sciences文献,Structure of an agonist-bound human A2A adenosine receptor

合集下载

外文翻译原文science 2

外文翻译原文science 2

/locate/rggThe stages and duration of formation of gold mineralizationat copper-skarn deposits (Altai–Sayan folded area )I.V. Gaskov *, A.S. Borisenko, V.V. Babich, E.A. NaumovV.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences,prosp. Akad. Koptyuga 3, Novosibirsk, 630090, RussiaReceived 20 March 2009; accepted l6 November 2009AbstractGold mineralization at copper-skarn deposits (Tardanskoe, Murzinskoe, Sinyukhinskoe, Choiskoe) in the Altai–Sayan folded area is related to different hydrothermal-metasomatic formations. It was produced at 400–150 ºC in several stages spanning 5–6 Myr, which determined the diversity of its mineral assemblages. Gold mineralization associated with magnetite bodies is spatially correlated with magnesian and calcareous skarns, whereas gold mineralization in crushing zones and along fault sutures in moderate- and low-temperature hydrothermal-metasomatic rocks (propylites, beresites, serpentinites, and argillizites) is of postskarn formation. Different stages were manifested with different intensities at gold deposits. For example, the Sinyukhinskoe deposit abounds in early high-temperature mineral assemblages; the Choiskoe deposit, in low-temperature ones; and the Tardanskoe and Murzinskoe deposits are rich in both early and late gold minerals. Formation of commercial gold mineralization at different copper-skarn deposits is due to the combination of gold mineralization produced at different stages as a result of formation of intricate igneous complexes (Tannu-Ola, Ust’-Belaya, and Yugala) composed of differentiated rocks from gabbros to granites.© 2010, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.Keywords: gold mineralization; skarns, copper-skarn deposits; hydrothermal-metasomatic formationsIntroductionRecent data on the isotope geology and geochronology of rocks and ores and geological data on the ore genesis gaps proved that ore deposits formed for a much longer time than was assumed earlier (Rundkvist, 1997). This is also true for commercial gold mineralization at many Cu-skarn deposits in the Altai–Sayan folded area (ASFA).Gold-containing Cu-skarn deposits are widespread in many ore districts of the ASFA: Gorny Altai (Sinyukhinskoe,Murzinskoe, Choiskoe), Kuznetsk Alatau (Natal’evskoe, Fe-dorovskoe), Gornaya Shoria (Maisko-Lebedskoe), and Tuva (Tardanskoe, Khopto). Most of them are commercial deposits (Fig. 1).Skarn formation processes at these deposits were related to the Early and Middle Paleozoic granitoid magmatism in the Tannu-Ola (eastern Tuva), Yugala (Sinyukha, northeastern Altai), and Ust’-Belaya (northwestern Altai) intrusive com-plexes (Gusev, 2007; Shokalsky et al., 2000). Formation of commercial gold mineralization was a longer and more intricate process (Gaskov, 2008). In most part of these deposits, gold mineralization is the product of multistage ore process, which is characterized by different mineral composi-tions and spatial occurrences. Almost all these deposits bear gold mineralization spatially and genetically related to skarns and aposkarns in assemblage with magnetite and sulfides (Korobeinikov and Matsyushevskii, 1976; Korobeinikov and Zotov, 2006; Korobeinikov et al., 1987; Vakhrushev, 1972)and gold mineralization isolated from skarns and represented by sulfide-containing (pyrite, chalcopyrite, bornite, chalcocite)hydrothermal products of moderate-temperature assemblage in crushing zones (Shcherbakov, 1974). Often, the deposits also bear epithermal gold-containing assemblage with low-tem-perature sulfides, tellurides, and selenides usually developed at the final stage of mineral formation in rocks of different compositions, including sedimentary, igneous, and skarn (Gas-kov, 2008; Gaskov et al., 2005).The recently obtained ages of ore formation products and igneous rocks (Gaskov, 2008; Rudnev et al., 2004, 2006;Shokalsky et al., 2000) provide a new concept of the sequence of ore formation and its duration and relation with multiphasemagmatism.Russian Geology and Geophysics 51 (2010) 1091–1101*Corresponding author.E-mail address : gaskov@uiggm.nsc.ru (I.V. Gaskov)doi:10.1016/j.rgg.2010.0.0011068-7971/$-see front matter D 2010, IG M, Siberian Branch of the RAS.Published by E lsevier B.V .All rights reserved.V S. .Sabolev 9Let us dwell on the specific features of gold mineralization at particular deposits.Gold mineralization at Cu-skarn depositsThe Tardanskoe deposit is localized in the zone of the Kaa-Khem deep fault, in the exocontact part of the Kopto-Baisyut gabbro-diorite-plagiogranite massif (Fig. 2) (Korobe-inikov and Zotov, 2006; Korobeinikov et al., 1987). At the massif contact, Lower Cambrian volcanogenic-carbonate de-posits are transformed into magnesian and calcareous skarns described in detail earlier (Korobeinikov, 1999; Korobeinikov and Matsyushevskii, 1976; Korobeinikov et al., 1997). The skarn bodies are spatially close to aposkarn metasomatites bearing actinolite, tremolite, epidote, serpentine, chlorite, talc,quartz, carbonate, magnetite, and hematite.Gold mineralization at the deposit is of two types: (1) in skarn-magnetite rocks and (2) in metasomatites of linear crushing zones. These types have specific mineralogical and geochemical features.Gold mineralization in skarn-magnetite ores is widespread at the deposit. It is described elsewhere (Korobeinikov and Matsyushevskii, 1976; Korobeinikov and Zotov, 2006; Koro-beinikov et al., 1987; Kudryavtseva, 1969). Gold is spatially related to areas of sulfide mineralization, and its contents are in direct correlation with the amount of sulfide minerals.Gold-sulfide mineralization is extremely unevenly distributed and is localized at the sites of magnetite ores that underwent cataclasis as well as in magnetite microcracks and interstices.The total amount of sulfides (pyrite, chalcopyrite, bornite, and scarcer sphalerite, pyrrhotite, and arsenopyrite) is 1–3%. Gold occurs as fine thin (0.3–0.01 mm) native segregations. This is mainly high-fineness gold (820–990) (Fig. 3, a ) with impuri-ties of silver (up to 13.6%) and copper (up to 5.07%).According to Korobeinikov (1999) and Korobeinikov and Matsyushevskii (1976), the temperatures of formation of magnetite ores were 430–550 ºC, whereas the gold-sulfide assemblage and the hosting metasomatites (actinolite, tre-molite, serpentine, talc) were produced at 250–320 ºC (Gaskov et al., 2005; Vakhrushev, 1972).Gold mineralization in crushing zones is localized in steeply dipping linear tectonic structures of NW, NE, and NS strikes (Fig. 2), which develop after different rocks, including volcanosedimentary, igneous, and skarn ones. These zones reach several hundred meters in length and few tens of meters in width. The petrographic composition of these zones is di-verse and depends mainly on the composition of initial rocks that underwent transformation later. The rocks are metaso-matic, close in composition to propylites, listwaenites, talc-containing and sericite-quartz metasomatites, and beresite-like rocks. Almost each type of hydrothermal-metasomatic rocks is intimately associated with ore minerals. Though the total volume of these minerals does not exceed 3–5%, they are extremely diverse in composition and are extremely unevenly distributed. Along with sulfide minerals typical of Cu-skarn deposits (chalcopyrite, pyrite, bornite, chalcocite,digenite, sphalerite, galena), the mineralized zones of the deposit abound in tellurides—hessite (Ag 2Te), tellurobis-muthite (Bi 2Te 3), and tetradymite (Bi 2Te 2S),—and low-tem-perature Co and Ni sulfides and sulfoarsenides (Table 1). The latter have a variable composition and often consist of intermediate phases of continuous mineral series, e.g., allo-clasite(CoAsS)–arsenopyrite(FeAsS) or siegenite(CoNi 2S 4)–violarite(FeNi 2S 4).Gold occurs mainly as native fine thin (0.01–0.5 mm)disseminations in rock microcracks and as inclusions in pyrite,chalcopyrite, and bornite. The gold fineness varies over a broad range of values—from 440 to 820 (Fig. 3, b ). The lowest-fineness gold segregations are compositionally similar to electrum and have high contents of Ag (up to 54.78%) and Hg impurity (up to 3.65%).On the flanks of mineralized crushing zones, there is sometimes gold mineralization in low-temperature argillitized rocks of chlorite-kaolinite-carbonate-hydromica composition.This gold is of low fineness (no more than 600). The mainimpurities are Ag (20–66%) and Hg (up to 5.47%). The formation temperatures of sulfide-telluride assemblages andFig. 1. Schematic occurrence of gold-bearing Cu-skarn deposits in the Altai-Sayan folded area: 1, Murzinskoe; 2, Sinyukhinskoe; 3, Choiskoe; 4, Maisko-Lebedskoe;5, Fedorovskoe; 6, Natal’evskoe; 7, Tardanskoe; 8, Kopto.1092I.V. Gaskov et al. / Russian Geology and Geophysics 51 (2010) 1091–1101gold mineralization in metasomatites and argillitized rocks are within 200–75 ºC.The Murzinskoe deposit is localized at the contact of a small stock-like granodiorite body of the Ust’-Belaya gabbro-diorite complex (Fig. 4). In the exocontact zone, calcareous skarns composed of garnet, pyroxene, wollastonite, and mag-netite develop after the calcareous sandstones of the Murzinka Formation (D1-2). In the local zones, there are aposkarnFig. 