高考数学试题-黑龙江省哈六中2018届高三一模试题(数学文) 最新
黑龙江省哈尔滨市2018届高考第二次模拟数学(文)试题含答案

D哈尔滨市第六中学2018届高三第二次模拟考试文科数学试卷考试说明:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.(1)答题前,考生先将自己的姓名、准考证号码填写清楚;(2)选择题必须使用2B 铅笔填涂, 非选择题必须使用0.5毫米黑色字迹的签字笔书写, 字体工整,字迹清楚;(3)请在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;(4)保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|23,},{|3}A x x x Z B y y x =-≤≤∈==-, 则A B I 的子集个数共有( )A. 1个B. 2个C. 3个D. 4个2.若复数z 满足z (2-i)=1+7i ,则||z =( )A.B.C. D. 2 3. 已知2cos()423πθ-=,则sin θ=( ) A.79B. 19C. 19-D. 79-4. 在ABC ∆中,,3,||1AD AB BC BD AD ⊥==u u u r u u u r u u u r ,则AC AD ⋅=u u u r u u u r( )A.1B.2C.3D.45.我国南宋数学家秦九韶给出了求n 次多项式1110n n n n a x a x a x a --++++L 当0x x =时的值的一种简捷算法,该算法被后人命名为“秦九韶算法”.例如,可将3次多项式改写为: 323210a x a x a x a +++()()3210a x a x a x a =+++然后进行求值.运行如图所示的程序框图,是求哪个多项式的值( ) A. 432234x x x x ++++ B. 4322345x x x x ++++ C. 3223x x x +++ D. 32234x x x +++ 6. 一个四棱柱的三视图如图所示,该四棱柱的体积为( )A. 12B. 24C. 36D. 487.已知函数()()sin f x A x ωϕ=+ (0,0,0)2A πωϕ>><<的部分图像如图所示,若将函数()f x 的图像上点的纵坐标 不变,横坐标缩短到原来的14,再向右平移6π个单位,所得 到的函数()g x 的解析式为( )A. ()12sin4g x x = B. ()2sin2g x x = C. ()12sin 46g x x π⎛⎫=-⎪⎝⎭ D. ()2sin 26g x x π⎛⎫=- ⎪⎝⎭8. 圆O :224x y +=上到直线l :0x y a -+=的距离等于1的点恰好有4个,则a 的取值范围为( )A. [B. (C. [1,1]-D. (1,1)-9. 已知,m n 为异面直线,m ⊥平面α,n ⊥平面β,直线l 满足,,,l m l n l l αβ⊥⊥⊄⊄,则( )A. //αβ且//l αB. αβ⊥且l β⊥C. α与β相交,且交线垂直于lD. α与β相交,且交线平行于l 10. 若新高考方案正式实施,甲、乙两名同学要从政治、历史、物理、化学四门功课中分别选取两门功课学习,则他们选择的两门功课都不相同的概率为( ) A.16 B. 13 C. 12 D. 2311. F 是抛物线22y x =的焦点,点P 在抛物线上,点Q 在抛物线的准线上,若2PF FQ =u u u r u u u r,则||PQ =A. 92B. 4C.72D. 3 12. 已知函数53()272f x x x x =---+,若2()(2)4f af a +->,则实数a 的取值范围是( )A. (,1)-∞B. (,3)-∞C. (1,2)-D. (2,1)-第II 卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答,第22题、第23题为选考题,考生根据要求作答. 二、填空题(本大题共4小题,每题5分.)13.已知实数,x y 满足约束条件0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩,则2z x y =-的最大值为 .14. 在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说:“甲说的对”;丁说:“反正我没有责任”,四人中只有一个人说的是真话,则该事故中需要负主要责任的人是 .15. 已知平面四边形ABCD 中,AB=AD=2,BC=CD, 90BCD ∠=︒,则四边形ABCD 面积的最大值为 .16. 已知函数()(1)||f x x xa =--+有三个不同的零点,则实数a 的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)已知n S 是等比数列{}n a 的前n 项和,423,,S S S 成等差数列,且23418a a a ++=-. (1)求数列{}n a 的通项公式; (2)若nn n b a S =⋅,求123n b b b b ++++L .18.(本小题满分12分)某冷饮连锁店计划按天订购一种冷饮,每天的进货量相同,进货成本每杯5元,售价每杯8元,未售出的冷饮降价处理,以每杯3元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温有关.如果最高气温不低于25℃,那么需求量为600杯;如果最高气温位于区间[20,25),那么需求量为400杯;如果最高气温低于20℃,那么需求量为300杯.为了确定九月份的订购计划,统计了前三年九月份各天的最高气温数据数据,得到下面的频数分布表:(1)估计九月份这种冷饮一天的需求量不超过400杯的概率;(2)设九月份一天销售这种冷饮的利润为Y(单位:元).当九月份这种冷饮一天的进货量为500杯时,写出Y的所有可能值并估计Y大于500的概率.19.(本小题满分12分)如图,四棱锥E-ABCD中,底面ABCD是平行四边形,M,N分别为BC,DE中点.(1)证明:CN//平面AEM;(2)若ABE ∆是等边三角形,平面ABE ⊥平面BCE ,,2CE BE BE EC ⊥==,求三棱锥N AEM -的体积.20. (本小题满分12分)如图,已知椭圆C : 22221(0)x y a b a b +=>>, 其左右焦点为()11,0F -及()21,0F ,过点1F 的直线交椭圆C 于,A B 两点,线段AB 的中点为G , AB 的中垂线与x 轴和y 轴分别交于,D E 两点,且1AF 、12F F 、2AF 构成等差数列. (1)求椭圆C 的方程;(2)记1G FD ∆的面积为1S , OED ∆(O 为原点)的面积为2S , 试问:是否存在直线AB ,使得1212S S =?说明理由.21. (本小题满分12分)已知函数2()ln (1)1()f x x x a x x a R =---+∈(1) 当0a =时,求()f x 的极值;(2) 当(1,)x ∈+∞时,()0f x <恒成立,求a 的取值范围.请从下面所给的22、23题中任选一题作答,如果多做,则按做的第一题计分.22. (本小题满分10分)在极坐标系中,曲线1C 的极坐标方程是22(13sin )16ρθ+=,点P 是曲线1C 上的动点.点M 满足2OP OM =uu u r uuu r(O 为极点). 设点M 的轨迹为曲线2C . 以极点O 为原点,极轴为x 轴的正半轴建立平面直角坐标系xoy ,已知直线l 的参数方程是1(x tt y t =+⎧⎨=⎩为参数). (1)求曲线2C 的直角坐标方程与直线l 的普通方程;(2)设直线l 交两坐标轴于,A B 两点,求ABM ∆面积的最大值.23. (本小题满分10分)已知0a >, 0b >,且222a b +=. (1)若2214211x x a b+≥---恒成立,求x 的取值范围; (2)证明: ()55114a b a b ⎛⎫++≥⎪⎝⎭.二模文数答案一、选择题:DBCC DCDB DAAC二、填空题:13. 5 14. 甲15. 16.三、解答题:17.解:(1)设等比数列的公比为,则.由题意得,即,解得.故数列的通项公式为.(2)由(1)有.则18.解:(1)(2)当最高气温不低于25℃,那么需求量为600杯;当最高气温位于区间,那么需求量为400杯;当最高气温低于20℃,那么需求量为300杯;故当最高气温不低于20℃时,,19.(1)证明:取中点,连结.因为中,分别为中点,所以.又因为四边形是平行四边形,所以.又是中点,所以,所以.所以四边形为平行四边形,所以,又平面,平面,所以平面.(2)解:取中点,连结,则,因为平面平面,平面平面,平面,所以平面.又由(1)知平面,所以.又因为为中点,所以.20.(1)因为、、构成等差数列,所以,所以,又因为,所以,所以椭圆的方程为.(2)假设存在直线,使得,显然直线不能与, 轴垂直.设方程为,由消去y整理得,显然.设,,则,故点的横坐标为,所以.设,因为,所以,解得,即.∵和相似,且,则,∴,整理得,解得,所以,所以存在直线满足条件,且直线的方程为.21.解:(1)时,,由解得有极小值,无极大值.(2)由的令,①当时,,在上单调增,不合题意;当时,由解得或②当时,,,在上单调增,不合题意;③当时,,当时,,在上单调递增,不合题意;④当时,,当时,,在上单调递减,不符合题意;综上所述,的取值范围是22解:(1)在极坐标系中,设点.由,得,代入曲线的方程并整理,得,再化为直角坐标方程,即曲线的直角坐标方程为.直线的参数方程(为参数)化为普通方程是.(2)由直线的方程为,可知.因为点在曲线上,所以设,,则点到直线的距离即为底边上的高,所以,所以,所以,。
高三数学-【数学】黑龙江省哈六中2018届高三上学期期

哈六中2018—2018学年度上学期期末考试高三数学(文史类)试题命题:高三备课组 审核:李茂生参考公式:线性回归方程的系数公式为1122211()(),()n ni iiii i nniii i x y nx y x x y y b a y bx xnxx x ====---===---∑∑∑∑.第Ⅰ卷(选择题 60分)一、选择题:本大题共有12小题,每小题5分,共60分. 1.函数121cos -=x y π的最小正周期为( )(A )π4 (B )π2 (C )4 (D )22.已知集合}2,1,0,1,2{--=M ,},8221|{1R x x N x ∈<<=+,则=⋂N M ( ) (A )}1,0{ (B )}1,0{- (C )}1,1,0{- (D )}2,1,0,1,2{--3.已知a 为实数,若2321>++i a i ,则=a ( ) (A )1 (B )2- (C )31 (D )214.在ABC ∆中,若b a 25=,B A 2=,则=B cos ( ) (A )35 (B )45 (C )55 (D )655.已知函数)(x f y =与x e y =互为反函数,函数)(x g y =的图象与)(x f y =的图象关于x 轴对称,若1)(=a g ,则实数a 的值为( )(A )e 1(B )e1- (C )e - (D )e 6.设函数3x y =与2)21(-=x y 的图象的交点为),(00y x ,则0x 所在的区间是( )(A ))1,0( (B ))2,1( (C ))3,2( (D ))4,3(7.设n S 为等差数列}{n a 的前n 项和,且20101-=a ,22008201020082010=-S S ,则=2010S ( ) (A )2010- (B )2009- (C )2018 (D )2018 8.设直线n m ,和平面βα,,下列四个命题中正确的是( ) (A )若α//m ,α//n ,则n m //(B )若α⊂m ,α⊂n ,β//m ,β//n ,则βα// (C )若βα⊥,α⊂m ,则β⊥m(D )若βα⊥,β⊥m ,α⊄m ,则α//m9.如图所示的程序框图输出的结果是( ) (A )8 (B )9 (C )72 (D )72010.已知a 是使表达式xx -+>2142成立的最小整数,则方程1|12|1-=--x a x 实数根的个数为( )(A )0 (B )1 (C )2 (D )311.点),(y x P 满足042422≤+--+y x y x ,则点P 到直线01=-+y x 的最短距离为( ) (A )2 (B )0 (C )12- (D )12+12.已知点P 是双曲线)0,0(12222>>=-b a by a x 右支上一点,21,F F 分别是双曲线的左、右焦点,I 为21F PF ∆的内心,若2121F IF IPF IPF S S S ∆∆∆+=λ成立,则λ的值为( )(A )22b a a+ (B )a b a 222+ (C )a b (D )b a第Ⅱ卷(非选择题 共90分)二、填空题:本大题共有4小题,每小题5分,共20分.13.每次抛掷一枚骰子(六个面上分别标以1,2,3,4,5,6),连续抛掷2次,则2次向上的数之和不小于10的概率为14.如图,在边长为2的菱形ABCD 中, 60=∠BAD ,E 为CD 中点,则=⋅BD AE15.甲:函数()f x 是奇函数;乙:函数()f x 在定义域上是增函数,对于函数①xx f 1)(-=;②x x f tan )(=;③||)(x x x f =;④21,0()21,0x x x f x x -⎧-≥⎪=⎨-+<⎪⎩,能使甲、乙均为真命题的所有函数的序号是16.