2.1 平方根(第1课时)教学设计

合集下载

平方根第一课时教学设计

平方根第一课时教学设计

平方根第一课时教学设计第一篇嘿,亲爱的小伙伴们!今天咱们要来一起探索平方根这个神奇的数学概念啦!咱们先从一个简单的问题入手哈。

比如说,一个正方形的面积是9 平方厘米,那它的边长是多少呢?这时候,平方根就派上用场啦!咱们想想,因为 3 的平方是 9,所以这个正方形的边长就是 3 厘米。

那 3 就叫做 9 的平方根。

比如说,4 的平方根是多少呢?因为 2 的平方是 4,还有 2 的平方也是 4,所以 4 的平方根就是 2 和 2 。

那怎么表示平方根呢?咱们用符号“ ± ”来表示,就像±√4 ,这里的“ ± ”就表示有两个值,一个正的,一个负的。

好啦,现在咱们来做几个小练习试试手。

比如,求 25 的平方根,大家动动脑,很快就能算出来啦!怎么样,小伙伴们,平方根是不是也没有那么难理解呀?咱们继续加油!第二篇嗨呀,亲爱的同学们!今天咱们要开启平方根的奇妙之旅咯!咱们先来讲个小故事吧。

小明有一块正方形的地毯,面积是 16 平方分米,他特别想知道这块地毯的边长。

那咱们来帮他算算呗。

因为 4 的平方是 16,所以地毯的边长就是 4 分米。

这里的 4 就是 16 的平方根。

那同学们想想,是不是只有 4 是 16 的平方根呢?其实呀,4 也是哦!因为 (4) 的平方也是 16 。

比如说,9 的平方根是±3 ,是不是很好理解?咱们再看看平方根的符号表示,像±√a ,这就表示 a 的两个平方根。

来,咱们实战一下。

算算 100 的平方根是多少?大家别紧张,大胆地想,大胆地算。

相信通过今天的学习,大家对平方根都能有清楚的认识啦!加油哦,同学们!。

《平方根》教学设计(第1课时)

《平方根》教学设计(第1课时)