2. Schematic geologic structure of the Tardanskoe deposit (compiled after the data of K.M. Kil’chichakov and L.V. Kopylova and our new data). 1–4, Lower Paleozoic deposits: 1, andesitic porphyrites and tuffs with siltstone and sandstone interbeds in the lower part of the Tumat-Taiga Formation (Cm 1tm 1); 2, quartz porphyrites with interbeds of andesitic porphyrites and limestones in the upper part of the Tumat-Taiga Formation (Cm 1tm 2); 3, limestones and calcareous shales of the Tapsa Formation (Cm 1tp); 4, Lower and Middle Silurian conglomerates and sandstones (S 1-2); 5, Quaternary deposits (Q IV ); 6, 7, Lower Paleozoic igneous rocks of the Tannu-Ola complex (γδO 1-2): 6, gabbro-diorite-plagiogranite formation; 7, small granite-porphyry and quartz diorite bodies; 8, calcareous and magnesian skarns; 9, hydrothermal-metasomatic rocks in mineralized crushing zones; 10, gold orebodies; 11, tectonic zones; 12, geologic boundaries.I.V. Gaskov et al. / Russian Geology and Geophysics 51 (2010) 1091–11011093Fig. 3. Variations in gold fineness in gold ores from skarn-magnetite bodies (a) and in ores from mineralized crushing zones (b) at the Tardanskoe deposit.Table 1. Mineral parageneses in gold-bearing ores produced at different stages and composition of host rocks at Au-Cu-skarn depositsDeposit Early aposkarn Au-sulfide mineralization in magnetite-skarn rocks Late Au-telluride-sulfide mineralization in superposed crushingzonesOre parageneses Host rocks Ore parageneses Host rocksTardanskoe Magneite (Fe3O4)Pyrite (FeS2)Chalcopyrite (CuFeS2)Bornite (Cu5FeS4)Sphalerite (ZnS)Pyrrhotite (FeS)Arsenopyrite (FeAsS)Gold (Au)Magnesian skarns (pyroxene +fassayite + phlogopite +pargasite + forsterite + spinel).Calcareous skarns (pyroxene +garnet + epidote +wollastonite + skapolite).Aposkarn serpentine andserpentine-chlorite rocksCobaltite (CoFe)AsSGlaucodot (Co,Fe)AsSSiegenite (CoNi2S4)Violarite (FeNi2S4)Hessite (Ag2Te)Gold (Au)Propylites, listvaenites, talc-serpentine-containing andsericite-quartz metasomatites,and argillitized rocksMurzinskoe Magnetite (Fe3O4)Chalcopyrite (CuFeS2)Pyrite (FeS2)Bornite (Cu5FeS4)Sphalerite (ZnS)Galena (PbS)FahloreArsenopyrite (FeAsS)Clinobisvanite (BiVO4)Gold (Au)Calcareous skarns (garnet +pyroxene + wollastonite).Aposkarn metasomatic rocks(quartz + epidote + chlorite +actinolite)Cinnabar (HgS)Metacinnabarite (HgS)Bismuthine (Bi2S3)Aikinite (CuPbBiS3)Emplectite (CuBiS2)Berryite [Pb2(Cu,Ag)3Bi5S11]Naumannite (Ag2Se)Polybasite (Ag16Sb2S11)Barite (BaSO4)Gold (Au)Quartz and quartz-carbonateveins, near-vein metasomatitesof quartz-chlorite-carbonatecomposition, and argillitizedrocksSinyukhinskoe Magnetite (Fe3O4)Pyrite (FeS2)Chalcopyrite (CuFeS2)Bornite (Cu5FeS4)Chalcocite (Cu2S)Sphalerite (ZnS)Pyrrhotite (FeS)Cubanite (CuFe2S3)Gold (Au)Wollastonite, garnet-wollastonite, garnet-pyroxeneand pyroxene skarns, andaposkarn metasomatic rocks(chlorite + actinolite + calcite)Tetradymite (Bi2TeS)Siegenite (CoNi2S4)Cobaltite ((CoNiFe)AsS)Melonite (NiTe2)Wittichenite (Cu3BiS3)Hessite (Ag2Te)Petzite (AuAg3Te2)Altaite (PbTe)Clausthalite (PbSe)Gold (Au)Local zones of actinolite-chlorite-calcite-quartzcompositionChoiskoe Magnetite (Fe3O4)Pyrite (FeS2)Chalcopyrite (CuFeS2)Gold (Au)Garnet, garnet-pyroxene,garnet-wollastonite, andpyroxene-epidote skarnsTetradymite (BiTe2S)Ingodite (Bi2TeS)Joseite (Bi4TeS2)Hedleyite (Bi2Te)Tellurobismuthite (Bi2Te3)Bismuthite (Bi2S3),Native bismuth (Bi)Gold (Au)Quartz and quartz-carbonateveins and quartz-carbonate-chlorite metasomatites1094I.V. Gaskov et al. / Russian Geology and Geophysics 51 (2010) 1091–1101metasomatic rocks consisting of quartz, epidote, calcite,chlorite, actinolite, and, more seldom, tourmaline, apatite, and rodonite.Gold mineralization at the Murzinskoe deposit was earlier ascribed to gold-skarn type. But recent data have shown that only a minor part of the deposit ores — scarce postskarn sulfide mineralization spatially associated with skarn-magnet-ite bodies—can be referred to this type. Most of the commer-cial ores occur in mineralized crushing zones. They form gold-sulfide mineralization in quartz and quartz-carbonate veins and near-vein metasomatites in a 300–400 m thick zone stretching in the N-NW direction for more than 3 km (Fig. 4).The crust of weathering widespread at the deposit contains hypergene copper minerals: malachite, chrysocolla, azurite,chalcocite, coveline, and high-fineness gold.Gold-sulfide mineralization spatially associated with skarn-magnetite bodies is superposed on skarn rocks. It was produced either at the regressive stage of the skarn formation or at the postskarn hydrothermal-metasomatic stage and was accompanied by the formation of moderate- and low-tempera-ture metasomatic minerals—chlorite, actinolite, epidote, and quartz. Sulfide mineralization is unevenly distributed and occurs as veinlet-disseminated chalcopyrite, pyrite, bornite,and sphalerite. It amounts to few percent. Gold occurs as fine thin (0.5–0.01 mm) native segregations. It is mainly of high fineness (840–994) (Fig. 5, a ).In crushing zones (Fig. 4), gold mineralization was found in quartz-carbonate-sulfide veinlets and veins in hydrothermal-metasomatic rocks of quartz-chlorite-carbonate composition with kaolinite, hydromica, and adularia (argillizite formation)developing after different rocks—skarns, hornfelses, shales,siltstones, and limestones,—often beyond skarning and horn-felsing zones. The quartz veins are 0.1 to 2.0 m (on average,0.4 m) thick, of N-S strike and eastern dip. In contrast to the gold-skarn-magnetite type, this mineralization is of more complex composition. In addition to minerals typical of skarn deposits (chalcopyrite, pyrite, bornite, sphalerite, and galena),it includes fahlore, arsenopyrite (FeAsS), cinnabar (HgS),metacinnabarite (HgS), bismuthine (Bi 2S 3), aikinite (CuPb BiS 3), emplectite (CuBiS 2), berryite [Pb 2(Cu,Ag)3Bi 5S 11],naumannite (Ag 2Se), polybasite (Ag 16Sb 2S 11), scheelite (Ca 3WO 4), hematite (Fe 2O 3), clinobisvanite (BiVO 4), bariteFig. 4. Schematic geologic structure of the Murzinskoe deposit. 1, mica-sili-ceous shales (O 1); 2, sandstones, siltstones, and aleuropelites (S 1); 3, terri-genous-carbonate deposits (D 1-2): a , conglomerates, b , limestones, c , sand-stones; 4, granodiorites of the Ust’-Belaya complex (D 3); 5, altered rocks and metasomatites: a , hornfelses, b , skarns, c , quartz-tourmaline metasomatites;6, mineralized crushing zones; 7, faults: a , established, b , predicted; 8, other types of mineralization: a , Murzinka-3 (Au), b, skarn Fe.Fig. 5. Variations in the fineness of gold associated with skarn-magnetite bodies (a ) and gold from ores of mineralized crushing zones (b ) at the Murzin-skoe deposit.I.V. Gaskov et al. / Russian Geology and Geophysics 51 (2010) 1091–11011095(BaSO 4), and gold (Table 1). The content of gold in the ores varies over a broad range of values, from 0.1 to 232 ppm.This gold occurs as fine (<0.1 mm) thin segregations in assemblage with sulfides. Its fineness also greatly varies (640–840), but, compared with the first type of ores, low-fine-ness gold prevails here (Fig. 5, b ).The presence of cinnabar, sulfides and sulfosalts of Bi, Se,and Sb, and barite, predominance of low-fineness gold and electrum, and low-temperature wallrock alteration (formation of kaolinite, hydromica, and adularia) differ these ores from earlier formed ores in skarn-magnetite bodies. The gap between the skarn and ore formation processes is evidenced from the presence of basite dikes cutting the skarns, which bear superposed gold mineralization of this type. At the same time, the presence of gold–cinnabar intergrowths and fine dissemination of gold in cinnabar, presence of Hg-minerals (cinnabar, Hg-sphalerite, saucovite) in the ores, and high contents of As, Sb, and Ti (typical elements of many Au-Hg deposits) permit this mineralization to be referred to as epithermal Au-Hg type (Borisenko et al., 2006). Thermometric studies showed that the homogenization temperatures of fluid inclusions in quartz veins in the northern and central parts ofthe mineralized zone are 215–200 ºC and decrease to 160–130 ºC in the southern part.Fig. 6. Schematic geologic structure of the Sinyukhinskoe deposit (compiled by Gusev (2007) and supplemented by our data). 