(考生在下列两小题任选其一作答,若两题都答,则按第1小题计分) (1)已知曲线C 的极坐标方程是)4sin(4πθρ+=,则曲线C 的普通方程为(2)已知R z y x ∈,,,且3=++z y x ,则222z y x ++的最小值三、解答题:本大题共有6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤.17.(本小题10分)已知函数12cos 32)4(sin 4)(2--+=x x x f π,且24ππ≤≤x(1)求)(x f 的在定义域上的单调区间; (2)求)(x f 的最大值及最小值.18.(本小题12分)如图,在正三棱柱ABC -A 1B 1C 1中,点D 在边BC 上,AD ⊥C 1D . (1)求证:AD ⊥平面BC C 1 B 1; (2)设E 是B 1C 1上的一点,当11B EEC 的值为多少时,A 1E ∥平面ADC 1?请给出证明.19.(本小题12分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:日 期 12月1日12月2日 12月3日12月4日12月5日温差x (°C ) 10 11 13 12 8 发芽数y (颗)2325302616该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y 关于x 的线性回归方程y bx a =+;B 1A 1ABCC 1D20.(本小题12分)已知数列}{n a 的首项51=a ,前n 项和为n S ,且)(52*1N n n S S n n ∈++=+. (1)求数列}{n a 的通项; (2)令n n x a x a x a x f +++= 221)(,求函数)(x f 在1=x 处的导数)1('f .21.(本小题12分)已知函数)(112)(22R x x a ax x f ∈++-=,其中0>a . (1)当1=a 时,求曲线)(x f y =在点))2(,2(f 处的切线方程; (2)求函数)(x f 的单调区间与极值.22.(本小题12分)已知椭圆的焦点在x 轴上,它的一个顶点恰好是抛物线y x 42=的焦点,离心率52=e ,过椭圆的右焦点F 作与坐标轴不垂直的直线l 交椭圆于B A ,两点. (1)求椭圆方程; (2)设点)0,(m M 是线段OF 上的一个动点,且AB MB MA ⊥+)(,求m 的取值范围;(3)设点C 是点A 关于x 轴对称点,在x 轴上是否存在一个定点N ,使得N B C ,,三点共线?若存在,求出定点N 的坐标,若不存在,请说明理由.高三上学期期末考试文科数学答案一、选择题:CCDBA BADDC CA 二、填空题13.6114.5 15.(3)(4) 16.(1).4)2()2(22=-+-y x (2)317.解:①1)32sin(4)(+-=πx x f24ππ≤≤x32326πππ≤-≤∴x5)(max =∴x f3)(=nim x f②由2326πππ≤-≤x ,得)(x f 的单调递增区间4[π,125π] 由32322πππ≤-≤x ,得)(x f 的单调递减区间]2,125[ππ 18.解: (1)在正三棱柱中,C C 1⊥平面ABC ,AD ⊂平面ABC ,∴ AD ⊥C C 1.………………………………………2分又AD ⊥C 1D ,C C 1交C 1D 于C 1,且C C 1和C 1D 都在面BC C 1 B 1内,∴ AD ⊥面BC C 1 B 1. ………………………………………………………5分(2)由(1),得AD ⊥BC .在正三角形ABC 中,D 是BC 的中点.………………6分当111B EEC =,即E 为B 1C 1的中点时,A 1E ∥平面ADC 1.…………………………7分事实上,正三棱柱ABC -A 1B 1C 1中,四边形BC C 1 B 1是矩形,且D 、E 分别是BC 、B 1C 1的中点,所以B 1B ∥DE ,B 1B= DE . …………………………………………9分 又B 1B ∥AA 1,且B 1B=AA 1,∴DE ∥AA 1,且DE =AA 1. …………………………………………………10分 所以四边形ADE A 1为平行四边形,所以E A 1∥AD .而E A 1⊄面AD C 1内,故A 1E ∥平面AD C 1. ……………………………12分19.解:(1)设抽到不相邻两组数据为事件A ,因为从5组数据中选取2组数据共有10种情况,每种情况都是等可能出现的,其中抽到相邻两组数据的情况有4种, ………………2分所以 43()1105P A =-=.…………………………………………………………4分 答:略. ……………………………………………………………………………5分 (2)由数据,求得12,27x y ==.………………………………………………………7分B 1A 1ABCC 1D由公式,求得52b =,3a y bx =-=-. …………………………………………9分 所以y 关于x 的线性回归方程为5ˆ32yx =-. ……………………………………10分 21.解: (Ⅰ)解:当1a =时,22()1x f x x =+,4(2)5f =,……………1分又22222222(1)422()(1)(1)x x x f x x x +--'==++,则6(2)25f '=-.…………………3分 所以,曲线()y f x =在点(2(2))f ,处的切线方程为46(2)525y x -=--, 即625320x y +-=.……………4分(Ⅱ)解:2222222(1)2(21)2()(1)()(1)(1)a x x ax a x a ax f x x x +--+--+'==++.…………6分 由于0a ≠,以下分两种情况讨论.(1)当0a >时,令()0f x '=,得到11x a=-,2x a =,当x 变化时,()()f x f x ',的变化情况如下表:x 1a ⎛⎫-- ⎪⎝⎭,∞ 1a - 1a a ⎛⎫- ⎪⎝⎭, a ()a +,∞ ()f x ' - 0 +0 - ()f x 极小值 极大值所以()f x 在区间1a ⎛⎫-- ⎪⎝⎭,∞,()a +,∞内为减函数,在区间1a a ⎛⎫- ⎪⎝⎭,内为增函数 故函数()f x 在点11x a =-处取得极小值1f a ⎛⎫- ⎪⎝⎭,且21f a a ⎛⎫-=- ⎪⎝⎭,函数()f x 在点2x a =处取得极大值()f a ,且()1f a =.…………………10分20解:(1)由521++=+n S S n n 得421++=-n S S n n ,相减得121+=+n n a a ,即)1(211+=++n n a a ----2分当1=n 时,6212+=S S ,所以62121+=+a a a ,得112=a ,所以1212+=a a ,--------2分 所以1261-⋅=+n n a ,即123-⋅=n n a --------2分(2)则n n x a x a x a x f +++= 221)(,所以121'2)(-+++=n n x na x a a x f --------1分 n na a a f +++= 21'2)1(,则n n n na n n n -⋅=-⋅=23)123(,所以2)1(]2221[32)1(221'+-++⋅+⋅=+++=n n na na a a f n n --------1分 由错项相减法得2)1(62)33()1(1'+-+-=+n n n f n --------4分22解:(1)由题意知1=b ,又54222222=-==ab a ac e ,所以52=a ,所以1522=+y x --------4分(2)由(1)得)0,2(F ,所以20≤≤m ,设l 的方程为)0)(2(≠-=k x k y ,联立得052020)15(2222=-+-+k x k x k ,15202221+=+k k x x ,155202221+-=k k x x ,--------2分),2(2121y y m x x MB MA +-+=+,),(1212y y x x AB --=,由题意得0))(())(2(12211221=-++--+y y y y x x m x x ,代入可得0)58(2=--m k m ,所以0582>-=m mk 得580<<m --------4分(3)设)0,(t N ,则有CN CB //,所以),(1212y y x x CB +-=,),(11y x t CN -=,所以))(()(112112x t y y y x x -+=-,代入解得25=t --------2分。
黑龙江省哈尔滨市2018届高考第二次模拟数学(文)试题含答案

哈尔滨市第六中学2018届高三第二次模拟考试文科数学试卷考试说明:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.(1)答题前,考生先将自己的姓名、准考证号码填写清楚;(2)选择题必须使用2B 铅笔填涂, 非选择题必须使用0.5毫米黑色字迹的签字笔书写, 字体工整,字迹清楚;(3)请在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;(4)保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|23,},{|3}A x x x Z B y y x =-≤≤∈==-, 则A B I 的子集个数共有( )A. 1个B. 2个C. 3个D. 4个2.若复数z 满足z (2-i)=1+7i ,则||z =( )A.B.C. D. 2 3. 已知2cos()423πθ-=,则sin θ=( ) A.79B. 19C. 19-D. 79-4. 在ABC ∆中,,3,||1AD AB BC BD AD ⊥==u u u r u u u r u u u r ,则AC AD ⋅=u u u r u u u r( )A.1B.2C.3D.45.我国南宋数学家秦九韶给出了求n 次多项式1110n n n n a x a x a x a --++++L 当0x x =时的值的一种简捷算法,该算法被后人命名为“秦九韶算法”.例如,可将3次多项式改写为:323210a x a x a x a +++ ()()3210a x a x a x a =+++然后进行求值.运行如图所示的程序框图,是求哪个多项式的值( ) A. 432234x x x x ++++ B. 4322345x x x x ++++ C. 3223x x x +++ D. 32234x x x +++ 6. 一个四棱柱的三视图如图所示,该四棱柱的体积为( )A. 12B. 24C. 36D. 487.已知函数()()sin f x A x ωϕ=+ (0,0,0)2A πωϕ>><<的部分图像如图所示,若将函数()f x 的图像上点的纵坐标 不变,横坐标缩短到原来的14,再向右平移6π个单位,所得 到的函数()g x 的解析式为( )A. ()12sin4g x x = B. ()2sin2g x x = C. ()12sin 46g x x π⎛⎫=-⎪⎝⎭ D. ()2sin 26g x x π⎛⎫=- ⎪⎝⎭8. 圆O :224x y +=上到直线l :0x y a -+=的距离等于1的点恰好有4个,则a 的取值范围为( )A. [B. (C. [1,1]-D. (1,1)-9. 已知,m n 为异面直线,m ⊥平面α,n ⊥平面β,直线l 满足,,,l m l n l l αβ⊥⊥⊄⊄,则( )A. //αβ且//l αB. αβ⊥且l β⊥C. α与β相交,且交线垂直于lD. α与β相交,且交线平行于l10. 若新高考方案正式实施,甲、乙两名同学要从政治、历史、物理、化学四门功课中分别选取两门功课学习,则他们选择的两门功课都不相同的概率为( ) A.16 B. 13 C. 12 D. 2311. F 是抛物线22y x =的焦点,点P 在抛物线上,点Q 在抛物线的准线上,若2PF FQ =u u u r u u u r,则||PQ =A. 92B. 4C.72D. 3 12. 已知函数53()272f x x x x =---+,若2()(2)4f af a +->,则实数a 的取值范围是( )A. (,1)-∞B. (,3)-∞C. (1,2)-D. (2,1)-第II 卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答,第22题、第23题为选考题,考生根据要求作答. 二、填空题(本大题共4小题,每题5分.)13.已知实数,x y 满足约束条件0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩,则2z x y =-的最大值为 .14. 在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说:“甲说的对”;丁说:“反正我没有责任”,四人中只有一个人说的是真话,则该事故中需要负主要责任的人是 .15. 已知平面四边形ABCD 中,AB=AD=2,BC=CD, 90BCD ∠=︒,则四边形ABCD 面积的最大值为 .16. 已知函数()(1)||f x x xa =--+有三个不同的零点,则实数a 的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)已知n S 是等比数列{}n a 的前n 项和,423,,S S S 成等差数列,且23418a a a ++=-. (1)求数列{}n a 的通项公式;(2)若n n n b a S =⋅,求123n b b b b ++++L .18.