《平方根》教学设计(第1课时)一、内容和内容解析1.内容算术平方根的概念,被开方数越大,对应的算术平方根也越大.2.内容解析算术平方根是初中数学中的重要概念,引入算术平方根,是解决实际问题的需要.作为《实数》的开篇第一课,掌握好算术平方根的概念和计算,一方面可为后续研究平方根、立方根提供方法上的借鉴,另一方面也是为认识无理数,完成数集的扩充,解决数学内部运算,以及二次根式的学习等作准备.算术平方根的概念分两个部分,分别是关于一个正数算术平方根的定义和关于0的算术平方根的规定.由算术平方根的概念引出其符号表示、读法及什么是被开方数.根据算术平方根的概念,可以利用互逆关系,求一些数的算术平方根.根据这些数的算术平方根的结果,不难归纳得出“被开方数越大,对应的算术平方根也越大”的结论,其间体现了从特殊到一般的思想方法.基于以上分析,确定本节课的教学重点为:算术平方根的概念和求法.二、目标和目标解析1.教学目标(1)了解算术平方根的概念,会用根号表示一个非负数的算术平方根.(2)会求一些数的算术平方根.2.目标解析(1)学生能说出正数的算术平方根的定义,记住0的算术平方根是0;会用符号表示一个非负数的算术平方根,并能正确读出符号,能够说出中数的名称;理解符号中被开方数≥0(即是一个非负数)的条件,了解也是一个非负数.(2)学生能依据算术平方根的定义判断一个数有没有算术平方根;掌握用平方运算求某些数的算术平方根的方法,会求出100以内完全平方数或分子、分母均是这类数的分数的算术平方根,以及上述这类数扩大(或缩小)100倍、10000倍的数的算术平方根;了解被开方数越大,对应的算术平方根也越大.三、教学问题诊断分析在本课学习之前,学生们已经掌握了一些完全平方数,对乘方运算也有一定的认识.但对于算术平方根为什么只是就正数进行定义,并对0的算术平方根作出规定,大多数学生不习惯.还有就是负数没有算术平方根,这种某数不能进行某种运算的情况在有理数的前五种代数运算中,一般不会碰到(0不能作除数除外);加之算术平方根的符号表示只涉及一个数,这与前面所学都涉及两个数的运算不一样,学生可能难以理解.基于以上分析,本节课的教学难点是:深化对算术平方根的理解.四、教学过程设计1.创设情境,引入新课教师展示教科书中本章的章前图,说明这是神舟七号宇宙飞船升空的照片,并提出下面的问题.问题 1 请同学们阅读本章的引言,你从引言中发现了哪些与数有关的概念?本章将要学习的主要内容以及大致的研究思路是什么?师生活动学生阅读,回答;教师补充说明数的范围不断扩大体现了人类在数的认识上的不断深入,让学生感受数的扩充的必要性.设计意图:通过“神州七号载人飞船发射成功”引入本章学习,激发兴趣,增强学生的学习热情.2.师生互动,学习新知问题2学校要举行美术作品比赛,小鸥想裁出一块面积为25dm的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?师生活动:学生可能很快答出边长为5dm.追问请说一说,你是怎样算出来的?师生活动:学生理清解决问题的思路,回答,教师可结合图片强调思路.设计意图:从现实生活中提出数学问题,使学生积极主动的投入到数学活动中去,同时为学习算术平方根提供实际背景和生活素材.问题3完成下表:设计意图:通过多个已知正方形面积求边长问题的解答,加强学生对这种运算的理解,为引出算术平方根作好铺垫.问题4 你能指出问题2与问题3的共同特点吗?师生活动:学生可能回答:上述问题都是“已知一个正方形的面积,求这个正方形的边长”的问题,教师可引导学生进一步归纳为“已知一个正数的平方,求这个正数”的问题,从而揭示问题的本质.在此基础上教师给出算术平方根的定义.一般地,如果一个正数的平方等于,即,那么这个正数叫做的算术平方根.的算术平方根记为,读作“根号”,叫做被开方数.问题5 上面就一个正数给出了算术平方根的定义,那么,你认为“0的算术平方根是多少?”“怎样表示”比较合适呢?师生活动:学生不难回答“0的算术平方根是0”,可以表示为“”;教师指明:算术平方根的概念包含“正数算术平方根”的定义和“0的算术平方根”的规定两部分.追问(1)根据以上学习,你认为对于算术平方根中被开方数可以是哪些数?师生活动:学生回答,教师明确:算术平方根中被开方数可以是正数或0,即非负数.追问(2)为什么负数没有算术平方根呢?师生活动:学生思考、回答,教师点拨:因为任何一个正数的平方都不可能是负数.设计意图:通过不断追问,由学生思考解决,体会分类讨论,既加深学生对算术平方根的理解,又让学生养成全面考虑问题的习惯.追问(3)请判断正误:(1)-5是-25的算术平方根;(2)6是的算术平方根;(3)0的算术平方根是0;(4)0.01是0.1的算术平方根;(5)一个正方形的边长就是这个正方形的面积的算术平方根.师生活动:学生回答,其他学生讨论,教师对有难度的进行适当引导.设计意图:检验对算术平方根的理解.3.例题示范,学会应用例1 求下列各数的算术平方根:(1)100;(2);(3)0.0001.师生活动:教师给出第(1)小题求数的算术平方根的思考过程,学生模仿独立完成第(2)、第(3)小题,两名学生板演后,全班交流.追问从例1中,你能发现被开方数的大小与对应的算术平方根的大小之间有什么关系吗?师生活动:学生比较被开方数的大小以及其算术平方根的大小,试图归纳出结论.如有困难,教师再举一些具体例子加以引导,说明.设计意图:通过求大小不同的三种形式的正数的算术平方根的实践,巩固求算术平方根的方法,由特殊到一般归纳出结论:被开方数越大,对应的算术平方根也越大.为下节课学习估计平方根的大小做准备.例2 求下列各式的值.(1);(2);(3).师生活动:学生先说明所求式子的含义,然后三名学生板演,全班交流,教师点评.设计意图:使学生熟悉算术平方根的符号表示,全面了解算术平方根.4.即时训练,巩固新知(1)教科书第41页的练习.(2)求的算术平方根.师生活动:学生独立完成,教师巡视,对个别差生进行辅导.对“求的算术平方根”,要让学生明白此题包含两层运算,即先求=?,然后再求“?”的算术平方根,实际上就是上述例1、例2类型的综合题.设计意图:通过练习使学生在了解算术平方根及有关概念的基础上,达到能自己求一个数的算术平方根,进一步巩固、深化对算术平方根的理解.5.课堂小结师生共同回顾本节课所学内容,并请学生回答以下问题:(1)什么是算术平方根?(2)如何求一个正数的算术平方根?(3)什么数才有算术平方根?设计意图:让学生对本节课知识进行梳理,进一步落实相关概念.6.布置作业:教科书习题6.1 第1、2题.五、目标检测设计1.若是49的算术平方根,则=( ).A.7 B.-7 C.49 D.-49设计意图:本题考查学生对算术平方根概念的理解.2.说出下列各式的意义,并求它们的值.(1);(2);(3);(4).设计意图:本题考查学生对算术平方根概念的理解,以及是否能正确认识符号化语言.3.的算术平方根是_____.设计意图:本题考查学生对算术平方根概念的全面理解.。

