2011年全国高中数学联合竞赛湖北省预赛试题及答案(高二年级)

合集下载

2011年全国高中数学联合竞赛试题与答案(A卷)

2011年全国高中数学联合竞赛试题与答案(A卷)

.
解答
x−1
设 x = tan θ, θ ∈
ππ −2, 4
ππ
π

, 42
⇒θ− 4 ∈
− 4 ,0
π 0,

4
于是
f (x)
=
sec θ tan θ −
1
=
sin θ
1 −
cos √
θ
=
√ 2
sin
1 θ

π 4
.

由于 sin
π θ− 4
∈ [−1, 0)
2
2
0, 2√
⇒ f (x) ∈
−∞, − 2
π 5π ,
.
44
5. 现安排 7 名同学去参加 5 个运动项目,要求甲、乙两同学不能参加同一个项
目,每个项目都有人参加,每人只参加一个项目,则满足上述要求的不同安排
方案数为
.(用数字作答)
解答
依题意,各运动项目参加的人数为 2, 2, 1, 1, 1 或 3, 1, 1, 1, 1.
当各运动项目参加的人数为

a+b
2

8

1
+
1

√ 22

1
+
1
=
√ 2 2.
上述等号成立时
ab ab = 1,
a a
=
b √
2
+
1,
a a
b =
√ 2

1,
a
+
b
=
√ 22

b
=
√ 2

1

全国高中数学联赛试题参考答案(0000)

全国高中数学联赛试题参考答案(0000)

2011年全国高中数学联合竞赛一试试卷(A 卷)一、填空题:本大题共8小题,每小题8分,共64分.把答案填在横线上.1.设集合},,,{4321a a a a A =,若A 中所有三元子集的三个元素之和组成的集合为}8,5,3,1{-=B ,则集合=A {-3,0,2,6}.2.函数11)(2-+=x x x f 的值域为.3.设b a ,为正实数,2211≤+ba,32)(4)(ab b a =-,则=b a log .4.如果)cos (sin 7sin cos 3355θθθθ-<-,)2,0[πθ∈,那么θ的取值范围是.5.现安排7名同学去参加5个运动工程,要求甲、乙两同学不能参加同一个工程,每个工程都有人参加,每人只参加一个工程,则满足上述要求的不同安排方案数为.(用数字作答)6.在四面体ABCD 中,已知︒=∠=∠=∠60CDA BDC ADB ,3==BD AD ,2=CD ,则四面体ABCD 的外接球的半径为.7.直线012=--y x 与抛物线x y 42=交于B A ,两点,C 为抛物线上的一点,︒=∠90ACB ,则点C 的坐标为.8.已知=n a C ())95,,2,1(2162003200=⎪⎪⎭⎫⎝⎛⋅⋅-n nnn ,则数列}{n a 中整数项的个数为.二、解答题:本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤. 9.(本小题满分16分)设函数|)1lg(|)(+=x x f ,实数)(,b a b a <满足)21()(++-=b b f a f ,2lg 4)21610(=++b a f ,求b a ,的值.10.(本小题满分20分)已知数列}{n a 满足:∈-=t t a (321R 且)1±≠t ,121)1(2)32(11-+--+-=++nn n n n n t a t t a t a ∈n (N )*.(1)求数列}{n a 的通项公式;(2)若0>t ,试比较1+n a 与n a 的大小.11.(本小题满分20分)作斜率为31的直线l 与椭圆C :143622=+y x 交于B A ,两点(如图所示),且)2,23(P 在直线l 的左上方.(1)证明:△PAB 的内切圆的圆心在一条定直线上;(2)若︒=∠60APB ,求△PAB 的面积.2011年全国高中数学联合竞赛加试试卷(A卷)考试时间:2011年10月16日 9:40—12:10二、(本题满分40分)证明:对任意整数4≥n ,存在一个n 次多项式0111)(a x a xa x x f n n n ++++=--具有如下性质:(1)110,,,-n a a a 均为正整数;(2)对任意正整数m ,及任意)2(≥k k 个互不相同的正整数kr r r ,,,21,均有)()()()(21k r f r f r f m f ≠.三、(本题满分50分)设)4(,,,21≥n a a a n 是给定的正实数,n a a a <<< 21.对任意正实数r ,满足)1(n k j i r a a a a jk ij ≤<<≤=--的三元数组),,(k j i 的个数记为)(r f n .证明:4)(2n r f n <.四、(本题满分50分)设A 是一个93⨯的方格表,在每一个小方格内各填一个正整数.称A 中的一个)91,31(≤≤≤≤⨯n m n m 方格表为“好矩形”,若它的所有数的和为10的倍数.称A 中的一个11⨯的小方格为“坏格”,若它不包含于任何一个“好矩形”.求A 中“坏格”个数的最大值.。