(本小题满分12分)某冷饮连锁店计划按天订购一种冷饮,每天的进货量相同,进货成本每杯5元,售价每杯8元,未售出的冷饮降价处理,以每杯3元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温有关.如果最高气温不低于25℃,那么需求量为600杯;如果最高气温位于区间[20,25),那么需求量为400杯;如果最高气温低于20℃,那么需求量为300杯.为了确定九月份的订购计划,统计了前三年九月份各天的最高气温数据数据,得到下面的频数分布表:(1) 估计九月份这种冷饮一天的需求量不超过400杯的概率;(2) 设九月份一天销售这种冷饮的利润为Y (单位:元).当九月份这种冷饮一天的进货量为500杯时,写出Y 的所有可能值并估计Y 大于500的概率.19.(本小题满分12分)如图,四棱锥E-ABCD 中,底面ABCD 是平行四边形,M,N 分别为BC,DE 中点.(1)证明:CN//平面AEM ;(2)若ABE ∆是等边三角形,平面ABE ⊥平面BCE ,,2CE BE BE EC ⊥==,求三棱锥N AEM -的体积.20. (本小题满分12分)如图,已知椭圆C : 22221(0)x y a b a b +=>>, 其左右焦点为()11,0F -及()21,0F ,过点1F 的直线交椭圆C 于,A B 两点,线段AB 的中点为G , AB 的中垂线与x 轴和y 轴分别交于,D E 两点,且1AF 、12F F 、2AF 构成等差数列. (1)求椭圆C 的方程;(2)记1G FD ∆的面积为1S , OED ∆(O 为原点)的面积为2S , 试问:是否存在直线AB ,使得1212S S =?说明理由.21. (本小题满分12分)已知函数2()ln (1)1()f x x x a x x a R =---+∈ (1) 当0a =时,求()f x 的极值;(2) 当(1,)x ∈+∞时,()0f x <恒成立,求a 的取值范围.请从下面所给的22、23题中任选一题作答,如果多做,则按做的第一题计分.22. (本小题满分10分)在极坐标系中,曲线1C 的极坐标方程是22(13sin )16ρθ+=,点P 是曲线1C 上的动点.点M 满足2OP OM =uu u r uuu r(O 为极点). 设点M 的轨迹为曲线2C . 以极点O 为原点,极轴为x 轴的正半轴建立平面直角坐标系xoy ,已知直线l 的参数方程是1(x tt y t =+⎧⎨=⎩为参数).(1)求曲线2C 的直角坐标方程与直线l 的普通方程;(2)设直线l 交两坐标轴于,A B 两点,求ABM ∆面积的最大值.23. (本小题满分10分)已知0a >, 0b >,且222a b +=. (1)若2214211x x a b+≥---恒成立,求x 的取值范围; (2)证明: ()55114a b a b ⎛⎫++≥⎪⎝⎭.二模文数答案一、选择题:DBCC DCDB DAAC二、填空题:13. 5 14. 甲15. 16.三、解答题:17.解:(1)设等比数列的公比为,则.由题意得,即,解得.故数列的通项公式为.(2)由(1)有.则18.解:(1)(2)当最高气温不低于25℃,那么需求量为600杯;当最高气温位于区间,那么需求量为400杯;当最高气温低于20℃,那么需求量为300杯;故当最高气温不低于20℃时,,19.(1)证明:取中点,连结.因为中,分别为中点,所以.又因为四边形是平行四边形,所以.又是中点,所以,所以.所以四边形为平行四边形,所以,又平面,平面,所以平面.(2)解:取中点,连结,则,因为平面平面,平面平面,平面,所以平面.又由(1)知平面,所以.又因为为中点,所以.20.(1)因为、、构成等差数列,所以,所以,又因为,所以,所以椭圆的方程为.(2)假设存在直线,使得,显然直线不能与, 轴垂直.设方程为,由消去y整理得,显然.设,,则,故点的横坐标为,所以.设,因为,所以,解得,即.∵和相似,且,则,∴,整理得,解得,所以,所以存在直线满足条件,且直线的方程为.21.解:(1)时,,由解得有极小值,无极大值.(2)由的令,①当时,,在上单调增,不合题意;当时,由解得或②当时,,,在上单调增,不合题意;③当时,,当时,,在上单调递增,不合题意;④当时,,当时,,在上单调递减,不符合题意;综上所述,的取值范围是22解:(1)在极坐标系中,设点.由,得,代入曲线的方程并整理,得,再化为直角坐标方程,即曲线的直角坐标方程为.直线的参数方程(为参数)化为普通方程是.(2)由直线的方程为,可知.因为点在曲线上,所以设,,则点到直线的距离即为底边上的高,所以,所以,所以,。
2018年黑龙江省齐齐哈尔市高考数学一模试卷(文科)

2018年黑龙江省齐齐哈尔市高考数学一模试卷(文科)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合A={1, 2, 3},B={x[3x>4},则A∩B=()A.{1, 2}B.{2, 3}C.{1, 3}D.{1, 2, 3}2. 设z=3+ii,i是虚数单位,则z的虚部为()A.1B.−1C.3D.−33. 某校连续12天对同学们的着装进行检查,着装不合格的人数用蒸叶图表示,如图,则该组数据的中位数是()A.24B.26C.27D.324. 将函数y=sin(2x−π4)的图象向左平移π6个单位后,得到函数f(x)的图象,则f(π12)=()A.√2+√64B.√3+√64C.√32D.√225. 已知等差数列{a n}的前n项和为S n,若a3=3,S4=14.则{a n}的公差为()A.1B.−1C.2D.−26. 圆x2+y2−2x−4y+3=0的圆心到直线x−ay+1=0的距离为2,则a=()A.−1B.0C.1D.27. 若a,b,c满足2a=3,b=log25,3c=2.则()A.c<a<bB.b<c<aC.a<b<cD.c<b<a8. 函数f(x)=(2x−2−x)cosx在区间[−5, 5]上的图象大致为()A.B.C.D.9. 我国南宋时期的数学家秦九韶(约1202−1261)在他的著作《数书九章》中提出了多项式求值的秦九韶算法.如图所示的框图给出了利用秦九韶算法求多项式的一个实例.若输入的n=5,v=1,x=2,则程序框图计算的是()A.25+24+23+22+2+1B.25+24+23+22+2+5C.26+25+24+23+22+2+1D.24+23+22+2+110. 如图,网格纸上小正方形的边长为1,图中画出的是某几何体的三视图,则该几何体的表面积为()A.12√13+6√2+18B.9√13+8√2+18C.9√13+6√2+18D.9√13+6√2+1211. 已知直三棱柱ABC −A 1B 1C 1的底面为等腰直角三角形,∠ABC =90∘,直线A 1C 与平面BCC 1B 1成30∘角,直三棱柱ABC −A 1B 1C 1的外接球的体积为4π3,则三棱柱ABC −A 1B 1C 1的高为( ) A.2 B.√3 C.√2D.112. 若x =1是函数f(x)=ax 2+ln x 的一个极值点,则当x ∈[1e ,e]时,f(x)的最小值为( ) A.1−e 22B.−e +1eC.−12e 2−1D.e 2−1二、填空题:本题共4小题,每小题5分,共20分.已知实数x ,y 满足{x −y −3≥0x −2y −4≤0x +2y −8≤0 ,则z =2x −y 的最小值为________.已知向量a →=(2, 3),b →=(m, −6),若a →⊥b →,则|2a →+b →|=________.已知数列{a n }的前n 项和为S n ,且S n =2a n −1,则数列{1a n}的前6项和为________.已知抛物线y 2=4x 的焦点为F ,准线为l ,点M 在l 上,且在x 轴上方,线段FM 依次与抛物线、y 轴交于点P ,N ,若P 是FN 中点,O 是原点,则直线OM 的斜率为________. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .满足2acosC +bcosC +ccosB =0. (Ⅰ)求角C 的大小;(Ⅱ)若a =2,△ABC 的面积为√32,求c 的大小.如图,在直三棱柱ABC −A 1B 1C 1中,BC =BB 1,∠BAC =∠BCA =12∠ABC ,点E 是A 1B 与AB 1的交点,点D 在线段AC 上,B 1C // 平面A 1BD . (1)求证:BD ⊥A 1C ;(2)求证:AB 1⊥平面A 1BC .如表是一个容量为20的样本数据分组后的频率分布表:(I)若用组中值代替本组数据的平均数,请计算样本的平均数x ;(II)以频率估计概率,若样本的容量为2000,求在分组[14.5, 17.5)中的频数;(Ⅲ)若从数据在分组[8.5, 11.5)与分组[11.5, 14.5)的样本中随机抽取2个,求恰有1个样本落在分组[11.5, 14.5)的概率.已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2.且椭圆C 过点(√3, −√32),离心率e =12;点P 在椭圆C 上,延长PF 1与椭圆C 交于点Q ,点R 是PF 2中点.(I)求椭圆C 的方程;(II)若O 是坐标原点,记△QF 1O 与△PF 1R 的面积之和为S ,求S 的最大值.已知函数f(x)=x(e x +1)(I)求函数y =f(x)的图象在点(0, f(0))处的切线方程;(II)若函数g(x)=f(x)−ae x −x ,求函数g(x)在[1, 2]上的最大值.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4一4:坐标系与参数方程](10分),已知直线l 过原点且倾斜角为θ0,θ0≠π2,以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ=4cosθ. (I)写出直线l 的极坐标方程和曲线C 的直角坐标方程; (Ⅱ)已知直线l ´过原点且与直线l 相互垂直,若l ∩C =M ,l ∩C =N ,其中M ,N 不与原点重合,求△OMN 面积的最小值. [选修4-5:不等式选讲](10分)已知函数f(x)=log 2(|x +1|+|x −1|−a ). (I)当a =3时,求函数f(x)的定义域;(Ⅱ)若不等式f(x)≥2的解集为R ,求实数a 的最大值.参考答案与试题解析2018年黑龙江省齐齐哈尔市高考数学一模试卷(文科)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【考点】交集及其运算【解析】可解3x>4得到x>log34,从而求出集合B={x|x>log34},然后进行交集的运算即可.【解答】B={x|x>log34},且A={1, 2, 3};∴A∩B={2, 3}.2.【答案】D【考点】复数的运算【解析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:∵z=3+ii =(3+i)(−i)−i2=1−3i,∴z的虚部为−3.故选D.3.【答案】C【考点】茎叶图【解析】根据茎叶图所给的数据,做出这组数据的中位数.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】由茎叶图得:10,11,20,21,22,24,30,33,35,35,37,38,将这组数据从小到大重新排列后,观察数据可知,最中间的两个数为24,30,其平均数即中位数是24+302=27.4.【答案】D【考点】函数y=Asin (ωx+φ)的图象变换 【解析】直接利用三角函数的平移变换求出函数的关系式,进一步求出函数的值. 【解答】函数y =sin(2x −π4)的图象向左平移π6个单位后, 得到函数f(x)=sin(2x +π12)的图象, 则:f(π12)=sin(π6+π12)=√22.5.【答案】 B【考点】等差数列的前n 项和 【解析】设等差数列{a n }的公差为d ,由a 3=3,S 4=14.可得a 1+2d =3,4a 1+4×32d =14,联立解得d . 【解答】设等差数列{a n }的公差为d ,∵ a 3=3,S 4=14. ∴ a 1+2d =3,4a 1+4×32d =14,联立解得d =−1. 6.【答案】 B【考点】直线与圆的位置关系 【解析】x 2+y 2−2x −4y +3=0的圆心(1, 2),圆心(1, 2)到直线的距离d =2,能求出a . 【解答】x 2+y 2−2x −4y +3=0的圆心(1, 2), 圆心(1, 2)到直线的距离d =√1+a 2=2,解得a =0. 7.【答案】 A【考点】对数的运算性质 【解析】利用指数函数与对数函数的单调性即可得出. 【解答】2a =3,可得a ∈(1, 2), b =log 25>2,由3c =2.可得c ∈(0, 1).∴c<a<b.8.【答案】D【考点】函数的图象与图象的变换【解析】判断函数在[0, 5]之间的零点个数以及特殊点的位置判断选项即可.【解答】当x∈[0, 5]时,f(x)=(2x−2−x)cosx=0,可得函数的零点为:0,π2,3π2,排除A,B,当x=π时,f(π)=−2π+2−π,<0,对应点在x轴下方,排除选项C,9.