《平方根》教学设计精选文档

《平方根》教学设计精选文档

《平方根》教学设计精选文档平方根(第1课时)教学设计一、内容和内容解析本节课内容属于全日制义务教育数学课程标准(实验稿)中的“数与代数”领域,是在已学的数的平方运算基础上,通过逆向思维得出算术平方根的定义、意义和求法。

算术平方根是后面学习平方根、二次根式、一元一次方程以及解三角形等知识的基础,也为学习高中数学中的不等式、函数以及解析几何的绝大部分知识做好准备。

学生在七年级上册中已经学习了有理数,而算术平方根的学习,第一次在学生面前展示了无理数的形式,将数的范围由有理数扩充到了实数。

所以,本节课内容在整个数学学科的学习中起到承上启下的重要作用,使得学生对于数的理解实行了一次质的飞跃!二、目标和目标解析(4)-25的算术平方根是-5()5.若,则求的算数平方根。

师生活动:在规定的时间内让学生独立完成,由学生来对题目进行讲解,说明理由,必要时,教师加以引导、补充。

【设计意图】及时的课堂反馈,可以看出学生对于本节课内容的理解和掌握情况,及时发现问题,有助课后进行有针对性的加强训练。

提问:回顾问题4:现在知道面积为2m的正方形边长了吗?师生活动:得到结果cm【设计意图】前后呼应,对于本课知识的再次肯定,又为下节课无理数的讲解做铺垫。

提问:今天你有什么收获?师生活动:自由发言,概括本节课主要内容,教师梳理,并强调本课重点。

【设计意图】教师引导学生归纳本课知识要点,使学生对算术平方根的概念及其应用有一个较为整体、全面的认识,同时,使学生养成良好的学习习惯。

作业:必做题:课本75页习题13.1第1、2题.选做题:(1)3_-4为25的算术平方根,求_的值。

(2)2a-1的算术平方根是3,3a+b-1的算术平方根是4,求a,b的值。

【设计意图】必做题中的作业既是对算术平方根的概念及其应用的一次练习,又是学生对该内容掌握情况的反映。

选做题中的作业有一定的难度,可以让有能力的学生有一个知识的提高。

平方根教学设计(教案)

平方根教学设计(教案)