2011年全国高中数学联赛加试试题参考答案与评分标准

2011年全国高中数学联赛加试试题参考答案与评分标准

………………10 分
注意到,若 i, j 固定,则显然至多有一个 k 使得①成立.因 i < j ,即 i 有 j −1 种选法,
故 g j (r) ≤ j −1. 同样地,若 j, k 固定,则至多有一个 i 使得①成立.因 k > j ,即 k 有 n − j 种选法,故
g j (r) ≤ n − j .从而
又因为 Q 为 BD 的中点,所以 ∠CQB = ∠DQF . 又 ∠AQB = ∠DQF ,所以 ∠AQB = ∠CQB .
………………40 分
2011 年全国高中数学联合竞赛加试(A 卷)答案第 1 页(共 4 页)
二、(本题满分 40 分)证明:对任意整数 n ≥ 4 ,存在一个 n 次多项式
i = m +1
即第 2 行至第 3 行、第 m +1列至第 n 列组成一个“好矩形”,从而至少有 2 个小方格不是“坏
格”,矛盾.
类似地,也不存在 m, n, 0 ≤ m < n ≤ 9 ,使 S m + Tm ≡ S n + Tn (mod10) . …………30 分
因此上述断言得证.故
9
9
9
∑ ∑ ∑ S k ≡ Tk ≡ (S k + Tk ) ≡ 0 +1+ 2 +L + 9 ≡ 5(mod10) ,
f (x) = (x +1)(x + 2)L(x + n) + 2 ,

………………10 分
将①的右边展开即知 f (x) 是一个首项系数为 1 的正整数系数的 n 次多项式.
下面证明 f (x) 满足性质(2).
对任意整数 t ,由于 n ≥ 4 ,故连续的 n 个整数 t +1, t + 2,L, t + n 中必有一个为 4 的倍数,

2011年全国高中数学联赛湖北省预赛试题(高二年级)

2011年全国高中数学联赛湖北省预赛试题(高二年级)
明理 由 .
Y —1 , 以 2 )所
O ・B A O
' —— - ——
=( 一 2 Y 一1 ・ 2 √ ,2 ) l √ ,l )( 一 2 Y —1
:( l √ ) 一 2 +( l 1 ( 2 ) X 一 2 ( √ ) Y 一 )Y —1 2
n +
1 .已知数列 {n满足 口 = 1,an+l= 0 a} 1
7 设集合 A={ , , ,, , , , ,, }如果 . 0 1 2 3 45 6 7 8 9 .
方程 X 一僦 一 =0( 7 m, ∈A) l 至少有一个根 0

3 已知 ∈R, . 如果集合 {n , sa ={ s , s ac 2 c 口 i o l o
s 2 } 则 所 有 符 合 要 求 的 角 口构 成 的 集 合 为 ia, n
=3 1 一[ +卜 ] = >1 .
所 口 = 一 以 > 吾
21 年全国高中数学联赛湖北省预赛试题( 01 高二年级)


填空题
( 本题 满分 6 , 4分 每小题 8分. 直
接将答案写在横线上 )
5设 模为 2 复数, 一 的 . 是 的 则I ÷I 最大值 z
与最小值的和为— — . 6 对一切满足 I +I l 的实数 , , . l Y ≤l Y 不等
式 lx一 y I 一1 +ly— 一3≤n恒成 3+ 2 +I Y I 2 I
1 已知 P是AA C所在平面上一点, . B 满足商 + + 竞 = 蕊 , 3 商 2 3 则△ P与AA C的面积之 B
1 .已知 椭 圆 c: 2+ 1 x
[ 一1 k ] k , +1上有两个不相等 的实根 , 则实数 k的