【答案】A【考点】程序框图【解析】由题意,模拟程序的运行,依次写出每次循环得到的i,v的值,当i=−1时,不满足条件i≥0,跳出循环,输出v的值为63,即可得解.【解答】解:模拟程序的运行,可得n=5,v=1,x=2,i=4满足条件i≥0,执行循环体,v=3,i=3满足条件i≥0,执行循环体,v=7,i=2满足条件i≥0,执行循环体,v=15,i=1满足条件i≥0,执行循环体,v=31,i=0满足条件i≥0,执行循环体,v=63,i=−1不满足条件i≥0,退出循环,输出v的值为63.由于25+24+23+22+2+1=63.故选A.10.【答案】C【考点】由三视图求体积【解析】画出几何体的图形,利用三视图的数据求解几何体的表面积即可.【解答】作出该几何体的直观图如下所示,故所求几何体的表面积S=2×3×√13+2×12×3×√13+12×4×6+12×3×4+12×4×3√2=9√13+6√2+18.11.【答案】C【考点】棱柱的结构特征【解析】根据棱柱的结构特征可知A1C为球的直径,∠A1CB1为直线A1C与平面BCC1B1成角,根据体积公式和勾股定理即可得出棱柱的高.【解答】由题意可知A1B1⊥平面BB1C1C,∴∠A1CB1为直线A1C与平面BCC1B1成的角,即∠A1CB1=30∘,设AB=BC=x,则A1C=2x.又AC=√2x.∴AA1=√2x.∵棱柱的底面是等腰直角三角形,∠ABC=90∘,∴A1C为棱柱ABC−A1B1C1的外接球的直径,即43π∗(2x2)3=4π3,∴x=1,∴AA1=√2x=√2.12.【答案】A【考点】利用导数研究函数的极值【解析】此题暂无解析【解答】解:由题意得f′(1)=0.∵f′(x)=2ax+1x,∴2a+1=0,a=−12.当x∈[1e,1)时,f′(x)>0,当x∈[1,e)时,f′(x)<0,所以f(x)min=min{f(1e),f(e)}=−12e2+1.故选A.二、填空题:本题共4小题,每小题5分,共20分.【答案】5【考点】简单线性规划【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】实数x,y满足{x−y−3≥0x−2y−4≤0x+2y−8≤0所表示的平面区域如图阴影部分所示,观察可知,由{x −y −3=0x −2y −8=0解得A(2, −1). 当z =2x −y 过点A(2, −1)时,有最小值,最小值为5. 【答案】 13【考点】平面向量数量积的性质及其运算 【解析】根据题意,由向量的垂直与向量数量积的关系可得若a →⊥b →,则有a →⋅b →=2m −18=0,解可得m 的值,即可得b →的坐标,从而可得向量2a →+b →的坐标,由向量模的计算公式计算可得答案. 【解答】根据题意,向量a →=(2, 3),b →=(m, −6),若a →⊥b →,则有a →⋅b →=2m −18=0,解可得m =9,则b →=(9, −6),故2a →+b →=(13, 0); 故|2a →+b →|=13;【答案】63 【考点】 数列的求和 【解析】由S n =2a n −1(n ∈N ∗),推导出a 1=1,S n −S n−1=2a n −2a n−1,由此得到a n =2n−1.由求和公式解答即可. 【解答】解:∵ a 1=S 1=a 1−1 a 1=1,n >1时,a n =S n −S n−1=2a n −2a n−1, ∴ {a n }是首项为1,公比为2的等比数列. ∴ a n =2n−1, ∴ {1a n}的前6项和为1−1261−12=6332.故答案为:6332.【答案】 −4√2 【考点】 抛物线的求解【解析】设N(O, y0),则P(12, y02),可得y0|=2√2,k OM=4√2−1=−4√2.【解答】可得F(1, 0),设N(O, y0),则P(12, y02),y024=2,∴|y0|=2√2,从而M(−1, 4√2),∴k OM=4√2−1=−4√2.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.【答案】(I)在△ABC中,∵2acosC+bcosC+ccosB=0,∴由正弦定理可得:2sinAcosC+sinBcosC+sinCcosB=0,∴2sinAcosC+sin(B+C)=0,又△ABC中,sin(B+C)=sinA≠0.∴cosC=−12,∵0<C<Π.∴C=2π3,(II)由S=12absinC=√32,a=2,C=2π3得b=1,由余弦定理得c2=4+1−2×2×1×(−12)=7,∴c=√7.【考点】余弦定理【解析】(I)根据正弦定理将边化角,化简即可得出cosC;(II)根据面积计算b,再利用余弦定理即可得出c的值.【解答】(I)在△ABC中,∵2acosC+bcosC+ccosB=0,∴由正弦定理可得:2sinAcosC+sinBcosC+sinCcosB=0,∴2sinAcosC+sin(B+C)=0,又△ABC中,sin(B+C)=sinA≠0.∴cosC=−12,∵0<C<Π.∴C=2π3,(II)由S=12absinC=√32,a=2,C=2π3得b=1,由余弦定理得c2=4+1−2×2×1×(−12)=7,∴c=√7.【答案】连结ED,∵平面AB1C∩平面A1BD=ED,B1C // 平面A1BD,∴B1C // ED,∵E为AB1中点,∴D为AC中点;∵∠BAC=∠BCA=12∠ABC,∴AB=BC,∴BD⊥AC?,由A1A⊥平面ABC,BD⊂平面ABC,得A1A⊥BD‚由?‚A1A、AC是平面A1ACC1内的两条相交直线,得BD⊥平面A1ACC1,∵A1C⊂平面A1ACC1,故BD⊥A1C.由(1)知AB=BC,AB⊥BC,∵BB1=BC,∴四边形ABB1A1是菱形,∴AB1⊥A1B,∵BB1⊥平面ABC,BC⊂平面ABC.∴BC⊥BB1∵AB∩BB1=B,AB,BB1⊂平面ABB1A1.∴BC⊥平面ABB1A∵AB1⊂平面ABB1A1,∴BC⊥AB1,∵BC∩A1B=B,BC,A1B⊂平面A1BC,∴AB1⊥平面A1BC.【考点】直线与平面垂直【解析】(1)连结ED,推导出B1C // ED,D为AC中点,推导出AB=BC,BD⊥AC?,由A1A⊥平面ABC,得A1A⊥BD‚,从而BD⊥平面A1ACC1,由此能证明BD⊥A1C.(2)由AB=BC,AB⊥BC,得四边形ABB1A1是菱形,从而AB1⊥A1B,由BB1⊥平面ABC,得BC⊥BB1,从而BC⊥平面ABB1A,进而BC⊥AB1,由此能证明AB1⊥平面A1BC.【解答】连结ED,∵平面AB1C∩平面A1BD=ED,B1C // 平面A1BD,∴B1C // ED,∵E为AB1中点,∴D为AC中点;∵∠BAC=∠BCA=1∠ABC,∴AB=BC,∴BD⊥AC?,2由A1A⊥平面ABC,BD⊂平面ABC,得A1A⊥BD‚由?‚A1A、AC是平面A1ACC1内的两条相交直线,得BD⊥平面A1ACC1,∵A1C⊂平面A1ACC1,故BD⊥A1C.由(1)知AB=BC,AB⊥BC,∵BB1=BC,∴四边形ABB1A1是菱形,∴AB1⊥A1B,∵BB1⊥平面ABC,BC⊂平面ABC.∴BC⊥BB1∵AB∩BB1=B,AB,BB1⊂平面ABB1A1.∴BC⊥平面ABB1A∵AB1⊂平面ABB1A1,∴BC⊥AB1,∵BC∩A1B=B,BC,A1B⊂平面A1BC,∴AB1⊥平面A1BC.【答案】(I)依题意,整理表格数据如下:故所求平均数为10×0.2+13×0.1+16×0.3+19×0.4=2+1.3+4.8+7.6= 15.7..(Ⅱ)以频率估计概率,样本的容量为2000,分组[14.5, 17.5)的频率为0.3,∴在分组[14.5, 17.5)中的频数为2000×0.3=600(Ⅲ)记[8.5, 11.5)中的样本为A,B,C,D,[11.5, 14.5)中的样本为a,b,则随机抽取2个,所有的情况为:(A, B),(A, C),(A, D),(A, a),(A, b),(B, C),(B, D),(B, a),(B, b),(C, D),(C, a),(C, b),(D, a),(D, b),(ab),共15个其中恰有1个样本落在分组[11.5, 14.5)的为:(A, a),(A, b),(B, a),(B, b),(C, a),(C, b),(D, a),(D, b),共8个,..故恰有1个样本落在分组[11.5, 14.5)的概率P=815【考点】频率分布直方图列举法计算基本事件数及事件发生的概率【解析】(I)依题意,整理表格数据,能求出平均数.(Ⅱ)以频率估计概率,样本的容量为2000,分组[14.5, 17.5)的频率为0.3,由此能求出在分组[14.5, 17.5)中的频数.(Ⅲ)记[8.5, 11.5)中的样本为A,B,C,D,[11.5, 14.5)中的样本为a,b,随机抽取2个,利用列举法能求出恰有1个样本落在分组[11.5, 14.5)的概率.【解答】(I)依题意,整理表格数据如下:故所求平均数为10×0.2+13×0.1+16×0.3+19×0.4=2+1.3+4.8+7.6= 15.7..(Ⅱ)以频率估计概率,样本的容量为2000,分组[14.5, 17.5)的频率为0.3,∴在分组[14.5, 17.5)中的频数为2000×0.3=600(Ⅲ)记[8.5, 11.5)中的样本为A,B,C,D,[11.5, 14.5)中的样本为a,b,则随机抽取2个,所有的情况为:(A, B),(A, C),(A, D),(A, a),(A, b),(B, C),(B, D),(B, a), (B, b),(C, D),(C, a),(C, b),(D, a),(D, b),(ab),共15个 其中恰有1个样本落在分组[11.5, 14.5)的为:(A, a),(A, b),(B, a),(B, b),(C, a),(C, b),(D, a),(D, b),共8个,.. 故恰有1个样本落在分组[11.5, 14.5)的概率P =815 【答案】(I )依题意,x 2a +y 2b =1,则{3a 2+34b 2=1a 2=b 2+c 2c a =12,解得a =2,b =√3,c =1,故椭圆C 的方程为x 24+y 23=1;(Ⅱ)由O ,R 分别为F 1F 2,PF 2的中点,故OR // PF 1.故△PF 1R 与△PF 1O 同底等高,故S △PF 1R =S △PF 1O ,S =S △PF 1R +S △PF 1O =S △PQO , 当直线PQ 的斜率不存在时,其方程为x =−1,此时S △PQO =12×1×[32−(−32)]=32, 当直线PQ 的斜率存在时,设其方程为:y =k(x +1),设P(x 1, y 1),Q(x 2, y 2), 显然直线PQ 不与x 轴重合,即k ≠0;联立{y =k(x +1)x 24+y 23=1 解得(3+4k 2)x 2+8k 2x +4k 2−12=0, △=144(k 2+1)>0,故{x 1+x 2=−8k 23+4k 2x 1x 2=4k 2−123+4k 2, 故|PQ|=√1+k 2|x 1−x 2|=√1+k 2√(x 1+x 2)2−4x 1x 2=12(1+k 2)3+4k 2,点O 到直线PQ 的距离d =√1+k 2,S =12|PQ|d =6√k (k +1)(3+4k 2)2,令u =3+4k 2∈(3, +∞), 故S =6√u−34∗u+14u2=32√−3u 2−2u +1∈(0,32),故S 的最大值为32 【考点】椭圆的定义 【解析】(Ⅰ)由题意可得{3a 2+34b 2=1a 2=b 2+c 2c a =12,解得即可, (Ⅱ)先判断出S =S △PF 1R +S △PF 1O =S △PQO ,再根据韦达定理和弦长公式和点到直线的距离可得三角形的面积,再利用换元和函数的性质即可求出 【解答】(I )依题意,x 2a 2+y 2b 2=1,则{3a 2+34b 2=1a 2=b 2+c 2c a=12,解得a =2,b =√3,c =1,故椭圆C 的方程为x 24+y 23=1;(Ⅱ)由O ,R 分别为F 1F 2,PF 2的中点,故OR // PF 1.故△PF 1R 与△PF 1O 同底等高,故S △PF 1R =S △PF 1O ,S =S △PF 1R +S △PF 1O =S △PQO , 当直线PQ 的斜率不存在时,其方程为x =−1,此时S △PQO =12×1×[32−(−32)]=32, 当直线PQ 的斜率存在时,设其方程为:y =k(x +1),设P(x 1, y 1),Q(x 2, y 2), 显然直线PQ 不与x 轴重合,即k ≠0;联立{y =k(x +1)x 24+y 23=1 解得(3+4k 2)x 2+8k 2x +4k 2−12=0, △=144(k 2+1)>0,故{x 1+x 2=−8k 23+4k 2x 1x 2=4k 2−123+4k 2, 故|PQ|=√1+k 2|x 1−x 2|=√1+k 2√(x 1+x 2)2−4x 1x 2=12(1+k 2)3+4k 2,点O 到直线PQ 的距离d =√1+k 2,S =12|PQ|d =6√k 2(k 2+1)(3+4k 2)2,令u =3+4k 2∈(3, +∞), 故S =6√u−34∗u+14u2=32√−3u 2−2u +1∈(0,32),故S 的最大值为32【答案】(I )依题意,f ´(x)=e 2+1+xe x ,故f ´(0)=e 0+1=2 因为f(0)=0,故所求切线方程为y =2x ; (Ⅱ)依题意,g ´(x)=(x −a +1)⋅e x ,令g ´(x)=0得x =a −1所以当a −1≤1时,x ∈[1, 2]时,g ´(x)≥0恒成立,g(x)单调递增,g(x)最大值为g(2),当a −1≥2时,x ∈[1, 2]时,g ´(x)≤0恒成立,g(x)单调递减,g(x)最大值为g(1) 当1<a −1<2时,x ∈[1, a −1)时,g ´(x)≤0,g(x)单调递减; x ∈(a −1, 2)时,g ´(x)>0,g(x)单调递增. 