平方根教学设计(教案)章节一:平方根的概念引入教学目标:1. 让学生理解平方根的定义。

2. 让学生掌握求一个数的平方根的方法。

教学内容:1. 引入平方根的概念,通过举例让学生感受平方根的实际意义。

2. 讲解平方根的性质,如正数的平方根有两个,零的平方根是零,负数的平方根不存在。

教学活动:1. 利用实际问题引入平方根的概念,如“一个正方形的边长是a,求它的面积”。

2. 引导学生思考,如何求一个数的平方根,学生可以通过计算、估算等方式尝试求解。

章节二:平方根的运算规则教学目标:1. 让学生掌握平方根的运算规则。

2. 让学生能够熟练地进行平方根的计算。

教学内容:1. 讲解平方根的运算规则,如加减乘除的运算规则。

2. 通过例题让学生理解平方根的运算规则,并进行练习。

教学活动:1. 通过例题讲解平方根的运算规则,如(√a)²= a,(√a)×(√b)= √(ab)等。

2. 让学生进行平方根的计算练习,教师可以提供一些练习题,让学生进行计算和解答。

章节三:平方根的应用教学目标:1. 让学生理解平方根在实际问题中的应用。

2. 让学生能够运用平方根解决实际问题。

教学内容:1. 通过实际问题讲解平方根的应用,如求解方程、求解不等式等。

2. 通过例题让学生理解平方根的应用,并进行练习。

教学活动:1. 通过实际问题引入平方根的应用,如求解方程x²= 9。

2. 引导学生思考,如何运用平方根解决实际问题,学生可以通过计算、估算等方式尝试求解。

章节四:平方根的拓展教学目标:1. 让学生了解平方根的拓展知识。

2. 让学生能够运用平方根的拓展知识解决实际问题。

教学内容:1. 讲解平方根的拓展知识,如平方根的乘积、平方根的倒数等。

2. 通过例题让学生理解平方根的拓展知识,并进行练习。

教学活动:1. 通过例题讲解平方根的拓展知识,如(√a)×(√b)= √(ab),(√a)⁻¹= √a⁻¹等。

平方根(第一课时) 教学设计

平方根(第一课时) 教学设计

平方根(第一课时)教学设计一、教学目标1.理解平方根的概念2.掌握平方根的计算方法3.运用平方根解决实际问题二、教学重点1.平方根的概念和计算方法2.平方根的应用三、教学内容和方法1. 平方根的概念和计算方法1.1 通过定义引入平方根的概念•定义:如果一个数的平方等于另一个数,那么这个数就叫做这个数的平方根。

•举例:如果a² = b,那么a就是b的平方根。

1.2 计算平方根的方法•平方根的符号:√•计算方法:1.列举并观察完全平方数的特点2.借助观察结果计算非完全平方数的近似值2. 平方根的应用2.1 使用平方根解决实际问题•示例:小明要把一个方形园地的面积分成两个等面积的部分,他应该如何划分?–步骤:1.设园地的边长为x,则该园地的面积为x²2.根据题目要求,将x²分成两个等面积的部分3.求解方程x²/2 = x4.解得x = 2的平方根5.将x带回原方程,得到园地的边长四、教学步骤1.引入平方根的概念和计算方法。

