°;正多边形的边数为360÷一个外角的度数.18.用4个全等的正八边形进行拼接,使相等的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1,用n个全等的正六边形按这种方式进行拼接,如图2,若围成一圈后中间形成一个正多边形,则n的值为 6 .【考点】平面镶嵌(密铺).【专题】应用题;压轴题.【分析】根据正六边形的一个内角为120°,可求出正六边形密铺时需要的正多边形的内角,继而可求出这个正多边形的边数.【解答】解:两个正六边形结合,一个公共点处组成的角度为240°,故如果要密铺,则需要一个内角为120°的正多边形,而正六边形的内角为120°,故答案为:6.【点评】此题考查了平面密铺的知识,解答本题关键是求出在密铺条件下需要的正多边形的一个内角的度数,有一定难度.19.如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2= 240 度.【考点】多边形内角与外角.【专题】压轴题;数形结合.【分析】利用四边形的内角和得到∠B+∠C+∠D的度数,进而让五边形的内角和减去∠B+∠C+∠D的度数即为所求的度数.【解答】解:∵四边形的内角和为(4﹣2)×180°=360°,∴∠B+∠C+∠D=360°﹣60°=300°,∵五边形的内角和为(5﹣2)×180°=540°,∴∠1+∠2=540°﹣300°=240°,故答案为:240.【点评】考查多边形的内角和知识;求得∠B+∠C+∠D的度数是解决本题的突破点.20.如图,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于15 .【考点】等腰梯形的性质;多边形内角与外角;平行四边形的性质.【专题】计算题.【分析】凸六边形ABCDEF,并不是一规则的六边形,但六个角都是120°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.【解答】解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△AHF、△BGC、△DPE、△GHP都是等边三角形.∴GC=BC=3,DP=DE=2.∴GH=GP=GC+CD+DP=3+3+2=8,FA=HA=GH﹣AB﹣BG=8﹣1﹣3=4,EF=PH﹣HF﹣EP=8﹣4﹣2=2.∴六边形的周长为1+3+3+2+4+2=15.故答案为:15.【点评】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.21.如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20cm2,则正八边形的面积为40 cm2.【考点】正多边形和圆.【专题】压轴题.【分析】根据正八边形的性质得出正八边形每个内角以及表示出四边形ABGH面积进而求出答案即可.【解答】解:连接HE,AD,在正八边形ABCDEFGH中,可得:HE⊥BG于点M,AD⊥BG于点N,∵正八边形每个内角为:=135°,∴∠HGM=45°,∴MH=MG,设MH=MG=x,则HG=AH=AB=GF=x,∴BG×GF=2(+1)x2=20,四边形ABGH面积=(AH+BG)×HM=(+1)x2=10,∴正八边形的面积为:10×2+20=40(cm2).故答案为:40.【点评】此题主要考查了正八边形的性质以及勾股定理等知识,根据已知得出四边形ABGH面积是解题关键.22.如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是2.【考点】正多边形和圆.【专题】压轴题.【分析】延长AB,然后作出过点C与格点所在的直线,一定交于格点E,根据S△ABC=S△AEC﹣S△BEC即可求解.【解答】解:延长AB,然后作出过点C与格点所在的直线,一定交于格点E.正六边形的边长为1,则半径是1,则CE=4,中间间隔一个顶点的两个顶点之间的距离是:,则△BCE的边EC上的高是:,△ACE边EC上的高是:,则S△ABC=S△AEC﹣S△BEC=×4×(﹣)=2.故答案是:2.【点评】本题考查了正多边形的计算,正确理解S△ABC=S△AEC﹣S△BEC是关键.23.