2011年全国高中数学联赛试题参考答案

2011年全国高中数学联赛试题参考答案

2011年全国高中数学联合竞赛一试试题(A 卷)考试时间:2011年10月16日 8:00—9:20一、填空题:本大题共8小题,每小题8分,共64分.把答案填在横线上.1.设集合},,,{4321a a a a A =,若A 中所有三元子集的三个元素之和组成的集合为}8,5,3,1{-=B ,则集合=A.2.函数11)(2-+=x x x f 的值域为 .3.设b a ,为正实数,2211≤+ba,32)(4)(ab b a =-,则=b a log .4.如果)cos (sin 7sin cos 3355θθθθ-<-,)2,0[πθ∈,那么θ的取值范围是 .5.现安排7名同学去参加5个运动项目,要求甲、乙两同学不能参加同一个项目,每个项目都有人参加,每人只参加一个项目,则满足上述要求的不同安排方案数为 .(用数字作答)6.在四面体ABCD 中,已知︒=∠=∠=∠60CDA BDC ADB ,3==BD AD ,2=CD ,则四面体ABCD 的外接球的半径为 .7.直线012=--y x 与抛物线x y 42=交于B A ,两点,C 为抛物线上的一点,︒=∠90ACB ,则点C 的坐标为 .8.已知=n a C ())95,,2,1(2162003200=⎪⎪⎭⎫⎝⎛⋅⋅-n nnn ,则数列}{n a 中整数项的个数为 .二、解答题:本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤. 9.(本小题满分16分)设函数|)1lg(|)(+=x x f ,实数)(,b a b a <满足)21()(++-=b b f a f ,2lg 4)21610(=++b a f ,求b a ,的值.10.(本小题满分20分)已知数列}{n a 满足:∈-=t t a (321R 且)1±≠t ,121)1(2)32(11-+--+-=++nn n n n n t a t t a t a ∈n (N )*.(1)求数列}{n a 的通项公式; (2)若0>t ,试比较1+n a 与n a 的大小.11.(本小题满分20分)作斜率为31的直线l 与椭圆C :143622=+y x 交于B A ,两点(如图所示),且)2,23(P 在直线l 的左上方.(1)证明:△PAB 的内切圆的圆心在一条定直线上;(2)若︒=∠60APB ,求△PAB 的面积.2011年全国高中数学联合竞赛加试试题(A卷)考试时间:2011年10月16日 9:40—12:10二、(本题满分40分)证明:对任意整数4≥n ,存在一个n 次多项式0111)(a x a x a x x f n n n ++++=--具有如下性质:(1)110,,,-n a a a 均为正整数;(2)对任意正整数m ,及任意)2(≥k k 个互不相同的正整数k r r r ,,,21 ,均有)()()()(21k r f r f r f m f ≠.三、(本题满分50分)设)4(,,,21≥n a a a n 是给定的正实数,n a a a <<< 21.对任意正实数r ,满足)1(n k j i r a a a a jk i j ≤<<≤=--的三元数组),,(k j i 的个数记为)(r f n .证明:4)(2n r f n <.四、(本题满分50分)设A是一个93⨯的方格表,在每一个小方格内各填一个正整数.称A中的一个)9⨯nmm方格表为“好矩形”,若它的所有数的和为10的倍数.称A n≤≤1(≤1,3≤中的一个11⨯的小方格为“坏格”,若它不包含于任何一个“好矩形”.求A中“坏格”个数的最大值.出师表两汉:诸葛亮先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。

湖北省全国高二数学联合竞赛预赛试题(湖北省)

湖北省全国高二数学联合竞赛预赛试题(湖北省)

(高二年级)说明:评阅试卷时,请依照本评分标准。

填空题只设 8 分和 0 分两档;解答题的评阅,只需思路合理、步骤正确,在评卷时可参照本评分标准适合区分品位评分。

一、填空题(此题满分64 分,每题8 分。

直接将答案写在横线上。

)1.函数 f ( x) x 1 的值域为 ________________ .x 2 4x 72 .已知 3sin 2 2 sin 2 1 ,3(sin cos ) 2 2(sin cos )2 1 ,则cos2( ) _______________ .3.已知数列 { a n } 知足: a1为正整数,a n 1 a n, a n 为偶数 ,假如 a1 a 2 a 3 29 ,则21, a n为奇数 ,3a na1 .4.设会合 S {1,2,3, ,12} , A { a1 , a 2 , a3 } 是 S 的子集,且知足 a1 a 2 a 3, a3 a2 5 ,那么知足条件的子集 A 的个数为.5.过原点 O 的直线 l 与椭圆 C :x2 y2 1(a b 0)交于 M,N 两点,P是椭圆 C 上异a 2 b2于 M , N 的任一点.若直线 PM , PN 的斜率之积为1,则椭圆 C 的离心率为 _______________.36.在△ ABC 中, AB BC 2, AC 3 .设 O 是△ ABC 的心里,若AO p AB qAC ,则p的值为_______________. q7.在长方体 ABCD A1 B1C1 D1中,已知AC 1, B1C 2, AB1 p ,则长方体的体积最大时,p 为 _______________ .2012 2012 2k.8.设 [ x] 表示不超出x的最大整数,则[ ]k 0 2k 1二、解答题(本大题满分56 分,第 9 题 16 分,第10题 20分,第 11题 20分)9 .已知正项数列{ a n } 知足anan 1anan 24 anan 1 a n2 13 a n a n 1且a1 1 ,a2 8 ,求{ a n}的通项公式.10.已知正实数a, b 知足 a 2b2 1 ,且a3 b 3 1 m(a b 1)3,求 m 的取值范围.11.已知点 E(m, n) 为抛物线y2 2 px( p 0) 内必定点,过 E 作斜率分别为k1, k2的两条直线交抛物线于A, B,C, D ,且 M , N 分别是线段 AB,CD 的中点.( 1)当n 0 且 k1 k2 1 时,求△ EMN 的面积的最小值;( 2)若k1 k2 (0, 为常数),证明:直线 MN 过定点.2012 年全国高中数学结合比赛湖北省初赛试题参照答案(高二年级)说明:评阅试卷时,请依照本评分标准。