当x ∈[1, 2]时,g(x)最大值为g(1)或g(2) g(1)=(1−a)e ,g(2)=(2−a)e 2,g(1)−g(2)=(1−a)e −(2−a)e 2=(e 2−e)a −(2e 2−e) ∴ 当a ≥2e 2−e e 2−e=2e−1e−1时,g(1)−g(2)≥0,g(x)max =g(1)=(1−a)e .当a <2e 2−e e 2−e=2e−1e−1时,g(1)−g(2)<0,g(x)max =g(2)=(2−a)e 2【考点】导数求函数的最值利用导数研究曲线上某点切线方程(Ⅰ)求出函数的导数,计算f(0),f′(0),求出切线方程即可;(Ⅱ)求出函数的导数,通过讨论a的范围,结合函数的单调性求出函数的最大值即可.【解答】(I)依题意,f´(x)=e2+1+xe x,故f´(0)=e0+1=2因为f(0)=0,故所求切线方程为y=2x;(Ⅱ)依题意,g´(x)=(x−a+1)⋅e x,令g´(x)=0得x=a−1所以当a−1≤1时,x∈[1, 2]时,g´(x)≥0恒成立,g(x)单调递增,g(x)最大值为g(2),当a−1≥2时,x∈[1, 2]时,g´(x)≤0恒成立,g(x)单调递减,g(x)最大值为g(1)当1<a−1<2时,x∈[1, a−1)时,g´(x)≤0,g(x)单调递减;x∈(a−1, 2)时,g´(x)>0,g(x)单调递增.当x∈[1, 2]时,g(x)最大值为g(1)或g(2)g(1)=(1−a)e,g(2)=(2−a)e2,g(1)−g(2)=(1−a)e−(2−a)e2=(e2−e)a−(2e2−e)∴当a≥2e2−ee2−e =2e−1e−1时,g(1)−g(2)≥0,g(x)max=g(1)=(1−a)e.当a<2e2−ee2−e =2e−1e−1时,g(1)−g(2)<0,g(x)max=g(2)=(2−a)e2(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4一4:坐标系与参数方程](10分),【答案】(I)依题意,直线l的极坐标方程为θ=θ0(θ0≠π2, ρ∈R)曲线C:ρSin2θ=4cosθ,ρ2sin2θ=4ρcosθ,直角坐标方程为y2=4x.(Ⅱ)把θ=θ0代入ρsin2θ=4cosθ,得ρM=4cosθ0sin2θ0.直线l´过原点且与直线l相互垂直,可知直线l´的极坐标方程为θ=θ0+π2(ρ∈R)代入ρsin2θ=4cosθ,得ρN cos2θ=−4sinθ0,所以ρN=−4sinθ0cos2θ0,S△OMN=12|OM|⋅|ON|,=2|ρM|⋅|ρN|,=16|2sinθ0cosθ0|=16|sin2θ0|≥16,(当且仅当θ0=π4或3π4时,等号成立)即△OMN面积的最小值为16.【考点】圆的极坐标方程【解析】(Ⅰ)直接利用转换关系,把参数方程和极坐标方程与直角坐标方程进行转化.(Ⅱ)利用直线的极坐标方程建立方程组,进一步利用三角形的面积公式求出结果.(I )依题意,直线l 的极坐标方程为θ=θ0(θ0≠π2, ρ∈R) 曲线C:ρSin 2θ=4cosθ,ρ2sin 2θ=4ρcosθ, 直角坐标方程为y 2=4x .(Ⅱ)把θ=θ0代入ρsin 2θ=4cosθ,得ρM =4cosθsin 2θ0.直线l ´过原点且与直线l 相互垂直,可知直线l ´的极坐标方程为θ=θ0+π2(ρ∈R) 代入ρsin 2θ=4cosθ, 得ρN cos 2θ=−4sinθ0,所以ρN =−4sinθcos 2θ0,S △OMN =12|OM|⋅|ON|, =2|ρM |⋅|ρN |, =16|2sinθ0cosθ0|=16|sin2θ0|≥16,(当且仅当θ0=π4或3π4时,等号成立) 即△OMN 面积的最小值为16.[选修4-5:不等式选讲](10分)【答案】(1)当a =3时,函数f(x)=log 2(|x +1|+|x −1|−a)=log 2(|x +1|+|x −1|−3), ∴ |x +1|+|x −1|−3>0,即|x +1|+|x −1|>3∴ {x <−1−x −1+1−x >3 或{−1≤x ≤1x +1+1>3 或{x >1x +1+x −1>3 .解得x <−32或x >32.故函数的定义域为{x|x <−32或x >32}(2)若不等式f(x)≥2的解集为R ,则f(x)≥2恒成立. 故|x +1|+|x −1|−a ≥4恒成立.∵ |x +1|+|x −1|≥|x +1−(x −1)|=2,(当且仅当−1≤x ≤1时,取“=”) ∴ 2−a ≥4,故有a ≤−2,故实数a 的最大值为−2 【考点】绝对值三角不等式 【解析】(I )当a =3时,函数f(x)=log 2(|x +1|+|x −1|−a)=log 2(|x +1|+|x −1|−3), 可得|x +1|+|x −1|−3>0,即|x +1|+|x −1|>3,去掉绝对值分别求解, (Ⅱ)若不等式f(x)≥2的解集为R ,则f(x)≥2恒成立.故|x +1|+|x −1|−a ≥4恒成立.求得|x +1|+|x −1|≥|x +1−(x −1)|=2 即可. 【解答】(1)当a =3时,函数f(x)=log 2(|x +1|+|x −1|−a)=log 2(|x +1|+|x −1|−3), ∴ |x +1|+|x −1|−3>0,即|x +1|+|x −1|>3∴ {x <−1−x −1+1−x >3 或{−1≤x ≤1x +1+1>3 或{x >1x +1+x −1>3.解得x <−32或x >32.故函数的定义域为{x|x <−32或x >32}(2)若不等式f(x)≥2的解集为R ,则f(x)≥2恒成立. 故|x +1|+|x −1|−a ≥4恒成立.∵ |x +1|+|x −1|≥|x +1−(x −1)|=2,(当且仅当−1≤x ≤1时,取“=”) ∴ 2−a ≥4,故有a ≤−2,故实数a 的最大值为−2。
【高三数学试题精选】2018年高考数学第一次模拟考试卷(哈尔滨市有答案)

所以面积的最大值为.
21.解
(1)设函数
,
①时,为单调减函数,不成立
②时,,;,
所以函数有唯一的极小值,需要,
又因为,,
所以在有两个零点,,有两个交点,
所以
(2)设函数,且
①当时,有,不成立,
②当时,(i)时,,当时,
所以在上是单调增函数,所以
(ii)时,设,
所以存在,使得时
,∴,不成立
∴的最小值为3,
只需,
即,那么实数的范围是.
5
c
∴周长的范围是
18.解(1),.
(2)可取值为0,1,2,3,4
01234
0.65610.29160.04860.00360.0001
.
19.解
(1)证明连结交于,则为中点,设为中点,连结,则,且.
由已知且.
∴且,所以四边形为平行四边形.
∴,即.
∵平面,平面,
所以平面.
(2)由已知为边长为2的正方形,
2018年高考数学第一次模拟考试卷(哈尔滨市有答案)
c 5不等式选讲
已知函数.
(1)求不等式的解集;
(2)若关于的不等式的解集为,求实数的取值范围.
10DAAcD 11、12BA
二、填空题
13.64 14.60 15.16.
三、解答题
17.解
(1)∵,
∴
∴,
∴.
(2)由外接圆半径为1,可知,
又,
∴
∴
综上所述
(3)不等式变形为
设函数,由第(2)问可知当时函数为单调函数,所以原不等式成立.
22.(1)点的直角坐标为
点的极坐标为
曲线的直角坐标方程为
黑龙江省哈尔滨市2018届高考第二次模拟数学(文)试题含答案

D哈尔滨市第六中学2018届高三第二次模拟考试文科数学试卷考试说明:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.(1)答题前,考生先将自己的姓名、准考证号码填写清楚;(2)选择题必须使用2B 铅笔填涂, 非选择题必须使用0.5毫米黑色字迹的签字笔书写, 字体工整,字迹清楚;(3)请在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效; (4)保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合2{|23,},{|3}A x x x Z B y y x =-≤≤∈==-, 则A B I 的子集个数共有( )A. 1个B. 2个C. 3个D. 4个2.若复数z 满足z (2-i)=1+7i ,则||z =( )A.B.C. D. 2 3. 已知2cos()423πθ-=,则sin θ=( ) A.79B. 19C. 19-D. 79-4. 在ABC ∆中,,3,||1AD AB BC BD AD ⊥==uu u r uu u r uuu r ,则AC AD ⋅=uuu r uuu r( )A.1B.2C.3D.45.我国南宋数学家秦九韶给出了求n 次多项式1110n n n n a x a x a x a --++++L 当0x x =时的值的一种简捷算法,该算法被后人命名为“秦九韶算法”.例如,可将3次多项式改写为:323210a x a x a x a +++ ()()3210a x a x a x a =+++然后进行求值.运行如图所示的程序框图,是求哪个多项式的值( ) A. 432234x x x x ++++ B. 4322345x x x x ++++ C. 3223x x x +++ D. 32234x x x +++ 6. 一个四棱柱的三视图如图所示,该四棱柱的体积为( )A. 12B. 24C. 36D. 487.已知函数()()sin f x A x ωϕ=+ (0,0,0)2A πωϕ>><<的部分图像如图所示,若将函数()f x 的图像上点的纵坐标 不变,横坐标缩短到原来的14,再向右平移6π个单位,所得到的函数()g x 的解析式为( )A. ()12sin4g x x = B. ()2sin2g x x = C. ()12sin 46g x x π⎛⎫=-⎪⎝⎭ D. ()2sin 26g x x π⎛⎫=- ⎪⎝⎭8. 圆O :224x y +=上到直线l :0x y a -+=的距离等于1的点恰好有4个,则a 的取值范围为( )A. [B. (C. [1,1]-D. (1,1)-9. 已知,m n 为异面直线,m ⊥平面α,n ⊥平面β,直线l 满足,,,l m l n l l αβ⊥⊥⊄⊄,则( )A. //αβ且//l αB. αβ⊥且l β⊥C. α与β相交,且交线垂直于lD. α与β相交,且交线平行于l10. 若新高考方案正式实施,甲、乙两名同学要从政治、历史、物理、化学四门功课中分别选取两门功课学习,则他们选择的两门功课都不相同的概率为( ) A.16 B. 13 C. 12 D. 2311. F 是抛物线22y x =的焦点,点P 在抛物线上,点Q 在抛物线的准线上,若2PF FQ =uu u r uu u r,则||PQ =A.92B. 4C.72D. 3 12. 已知函数53()272f x x x x =---+,若2()(2)4f a f a +->,则实数a 的取值范围是( ) A. (,1)-∞ B. (,3)-∞ C. (1,2)- D. (2,1)-第II 卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答,第22题、第23题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每题5分.)13.已知实数,x y 满足约束条件0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩,则2z x y =-的最大值为 .14. 在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说:“甲说的对”;丁说:“反正我没有责任”,四人中只有一个人说的是真话,则该事故中需要负主要责任的人是 .15. 已知平面四边形ABCD 中,AB=AD=2,BC=CD, 90BCD ∠=︒,则四边形ABCD 面积的最大值为 .16. 已知函数()(1)||4f x x x a =--+有三个不同的零点,则实数a 的取值范围是 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)已知n S 是等比数列{}n a 的前n 项和,423,,S S S 成等差数列,且23418a a a ++=-. (1)求数列{}n a 的通项公式; (2)若n n n b a S =⋅,求123n b b b b ++++L .18.(本小题满分12分)某冷饮连锁店计划按天订购一种冷饮,每天的进货量相同,进货成本每杯5元,售价每杯8元,未售出的冷饮降价处理,以每杯3元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温有关.如果最高气温不低于25℃,那么需求量为600杯;如果最高气温位于区间[20,25),那么需求量为400杯;如果最高气温低于20℃,那么需求量为300杯.为了确定九月份的订购计划,统计了前三年九月份各天的最高气温数据数据,得到下面的频数分布表:(1) 估计九月份这种冷饮一天的需求量不超过400杯的概率;(2) 设九月份一天销售这种冷饮的利润为Y (单位:元).