通过生活中的例子和学生的实际体验,引导学生理解平方根的含义,并介绍计算平方根的方法。

2.带领学生观察完全平方数的特点,引导学生发现非完全平方数的计算方法。

3.给学生提供一些练习题,让学生进一步熟悉平方根的计算。

4.引入平方根的应用。

通过实际问题的解决过程,让学生理解平方根的实际应用价值。

5.继续给学生提供一些应用题,让学生运用所学知识解决问题。

6.对学生进行巩固练习,检验他们对平方根的理解和应用能力。

五、教学评价1.在引入概念和计算方法环节,观察学生的反应,确保学生理解平方根的概念和计算方法。

2.在应用环节,检查学生对平方根应用的理解和解题能力。

3.给学生一定的巩固练习,检验他们的掌握情况。

六、教学反思1.教学重点和难点:平方根的计算方法和应用,需要通过引导学生观察、思考和实际运用,培养学生的分析解决问题的能力。

2.教学步骤:教学过程设计合理,能够引导学生逐步理解和掌握平方根的概念和应用。

平方根教学设计

平方根教学设计

平方根(第1课时)一、教学目标知识与能力:1.理解算术平方根的概念,会用根号表示非负数的算术平方根,并了解算术平方根的非负性.2.了解求非负数的算术平方根与求一个数的平方间的互逆关系,会用平方运算求一个非负数的算术平方根.过程与方法:1.通过算术平方根的学习,发展学生的数感、符号感和抽象思维.2.通过拼图游戏,锻炼动手能力,体验解决问题方法的多样性.感受数与形的和谐统一,发展形象思维.3.在探究活动中,学会与他人合作,共同探究并解决相应问题.情感态度及价值观:1.通过算术平方根的学习,认识数学与人类生活的密切联系,激发学生的学习兴趣.2.通过探究活动,锻炼克服困难的意志,增强自信心,激发学生的探索热情.二、教学重、难点重点:算术平方根的概念难点:准确求出非负数的算术平方根三、教学设计教学过程教学内容设计意图活动1:请帮小鸥出主意(媒体播放)学校要举行美术作品大赛,小鸥同学很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?学生思考后可得出结论:∵52=25 ∴边长应取5dm从学生已有的生活经验出发,让他们亲身经历将实际问题抽象成数学模型的过程.老师追问:若小鸥还想裁出下面这些规格的正方形画布,它们的边长又分别是多少呢?面积191636边长生思考后,填上正确答案:面积191636x2=a边长1346x=?答案填毕后利用多媒体添加表格的最后一栏(媒体动态出示表格内容).为学习算术平方根知识提供实际背景和生活素材的同时,也为导出算术平方根的概念作好了铺垫.254 25452会)(1)-5 是25的算术平方根(2) -5 是-25的算术平方根(3) -5是(-5)2的算术平方根(4) 5是(-5)2的算术平方根2.填一填,他们的结果相同吗?(1)81的算术平方根是_____ (2)=_____的算术平方根是_____ +=_____3.想一想,下列各式是否有意义,为什么?(1)- (2)(3)(4)“辨一辩,填一填,想一想”.利用精心设计的问题串,激发学生对算术平方根知识作更深入的探究,进一步深化对所学知识的理解与应用.整理反思师生共议话收获:我知道了……我学会了……我发现……认真梳理自己在本节课中的知识、方法、能力、态度价值观等方面的收获,培养自我反思、自我评价、自主发展的意识.作业布置必做:P47 T1、2、4选做:P47 T5小组合作探究:究竟有多大?分层作业,尊重个性差异,让不同的学生拥有不同的收获,让不同的学生得到不同的发展.设计说明:1.指导思想:以学生现有的基础和教材所处的地位和作用,在教学过程中让学生在学会知识技能的同时,注重教学思想方法和良好习惯的培养。

算术平方根

算术平方根

《平方根(第1课时)》教学设计通州区先锋初级中学黄孝培一、内容和内容解析本节课内容属于《全日制义务教育数学课程标准(实验稿)》中的“数与代数”领域,是在已学的数的平方运算基础上,通过逆向思维得出算术平方根的定义、意义和求法。

算术平方根是后面学习平方根、二次根式、一元一次方程以及解三角形等知识的基础,也为学习高中数学中的不等式、函数以及解析几何的大部分知识做好准备。

学生在七年级上册中已经学习了有理数,而算术平方根的学习,第一次在学生面前展示了无理数的形式,将数的范围由有理数扩充到了实数。

因此,本节课内容在整个数学学科的学习中起到承上启下的重要作用,使得学生对于数的认识进行了一次质的飞跃!二、目标和目标解析(一)教学目标1、经历从实际问题情境中抽象出代数模型,让学生体会其中模型化思想,进一步了解建模思想。