2011年全国高中数学联赛预赛试题

2011年全国高中数学联赛预赛试题

2011年全国高中数学联赛预赛试题文昌中学数学组: 何立果一、填空题:本大题共8小题,每小题8分,共64分.把答案填在横线上.1.已知P 是△ABC 所在平面上一点,满足23PA PB PC AB ++=,则△ABP 与△ABC 的面积之比为_________.2. 设数列{}n a 满足1231231,4,9,,4,5,...n n n n a a a a a a a n ---====+-=,则2011a = .3. 不等式x a x a x cos 1cos sin 22+≥++对一切R x ∈成立,则实数a 的取值范围为 .4. 已知定义在正整数集上的函数()f n 满足以下条件:(1) ()()()f m n f m f n mn +=++,其中,m n 为正整数;(2) 6(3)f =.则(2011)f = .5. 方程1220112011x ---=一共有 个解. 6. 设半径为10厘米的球中有一个棱长为整数(厘米)的正方体, 则该正方体的棱长最大等于 .7. 一个玻璃杯的内壁是由抛物线2y x =()22≤≤-x 绕y 轴旋转而构成的.请问能接触到杯底的球的半径最大是 .8. 计算:111..._____sin 45sin 46sin 46sin 47sin89sin 90+++=︒︒︒︒︒︒.二、解答题(本大题满分56分,第9题16分,第10题20分,第11题20分)9.已知二次函数2()y f x x bx c ==++的图象过点(1,13),且函数y =1()2f x -是偶函数.(1)求()f x 的解析式;(2)函数()y f x =的图象上是否存在这样的点,其横坐标是正整数,纵坐标是一个完全平方数?如果存在,求出这样的点的坐标;如果不存在,请说明理由.10.已知椭圆C :22142x y +=,过点P 1)3-而不过点Q 的动直线l 交椭圆C 于A 、B 两点.(1)求∠AQB ;(2)记△QAB 的面积为S ,证明:3S <.11.(本小题满分20分)数列01,,...,,...n a a a 满足0120,1,0a a a ===,当3n ≥时有0122(...)1n n a a a a n -=+++-. 证明:对所有整数3n ≥,有10n n a >.。

2011年全国高中数学联合竞赛试题及解答.(A卷)

2011年全国高中数学联合竞赛试题及解答.(A卷)
5 5 3 3
◆答案:
5 , 4 4
5 5 3 3 3
★解析: 不等式 cos sin 7(sin cos ) 等价于 sin 又 f ( x) x
3
1 5 x 是 (,) 上的增函数,所以 sin cos , 7 5 (k Z). 故 2k 2k 4 4
3(a1 a 2 a 3 a 4 ) (1) 3 5 8 15 ,故 a1 a 2 a 3 a 4 5 ,
于是集合 A 的四个元素分别为 5-(-1)=6,5-3=2,5-5=0,5-8=-3, 因此,集合 A {3, 0, 2, 6} .
2011A 2、函数 f ( x )
0
3
★解析: 设四面体 ABCD 的外接球球心为 O , 则 O 在过△ ABD 的外心 N 且垂直于平面 ABD 的垂线 上.由题设知, ABD 是正三角形,则点 N 为 ABD 的中心.设 P, M 分别为 AB, CD 的中点,则
2011 年全国高中数学联合竞赛试题 (A 卷) 第 2 页 共 11 页
2
ACB 90 0 ,则点 C 的坐标为
◆答案: (1,2) 或 (9,6) . ★解析: 设 A( x1 , y1 ), B ( x 2 , y 2 ), C (t ,2t ) , 由
2
x 2 y 1 0, 2 得 y 8y 4 0 , 则 y1 y 2 8 , 2 y 4 x ,
2011 年全国高中数学联合竞赛试题 (A 卷) 第 4 页 共 11 页
于是 0 a 1 1 b 2 .
10 1. b2 10 10 ] | lg[6(b 2) ]. 从而 f (10a 6b 21) | lg[6(b 2) b2 b2 10 ] 4 lg 2 , 又 f (10a 6b 21) 4 lg 2 ,所以 lg[6(b 2) b2 10 1 16 .解得 b 或 b 1 (舍去) 故 6(b 2) . 3 b2 1 2 把 b 代入 ( a 1)(b 2) 1 解得 a . 3 5 2 1 所以 a , b . 5 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档