当九月份这种冷饮一天的进货量为500杯时,写出Y 的所有可能值并估计Y 大于500的概率.19.(本小题满分12分)如图,四棱锥E-ABCD 中,底面ABCD 是平行四边形,M,N 分别为BC,DE 中点. (1)证明:CN//平面AEM ;(2)若ABE ∆是等边三角形,平面ABE ⊥平面BCE ,,2CE BE BE EC ⊥==,求三棱锥N AEM -的体积.20. (本小题满分12分)如图,已知椭圆C : 22221(0)x y a b a b+=>>, 其左右焦点为()11,0F -及()21,0F ,过点1F 的直线交椭圆C 于,A B 两点,线段AB 的中点为G , AB 的中垂线与x 轴和y 轴分别交于,DE 两点,且1AF 、12F F 、2AF构成等差数列.(1)求椭圆C 的方程;(2)记1G FD ∆的面积为1S , OED ∆(O 为原点)的面积为2S , 试问:是否存在直线AB ,使得1212S S =?说明理由.21. (本小题满分12分)已知函数2()ln (1)1()f x x x a x x a R =---+∈ (1) 当0a =时,求()f x 的极值;(2) 当(1,)x ∈+∞时,()0f x <恒成立,求a 的取值范围.请从下面所给的22、23题中任选一题作答,如果多做,则按做的第一题计分.22. (本小题满分10分)在极坐标系中,曲线1C 的极坐标方程是22(13sin )16ρθ+=,点P 是曲线1C 上的动点.点M 满足2OP OM =uu u r uuu r(O为极点). 设点M 的轨迹为曲线2C . 以极点O 为原点,极轴为x 轴的正半轴建立平面直角坐标系xoy ,已知直线l的参数方程是1(x tt y t =+⎧⎨=⎩为参数). (1)求曲线2C 的直角坐标方程与直线l 的普通方程;(2)设直线l 交两坐标轴于,A B 两点,求ABM ∆面积的最大值.23. (本小题满分10分)已知0a >, 0b >,且222a b +=. (1)若2214211x x a b+≥---恒成立,求x 的取值范围; (2)证明: ()55114a b a b ⎛⎫++≥⎪⎝⎭.二模文数答案一、选择题:DBCC DCDB DAAC二、填空题:13. 5 14. 甲15. 16.三、解答题:17.解:(1)设等比数列的公比为,则.由题意得,即,解得.故数列的通项公式为.(2)由(1)有.则18.解:(1)(2)当最高气温不低于25℃,那么需求量为600杯;当最高气温位于区间,那么需求量为400杯;当最高气温低于20℃,那么需求量为300杯;故当最高气温不低于20℃时,,19.(1)证明:取中点,连结.因为中,分别为中点,所以.又因为四边形是平行四边形,所以.又是中点,所以,所以.所以四边形为平行四边形,所以,又平面,平面,所以平面.(2)解:取中点,连结,则,因为平面平面,平面平面,平面,所以平面.又由(1)知平面,所以.又因为为中点,所以.20.(1)因为、、构成等差数列,所以,所以,又因为,所以,所以椭圆的方程为.(2)假设存在直线,使得,显然直线不能与, 轴垂直.设方程为,由消去y整理得,显然.设,,则,故点的横坐标为,所以.设,因为,所以,解得,即.∵和相似,且,则,∴,整理得,解得,所以,所以存在直线满足条件,且直线的方程为.21.解:(1)时,,由解得有极小值,无极大值.(2)由的令,①当时,,在上单调增,不合题意;当时,由解得或②当时,,,在上单调增,不合题意;③当时,,当时,,在上单调递增,不合题意;④当时,,当时,,在上单调递减,不符合题意;综上所述,的取值范围是22解:(1)在极坐标系中,设点.由,得,代入曲线的方程并整理,得,再化为直角坐标方程,即曲线的直角坐标方程为.直线的参数方程(为参数)化为普通方程是.(2)由直线的方程为,可知.因为点在曲线上,所以设,,则点到直线的距离即为底边上的高,所以,所以,所以,。
黑龙江省哈尔滨市2018届高考第二次模拟数学(文)试题含答案

哈尔滨市第六中学 2018 届高三第二次模拟考试 文科数学试卷考试说明:本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分, 满分 150 分,考试时间 120 分钟. (1)答题前,考生先将自己的姓名、准考证号码填写清楚; (2)选择题必须使用 2B 铅笔填涂, 非选择题必须使用 0.5 毫米黑色字迹的签字笔书写, 字体工整, 字迹清楚; (3)请在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效; (4)保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第Ⅰ卷(选择题共 60 分)一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要 求的. 1.已知集合 A {x | 2 x 3, x Z}, B {y | y x2 3} , 则 A I B 的子集个数共有( A. 1 个 C. 3 个 B. 2 个 D. 4 个 ) B. D. 2 )2.若复数 z 满足 z(2-i)=1+7i,则 | z | ( A.510C. 2 2 3. 已知 cos( A.7 9 1 9 2 ) ,则 sin () 4 2 3B.1 9B7 9 uuu r uuu r uuu r uuu r uuu r 4. 在 ABC 中, AD AB, BC 3BD,| AD | 1 ,则 AC AD ()C. D. A.1 C.3B.2 D.4AD5.我国南宋数学家秦九韶给出了求 n 次多项式Can xn an1xn1 L a1x a0 当 x x0 时的值的一种简捷算法,该算法被后人命名为“秦九韶算法”. 例如, 可将 3 次多项式改写为:a3 x3 a2 x2 a1x a0 a3 x a2 x a1 x a0 然后进行求值.运行如图所示的程序框图,是求哪个多项式的值() A. x4 x3 2x2 3x 4 C. x3 x2 2x 3 B. x4 2x3 3x2 4x 5 D. x3 2x2 3x 46. 一个四棱柱的三视图如图所示,该四棱柱的体积为() A. 12 C. 36 B. 24 D. 487.已知函数 f x Asin x ( A 0, 0, 0 2)的部分图像如图所示,若将函数 f x 的图像上点的纵坐标 不变,横坐标缩短到原来的1 ,再向右平移 个单位,所得 4 6到的函数 g x 的解析式为() A. g x 2sin1 x 4B. g x 2sin2x D. g x 2sin 2 x C. g x 2sin 1 x 6 4 6)8. 圆 O: x2 y 2 4 上到直线 l: x y a 0 的距离等于 1 的点恰好有 4 个,则 a 的取值范围为( A. [ 2, 2] C. [1,1] B. ( 2, 2) D. ( 1,1)9. 已知 m, n 为异面直线, m 平面 , n 平面 ,直线 l 满足 l m, l n, l , l ,则() A. / / 且 l / / C. 与 相交,且交线垂直于 l B. 且 l D. 与 相交,且交线平行于 l10. 若新高考方案正式实施, 甲、 乙两名同学要从政治、 历史、 物理、 化学四门功课中分别选取两门功课学习, 则他们选择的两门功课都不相同的概率为() A.1 6B.1 3C.1 2D.2 3uuu r uuu r 11. F 是抛物线 y 2 2 x 的焦点,点 P 在抛物线上,点 Q 在抛物线的准线上,若 PF 2FQ ,则 | PQ |A. C.9 2 7 2B. 4 D. 312. 已知函数 f ( x) 2 x5 x3 7 x 2 ,若 f (a2 ) f (a 2) 4 ,则实数 a 的取值范围是() A. (,1) B. (,3) C. (1, 2) D. ( 2,1)第 II 卷(非选择题共 90 分)本卷包括必考题和选考题两部分.第 13 题~第 21 题为必考题,每个试题考生都必须作答,第 22 题、第 23 题 为选考题,考生根据要求作答. 二、填空题(本大题共 4 小题,每题 5 分.)x y 0 13.已知实数 x, y 满足约束条件 x y 4 0 ,则 z 2 x y 的最大值为 y 1 .14. 在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应 负主要责任”;丙说:“甲说的对”;丁说:“反正我没有责任”,四人中只有一个人说的是真话,则该事故中 需要负主要责任的人是 .15. 已 知 平 面 四 边 形 ABCD 中 , AB=AD=2 , BC=CD, BCD 90 , 则 四 边 形 ABCD 面 积 的 最 大 值 为 . .16. 已知函数 f ( x) ( x 1) | x a | 4 有三个不同的零点,则实数 a 的取值范围是 三、解答题(本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分 12 分) 已知 Sn 是等比数列 an 的前 n 项和, S4 , S2 , S3 成等差数列,且 a2 a3 a4 18 . (1)求数列 an 的通项公式; (2)若 bn an Sn ,求 b1 b2 b3 L bn .18.(本小题满分 12 分) 某冷饮连锁店计划按天订购一种冷饮,每天的进货量相同,进货成本每杯 5 元,售价每杯 8 元,未售出的冷 饮降价处理,以每杯 3 元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温有关.如 果最高气温不低于 25℃,那么需求量为 600 杯;如果最高气温位于区间 [20, 25) ,那么需求量为 400 杯;如果 最高气温低于 20℃,那么需求量为 300 杯.为了确定九月份的订购计划,统计了前三年九月份各天的最高气 温数据数据,得到下面的频数分布表:[15, 20)[20, 25)[25,30)[35, 40)[35, 40)最高气温(℃) 天数 (1) 估 计[10,15)117322965 九月份这种冷饮一天的需求量不超过 400 杯的概率; (2) 设九月份一天销售这种冷饮的利润为 Y(单位:元) .当九月份这种冷饮一天的进货量为 500 杯时, 写出 Y 的所有可能值并估计 Y 大于 500 的概率.19.(本小题满分 12 分) 如图,四棱锥 E-ABCD 中,底面 ABCD 是平行四边形,M,N 分别为 BC,DE 中点. (1)证明:CN//平面 AEM; (2)若 ABE 是等边三角形,平面 ABE 平面 BCE , CE BE , BE EC 2 , 求三棱锥 N AEM 的体积.20. (本小题满分 12 分)x2 y 2 如图,已知椭圆 C : 2 2 1(a b 0) ,其左右焦点为 F 1 1,0 及 F2 1,0 ,过点 F 1 的直线交椭圆 a bC 于 A, B 两点,线段 AB 的中点为 G , AB 的中垂线与 x 轴和 y 轴分别交于 D, E 两点,且 AF1 、 F1F2 、AF2 构成等差数列.(1)求椭圆 C 的方程; (2)记 GFD 的面积为 S1 , OED ( O 为原点)的面积为 S2 , 1 试问:是否存在直线 AB ,使得 S1 12S2 ?说明理由.21. (本小题满分 12 分) 已知函数 f ( x) x ln x a( x 1)2 x 1(a R) (1) 当 a 0 时,求 f ( x) 的极值; (2) 当 x (1, ) 时, f ( x) 0 恒成立,求 a 的取值范围.请从下面所给的 22、23 题中任选一题作答,如果多做,则按做的第一题计分.22. (本小题满分 10 分)uu u r uuur 在极坐标系中, 曲线 C1 的极坐标方程是 2 (1 3sin 2 ) 16 , 点 P 是曲线 C1 上的动点.点 M 满足 OP 2OM(O 为极点). 设点 M 的轨迹为曲线 C2 . 以极点 O 为原点, 极轴为 x 轴的正半轴建立平面直角坐标系 xoy ,已知x 1 t (t 为参数). 直线 l 的参数方程是 y t(1)求曲线 C2 的直角坐标方程与直线 l 的普通方程; (2)设直线 l 交两坐标轴于 A, B 两点,求 ABM 面积的最大值.23. (本小题满分 10 分) 已知 a 0 , b 0 ,且 a 2 b2 2 . (1)若1 4 2 2 x 1 x 1 恒成立,求 x 的取值范围; 2 a b(2)证明: 1 1 5 5 a b 4 . a b二模文数答案一、 二、 三、 选择题:DBCC 填空题:13. 5 解答题: 的公比为 ,则 . DCDB DAAC 14. 甲 15. 16.17.解: (1)设等比数列由题意得 故数列 的通项公式为,即 .,解得.(2)由(1)有 则.18.解: (1) (2)当最高气温不低于 25℃,那么需求量为 600 杯; 当最高气温位于区间 ,那么需求量为 400 杯;当最高气温低于 20℃,那么需求量为 300 杯;故当最高气温不低于 20℃时,,19.(1)证明:取中点 ,连结.因为中,分别为中点,所以.又因为四边形是平行四边形, 所以 ,又 平面. 又 是 ,中点, 所以 平面 ,, 所以. 所以四边形为平行四边形,所以 所以 平面 .(2)解:取中点 ,连结 平面 ,所以 平面,则 平面 ,所以,因为平面 .平面,平面平面,又由(1)知.又因为 为 20. (1)因为中点,所以 、 、 构成等差数列,所以. ,所以 ,又因为,所以 ,使得,所以椭圆的方程为 不能与 ,. 轴垂直.(2)假设存在直线 设 方程为,显然直线 ,由 显然消去 y 整理得 .,设,,则,故点的横坐标为,所以.设,因为,所以,解得,即.∵和相似,且,则 整理得 所以存在直线 21.解: (1) 时,,∴ ,解得 ,所以 的方程为 ,由 x (0,1) 1 解得 , .,满足条件,且直线↘ 有极小值 ,无极大值.0极小值+↗(2)由的令 ①当 时, ,, 在 上单调增, 不合题意;当时,由解得或②当时,,,在上单调增,不合题意;③当时, 不合题意;,当时,,在上单调递增,④当时, 不符合题意;,当时,,在上单调递减,综上所述, 的取值范围是 22 解: (1)在极坐标系中,设点 代入曲线 的方程 .由 ,得 并整理,得 , ,再化为直角坐标方程,即曲线 直线的参数方程 (2)由直线的方程为 ,可知的直角坐标方程为. .(为参数)化为普通方程是 .因为点 在曲线上,所以设,,则点 到直线的距离 即为底边上的高,所以,所以,所以,。