1, loose Quaternary deposits; 2–6, rocksof the Choya (O 1cs), Elanda (C−2-3el), Ust’-Sema (C −2us), and Upper Ynyrga (C −2vy) Formations: 2, conglomerates, 3, siltstones, 4, sandstones, 5, limestones,6, andesite-basaltic porphyrites; 7–9, rocks of the Yugala (Sinyukha) complex: 7, granites and granodiorites of the early phase (γδD 2-3), 8, granites of the late phase (γD 2-3), 9, dolerite and gabbro-dolerite dikes; 10, plagiogranites of the Sarakoksha complex (ν C −2); 11, skarns; 12, sites with gold mineralization (1, Pervyi Rudnyi (First Ore), 2, Zapadnyi (Western), 3, Faifanov, 4, West Faifanov, 5, Ynyrga, 6, Nizhnii (Lower), 7, Tushkenek, 9, Gorbunov); 13, faults.1096I.V. Gaskov et al. / Russian Geology and Geophysics 51 (2010) 1091–1101The Sinyukhinskoe deposit is localized in northeastern Altai, at the contact of the large (600 km 2) complex Sarakok-sha pluton and Cambrian volcanosedimentary strata of the Ust’-Sema Formation (Shcherbakov, 1967; Vakhrushev, 1972)(Fig. 6). According to Shokalsky et al. (2000) and Gusev (2007), this massif includes the Lower Cambrian Sarakoksha diorite-tonalite-plagiogranite complex and Lower Devonian Yugala gabbro-diorite-granite complex (Sinyukha complex (Gusev, 2003)). It is in the latter complex that the commercial mineralization of the Sinyukha ore field is localized. In the contact zone of the Sinyukha massif, skarns of different compositions are developed in horizons of carbonate rocks and tuffs. Wollastonite and garnet-wollastonite varieties are the most widespread, and garnet-pyroxene and pyroxene ones are scarcer. Near the contact with basic effusive bodies, small magnetite orebodies have been revealed among garnet-py-roxene skarns.Gold mineralization occurs mainly among wollastonite,garnet-wollastonite, and pyroxene-wollastonite skarns and is intimately associated with an assemblage of sulfide minerals.The latter are dominated by bornite, chalcocite, chalcopyrite,and pyrite, which compose ore zones in these rocks and are present in the form of nest-disseminations and stockworks. In local zones of actinolite-chlorite-calcite-quartz composition we found minor amounts of sphalerite, pyrrhotite, cubanite, and tetradymite. There are also occasional findings of rare miner-als, such as siegenite (CoNi 2S 4), cobaltite ((CoNiFe)AsS),melonite (NiTe 2), wittichenite (Cu 3BiS 3), gessite (Ag 2Te),petzite (AuAg 3Te 2), altaite (PbTe), and clausthalite (PbSe)(Table 1). The total content of sulfides does not exceed 5–10%. The sulfides are extremely unevenly distributed—from occasional dissemination to densely disseminated, almost massive ores. The composition of sulfide mineralization slightly changes with depth: Gold-chalcocite-bornite assem-blage is changed by gold-chalcopyrite one. The accumulation of gold-sulfide mineralization was accompanied by the hy-drothermal-metasomatic alteration of the host skarns with the formation of actinolite, chlorite, and calcite near ore veins and nests. Magnetite ores are poorer in gold, and sulfide-free rocks(marbles and diorite-porphyry and granite-porphyry dikes)virtually lack it.Fig. 7. Variations in gold fineness in ores from the Sinyukhinskoe deposit.Fig. 8. Schematic geologic structure of the Choiskoe deposit (compiled by Gusev and Gusev (1998) and supplemented by our data). 1–5, rocks of the Ishpa (O 1is) andTandosha (C−2-3td) Formations: 1, conglomerates, 2, siltstones, 3, sandstones, 4, limestones, 5, felsic tuffs; 6–7, granitoids of the Yugala complex: 6, granites and granodiorites of the early phase (γδD 2-3), 7, leucocratic granites of the late phase (γD 2-3); 8, granite-porphyry, diorite, and lamprophyre dikes (γδD 2-3); 9, skarns;10, gold mineralization occurrences (1, occurrence of the Central skarn deposit, 2, Pikhtovyi, 3, Smorodinovyi); 11, faults.I.V. Gaskov et al. / Russian Geology and Geophysics 51 (2010) 1091–11011097Gold often occurs in ores as native segregations in the form of hooks, fine wires, lumps, and sheets intimately intergrown with bornite, chalcocite, and chalcopyrite. Sometimes, native gold segregations are observed as fine inclusions in cracks and interstices of skarn minerals, most often, wollastonite. These gold particles are mainly no larger than hundredths of millimeter. The gold of primary ores of the Sinyukhinskoe deposit is of high fineness varying over a narrow range of values (911–964) (Fig. 7). The fineness of gold decreases to 860–870 only in its parageneses with tellurides, selenides, and rare sulfide minerals (Roslyakova et al., 1999). The main impurities in gold are silver (up to 19%) and copper (up to 1.7%). The content of Hg does not exceed 0.1%. By the formation conditions, these ores are postskarn hydrothermal,with their deposition temperatures not exceeding 350 ºC (Roslyakova et al., 1999; Shcherbakov, 1972).The Choiskoe deposit is localized 20 km northeast of the Sinyukha ore field, in the zone of contact between the Upper Cambrian terrigenous-carbonate deposits of the Ishpa Forma-tion and the Choya granitoid massif referred to the Lower Devonian Yugala gabbro-diorite-granite complex (Fig. 8). The Choya granitoid massif is small at the surface (1 × 5 km) and extends from west to east, tracing the Choya fault (Gusev,2007). The deposit abounds in dikes of dolerite porphyrites,diorites, and granite-porphyry and in rocks of the lamprophyre series—kersantites, minette, and spessartites. The zone of contact between the granitoids of the Choya massif and the horizons of limestones and terrigenous-carbonate rocks is composed of skarns, which form linear zones extending in the NE direction, like the other rocks. Most bodies are of persistent thickness, ~100 m. By composition, the skarn bodies are divided into zones of garnet, garnet-pyroxene, pyroxene,garnet-wollastonite, and pyroxene-epidote skarns. In the skarn zones and near lamprophyre bodies, poor scheelite-molybde-nite mineralization in quartz veins was established (Gusev,1998).Gold mineralization at the deposit occurs in linear tectonic zones and is not spatially associated with skarns. It develops as quartz veins and quartz-carbonate and quartz-carbonate-chlorite veinlets and nests with gold-sulfide mineralization in crushing and brecciation zones in both the skarns and the granitoids of the Choya massif (Fig. 8).The mineral composition of these objects is nearly the same—gold-sulfide and gold-telluride parageneses. A numberof rare tellurides have been revealed among the Choya deposit ores: tetradymite (BiTe 2S), ingodite (Bi 2TeS), joseite (Bi 4TeS 2), hedleyite (Bi 2Te), tellurobismuthite (Bi 2Te 3), bis-muthine (Bi 2S 3), and native bismuth (Table 1). Magnetite,pyrite, and chalcopyrite, typical minerals of Cu-skarn deposits,are extremely scarce here. The total content of sulfides does not exceed few percent. They occur mainly as fine thin dissemination and do not form large accumulations and nests.Gold in the Choya deposit ores occurs as fine inclusions in sulfide and telluride minerals in quartz veinlets and as intergrowths with ore minerals. The gold particles are hun-dredths and tenths of millimeter in size. By chemical compo-sition, the gold is divided into two groups: medium-fineness (843–880) and high-fineness (940–959); the latter is probably of exogenous nature (Fig. 9). The gold contains Ag (3–12.5 wt.%) and Hg (0–0.48 wt.%) impurities and Cu traces.The thermometric studies showed that homogenization of primary gas-liquid inclusions into liquid proceeds at 126–150 ºC in quartz and at 105–128 ºC in calcite from ore-bear-ing veins.The sequence and duration of formation of gold mineralization and its correlation with magmatism As seen from the above data, gold mineralization at all considered Cu-skarn deposits has a complex multistage for-mation history. But the same stages at different deposits ran with different intensities. For example, at the Sinyukhinskoe deposit, mainly early high-temperature mineral assemblages are widespread, whereas at the Choiskoe deposit, low-tempera-ture ones. The Tardanskoe and Murzinskoe deposits bear both early and late minerals. To elucidate the peculiarities of gold-ore formation, establish the correlation between different types of gold mineralization and magmatic activity, and evaluate the duration of ore formation, we performed Ar-Ar and U-Pb dating of different mineralization and igneous rocks from the Tardanskoe and Murzinskoe deposits.Our investigations have shown that the formation of gold mineralization at the Tardanskoe deposit lasted for a longer time than it was supposed earlier. Skarn mineralization formed at the contact of diorites with carbonate rocks as a result of the intrusion of the Kopto-Baisyut massif. Ar-Ar biotite dating of the massif yielded an age of 485.7 ± 4.4 Ma corresponding to the Early Ordovician (Table 2). The skarns at the massif contact as well as magnetite ores and gold-sulfide mineraliza-tion (pyrite, chalcopyrite, pyrrhotite, bornite, gold) spatially and genetically associated with skarn-magnetite bodies are of similar age. Gold was deposited together with sulfides, as evidenced from the direct correlation between the contents of gold and sulfides (especially chalcopyrite) and from gold inclusions in the sulfides. The formation of skarn and aposkarn mineralization was followed (with some temporal gap) by the intrusion of dike and stock-like small granitoid bodies, which is indicated by their cutting of the sulfide-bearing skarn and magnetite bodies. Ar-Ar dating of these granite bodies yielded an age of 484.2 ±4.3 Ma (Table 2).Fig. 9. Variations in gold fineness in ores from the Choiskoe deposit.1098I.V. Gaskov et al. / Russian Geology and Geophysics 51 (2010) 1091–1101。