如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置.若正六边形的边长为2cm,则正六边形的中心O运动的路程为4πcm.【考点】正多边形和圆;弧长的计算;旋转的性质.【分析】每次滚动正六边形的中心就以正六边形的半径为半径旋转60°,然后计算出弧长,最后乘以六即可得到答案.【解答】解:根据题意得:每次滚动正六边形的中心就以正六边形的半径为半径旋转60°,正六边形的中心O运动的路程∵正六边形的边长为2cm,∴运动的路径为:=;∵从图1运动到图2共重复进行了六次上述的移动,∴正六边形的中心O运动的路程6×=4πcm故答案为:4π.【点评】本题考查了正多边形和圆的、弧长的计算及旋转的性质,解题的关键是弄清正六边形的中心运动的路径.24.如图,将正六边形绕其对称中心O旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是60 度.【考点】旋转对称图形.【分析】本题考查旋转对称图形的概念,旋转的最小度数是解决本题的关键.【解答】解:将正六边形绕其对称中心O旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是=60度.【点评】根据旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.。
初中数学总复习题及答案

初中数学总复习题及答案一、选择题(每题2分,共10分)1. 下列哪个数是无理数?A. 3.14159B. √2C. 0.33333...(无限循环)D. 52. 如果一个角的补角是它的2倍,那么这个角的度数是多少?A. 30°B. 45°C. 60°D. 90°3. 一个数的平方根是它本身,这个数可能是:A. 0B. 1C. -1D. 24. 一个正数的倒数是:A. 它的一半B. 它的负数C. 1除以这个数D. 这个数的平方5. 下列哪个是二次方程?A. x + 3 = 0B. x^2 + 3x + 2 = 0C. x^3 - 5x^2 + 6x - 8 = 0D. 2x - 5 = 0答案:1. B 2. A 3. A 4. C 5. B二、填空题(每题2分,共10分)6. 一个直角三角形的两个直角边分别为3和4,那么斜边的长度是______。
7. 一个数的立方根是2,那么这个数是______。
8. 如果一个数的绝对值是5,那么这个数可能是______或______。
9. 一个多项式的次数是3,那么它至少包含______个单项式。
10. 一个圆的半径是5,那么它的面积是______。
答案:6. 5 7. 8 8. 5, -5 9. 3 10. 78.5三、计算题(每题5分,共15分)11. 计算下列表达式的值:(3x^2 - 2x + 1) - (2x^2 + 3x - 4)12. 解一元二次方程:x^2 - 5x + 6 = 013. 证明:如果一个三角形的两边长分别为a和b,且a + b > c,那么这个三角形是存在的。
答案:11. x^2 - 5x + 512. x = 2 或 x = 313. 根据三角形的三边关系定理,如果任意两边之和大于第三边,则可以构成三角形。
四、解答题(每题15分,共30分)14. 一个长方体的长、宽、高分别为a、b、c,求长方体的体积。
初中数学基础知识测试题(含答案)

初中数学基础知识测试题学校 姓名 得分一、填空题(本题共30小题,每小题2分,满分60分)1、 和 统称为实数.2、方程623y --853y -=1的解为 . 3、不等式组⎩⎨⎧+-x x 5743 的解集是 . 4、伍分和贰分的硬币共100枚,值3元2角.若设伍分硬币有x 枚,贰分硬币有y 枚,则可得方程组 .5、计算:28x 6y 2÷7x 3y 2= .6、因式分解:x 3+x 2-y 3-y 2= .7、当x 时,分式231+-x x 有意义;又当x 时,其值为零. 8、计算:b a a -+22b ab b -= ;(x 2-y 2)÷y x y x +-= .9、用科学记数法表示:—0.00002008= ;121900000= .10、81的平方根为 ;-12564的立方根为 . 11、计算:18-21= ;(3+25)2= . 