黑龙江省哈尔滨市2018届高考第二次模拟数学(文)试题含答案

D哈尔滨市第六中学2018届高三第二次模拟考试文科数学试卷考试说明:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.(1)答题前,考生先将自己的姓名、准考证号码填写清楚;(2)选择题必须使用2B 铅笔填涂, 非选择题必须使用0.5毫米黑色字迹的签字笔书写, 字体工整,字迹清楚;(3)请在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;(4)保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|23,},{|3}A x x x Z B y y x =-≤≤∈==-, 则A B I 的子集个数共有( )A. 1个B. 2个C. 3个D. 4个2.若复数z 满足z (2-i)=1+7i ,则||z =( )A.B.C. D. 2 3. 已知2cos()423πθ-=,则sin θ=( ) A.79B. 19C. 19-D. 79-4. 在ABC ∆中,,3,||1AD AB BC BD AD ⊥==u u u r u u u r u u u r ,则AC AD ⋅=u u u r u u u r( )A.1B.2C.3D.45.我国南宋数学家秦九韶给出了求n 次多项式1110n n n n a x a x a x a --++++L 当0x x =时的值的一种简捷算法,该算法被后人命名为“秦九韶算法”.例如,可将3次多项式改写为: 323210a x a x a x a +++()()3210a x a x a x a =+++然后进行求值.运行如图所示的程序框图,是求哪个多项式的值( ) A. 432234x x x x ++++ B. 4322345x x x x ++++ C. 3223x x x +++ D. 32234x x x +++ 6. 一个四棱柱的三视图如图所示,该四棱柱的体积为( )A. 12B. 24C. 36D. 487.已知函数()()sin f x A x ωϕ=+ (0,0,0)2A πωϕ>><<的部分图像如图所示,若将函数()f x 的图像上点的纵坐标 不变,横坐标缩短到原来的14,再向右平移6π个单位,所得 到的函数()g x 的解析式为( )A. ()12sin4g x x = B. ()2sin2g x x = C. ()12sin 46g x x π⎛⎫=-⎪⎝⎭ D. ()2sin 26g x x π⎛⎫=- ⎪⎝⎭8. 圆O :224x y +=上到直线l :0x y a -+=的距离等于1的点恰好有4个,则a 的取值范围为( )A. [B. (C. [1,1]-D. (1,1)-9. 已知,m n 为异面直线,m ⊥平面α,n ⊥平面β,直线l 满足,,,l m l n l l αβ⊥⊥⊄⊄,则( )A. //αβ且//l αB. αβ⊥且l β⊥C. α与β相交,且交线垂直于lD. α与β相交,且交线平行于l 10. 若新高考方案正式实施,甲、乙两名同学要从政治、历史、物理、化学四门功课中分别选取两门功课学习,则他们选择的两门功课都不相同的概率为( ) A.16 B. 13 C. 12 D. 2311. F 是抛物线22y x =的焦点,点P 在抛物线上,点Q 在抛物线的准线上,若2PF FQ =u u u r u u u r,则||PQ =A. 92B. 4C.72D. 3 12. 已知函数53()272f x x x x =---+,若2()(2)4f a f a +->,则实数a 的取值范围是( )A. (,1)-∞B. (,3)-∞C. (1,2)-D. (2,1)-第II 卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答,第22题、第23题为选考题,考生根据要求作答. 二、填空题(本大题共4小题,每题5分.)13.已知实数,x y 满足约束条件0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩,则2z x y =-的最大值为 .14. 在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说:“甲说的对”;丁说:“反正我没有责任”,四人中只有一个人说的是真话,则该事故中需要负主要责任的人是 .15. 已知平面四边形ABCD 中,AB=AD=2,BC=CD, 90BCD ∠=︒,则四边形ABCD 面积的最大值为 .16. 已知函数()(1)||f x x xa =--+有三个不同的零点,则实数a 的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)已知n S 是等比数列{}n a 的前n 项和,423,,S S S 成等差数列,且23418a a a ++=-. (1)求数列{}n a 的通项公式; (2)若nn n b a S =⋅,求123n b b b b ++++L .18.(本小题满分12分)某冷饮连锁店计划按天订购一种冷饮,每天的进货量相同,进货成本每杯5元,售价每杯8元,未售出的冷饮降价处理,以每杯3元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温有关.如果最高气温不低于25℃,那么需求量为600杯;如果最高气温位于区间[20,25),那么需求量为400杯;如果最高气温低于20℃,那么需求量为300杯.为了确定九月份的订购计划,统计了前三年九月份各天的最高气温数据数据,得到下面的频数分布表:(1)估计九月份这种冷饮一天的需求量不超过400杯的概率;(2)设九月份一天销售这种冷饮的利润为Y(单位:元).当九月份这种冷饮一天的进货量为500杯时,写出Y的所有可能值并估计Y大于500的概率.19.(本小题满分12分)如图,四棱锥E-ABCD中,底面ABCD是平行四边形,M,N分别为BC,DE中点.(1)证明:CN//平面AEM;(2)若ABE ∆是等边三角形,平面ABE ⊥平面BCE ,,2CE BE BE EC ⊥==,求三棱锥N AEM -的体积.20. (本小题满分12分)如图,已知椭圆C : 22221(0)x y a b a b +=>>, 其左右焦点为()11,0F -及()21,0F ,过点1F 的直线交椭圆C 于,A B 两点,线段AB 的中点为G , AB 的中垂线与x 轴和y 轴分别交于,D E 两点,且1AF 、12F F 、2AF 构成等差数列. (1)求椭圆C 的方程;(2)记1G FD ∆的面积为1S , OED ∆(O 为原点)的面积为2S , 试问:是否存在直线AB ,使得1212S S =?说明理由.21. (本小题满分12分)已知函数2()ln (1)1()f x x x a x x a R =---+∈(1) 当0a =时,求()f x 的极值;(2) 当(1,)x ∈+∞时,()0f x <恒成立,求a 的取值范围.请从下面所给的22、23题中任选一题作答,如果多做,则按做的第一题计分.22. (本小题满分10分)在极坐标系中,曲线1C 的极坐标方程是22(13sin )16ρθ+=,点P 是曲线1C 上的动点.点M 满足2OP OM =uu u r uuu r(O 为极点). 设点M 的轨迹为曲线2C . 以极点O 为原点,极轴为x 轴的正半轴建立平面直角坐标系xoy ,已知直线l 的参数方程是1(x tt y t =+⎧⎨=⎩为参数).(1)求曲线2C 的直角坐标方程与直线l 的普通方程;(2)设直线l 交两坐标轴于,A B 两点,求ABM ∆面积的最大值.23. (本小题满分10分)已知0a >, 0b >,且222a b +=. (1)若2214211x x a b+≥---恒成立,求x 的取值范围; (2)证明: ()55114a b a b ⎛⎫++≥⎪⎝⎭.二模文数答案一、选择题:DBCC DCDB DAAC二、填空题:13. 5 14. 甲15. 16.三、解答题:17.解:(1)设等比数列的公比为,则.由题意得,即,解得.故数列的通项公式为.(2)由(1)有.则18.解:(1)(2)当最高气温不低于25℃,那么需求量为600杯;当最高气温位于区间,那么需求量为400杯;当最高气温低于20℃,那么需求量为300杯;故当最高气温不低于20℃时,,19.(1)证明:取中点,连结.因为中,分别为中点,所以.又因为四边形是平行四边形,所以.又是中点,所以,所以.所以四边形为平行四边形,所以,又平面,平面,所以平面.(2)解:取中点,连结,则,因为平面平面,平面平面,平面,所以平面.又由(1)知平面,所以.又因为为中点,所以.20.(1)因为、、构成等差数列,所以,所以,又因为,所以,所以椭圆的方程为.(2)假设存在直线,使得,显然直线不能与, 轴垂直.设方程为,由消去y整理得,显然.设,,则,故点的横坐标为,所以.设,因为,所以,解得,即.∵和相似,且,则,∴,整理得,解得,所以,所以存在直线满足条件,且直线的方程为.21.解:(1)时,,由解得有极小值,无极大值.(2)由的令,①当时,,在上单调增,不合题意;当时,由解得或②当时,,,在上单调增,不合题意;③当时,,当时,,在上单调递增,不合题意;④当时,,当时,,在上单调递减,不符合题意;综上所述,的取值范围是22解:(1)在极坐标系中,设点.由,得,代入曲线的方程并整理,得,再化为直角坐标方程,即曲线的直角坐标方程为.直线的参数方程(为参数)化为普通方程是.(2)由直线的方程为,可知.因为点在曲线上,所以设,,则点到直线的距离即为底边上的高,所以,所以,所以,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
哈尔滨市第六中学校2018届第一次模拟考试文科数学考试说明:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.(1)答题前,考生先将自己的姓名、准考证号码填写清楚;(2)选择题必须使用2B 铅笔填涂, 非选择题必须使用0.5毫米黑色字迹的签字笔书写, 字体工整, 字迹清楚;(3)请在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;(4)保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀. 参考公式:样本数据n x x x ,,,21 的标准差[]22221)()()(1x x x x x x n s n -++-+-=,其中x 为样本的平均数柱体体积公式Sh V =,其中S 为底面面积,h 为高;锥体体积公式ShV 31=,其中S 为底面面积,h 为高 球的表面积和体积公式24R S π=,334R V π=,其中R 为球的半径第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知复数i a z +=)(R a ∈在复平面内对应的点在二象限,且2|)1(|>+⋅i z ,则实数a 的取值范围是( )(A )1>a 或1-<a (B )1-<a (C )12+>a 或21-<a (D )1>a 2.已知n S 是等差数列}{n a 的前n 项和,若8,653==a S ,则912S S -的值是( ) (A )24 (B )42 (C )60 (D )783.用二分法求函数()lg 3f x x x =+-的一个零点,根据参考数据,可得函数()f x 的一个零点的近似解(精确到1.0)为()(参考数据:409.05625.2lg ,419.0625.2lg ,439.075.2lg ,398.05.2lg ≈≈≈≈)(A ) 4.2 (B )5.2 (C ) 2.6 (D )56.24.已知点),(y x P 满足约束条件⎪⎩⎪⎨⎧-≥≥+≤632x y y x x y ,则y x z 2-=的最大值是( )(A )3- (B )2- (C )1- (D )25.如下程序框图的功能是:给出以下十个数:5,9,80,43,95,73,28,17,60,36,把大于60的数找出来,则框图中的①②应分别填入的是( ) (A )1?,60+=>i i x (B )1?,60+=<i i x (C )1?,60-=>i i x (D )1?,60-=<i i x6.