参考文献——精选推荐

参考文献——精选推荐

参考⽂献[1] Meng W., Wei J., Luo X., et al. Separation of β-agonists in pork on a weak cation exchange column by HPLC with fluorescence detection. Analytical Methods,2012, 4(4): 1163.[2] 聂建荣, 朱铭⽴, 连槿, 等. ⾼效液相⾊谱-串联质谱法检测动物尿液中的15 种β-受体激动剂. ⾊谱,2010, 28(8): 759-764.[3] Traynor I., Crooks S., Bowers J., et al. Detection of multi-β-agonist residues in liver matrix by use of a surface plasma resonance biosensor. Analytica Chimica Acta,2003, 483(1): 187-191. [4] Kuiper H., Noordam M., van Dooren-Flipsen M., et al. Illegal use of beta-adrenergic agonists: European Community. Journal of Animal Science,1998, 76(1): 195-207.[5] Watkins L., Jones D., Mowrey D., et al. The effect of various levels of ractopamine hydrochloride on the performance and carcass characteristics of finishing swine. Journal of Animal Science,1990, 68(11): 3588-3595.[6] Parr M. K., Opfermann G., Sch?nzer W. Analytical methods for the detection of clenbuterol. Bioanalysis,2009, 1(2): 437-450.[7] López-Mu?oz F., Alamo C., Rubio G., et al. Half a century since the clinical introduction of chlorpromazine and the birth of modern psychopharmacology. Prog Neuropsychopharmacol Biol Psychiatry,2004, 28(1): 205-208.[8] Goodman L., Gilman A. The pharmacological basis of therapeutics, 7th edn Macmillan. New York,1980: 1054-1105.[9] 王春燕. ⽑细管电泳—电化学发光检测吩噻嗪类药物的研究. 长春理⼯⼤学, 2006.[10] 孙雷, 张骊, 徐倩, et al. 超⾼效液相⾊谱-串联质谱法检测猪⾁和猪肾中残留的10 种镇静剂类药物. ⾊谱,2010, 28(1): 38-42.[11] 顾华兵, 谢洁, 彭涛, et al. 鸡⾁组织中氯丙嗪残留的HPLC-MS/MS 检测⽅法的建⽴. 中国家禽,2014, 36(15): 33-36.[12] Mitchell G., Dunnavan G. Illegal use of beta-adrenergic agonists in the United States. Journal of Animal Science,1998, 76(1): 208-211.[13] Directive C. Council Directive 96/23/EC of 29 April 1996 on measures to monitor certain substances and residues thereof in live animals and animal products and repealing Directives 85/358/EEC and 86/469/EEC and Decisions89/187/EEC and 91/664/EEC. Official Journal L125,1996, 23(5): 10-32.[14] 农业部, 卫⽣部. 禁⽌在饲料和动物饮⽤⽔中使⽤的药物品种⽬录[Z] 农业部公告[2002] 176 号. 2002.[15] Damasceno L., Ventura R., Cardoso J., et al. Diagnostic evidence for the presence of β-agonists using two consecutive derivatization procedures and gas chromatography–mass spectrometric analysis. Journal of Chromatography B,2002,780(1): 61-71.[16] 王培龙. β-受体激动剂及其检测技术研究. 农产品质量与安全,2014, 1): 44-52.[17] Wang L.-Q., Zeng Z.-L., Su Y.-J., et al. Matrix effects in analysis of β-agonists with LC-MS/MS: influence of analyte concentration, sample source, and SPE type. Journal of Agricultural and Food Chemistry,2012, 60(25): 6359-6363.[18] Shao B., Jia X., Zhang J., et al. Multi-residual analysis of 16 β-agonists in pig liver, kidney and muscle by ultra performance liquid chromatography tandem mass spectrometry. Food Chemistry,2009, 114(3): 1115-1121.[19] Josefsson M., Sabanovic A. Sample preparation on polymeric solid phase extraction sorbents for liquid chromatographic-tandem mass spectrometric analysis of human whole blood--a study on a number of beta-agonists and beta-antagonists. Journal of Chromatography A 2006, 1120(1-2):1-12.[20] Zhang Z., Yan H., Cui F., et al. Analysis of Multiple β-Agonist and β-Blocker Residues in Porcine Muscle Using Improved QuEChERS Method and UHPLC-LTQ Orbitrap Mass Spectrometry. Food Analytical Methods,2015: 1-10. [21] Wang P., Liu X., Su X., et al. Sensitive detection of β-agonists in pork tissue with novel molecularly imprinted polymer extraction followed liquid chromatography coupled tandem mass spectrometry detection. Food chemistry,2015, 184(72-79.[22] Li T., Cao J., Li Z., et al. Broad screening and identification of beta-agonists in feed and animal body fluid and tissues using ultra-high performance liquid chromatography-quadrupole-orbitrap high resolution mass spectrometry combined with spectra library search. Food Chem,2016, 192(188-196.[23] Xiong L., Gao Y.-Q., Li W.-H., et al. A method for multiple identification of four β2-Agonists in goat muscle and beefmuscle meats using LC-MS/MS based on deproteinization by adjusting pH and SPE for sample cleanup. Food Science and Biotechnology,2015, 24(5): 1629-1635.[24] Zhang Y., Zhang Z., Sun Y., et al. Development of an Analytical Method for the Determination of β2-Agonist Residues in Animal Tissues by High-Performance Liquid Chromatography with On-line Electrogenerated [Cu (HIO6) 2] 5--Luminol Chemiluminescence Detection. Journal of Agricultural and Food chemistry,2007, 55(13): 4949-4956.[25] Liu W., Zhang L., Wei Z., et al. Analysis of beta-agonists and beta-blockers in urine using hollow fibre-protected liquid-phase microextraction with in situ derivatization followed by gas chromatography/mass spectrometry. Journal of Chromatography A 2009, 1216(28): 5340-5346. [26] Caban M., Mioduszewska K., Stepnowski P., et al. Dimethyl(3,3,3-trifluoropropyl)silyldiethylamine--a new silylating agent for the derivatization of beta-blockers and beta-agonists in environmental samples. Analytica Chimica Acta,2013, 782(75-88.[27] Caban M., Stepnowski P., Kwiatkowski M., et al. Comparison of the Usefulness of SPE Cartridges for the Determination of β-Blockers and β-Agonists (Basic Drugs) in Environmental Aqueous Samples. Journal of Chemistry,2015, 2015([28] Zhang Y., Wang F., Fang L., et al. Rapid determination of ractopamine residues in edible animal products by enzyme-linked immunosorbent assay: development and investigation of matrix effects. J Biomed Biotechnol,2009, 2009(579175.[29] Roda A., Manetta A. C., Piazza F., et al. A rapid and sensitive 384-microtiter wells format chemiluminescent enzyme immunoassay for clenbuterol. Talanta,2000, 52(2): 311-318.[30] Bacigalupo M., Meroni G., Secundo F., et al. Antibodies conjugated with new highly luminescent Eu 3+ and Tb 3+ chelates as markers for time resolved immunoassays. Application to simultaneous determination of clenbuterol and free cortisol in horse urine. Talanta,2009, 80(2): 954-958.[31] He Y., Li X., Tong P., et al. An online field-amplification sample stacking method for the determination of β 2-agonists in human urine by CE-ESI/MS. Talanta,2013, 104(97-102.[32] Li Y., Niu W., Lu J. Sensitive determination of phenothiazines in pharmaceutical preparation and biological fluid by flow injection chemiluminescence method using luminol–KMnO 4 system. Talanta,2007, 71(3): 1124-1129.[33] Saar E., Beyer J., Gerostamoulos D., et al. The analysis of antipsychotic drugs in humanmatrices using LC‐MS (/MS). Drug testing and analysis,2012, 4(6): 376-394.[34] Mallet E., Bounoure F., Skiba M., et al. Pharmacokinetic study of metopimazine by oral route in children. Pharmacol Res Perspect,2015, 3(3): e00130.[35] Thakkar R., Saravaia H., Shah A. Determination of Antipsychotic Drugs Known for Narcotic Action by Ultra Performance Liquid Chromatography. Analytical Chemistry Letters,2015, 5(1): 1-11.[36] Kumazawa T., Hasegawa C., Uchigasaki S., et al. Quantitative determination of phenothiazine derivatives in human plasma using monolithic silica solid-phase extraction tips and gas chromatography–mass spectrometry. Journal of Chromatography A,2011, 1218(18): 2521-2527.[37] Flieger J., Swieboda R. Application of chaotropic effect in reversed-phase liquid chromatography of structurally related phenothiazine and thioxanthene derivatives. J Chromatogr A,2008, 1192(2): 218-224.[38] Tu Y. Y., Hsieh M. M., Chang S. Y. Sensitive detection of piperazinyl phenothiazine drugs by field‐amplified sample stacking in capillary electrophoresis with dispersive liquid–liquid microextraction. Electrophoresis,2015, 36(21-22): 2828-2836.[39] Geiser L., Veuthey J. L. Nonaqueous capillary electrophoresis in pharmaceutical analysis. Electrophoresis,2007, 28(1‐2): 45-57.[40] Lara F. J., García‐Campa?a A. M., Gámiz‐Gracia L., et al. Determination of phenothiazines in pharmaceutical formulations and human urine using capillary electrophoresis with chemiluminescence detection. Electrophoresis,2006,27(12): 2348-2359.[41] Lee H. B., Sarafin K., Peart T. E. Determination of beta-blockers and beta2-agonists in sewage by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr A,2007, 1148(2): 158-167.[42] Meng W., Wei J., Luo X., et al. Separation of β-agonists in pork on a weak cation exchange column by HPLC with fluorescence detection. Analytical Methods,2012, 4(4): 1163-1167. [43] Yang F., Liu Z., Lin Y., et al. Development an UHPLC-MS/MS Method for Detection of β-Agonist Residues in Milk. Food Analytical Methods,2011, 5(1): 138-147.[44] Quintana M., Blanco M., Lacal J., et al. Analysis of promazines in bovine livers by high performance liquid chromatography with ultraviolet and fluorimetric detection. Talanta,2003, 59(2): 417-422.[45] Tanaka E., Nakamura T., Terada M., et al. Simple and simultaneous determination for 12 phenothiazines in human serum by reversed-phase high-performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci,2007, 854(1-2): 116-120.[46] Kumazawa T., Hasegawa C., Uchigasaki S., et al. Quantitative determination of phenothiazine derivatives in human plasma using monolithic silica solid-phase extraction tips and gas chromatography-mass spectrometry. J ChromatogrA,2011, 1218(18): 2521-2527.[47] Qian J. X., Chen Z. G. A novel electromagnetic induction detector with a coaxial coil for capillary electrophoresis. Chinese Chemical Letters,2012, 23(2): 201-204.[48] Baciu T., Botello I., Borrull F., et al. Capillary electrophoresis and related techniques in the determination of drugs of abuse and their metabolites. TrAC Trends in Analytical Chemistry,2015, 74(89-108.[49] Sirichai S., Khanatharana P. Rapid analysis of clenbuterol, salbutamol, procaterol, and fenoterol in pharmaceuticals and human urine by capillary electrophoresis. Talanta,2008, 76(5):1194-1198.[50] Toussaint B., Palmer M., Chiap P., et al. On‐line coupling of partial filling‐capillary zone electrophoresis with mass spectrometry for the separation of clenbuterol enantiomers. Electrophoresis,2001, 22(7): 1363-1372.[51] Redman E. A., Mellors J. S., Starkey J. A., et al. Characterization of Intact Antibody Drug Conjugate Variants using Microfluidic CE-MS. Analytical chemistry,2016.