12、分母有理化:51= ;y x yx +-= .13、一块长8cm ,宽6cm 的长方形铁片,在四个角各剪去一个边长相等的小正方形,做成一个长方体无盖的盒子,>0, ≤0使它的底面积为24 cm 2 .若设小正方形边长为x cm ,则可得方程为 .14、如果关于x 方程2x 2-4x +k =0有两个不相等的实数根,那么k 的取值范围是 .15、若x 1、x 2是方程2x 2+6x —1=0的两个根,则11x +21x = . 16、以2+1和2—1为根的一元二次方程是 .17、在实数范围内因式分解:3x 2-4x -1= .18、方程x +52 x =5的解是 .19、已知正比例函数y =kx ,且当x =5时,y =7,那么当x =10时,y = .20、当k 时,如果反比例函数y =xk 在它的图象所在的象限内,函数值随x 的减小而增大. 21、在直角坐标系中,经过点(-2,1)和(1,-5)的直线的解析式是 .22、如果k <0,b >0,那么一次函数y =kx +b 的图象经过第 象限.23、如果一个等腰三角形的周长为24cm ,那么腰长y (cm )与底长x (cm )之间的函数关系式是 .24、二次函数y =-2x 2+4 x -3的图象的开口向 ;顶点是 .25、经过点(1,3)、(-1,-7)、(-2,-6)的抛物线的解析式是 .26、把抛物线y =-3(x -1)2+7向右平移3个单位,向下平移4个单位后,所得到的抛物线的解析式是 .27、柳营中学某班学生中,有18人14岁,16人15岁,6人16岁,这个班级学生的平均年龄是 岁.28、当一组数据有8个数从小到大排列时,这组数据的中位数是 .29、一组数据共有80个数,其中最大的数为168,最小的数为122 .如果在频数分布直方图中的组距为5,则可把这组数据分成 组.30、样本29、23、30、27、31的标准差是 .二、填空题(本题共30小题,每小题2分,满分60分)31、如果两条平行线被第三条直线所截,那么 相等, 互补.32、命题“两直线平行,同旁内角互补”的题设是 ,结论是 .33、若三角形三边长分别是6、11、m ,则m 的取值范围是 .34、如果一个多边形的内角和为2520°,那么这个多边形是 边形.35、等腰三角形的 、 、 互相重合.36、在△ABC 中,若∠A =80°,∠B =50°,则△ABC 是 三角形.37、在Rt △ABC 中,∠C =90°,∠A =60°.若AC =5cm ,则AB = cm .38、在Rt △ABC 中,∠C =90°, 如果AC =3cm ,BC =4cm ,那么AB 边上的高CD = cm .39、如果一个平行四边形的两个邻角的差为30°,那么这个平行四边形的较大的一个内角为 (度).40、两组对边分别 的四边形是平行四边形.41、在菱形ABCD 中,若有一个内角为120°,且较短的一条对角线长12cm ,则这菱形的周长为 cm .42、两条对角线 的平行四边形是正方形.43、在梯形ABCD 中,AD ∥BC ,若AB =DC ,则相等的底角是 .44、顺次连结菱形的四边的中点所得到的图形是 形.45、在△ABC 中,点D 、E 分别在AB 、AC 边上,若DE ∥BC ,AD =5,AB =9,EC =3,则AC = .46、在△ABC 中,点D 、E 分别在AB 、AC 边上,AD =2 cm ,DB =4cm ,AE =3cm , EC =1 cm ,因为 且 ,所以△ABC ∽△ADE .47、△ABC 的三条中线AD 、BE 、CF 交于点G .如果△AEG 的面积为12平方厘米,那么△ABC 的面积为 平方厘米.48、把一个三角形改成和它相似的三角形,如果边长扩大为原来的10倍,那么面积扩大为原来的 倍.49、如果∠A 为锐角,tgA =54,那么ctgA = . 50、计算:sin30°= ;tg60°= . 51、在Rt △ABC 中,∠C =90°.如果sinA =23,那么∠B = (度). 