已知双曲线12222=-b y a x 的焦点到渐近线的距离为32,且双曲线右支上一点P 到右焦点的距离的最小值为2,则双曲线的离心率为( )(A )3 (B )3 (C )2 (D )217.设}3,21,1,1{-∈a ,则使函数ax y =的定义域为R 且为奇函数的所有a 的值为( )(A )3,1 (B )1,1- (C )3,1- (D )3,1,1-8.已知函数)cos()(ϕ+=x x f (πϕ<<0)的导函数)('x f 的图象如图所示,则=ϕ( )(A )6π(B )32π (C )3π (D )65π9.设n m l ,,表示三条不同的直线,γβα,,表示三个不同的平面,给出下列四个命题: ①若βα⊥⊥⊥m l m l ,,,则βα⊥;②若β⊂m ,n 是l 在β内的射影,n m ⊥,则l m ⊥;③若m 是平面α的一条斜线,α∉A ,l 为过A 的一条动直线,则可能有α⊥⊥l m l ,; ④若γαβα⊥⊥,,则βα//其中真命题的个数为( )(A )1 (B )2 (C )3 (D )4 10.在直角梯形ABCD 中,CD AB //,︒=∠90BAD ,且①②12===CD AD AB ,M 是AB 的中点,且ND BN 2=,则AN CM ⋅的值为( )(A )45 (B )45- (C )67(D )67-11.利用计算机在区间)1,0(上产生两个随机数a 和b ,则方程xa x b-=2有实根的概率为( ) (A )31 (B )21(C )32 (D )112.设函数⎩⎨⎧>-≤-=0),1(0],[)(x x f x x x x f ,其中][x 表示不超过x 的最大整数,如1]1[,1]2.1[,2]2.1[==-=-,若k kx x f +=)(有三个不同的根,则实数k 的取值范围是( )(A )]31,41( (B )]41,0( (C )]31,41[ (D ))31,41[ 第Ⅱ卷(非选择题共90分)本试卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.将答案填在机读卡上相应的位置.13.抛物线)0(22>=p px y 的焦点为F ,准线l 与x 轴交于点M ,若N 为l 上一点,当MNF∆为等腰三角形,22=NF 时,则=p _____14.如图一个几何体的正视图和俯视图如图所示,其中俯视图为边长为32的正三角形,且圆与三角形内切,则侧视图的面积为_____15.已知数列}{n a 满足)2,(*112≥∈=+-n N n a a a n n n ,若4,111164654==++a a a a a ,则=++654a a a _____16.已知圆1)sin 2()cos 2(:221=-+-θθy x C 与圆1:222=+y x C ,在下列说法中: ①对于任意的θ,圆1C 与圆2C 始终相切; ②对于任意的θ,圆1C 与圆2C 始终有四条公切线;③当6θ=时,圆1C 被直线013:=--y x l 截得的弦长为3;④Q P ,分别为圆1C 与圆2C 上的动点,则||PQ 的最大值为4.其中正确命题的序号为______三、解答题:本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)“神州”号飞船返回舱顺利到达地球后,为了及时将航天员救出,地面指挥中心在返回舱预计到达的区域安排了同一条直线上的三个救援中心(记为D C B ,,).当返回舱距地面1万米的P 点时(假定以后垂直下落,并在A 点着陆),C 救援中心测得飞船位于其南偏东60方向,仰角为60,B 救援中心测得飞船位于其南偏西30方向,仰角为30.D 救援中心测得着陆点A 位于其正东方向. (1)求C B ,两救援中心间的距离;(2)D 救援中心与着陆点A 间的距离.18.(本小题满分12分)班主任为了对本班学生的考试成绩进行分析,决定从全班25位女同学,15位男同学中随机抽取一个容量为8的样本进行分析.(1)如果按性别比例分层抽样,则样本中男、女生各有多少人;(2)随机抽取8位同学,数学分数依次为:60,65,70,75,80,85,90,95; 物理成绩依次为:72,77,80,84,88,90,93,95,①若规定80分(含80分)以上为良好,90分(含90分)以上为优秀,在良好的条件下,求两科均为优秀的概率;②若这8位同学的数学、物理分数事实上对应下表:根据上表数据可知,变量y 与x 之间具有较强的线性相关关系,求出y 与x 的线性回归方程(系数精确到0.01).(参考公式:a bx y +=^,其中∑∑==---=ni i ni i i x x y y x x b 121)())((,x b y a -=;参考数据:5.77=x ,875.84=y ,1050)(812≈-∑=i i x x ,688))((81≈--∑=i i i y y x x ,4.321050≈,BADCP 东北PADBC4.21457≈,5.23550≈)19.(本小题满分12分)在四棱锥ABCD P -中,底面ABCD 是一直角梯形,90=∠BAD ,a AD AB BC AD ==,//,⊥=PD a BC ,底面.(1)求三棱锥PAC B -的体积;(2)在PD 上是否存在一点F ,使得//PB 平面ACF ,若存在,求出FD PF的值;若不存在,试说明理由; 20.(本小题满分12分)已知椭圆12222=+b y a x (0>>b a )的离心率为22,且短轴长为2.(1)求椭圆的方程;(2)若与两坐标轴都不垂直的直线l 与椭圆交于B A ,两点,O 为坐标原点,且32=⋅OB OA ,32=∆AOB S ,求直线l 的方程.21.(本小题满分12分) 已知x x f ln )(=,x ax x g +=)()(R a ∈.(1)求)()(x g x f -的单调区间;(2)若1≥x 时,)()(x g x f ≤恒成立,求实数a 的取值范围;请考生在22、23、24三题中任选一题作答,如果多做,则按所做的的第一题记分. 22.(本小题满分10分) 选修4-1:几何证明选讲如图,已知C 点在⊙O 直径的延长线上,CA 切⊙O 于A 点,DC文科数学试题第5页(共8页)是ACB ∠的平分线,交AE 于F 点,交AB 于D 点. (1)求ADF ∠的度数; (2)若AC AB =,求BC AC :.23.(本小题满分10分) 选修4-4:坐标系与参数方程已知曲线1C 的参数方程为⎩⎨⎧==θθcos sin 2y x (θ为参数),曲线2C 的参数方程为⎩⎨⎧+==12t y t x (t 为参数).(1)若将曲线1C 与2C 上各点的横坐标都缩短为原来的一半,分别得到曲线'1C 和'2C ,求出曲线'1C 和'2C 的普通方程;(2)以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,求过极点且与'2C 垂直的极坐标方程.24.(本小题满分10分) 选修4-5:不等式选讲设函数|32||12|)(-+-=x x x f ,R x ∈. (1)解不等式5)(≤x f ;(2)若mx f x g +=)(1)(的定义域为R ,求实数m 的取值范围.文科数学答案1-5 BCCDA 6-10 CABBD 11-12 AD 13.2, 14.π+6,15.4, 16.①③④17:解:(1)由题意知AB PA AC PA ⊥⊥,,则PAB PAC ∆∆,均为直角三角形…………………1分在PAC Rt ∆中,︒=∠=60,1PCA PA ,解得33=AC …………………………2分在PAB Rt ∆中,︒=∠=30,1PBA PA ,解得3=AB …………………………3分又︒=∠90CAB ,33022=+=BC AC BC 万米. …………………………5分(2)103sin sin =∠=∠ACB ACD ,101cos -=∠ACD ,…………………………7分又︒=∠30CAD ,所以102133)30sin(sin -=∠+︒=∠ACD ADC .…………………………9分在ADC ∆中,由正弦定理,ACD ADADC AC ∠=∠sin sin …………………………10分 1339sin sin +=∠∠⋅=ADC ACD AC AD 万米…………………………12分18.(1)抽取男生数584025=⨯人,384015=⨯…………2分 (2)41=P ………………8分 (3)655.0≈b ,11.34≈a (09.34≈a 或10.34≈a 也算正确) 则线性回归方程为:11.34655.0+=x y …………………………12分 19.(1)1=v …………………………4分 (2)存在点F 使//PB 平面ACF ,2=DF PF (5)分连接BD 交AC 于E ,连接EF ,a BC a AD BC AD 2,,//==,所以21===PF DF EB DE BC AD ,所以EF PB //……………………………9分又⊆EF 平面ACF ,PB 不在平面ACF 内,所以//PB 平面ACF (12)20.(1)短轴长1,22==b b ,22==ace …………………………1分又222c b a +=,所以1,2==c a ,所以椭圆的方程为1222=+y x (4)分(2)设直线l 的方程为)0(≠+=k m kx y ,),(),,(2211y x B y x A⎩⎨⎧=++=2222y x m kx y ,消去y 得,0224)21(222=-+++m mkx x k⎪⎪⎩⎪⎪⎨⎧+-=⋅+-=+22212212122214k m x x k mk x x ,…………………………6分 322121=+=⋅y y x x OB OA 即3221223222=+--k k m 即810922+=k m …………………………8分 32)21()21(821]4)[(21||||212222221221221=+-+=-+=-=∆k m k m x x x x m x x m S AOB即22222)21()21(9k m k m +=-+…………………………10分 ⎪⎩⎪⎨⎧+=+=-+8109)21()21(92222222k m k m k m ,解得2,122==m k ,所以2±±=x y …………………12分21.(1))0(ln )()()(>--=-=x x ax x x g x f x F222'11)(x ax x x a x x F ++-=+-= (1)分当041≤+=∆a ,即41-≤a 时,0)('≤x F ,所以)(x F 在),0(+∞上单调递减 (3)分当041>+=∆a ,即41->a 时,,2141,2141,0)(21'++=++-==a x a x x F①041≤<-a 时,0,021>≤x x ,单调增区间为),0(2x ,单调减区间为),(2+∞x ………………5分②0>a 时,0,021>>x x ,单调增区间为),,(21x x ,单调减区间为),(),,0(21+∞x x ……………综上:①41-≤a 时,)(x F 在),0(+∞上单调递减(只要写出以上三种情况即得6分)②041≤<-a 时,0,021>≤x x ,单调增区间为),0(2x ,单调减区间为),(2+∞x③0>a 时,0,021>>x x ,单调增区间为),,(21x x ,单调减区间为),(),,0(21+∞x x(2)x ax x +≤ln 恒成立,等价于max 2]ln [x x x a -≥…………………………8分2ln )(x x x x k -=,x x x k 2ln 1)('-+=,021)]([''<-=x x k)('x k 在),1[+∞上单调递减,01)1()(''<-=≤k x k ,)(x k 在),1[+∞上单调递减 (10)分,所以)(x k 的最大值为1)1(-=k ,所以1-≥a …………………………12分 22.(1)因为AC 为⊙O 的切线,所以EAC B ∠=∠…………1分 因为DC 是ACB ∠的平分线,所以DCB ACD ∠=∠…………2分 所以ACD EAC DCB B ∠+∠=∠+∠,即AFD ADF ∠=∠,…………3分 又因为BE 为⊙O 的直径,所以︒=∠90DAE …………4分.所以︒=∠-︒=∠45)180(21DAE ADF (5)分(2)因为EAC B ∠=∠,所以ACB ACB ∠=∠,所以ACE ∆∽BCA ∆,所以AB AEBC AC =,…7分 在ABC ∆中,又因为AC AB =,所以︒=∠∠=∠30ACB B ,………8分ABE Rt ∆中,3330tan tan =︒===B AB AE BC AC ………10分23.解:(1)⎩⎨⎧==θθcos sin :'1y x C (θ为参数),………2分⎩⎨⎧+==1:'2t y t x C (t 为参数)………4分 '1C 的普通方程:122=+y x ,'2C 的普通方程:1+=x y ………………6分(2)在直角坐标系中过极点即为过原点与曲线'2C 垂直的直线方程:即为x y -= (8)在极坐标系中,直线化为1tan =θ,方程为4πθ=或43πθ=………………10分(少写一个扣一分)24.(1)⎪⎩⎪⎨⎧≤-<54421x x 或⎪⎩⎪⎨⎧≤≤≤522321x 或⎪⎩⎪⎨⎧≤->54423x x (3)分不等式的解集为]49,41[-∈x ………5分 (2)若m x f x g +=)(1)(的定义域为R ,则0)(≠+m x f 恒成立,即0)(=+m x f 在R 上无解7分又2|3212||32||12|)(=+--≥-+-=x x x x x f ,)(x f 的最小值为2,…………9分 所以2-<m ………………………………………………10分。