2、通过实际问题抽象为数学问题中让学生体会互逆运算,培养学生的逆向思维。

3、了解算术平方根的概念,会用根号表示数的算术平方根并理解根号的意义。

4、会利用算术平方根的定义求一个非负数的算术平方根。

(二)目标解析1.学生目前的学习对象已经由具体的数发展为抽象的数学符号,而学生对于思想方法的理解和掌握又是循序渐进的,通过本节的教学,利用“问题情境——建立模型——求解与解释——应用与拓展——回顾与反思”的方式,让学生在分析问题中获得相应概念和解决问题的方法,为本章平方根、立方根的学习奠定基础。

2.逆向思维的运用在数学中处处可见,通过该目标消除学生对算术平方根的模糊认识,真正理解该定义,使学生能透过现象看本质,激活思维,学会思考。

3.数学思想的教学一般要经过渗透、领悟、应用、巩固四个阶段,而不是复制和一味的灌输,教学中,让学生理解算术平方根的定义,并运用定义分析算术平方根的意义、根号的意义,从而熟练的归纳、概括出求某些数算术平方根的方法。

三、教学问题诊断分析本课内容由实际问题引入,利用逆向思维,得出算术平方根的定义,学生对于这种抽象思想的理解和体会并不深刻,如果仅停留在模仿和生搬硬套的水平上,方法本身并不难,绝大部分学生能掌握,但是直接以根号的形式出现时,学生会感到茫然、不知所措,这样对于学生思维的发展和能力的提高毫无益处。

平方根(第1课时) 教学设计

平方根(第1课时) 教学设计

平方根(第1课时) 教学设计教材分析:平方根是北师大数学教材八年级上册内容,它与乘方互为逆运算,它的引入,从而导出了无理数,使的数的范围扩大到实数,并且它为后面二次根式打下基础,在整个教材中占有很重要的地位。

学情分析:学生对乘方知识的学习不错,开方是乘方的逆运算,学生不难理解,在此基础上老师细心引导,使学生学习更加有兴趣,为学习实数和根式打好基础。

教学目标:1,了解开平方、平方根和算术平方根的意义及其表示方法.2,理解平方运算与开平方运算是互逆运算的关系.3,会用平方运算求非负数的平方根与算术平方根。

教学重点:平方根与算术平方根的定义与运算教学难点:平方根与算术平方根的定义教具准备:多媒体课件教学流程:1、情境导入:教师利用多媒体播放幻灯片1(如图16-1-1所示).问题:要剪出一块面积为25c扩的正方形纸片,纸片的边长应是多少?你能用方程表示这个问题吗?试试看.如果正方形的面积是21c扩,那么它的边长又是多少呢?2.课前热身根据上述提出的间题,请同学们作如下讨论:(1)这种运算(=25)是已知什么?求什么?(2)这种运算与平方运算之间存有怎样的关系?3、合作探究(1)整体感知数学来源于社会生活,并为社会生活服务,为了解决课本开始提出的问题,这节课我们开始学习一种新的运算---开平方运算。