52、如果飞机在离地面5000米的高空俯视地面上一个目标时,俯角为30°,那么飞机离目标的距离为 米.53、斜坡的坡度为1︰4,斜坡的水平宽度为20m ,则斜坡的垂直高度为 m .54、在半径为10cm 的圆中,20°的圆心角所对的弧长为 cm .55、若两圆半径分别为9cm 和4cm ,圆心距为5cm ,则两圆位置关系为 .56、若直线AB 经过⊙O 上一点C ,且OC ⊥AB ,则直线AB 是⊙O 的 .57、在△ABC 中,如果AB =9cm ,BC =4cm ,CA =7cm ,它的内切圆切AB 于点D ,那么AD = cm .58、在Rt △ABC 中,∠C =90°.如果AC =5cm ,BC =12cm ,那么△ABC 内切圆的半径为 cm .59、半径分别为5cm 和15cm 的两圆相外切,其外公切线的长为 cm ,连心线与外公切线所夹的锐角为 (度).60、任何正多边形都是 对称图形,边数是偶数的正多边形又是 对称图形.答案一、1、有理数;无理数.2、y =3 .3、x ≤-57.4、⎩⎨⎧=+=+32025100y x y x .5、4x 3 .6、(x -y )(x 2+xy +y 2+x +y ).7、≠-32;=1 .8、b a b a -+;(x +y )2 .9、-2.008×10-5;1.219×108 .10、±3;-54.11、225;29+125.12、551;.yx xy y x --+2.13、(8-2x )(6-2x )=24(或x 2-7x +6=0).14、k <2 .15、6 .16、x 2-22x +1=0 .17、(x -372+)(x -372-).18、x =3 .19、14 .20、>0 .21、y =-2x -3 .22、一、二、四 .23、y =-21x +12,0<x <12 .24、下;(1,-1).25、y =2x 2+5x -4 .26、y =-3(x -4)2+3 .27、14.7 .28、第4和第5个数的平均数.29、10 .30、22.二、31、同位角或内错角;同旁内角.32、两直线平行;同旁内角互补.33、5<m <17 .34、16 . 35、顶角的平分线;底边上的中线;底边上的高.36、等腰.37、10 .38、2.4 .39、105°.40、平行(或相等).41、48 .42、垂直且相等.43、∠A =∠D ,∠B =∠C .44、矩.45、436.46、∠DAE =∠CAB ,AB AD =ACAE .47、72 .48、100 .49、45.50、21;3.51、30°.52、10000 .53、5 .54、910π.55、内切.56、切线.57、6 .58、2 .59、103;30°.60、轴;中心.。
初中数学总复习试卷及答案

一、选择题(每题3分,共30分)1. 若a > b,那么下列不等式中一定成立的是:A. a + 1 > b + 1B. a - 1 > b - 1C. a + 2 > b + 3D. a - 2 > b - 12. 下列各组数中,能构成等腰三角形的三边长是:A. 3, 4, 5B. 5, 5, 12C. 6, 8, 10D. 7, 7, 83. 在直角坐标系中,点P的坐标为(2,-3),点Q的坐标为(-1,4),则线段PQ的中点坐标是:A. (1,1)B. (1,-2)C. (0,1)D. (0,-2)4. 下列函数中,是反比例函数的是:A. y = 2x + 3B. y = 3/xC. y = x^2 + 1D. y = x^35. 若一个长方体的长、宽、高分别为a、b、c,且a > b > c,则该长方体的体积V最大时,a、b、c的取值关系是:A. a = b = cB. a > b = cC. a > b > cD. a > c > b6. 在等腰三角形ABC中,AB = AC,∠BAC = 40°,则∠B的度数是:A. 40°B. 50°C. 60°D. 70°7. 下列图形中,不是轴对称图形的是:A. 正方形B. 等边三角形C. 等腰梯形D. 圆8. 若x^2 - 5x + 6 = 0,则x的值为:A. 2或3B. 1或4C. 2或4D. 1或39. 在下列函数中,y = kx + b是一次函数的是:A. y = x^2 - 1B. y = 3/xC. y = kx + bD. y = √x10. 在一次函数y = kx + b中,k和b的取值范围是:A. k ≠ 0,b ≠ 0B. k ≠ 0,b ≠ 0C. k ≠ 0,b可以为任意实数D. k可以为任意实数,b ≠ 0二、填空题(每题5分,共25分)11. 若a + b = 5,ab = 6,则a^2 + b^2的值为______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学总复习(填空60题)