[52] Ji X., He Z., Ai X., et al. Determination of clenbuterol by capillary electrophoresis immunoassay with chemiluminescence detection. Talanta,2006, 70(2): 353-357.[53] Li L., Du H., Yu H., et al. Application of ionic liquid as additive in determination of three beta-agonists by capillary electrophoresis with amperometric detection. Electrophoresis,2013, 34(2): 277-283.[54] 张维冰. ⽑细管电⾊谱理论基础. 北京:科学出版社,2006.[55] Anurukvorakun O., Suntornsuk W., Suntornsuk L. Factorial design applied to a non-aqueous capillary electrophoresis method for the separation of beta-agonists. J Chromatogr A,2006, 1134(1-2): 326-332.[56] Shi Y., Huang Y., Duan J., et al. Field-amplified on-line sample stacking for separation and determination of cimaterol, clenbuterol and salbutamol using capillary electrophoresis. J Chromatogr A,2006, 1125(1): 124-128.[57] Chevolleau S., Tulliez J. Optimization of the separation of β-agonists by capillary electrophoresis on untreated and C 18 bonded silica capillaries. Journal of Chromatography A,1995, 715(2): 345-354.[58] Wang W., Zhang Y., Wang J., et al. Determination of beta-agonists in pig feed, pig urine and pig liver using capillary electrophoresis with electrochemical detection. Meat Sci,2010, 85(2): 302-305.[59] Lin C. E., Liao W. S., Chen K. H., et al. Influence of pH on electrophoretic behavior of phenothiazines and determination of pKa values by capillary zone electrophoresis. Electrophoresis,2003, 24(18): 3154-3159.[60] Muijselaar P., Claessens H., Cramers C. Determination of structurally related phenothiazines by capillary zone electrophoresis and micellar electrokinetic chromatography. Journal of Chromatography A,1996, 735(1): 395-402.[61] Wang R., Lu X., Xin H., et al. Separation of phenothiazines in aqueous and non-aqueous capillary electrophoresis. Chromatographia,2000, 51(1-2): 29-36.[62] Chen K.-H., Lin C.-E., Liao W.-S., et al. Separation and migration behavior of structurally related phenothiazines in cyclodextrin-modified capillary zone electrophoresis. Journal of Chromatography A,2002, 979(1): 399-408.[63] Lara F. J., Garcia-Campana A. M., Ales-Barrero F., et al. Development and validation of a capillary electrophoresis method for the determination of phenothiazines in human urine in the low nanogram per milliliter concentration range using field-amplified sample injection. Electrophoresis,2005, 26(12): 2418-2429.[64] Lara F. J., Garcia-Campana A. M., Gamiz-Gracia L., et al. Determination of phenothiazines in pharmaceutical formulations and human urine using capillary electrophoresis with chemiluminescence detection. Electrophoresis,2006,27(12): 2348-2359.[65] Yu P. L., Tu Y. Y., Hsieh M. M. Combination of poly(diallyldimethylammonium chloride) and hydroxypropyl-gamma-cyclodextrin for high-speed enantioseparation of phenothiazines bycapillary electrophoresis. Talanta,2015, 131(330-334.[66] Kakiuchi T. Mutual solubility of hydrophobic ionic liquids and water in liquid-liquid two-phase systems for analytical chemistry. Analytical Sciences,2008, 24(10): 1221-1230.[67] 陈志涛. 基于离⼦液体相互作⽤⽑细管电泳新⽅法. 万⽅数据资源系统, 2011.[68] Liu J.-f., Jiang G.-b., J?nsson J. ?. Application of ionic liquids in analytical chemistry. TrAC Trends in Analytical Chemistry,2005, 24(1): 20-27.[69] YauáLi S. F. Electrophoresis of DNA in ionic liquid coated capillary. Analyst,2003, 128(1): 37-41.[70] Kaljurand M. Ionic liquids as electrolytes for nonaqueous capillary electrophoresis. Electrophoresis,2002, 23(426-430.[71] Xu Y., Gao Y., Li T., et al. Highly Efficient Electrochemiluminescence of Functionalized Tris (2, 2′‐bipyridyl) ruthenium (II) and Selective Concentration Enrichment of Its Coreactants. Advanced Functional Materials,2007, 17(6): 1003-1009.[72] Pandey S. Analytical applications of room-temperature ionic liquids: a review of recent efforts. Anal Chim Acta,2006, 556(1): 38-45.[73] Koel M. Ionic Liquids in Chemical Analysis. Critical Reviews in Analytical Chemistry,2005, 35(3): 177-192.[74] Yanes E. G., Gratz S. R., Baldwin M. J., et al. Capillary electrophoretic application of 1-alkyl-3-methylimidazolium-based ionic liquids. Analytical chemistry,2001, 73(16): 3838-3844.[75] Qi S., Cui S., Chen X., et al. Rapid and sensitive determination of anthraquinones in Chinese herb using 1-butyl-3-methylimidazolium-based ionic liquid with β-cyclodextrin as modifier in capillary zone electrophoresis. Journal of Chromatography A,2004, 1059(1-2): 191-198.[76] Jiang T.-F., Gu Y.-L., Liang B., et al. Dynamically coating the capillary with 1-alkyl-3-methylimidazolium-based ionic liquids for separation of basic proteins by capillary electrophoresis. Analytica Chimica Acta,2003, 479(2): 249-254.[77] Jiang T. F., Wang Y. H., Lv Z. H. Dynamic coating of a capillary with room-temperature ionic liquids for the separation of amino acids and acid drugs by capillary electrophoresis. Journal of Analytical Chemistry,2006, 61(11): 1108-1112.[78] Qi S., Cui S., Cheng Y., et al. Rapid separation and determination of aconitine alkaloids in traditional Chinese herbs by capillary electrophoresis using 1-butyl-3-methylimidazoium-based ionic liquid as running electrolyte. Biomed Chromatogr,2006, 20(3): 294-300.[79] Wu X., Wei W., Su Q., et al. Simultaneous separation of basic and acidic proteins using 1-butyl-3-methylimidazolium-based ion liquid as dynamic coating and background electrolyte in capillary electrophoresis. Electrophoresis,2008, 29(11): 2356-2362.[80] Guo X. F., Chen H. Y., Zhou X. H., et al. N-methyl-2-pyrrolidonium methyl sulfonate acidic ionic liquid as a new dynamic coating for separation of basic proteins by capillary electrophoresis. Electrophoresis,2013, 34(24): 3287-3292.[81] Mo H., Zhu L., Xu W. Use of 1-alkyl-3-methylimidazolium-based ionic liquids as background electrolytes in capillary electrophoresis for the analysis of inorganic anions. J Sep Sci,2008, 31(13): 2470-2475.[82] Yu L., Qin W., Li S. F. Y. Ionic liquids as additives for separation of benzoic acid and chlorophenoxy acid herbicides by capillary electrophoresis. Analytica Chimica Acta,2005, 547(2): 165-171.[83] Marszall M. P., Markuszewski M. J., Kaliszan R. Separation of nicotinic acid and itsstructural isomers using 1-ethyl-3-methylimidazolium ionic liquid as a buffer additive by capillary electrophoresis. J Pharm Biomed Anal,2006, 41(1): 329-332.[84] Gao Y., Xu Y., Han B., et al. Sensitive determination of verticine and verticinone in Bulbus Fritillariae by ionic liquid assisted capillary electrophoresis-electrochemiluminescence system. Talanta,2009, 80(2): 448-453.[85] Li J., Han H., Wang Q., et al. Polymeric ionic liquid as a dynamic coating additive for separation of basic proteins by capillary electrophoresis. Anal Chim Acta,2010, 674(2): 243-248.[86] Su H. L., Kao W. C., Lin K. W., et al. 1-Butyl-3-methylimidazolium-based ionic liquids and an anionic surfactant: excellentbackground electrolyte modifiers for the analysis of benzodiazepines through capillary electrophoresis. J ChromatogrA,2010, 1217(17): 2973-2979.[87] Huang L., Lin J. M., Yu L., et al. Improved simultaneous enantioseparation of beta-agonists in CE using beta-CD and ionic liquids. Electrophoresis,2009, 30(6): 1030-1036.[88] Laamanen P. L., Busi S., Lahtinen M., et al. A new ionic liquid dimethyldinonylammonium bromide as a flow modifier for the simultaneous determination of eight carboxylates by capillary electrophoresis. J Chromatogr A,2005, 1095(1-2): 164-171.[89] Yue M.-E., Shi Y.-P. Application of 1-alkyl-3-methylimidazolium-based ionic liquids in separation of bioactive flavonoids by capillary zone electrophoresis. Journal of Separation Science,2006, 29(2): 272-276.[90] Liu C.-Y., Ho Y.-W., Pai Y.-F. Preparation and evaluation of an imidazole-coated capillary column for the electrophoretic separation of aromatic acids. Journal of Chromatography A,2000, 897(1): 383-392.[91] Qin W., Li S. F. An ionic liquid coating for determination of sildenafil and UK‐103,320 in human serum by capillary zone electrophoresis‐ion trap mass spectrometry. Electrophoresis,2002, 23(24): 4110-4116.[92] Qin W., Li S. F. Y. Determination of ammonium and metal ions by capillary electrophoresis–potential gradient detection using ionic liquid as background electrolyte and covalent coating reagent. Journal of Chromatography A,2004, 1048(2): 253-256.[93] Borissova M., Vaher M., Koel M., et al. Capillary zone electrophoresis on chemically bonded imidazolium based salts. J Chromatogr A,2007, 1160(1-2): 320-325.[94] Vaher M., Koel M., Kaljurand M. Non-aqueous capillary electrophoresis in acetonitrile using lonic-liquid buffer electrolytes. Chromatographia,2000, 53(1): S302-S306.[95] Vaher M., Koel M., Kaljurand M. Ionic liquids as electrolytes for nonaqueous capillary electrophoresis. Electrophoresis,2002, 23(3): 426.[96] Vaher M., Koel M. Separation of polyphenolic compounds extracted from plant matrices using capillary electrophoresis. Journal of Chromatography A,2003, 990(1-2): 225-230.[97] Francois Y., Varenne A., Juillerat E., et al. Nonaqueous capillary electrophoretic behavior of 2-aryl propionic acids in the presence of an achiral ionic liquid. A chemometric approach. J Chromatogr A,2007, 1138(1-2): 268-275.[98] Lamoree M., Reinhoud N., Tjaden U., et al. On‐capillary isotachophoresis for loadability enhancement in capillary zone electrophoresis/mass spectrometry of β‐agonists. Biological mass spectrometry,1994, 23(6): 339-345.[99] Huang P., Jin X., Chen Y., et al. Use of a mixed-mode packing and voltage tuning for peptide mixture separation in pressurized capillary electrochromatography with an ion trap storage/reflectron time-of-flight mass spectrometer detector. Analytical chemistry,1999, 71(9):1786-1791.[100] Le D. C., Morin C. J., Beljean M., et al. Electrophoretic separations of twelve phenothiazines and N-demethyl derivatives by using capillary zone electrophoresis and micellar electrokinetic chromatography with non ionic surfactant. Journal of Chromatography A,2005, 1063(1-2): 235-240.。