(2)四边互动互动1:师:教师利用多媒体演示幻灯片2.先填空,再观察两种运算的结构特点,回答问题。

平方运算是已知,求;后面的运算是已知,这节课我们开始学习一种新的运算是。

生:先动手操作尝试,再在相互交流的基础上逐个举手回答提出的问题,持续补充完善,达成共识。

师:逐个点击空格,显示答案,验证学生回答的结果。

明确:已知平方的结果,求底数的运算叫做开平方运算,开平方的结果叫做平方根。

若=a(a≥0),则把求x 的运算叫做开平方运算,开平方运算用符号“”表示(读作“二次根号”或“根号”),其运算结果我们用符号“”表示(读作“正负根号a”),叫做a的平方根,其中非负数平方根“”简记为,叫做a的算术平方根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章实数
2. 平方根(第1课时)
一、学生起点分析
学生的知识技能基础:学生刚学完《勾股定理》,通过本章第一节的学习,已具备了对无理数的认识,知道只有有理数是不够的.学生还具备了乘方运算的基础,并且有计算正方形等几何图形面积的技能.
学生活动经验基础:在前面的学习过程中,学生已经经历了很多合作学习的过程,具备了一定的合作学习的经验,具备了一定的合作与交流的能力.
二、教学任务分析
本节课是义务教育课程标准实验教科书北师大版八年级(上)第二章《实数》的第二节《平方根》.本节内容计2个课时,本节课是第1课时,主要是算术平方根的概念和性质的教学.课程标准要求,对于数学概念的教学,要关注概念的实际背景与形成过程,力求从学生实际出发,以他们熟悉的问题情景引入学习主题,在关注现实生活的同时,更加关注数学知识内部的挑战性,因此确定本节的教学目标如下:
①了解算术平方根的概念,会用根号表示一个数的算术平方根;了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求非负数的算术平方根;了解算术平方根的性质.
②在概念形成过程中,让学生体会知识的来源与发展,提高学生的思维能力;在合作交流等活动中,培养他们的合作精神和创新意识.
③让学生积极参与教学活动,培养他们对数学的好奇心和求知欲.
三、教学过程设计
本课时设计六个环节:第一环节:问题情境;第二环节:初步探究;第三环节:深入探究;第四环节:反馈练习;第五环节:学习小结;第六环节:作业布置.本节课教学流程为:
第一环节:问题情境
方法一:问题导入
内容:上节课学习了无理数,了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如上一节课我们做过的:
由两个边长为1的小正方形,通过剪一剪,拼一拼,得
到一个边长为a 的大的正方形,那么有22=a ,a
= ,2是有理数,而a 是无理数.在前面我们
学过若a x =2,则a 叫x 的平方,反过来x 叫a 的什么
呢?本节课我们一起来学习.
方法二:问题导入
内容:前面我们学习了勾股定理,请大家根据勾股定理,结
合图形完成填空:
=2x ,=2y ,=2z ,
=2w .
目的:方法一和二都是带着问题进入到这节课的学习,让学生体会到学习算术平方根的必要性.
效果:能表示22=x ,32=y ,42=z ,52=w ;能求得2=z ,但不能求得x ,y ,w 的值.
说明:方法一的引入是由上节课“数怎么又不够用了”的例子,起到了承前启后的作用,方法二的引入是由学生学习了第一章“勾股定理”后的应用,说明学习这节课的必要性.相对而言,建议选用方法二.
第二环节:初步探究
内容1:情境引出新概念
22=x ,32=y ,42=z ,52=w ,已知幂和指数,求底数x ,你能求出来吗? 目的:让学生体验概念形成过程,感受到概念引入的必要性.
效果:学生可以估算出x ,y 是1到2之间的数,w 是2到3之间的数但无法表示x ,y ,w ,从而激发学生继续往下学习的兴趣,进而引入新的运算——开方.
说明:无论是用方法一引入,还是方法二引入,都是激发学生继续往下学习的兴趣,都可以提出同样的问题“已知幂和指数,求底数x ,你能求出来吗?”
内容2:在上面思考的基础上,明晰概念:
一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做a 的算术平方根,记为“a ”,读作“根号a ”.特别地,我们规定0的算术平方根是0,即00=.
目的:对算术平方根概念的认识.
效果:了解算术平方根的概念,知道平方运算和求正数的算术平方根是互逆的. 内容3:简单运用 巩固概念
例1 求下列各数的算术平方根:
(1) 900; (2) 1; (3) 64
49; (4) 14. 目的:体验求一个正数的算术平方根的过程,利用平方运算求一个正数的算术平方根的方法,让学生明白有的正数的算术平方根可以开出来,有的正数的算术平方根只能用根号表示,如14的算术平方根是14.