1. 如果x 的倒数是31
-,则的相反数是
2. 绝对值小于3
1
2的整数是
3. 已知|x|=5, |y|=2, |x-y|=y-x,则x+y=
4. 若x<-2,那么22+x =
5. 若样本9,7,8,10,6的方差是2,则另一样本49,47,48,50,46的
标准差是 6. 当x<0时, 化简3ax -=
7. 将一组数据分成5组,制成频率分布直方图,其中第一组的频率是0.1,第四组与第五组的频率之和为0.3,那么第二组与第三组的频率之和为 8. 已知一组数据x 1, x 2, x 3, …, x n 的方差s 2=5则另一组数据2x 1, 2x 2, 2x 3, …, 2x n
的方差是
9. 计算 2
4
22---a a a = 10. 如果分式
3
22
-x 的值不小于零,那么的取值范围 11. 当x= 时,分式2
||6
2---x x x 的值为零
12. 若代数式
12+x 的值不小于3
2
-x 的值,那么x 的最大整数值是 13. 某车间要加工4200个零件,原计划要x 天完成,现在要求提前2天完成,则每天要比原计划多加工 个零件。
14. 计算 =-∙--)3()54612( 15. 若x
x --21
)
2(有意义,则化简后得 16. 方程(x+1)2=x+1的解为
17. 若方程组⎩⎨⎧=-=+232y bx y ax 的解为⎩
⎨⎧==24
y x , 则a= , b=
18. 若方程kx 2-2x+1=0有两个实数根,则k 的取值范围是 19. 方程02432=--x x 的两根为1x ,2x 则1x 2+2x 2=
20. 某校预备班的数学竞赛中共有30道题,答对一题得5分,不答得0分,答错扣4分,学生小王有5题未答,最后得77分,那么他答对了 题。
21. 方程0322=-+kx x 的一根为21
,那么另一根为
22. 关于x 的方程0)1(22=+-+k x k x 的两个实数根互为相反数,
则k 的值是
23. 若方程062=+-k x x 的一根是另一根的平方,那么k 的值为 24. 一件皮衣,按成本加五成作为售价,后因季节原因,按售价八折降价出售,降价后的新售价为每件150元,若设这批皮衣每件成本价为x 元,则可以列出方程式
25. 某年全国足球甲A 联赛,规定每个球队都要在主场与各场进行一场比赛,到联赛结束共进行了182场比赛,那么参加比赛共有 支甲A 球队。
26. 向阳小学绿化学校的任务交给五年级(1)班和(2)班,如果两个班级合作4天便可完成,如果单独工作,五(1)班比五(2)班少用6天,那么五(2)班单独完成任务要 天
27. 不等式⎪⎩⎪⎨⎧<-≥+113
2
12x
x
的整数解为
28. 满足12431<-≤-x
的解集为 29. 函数1
3)(--=
x x x f 中自变量x 的取值范围是
30. 已知直线y=kx+b 与y 轴的交点A 到原点的距离为4,且与直线y=3x+2平行,则该直线的函数表达式为
31. 已知直线434
+-=x y 交x 轴于点A ,交y 轴于点B ,则∠OAB 的正弦值为
32. 若抛物线652--=x x y 交x 轴于点A 和B ,则AB= 33. 抛物线6822+-=x x y 的顶点坐标为
34. 将抛物线x x y 22+-=向左移动3个单位,再向上移动4个单位,移动后的图象所表示的解析式为
35. 已知反比例函数1
322
)3(++-=m m
x m y 的图象在它所在的象限内,y 随x 的增大
而增大,那么m=
36. 已知一次函数12-=x y 和反比例函数x
k
y 2=
,其中一次函数的图象经过点(a+1,b+k)和点(a,b),则反比例函数的解析式为
37、△ABC 是正三角形,BD ⊥AC 于D ,CD=CE ,
则∠E=
38、在Rt △ABC 中,如果CD 是斜边AB 上的高,AC=6,BC=8,那么CD= 39、(如图)平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,若∠B=54,则∠EAF= 40、等腰梯形ABCD ,AD ∥BC ,一个锐角为60,腰长为12,上底的长为4,则下底的长为 41、菱形的两条对角线的比是1:2,周长为20cm ,则菱形的面积是 cm 2