新构造运动对天然气晚期成藏的控制作用

新构造运动对天然气晚期成藏的控制作用

文章编号:167221926(2003)022*******收回日期:2003202225;修回日期:20032032171作者简介:宋岩(19572),女,山东淄博人,教授级高级工程师,博士生导师,国家“973”项目首席科学家,主要从事天然气地质和天然气地球化学研究1新构造运动对天然气晚期成藏的控制作用宋 岩1,王喜双2(1.中国石油勘探开发研究院,北京 100083;2.中国石油股份有限公司勘探与生产分公司,北京 100011)摘 要:天然气藏的形成是一个散失与聚集的动态平衡过程,因此晚期成藏更有利于天然气的保存。

对我国中部、西部天然气成藏特征分析表明,新构造运动对天然气的晚期成藏起着非常重要的控制作用,主要表现在4方面:①晚期成盆有利于气源岩晚期供气,晚期快速沉降作用有利于气源岩的晚期快速熟化;②新构造运动为天然气晚期成藏提供了新的动力;③晚期圈闭的形成控制着天然气的晚期成藏;④晚期断裂的形成为浅层气晚期成藏提供了运移通道。

关键词:新构造运动;喜山运动;天然气;晚期成藏中图分类号:P 618113012 文献标识码:A 与石油相比,天然气具有分子小、易散失的特点。

研究表明,天然气的散失作用存在于气藏形成的整个历史时期,即天然气藏的形成是处在一个动态平衡的过程[1]。

只有当聚集量大于散失量时,气藏才能形成,因此,晚期成藏对气藏保存至关重要。

气藏形成越晚,天然气散失时间越短,散失量就越小[2]。

而新构造运动对天然气的晚期成藏起到了关键的控制作用。

我国含气盆地分布较多的中西部地区喜山活动强烈,由此不仅形成了造山带与盆地相间排列的构造格局[3,4],而且也形成了大量断裂带和背斜构造带,从而控制了天然气藏的形成和分布。