效果:会求一个正数的算术平方根,更进一步了解算术平方根的性质:一个正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.
答案:解:(1)因为900302=,所以900的算术平方根是30,即30900=;
(2)因为112=,所以1的算术平方根是1,即11=;
(3)因为64
49)87(2=,所以 6449的算术平方根是87, 即876449=;
(4)14的算术平方根是14.
内容4:回解课堂引入问题
22=x ,32=y ,52=w ,那么2=x ,3=y ,5=w .
第三环节:深入探究
内容1:例2 自由下落物体的高度h (米)与下落时间t (秒)
的关系为29.4t h =.有一铁球从19.6米高的建筑物上自由下落,
到达地面需要多长时间?
目的:用算术平方根的知识解决实际问题.
效果:学生多能利用等式的性质将29.4t h =进行变形,再
用求算术平方根的方法求得题目的解.
解:将6.19=h 代入公式29.4t h =,得42=t ,所以正数
24==t (秒).
即铁球到达地面需要2秒.
说明:强调实际问题t 是正数,用的是算术平方根,此题是为得出下面的结论作铺垫的.
内容2:观察我们刚才求出的算术平方根有什么特点.
目的:让学生认识到算术平方根定义中的两层含义:a 中的a 是一个非负数,a 的算术平方根a 也是一个非负数,负数没有算术平方根.这也是算术平方根的性质——双重非负性.
效果:再一次深入地认识算术平方根的概念,明确只有非负数才有算术平方根.
第四环节:反馈练习
一、填空题:
1.若一个数的算术平方根是7,那么这个数是 ;
2.9的算术平方根是 ;
3.2)3
2(的算术平方根是 ; 4.若22=+m ,则=+2)2(m .
二、求下列各数的算术平方根:
36,144121,15,0.64,410-,225,0)6
5(. 三、如图,从帐篷支撑竿AB 的顶部A 向地面拉
一根绳子AC 固定帐篷.若绳子的长度为5.5米,地
面固定点C 到帐篷支撑竿底部B 的距离是4.5米,则
帐篷支撑竿的高是多少米?
答案:一、1.7;2.3;3.
32;4.16;二、6;12
11;15;0.8;210-;15;1. 三、解:由题意得 AC =5.5米,BC =4.5米,∠ABC =90°,在R t △ABC 中,由勾股定理得105.45.52222=-=-=
BC AC AB (米).所以帐篷支撑竿的高是10
米. 目的:旨在检测学生对算术平方根的概念和性质的掌握情况,以便根据学生情况调整教学进程.
效果:练习注意了问题的梯度性,由浅入深,一步步加深对算术平方根的概念以及性质的认识.对学生的回答,教师要给予评价和点评.
第五环节:学习小结
内容:这节课学习的算术平方根是本章的基本概念,是为以后的学习做铺垫的.通过这节课的学习,我们要掌握以下的内容:
(1)算术平方根的概念,式子a 中的双重非负性:一是a ≥0,二是a ≥0.
(2)算术平方根的性质:一个正数的算术平方根是一个正数;0的算术平方根是0;
负数没有算术平方根.
(3)求一个正数的算术平方根的运算与平方运算是互逆的运算,利用这个互逆运算关系求非负数的算术平方根.
目的:依照本节课的教学目标引导学生自己小结本节课的知识要点,强化算术平方根的概念和性质.
第六环节:作业布置
习题2.3
四、教学设计反思
1.细讲概念、强化训练
要想让学生正确、牢固地树立起算术平方根的概念,需要由浅入深、不断深化的过程.概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有必要的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.“讲清概念”就是通过具体实例揭露算术平方根的本质特征.算术平方根的本质
2,那么这个正数x就特征就是定义中指出的:“如果一个正数x的平方等于a,即a
x
叫做a的算术平方根,”的“正数x”,即被开方数是正的,由平方的意义,a也是正数,因此算术平方根也必须是正的.当然零的算术平方根是零.
“加强训练”不但指要加强求算术平方根的基本训练,使练习题达到一定的质和量,也包括书写格式的训练,如在求正数的算术平方根时,不是直接写出算术平方根,而是通过平方运算来求算术平方根,非平方数的算术平方根只能用根号来表示.
“逐步深化”是指利用算术平方根的概念和性质的题目按不同的“梯度”组成题组,在教学的不同阶段按由浅入深的原则加以使用.
2.发展思维、适度拓展
在教学中,根据学生的实际情况,在学有余力的情况下,可以对a的双重非负性的知识进行适当的拓展.。

相关文档
最新文档