42、(如图)平面上一个菱形ABCD ,∠A=1200,将菱形绕点C 逆时针旋转1200后与四边形CBEF 重合,连结DF, DB ,则△DBF 是 三角形(从直角三角形,等腰三角形,等边三角形中选填) 43、如图,△ABC 中,BD 平分∠A BC ,交AC 于D ,DE ∥BC 交AB 于E,若AB=6, DE=4则BC=
F
B C
B D
(42题图) (43题图) (44题图) (45题图)
44、(如图)∠1=∠2,∠C=∠E ,AB=2AD 当DE=4时,BC= cm
45、如图,AD, BE 是△ABC 的两条中线,它们相交于G 连结GC ,若△ABC 的
面积为12 cm 2,则△BGC 的面积为 cm 2
46、如图,矩形PQMN 的长是它宽的2倍,它的一边在△ABC 的一边BC 上,
其它两顶点分在△ABC 的边AB, AC 上,若BC=30cm ,BC 边上的高为AD 为20cm ,则PN= cm
B C
E
47、在Rt △ABC 中,∠C=900
, CD ⊥AB 于D ,若SinA=3
2, BC=6那
么BD=
48、在Rt △ABC 中,∠C=900, a=10, S △ABC =
3
3
50, 则b=
49、如果斜坡的坡度为1 : 3,斜坡高h=4米,那么斜坡的长为 米
50、计算=⋅+-0
00
00304560
6045Cos Cos tg ctg Sin 51、已知AB=2, ⊙A 的半径为3,如果⊙B 和⊙A 相交,那么⊙B 的半径r 的取
值范围是
52、两圆的半径分别为R 与r (R>r),圆心距为d ,若(d-R)2=r 2,那么两圆的位置
关系是 53、如果正三角形ABC 的边长为3cm ,那么以A 为圆心,1.5cm 长为半径所作的圆与BC 所在直线的位置关系是
54、如果两圆的半径分别为15和20,公共弦长为24,那么两圆的圆心距
等于
55、直角三角形的外接圆半径为5,内切圆半径为2,那么这个直角三角形中较
小的锐角的正弦值为
56、两圆半径长分别是方程x 2-7x +12=0的两根,两圆的圆心坐标分别
为(4,0),(0,-3),则两圆的位置关系是
57、等边△ABC 内有一点P ,且∠APB=1100,如果把△ABP 绕点A 旋转使点B 与
点C 重合,此时点P 落在P ′处,则∠PP ′C= 度
58、在Rt △ABC 中,∠C=900, D 是BC 的中点,DE ⊥AB 于E, tgB=2
1
, AE=21, 则
DE=
59、(如图)在△ABC 中,∠C=900, SinB=13
5
, tg ∠DAC=5
3
, AB=13,则CD=
60、在Rt △ABC 中,∠C=900, a+c=8, CosB=3
1, 则△ABC 中的b 边长为 ,内切圆的面积为
C B
D
参考答案
(1)3 (2)0、21±±、
(3)-7或-3 (4)x -2 (5)2 (6)ax x -- (7)0.6 (8)20 (9)2+a (10)23>
x (11)3 (12)3 (13))
2(8400
-x x (14)266-- (15)x --2 (16)0、-1 (17)0、2 (18)01≠≤k k 且
(19)
9
28
(20)13 (21)-3 (22)-1 (23)-27或8 (24)150%80%501=⋅+)(
x (25)14 (26)12 (27)2、3、4、5 (28)4
5
41≤≤x (29)31≤<x
(30)4343-=+=x y x y 、 (31)5
4 (32)7 (33)(2,-2) (34)142
+--=x x y (35)-1
(36x
y 1= (37)300 (38)54
4 (39)540 (40)16 (41)20 (42)等边 (43)12 (44)8
(45)4 (46)
7120 (47)4 (48)3
3
10 (49)4 (50)0 (51)51<<r (52)外切或内切 (53)相切 (54)25或7 (55)
5
3
(56)相交 (57)50 (58)7 (59)π)、(
281224- (60)3。