主要表现在以下几方面。

1 晚期成盆有利于烃源岩晚期供气,晚期快速沉降作用有利于气源岩的晚期快速熟化 烃源岩生气期晚是控制天然气晚期成藏的最直接的因素。

烃源岩时代新,生油气期自然要晚,因此那些新生代成盆的含油气盆地都具有晚期成藏的特点。

固体催化材料之酸催化材料:多金属氧酸盐、杂多酸、固体超强酸 2020

固体催化材料之酸催化材料:多金属氧酸盐、杂多酸、固体超强酸 2020
酸催化剂
➢ Al2O3 ➢ SiO2-Al2O3、复合氧化物 ➢ 分子筛
多金属氧酸盐、杂多酸、固体超强酸
多金属氧酸盐(polyoxometalate,M)
/wiki/Polyoxometalate /view/585075.htm
精细化学品的催化合成:多 酸化合物及其催化
作 者: (俄) 伊万.科热夫尼科 著 唐培堃,李祥高,王世荣 译 出 版 社: 化学工业出版社 ISBN:9787502566661 出版时间:2005-04-01 版 次:1 页 数:228
Catalysts for Fine Chemical Synthesis, Catalysis by Polyoxometalates
元素周期表中大部分元素均可作为杂原子不前过渡元素组成杂多酸基本概念多酸具有像沸石一样的笼型结构沸石分子筛结构由四个四面体形成四元环五个四面体形成五元环依此类推还有六元环八元环和十二元环等环结构硅氧四面体或铝氧四面体通过氧桥联结成环环结构通过氧桥再相互联结形成三维空间的多面体笼结构笼结构基本结构单元以以si和al原子为中心的正四面体硅氧四面体和铝氧四面体同多酸
Toshihiro Yamase, Michael T. Pope 出版社: Kluwer Academic/Plenum P ublishers (2002年10月31日) 丛书名: Nanostructure Science and Technology
ISBN: 0306473593
Polyoxometalate Chemistry: Some Recent Trends
杂多和同多金属氧酸盐
作者:迈克尔.波普 出版时间:1983年
王恩波
➢《杂多和同多金属氧酸盐 》吉林大学出版 社,1991 ➢《配位化学进展》(王恩波写其中的“多 酸化合物” ) 高等教育出版社,1999. ➢《中国固体化学十年进展》(王恩波写其 中的“同多杂多化合物的合成结构及功能特 性” ) 高等教育出版社,1999. /

中图法与科图法简表对照一览-河海大学图书馆

中图法与科图法简表对照一览-河海大学图书馆

写在前面春回大地,万象更新,在这春意盎然的时节里,新一期《图书馆最新资源速递》又如期与您见面了。

根据广大读者的需求,今年我馆在购置中文期刊时,新增订了近200种,为了方便您查找,我们已编制了《河海大学图书馆2008年度馆藏中文期刊目录》,并分发给各单位。

同时,我们将这近200种新增订的中文期刊目录单独列出,编辑在本辑《图书馆最新资源速递》的最后,以节省您查找新刊的时间。

本期继续报道外文会议录信息,希望我们的外文会议录专集对您查找会议文献有所帮助。

《图书馆最新资源速递》编辑体例如下:1、整体按分类编排:由于我馆的中文期刊是按《中图法》分类,中外文图书及外文期刊是按《科图法》分类,而这两种分类法又不尽相同,故我们将这两种分类的大类进行比较,相对集中并于目录中体现,目的是使推介的每一学科的内容尽量集中,以便读者更方便的使用;2、每一大类的内容按最新中文期刊目录、最新外文期刊目录、中文图书提要、外文图书提要的顺序编排;3、每一种推介的文献都注明了我馆的馆藏地。

4、我们的联系方式是:读者服务部(西康校区):电话:83787308、83787307、83787302E-mail:zhongqz@ tsgxp@ tsgcbb@读者服务部(江宁校区):电话:83787648E-mail:tsgcm@本期责任编辑:中文期刊——梁军;中文图书——许平;外文期刊——余清芬;外文图书——杨小莉。

本期供稿人员:周冰杨小莉宋艺丁马大勇郑林吴丽娣刘忠锦邓鸣超杨露曦熊易胡玲玲吴立志王唏红封丽陆艳洪建河海大学图书馆读者服务部2008. 4.3目录20 社会科学(C 社会科学总论) (5)中文期刊 (5)27 经济、经济学(F 经济) (9)中文期刊 (9)中文图书 (16)31/34 政治、社会生活/法律、法学(D 政治、法律) (17)中文期刊 (17)中文图书 (22)37 文化、科学、教育、体育(G 文化、科学、教育、体育) (27)中文期刊 (27)41 语言、文字学(H语言、文字) (29)中文期刊 (29)50 自然科学(N 自然科学总论) (31)中文期刊 (31)51-54 数学/力学/物理学/化学(O 数理科学和化学) (33)中文期刊 (33)中文图书 (36)外文期刊 (36)55-56 天文学/地球科学(P 天文学、地球科学) (58)中文期刊 (58)外文期刊 (60)58 生物科学(Q 生物科学) (87)中文图书 (87)65 农业科学(S 农业科学) (88)中文期刊 (88)中文图书 (89)外文期刊 (90)71-86 技术科学(T/X 工业技术/环境科学、安全科学) (91)中文期刊 (91)中文图书 (104)外文期刊 (136)外文会议录 (195)河海大学图书馆2008年新增中文现刊馆藏目录 (253)20 社会科学(C 社会科学总论)中文期刊社会科学[月刊]=Jornal of Social Sciences/上海社会科学院.—10期,2007年.—上海:上海社会科学院《社会科学》编辑部,(200020).15.00元ISSN 0257-5833 CN 31-1112索书号:C/5 馆藏地:西康校区四楼本期目录内容新苏南模式与两新·组织党建运行机制——以江苏昆山市为实例…………………王世谊 (4) 政府在公民维权中的指导责任和接受监督……………………………………………汤啸天(16) 地方政府考核:双重委托人失效及其政策含义………………………………徐风华王俊杰(25) 泛长江三角洲:世界第六大都市圈未来“一体两翼·新格局…………………………张颊瀚(34) 税费改革后农村公共服务提供机制的比较研究——基于湖北与浙江农村的调查………………………………………………………………………………伏玉林符钢战(40) 论上海发展面临的虚拟经济膨胀问题…………………………………………………高炜宇(47) 社会情境理论:贫困现象的另一种解释…………………………………………………周怡(56) 浦东新郊区建设和人口城市化再推进研究……………………………………………孙嘉丰(63) 后形而上时代的“沟通主义法律观”——啜法律的沟通之维》代译序………………邓正来(69) 单位人格刑事责任沦纲……………………………………………………………………杜文(72) 沦行政行为的代表性…………………………………………………………樊明亚赖声利 (80) 对我国学前教育改革若干问题的文化观照……………………………………………华爱华(87) 《沦语》:孔子弟子博弈之成果——兼谈战国后期儒家八派之争及荀卿的态度……李露平(96) 中西和谐社会思想之异同:经济学说史的视角………………………………………钟祥财(105) 清末新政对民生问题的恶性操作与社会矛盾的激化…………………………………陆兴龙(115) 《月令》;农耕民族的人生模型……………………………………………………………薛富(123) 书生立武勋——湘军功成的内在因素…………………………………………………李志茗(134) 塞上海柴拉报势考略……………………………………………………………………褚晓琦(147) 墓惠与商道:近代上海慈善组织兴起的原因探析……………………………………汪华(154) 走向·间性哲学·的跨文化研究…………………………………………………………周宁(162) 空间,性别与认同——女性写作的·地理学·转向…………………………………陈惠芬(170)月西方理论和方法解析中国古代诗词——叶嘉莹中西诗学研究之阐释……………徐志啸(183)法商研究[双月刊]=Studies in LAW And Business/中南财经政法大学.—第1期,2008年.—武汉市:《法商研究》编辑部,(430073).18.00元ISSN 1672-0393 CN 42-1664/D索书号:C5/73 馆藏地:本部四楼本期目录内容“美国对华铜版纸案”述评——基于反补贴申诉的考察……………………李仲平李炼(3) 美国反补贴法适用探析——以对“非市场经济国家”的适用为考察对象…………徐泉(10) WTO法律体系下实施“双反”措施的合法性研究——由“美国对华铜版纸案”引发的思考………………………………………………………………………………………臧立(16)从立法中心主义转向司法中心主义?——关于几种“中心主义”研究范式的反思、延伸与比较……………………………………………………………………………………喻中(22) 转化型抢劫罪主体条件的实质解释——以相对刑事责任年龄人的刑事责任为视角………………………………………………………………………………………刘艳红(29) 论我国股权激励的本土创新——股权分置改革视野下的反思与重构………………官欣荣(42) 论以人为本的“人”……………………………………………………………………胡锦光(48) 限时刑法探究……………………………………………………………………………黄明儒(55) 农民土地产权资本化经营实现的法律保障……………………………………………李丽峰(61) 城市土地节约利用法律制度:现状、问题与对策……………………………………王文革(69) 论现行保证制度的局限及其完善——以成本收益分析为中心………………………许德风(78) 保护传统文化的政策目标论纲…………………………………………………………黄玉烨(86) 我国新能源与可再生能源立法之新思维………………………………………………杨解君(92) 美国监管影响分析制度述评……………………………………………………………马英娟(98) 论犯罪的相对性——从绝对理性到相对理性…………………………………………张建军(107) 基于信息的荐证广告之法律规制——以保健品广告为中心…………………………吴元元(113) 环境罚款数额设定的立法研究…………………………………………………………程雨燕(121) 委托调解若干问题研究——对四个基层人民法院委托调解的初步考察……………李浩(133) 中国法律史研究思路新探………………………………………………………………邓建鹏(141) 中国法学会商法学研究会2007年年会综述…………………………………………冯兴俊(147) 第十五届全国经济法理论研讨会综述…………………………………………………管斌(153)复印报刊资料·社会学[月刊]Sociology.—第2期,2008年.—北京:中国人民大学书报资料中心,(100086).10.00元ISSN 1001-344X CN 11-4250/C索书号:C91/3 馆藏地:本部四楼江宁二楼本期目录内容理论研究中国社会发展范式的转换:普遍性与特殊性……………………………………………刘新刚(3) 欧洲社会模式的反思与展望……………………………………………(英)安东尼·吉登斯(10) 分支学科自我行动与自主经营——理解中国人何以将自主经营当作其参与市场实践的首选方式……………汪和建(21) 声望危机下的学术群体——当代知识分子身份地位研究……………………………刘亚秋(37) 中国城市教育分层研究(1949-2003) …………………………………………………郝大海(51) 法律执行的社会学模式——对法律援助过程的法社会学分析………………王晓蓓郭星华(63) 社会发展系统打造农村现代职业体系的创新探索——武汉农村家园建设行动计划和实践的社会学分析之一……………………郑杭生(69) “活着的过去”和“未来的过去”——民俗制度变迁与新农村建设的社会学视野…………………………………杨敏(76) 社会问题解决社会问题的关键:协调好社会各群体之间的关系…………………………………李强(87) 环球视窗美国式的贫困与反贫困...........................................................................张锐(89) 索引 (92)英文目录 (96)领导科学[半月刊]=Leadership Science—第21期,2007年.—河南:领导科学杂志社编辑出版,(450002).3.80元ISSN1003-2606 CN41-1024/C索书号: C93/8 馆藏地:本部四楼江宁二楼本期目录内容领导科学界的首要政治任务…………………………………………………………本刊编辑部(1)学习贯彻十七大精神把思想和行动统一到党的十七大精神上来——在2007年度省领导与社科葬专家学者座谈会上的讲话…………………………………………………………………………………徐光春(4)新一届中央领导集体治国理政的新方略(上) …………………………………………姜平(9)理论前沿关于领导、发展、以人为本的关系解读…………………………………………………王伟凯(ll)领导方法有效解决集体上访问题的思考与实践…………………………………………………陈丰林(14)引导信访户从“上访路”走上“致富路”………………………………………………邱金义(16)增强班子合力关键要合理分工…………………………………………………………枣甘(13)高校党建工作进网络的探索…………………………………………………张进超詹爱琴(17)市县领导欠发达地区构建和谐社会的着力点……………………………………………………丁善余(20)拓展农业发展思路的五种渠道…………………………………………………………盛高攀(22)乡镇领导推进乡镇党委和谐班子建设的途径……………………………………………………王晓宏(23)乡镇党委如何统揽工作全局……………………………………………………………刘久正(25)职工论坛建立体现科学发展观要求的干部政绩考核机制………………………………………盛克勤(30)组织部门信访工作机制探索……………………………………………………………钟群妹(26)用人之道有效规范干部选任初始提名工作……………………………………………李明辉韩振松(32)如何用好有过失的干部…………………………………………………………………蒋红波(34)办公室领导办公室工作如伺体现科学发展观要求…………………………………………………王合清(36)怎样在被动服务中求得主动……………………………………………………………方黎(38)学术动态中国领导科学研究会2007年年会将在上海市召开 (43)领导决策实现政府公共决策机制法治化的基本途径……………………………………………李光明(40)领导素养领导行为与对人的认识…………………………………………………………………周丽丽(42)军事领导基层政治工作如何贯彻科学发展观……………………………………………………鲁鸿飞(44)培养官兵对制度的敬畏感………………………………………………………………何洪江(46)领导鉴戒“大胜”更须戒骄………………………………………………………………………李颖(48)领导作风领导工作应坚持“三真”原则………………………………………………余丰立朱伟(47)外国政要帕蒂尔:温和印度的政治选择……………………………………………………………史泽华(50)治政史鉴朱元璋的反贪之策………………………………………………………………………韩立竖(52)特别阅读真相(中篇小说梗概) (54)热风细雨“经济提拔”与“提拔经济”…………………………………………………………江波(35)新视野(十七大的历史地位和历史意义)等7篇 (18)中国人才[半月刊]= Chinese Talents Magazine.—第10期,2007年.—北京:中国人才杂志社,(100101).6.00元ISSN 1003-4072 CN 11-2455/C索书号:C96/5 馆藏地:西康校区四楼江宁校区二楼本期目录内容人才精论“以人才为本”是人才开发的核心 (1)瞭望要闻.政策法规.声音.动态.数字信息 (4)考录:严把公务员“入口”关倡培养造就高素质公务员队伍 (10)人才市揭:为人才成长提供良好机遇与环境 (12)高校毕业生就业服务成效显著 (14)聚焦人事争议仲裁制度迈向新的发展 (15)完善人事争议仲裁构建和谐社会——《人事争议处理规定》解读 (16)努力开创人事争议仲裁工作新局面 (20)“六大人才高峰”彰显人才集聚效应 (21)高技能人才从何而来 (23)造福于民方能造福于己 (25)以.三最.为民生轴心彰显科学发展 (25)理论研究区分公共服务与经营性服务的理论思考 (26)探寻人才科学开发之道 (29)如何实施人才激励 (31)人才铺就小康路·走进昆山实施“人才强市”大战略加速“两个率先”新征程——本刊专访中共昆山市委书记张国华 (38)广纳八方英才创新昆山发展 (42)人才亮点点亮昆山 (44)名家在线科学大家平民本色——记中国测绘科学研究院名誉院长、中国工程院院士刘先林眉 (56)群星闪烁 (59)公务员管理提高公务员考试科学性 (61)加强县乡公务员队伍建设必须从优化人员结构入手 (63)“在线学习”引领干部培训“网络化” (66)事业单位聘用制推行中常见问题与对策分析 (68)如何做好当前外国专家管理与服务工作 (68)西部地区海外引才的一道亮丽风景线 (70)巧用职称评聘“杠杆”支撑人才活力 (72)人才资源配置流动人员人事档案管理难点与对策 (74)搞好毕业生人事档案管理 (77)县域人才开发如何与国际化接轨 (79)集团文化建设落地的关键点 (80)国有企业“二线”人员的开发 (81)简明定位“薪”事不再重重 (83)公备员在受处分期间受到新的处分,处分期如何计算 (85)未满服务期辞职应如何承担违约责任 (86)27 经济、经济学(F 经济)中文期刊世界经济[月刊]=The Journal of World Economy /中国经济学会中国社会科学院世界经济与政治研究所.—第2期,2008年2月.—北京:《世界经济》编辑部,(100732).15.00元ISSN1002-9621 CN11—1138/F索书号:F1/45本期目录内容国际贸易与国际投资研发全球化与本土知识交流:对北京跨国公司研发机构的经验分析…………………………………………………………………梁正,薛澜,朱琴,朱雪炜(3) 区际壁垒与贸易的边界效应…………………………………………赵永亮,徐勇,苏桂富(17) 国际金融国际分工体系视角的货币国际化:美元和日元的典型事实……………………徐奇渊,李婧(30) 存在金融体制改革的“中国模式”吗…………………………………………………应展宇等(40) 宏观经济学习惯形成与最优税收结构…………………………………………………………邹薇,刘勇(55) R&D溢出渠道、异质性反应与生产率:基于178个国家面板数据的经验研究……………………………………………………………………………高凌云,王永中(65) 中国经济三种自主创新能力与技术进步:基于DEA方法的经验分析……………李平,随洪光(74) 经济史明代海外贸易管制中的寻租、暴力冲突与国家权力流失:一个产权经济学的视角……………………………………………………………………………………郭艳茹(84) 会议综述第一届青年经济学家研讨会(YES)综述 (95)经济与管理研究[月刊]=Research on Economics and Management/首都经济贸易大学.—第2期,2008年2月.—北京:《经济与管理研究》编辑部,(100026).10.00元ISSN1000-7636 CN11—1384/F索书号:F2/8本期目录内容会议纪要努力探索中国特色国有公司治理模式——中国特色国有公司治理高层论坛综述 (5)专题论坛改革开放与国有经济战略性调整………………………………………………………王忠明(13) 股权多元化的国有控股公司治理结构特点及其构建………………………………魏秀丽(21) 剩余权的分配与国企产权改革……………………………兰纪平,罗鹏,霍立新,张凤环(28) 企业创新需求与我国自主创新能力的形成:基于收入分配视角………………………张杰,刘志彪(33) 集成创新过程中的三方博弈分析……………………………………………宋伟,彭小宝(38) 创新与企业战略制定模式的演进………………………………………刘鹏,金占明,李庆(43) 企业管理大型国际化零售企业经营绩效的影响因素分析………………………………蔡荣生,王勇(49) 跨团队冲突与组织激励机制分析………………………………………………李欣午(54) 运用基尼系数增强企业薪酬制度的公平性……………………………王令舜,马彤(59) 三农研究乡村旅游发展的公共属性、政府责任与财政支持研究……………单新萍,魏小安(64) 论失地农民长效保障机制的构建………………………………………………魏秀丽(69) 资本市场外资银行进入与东道国银行体系的稳定性:以新兴市场国家为例………………张蓉(74) 挤兑风险与道德风险的权衡:显性存款保险制度下最优保险范围的制定…冯伟,曹元涛(80) 贸易经济在反倾销中对出口商利益的考量………………………………………………金晓晨(86) 我国加征出口关税政策思辨…………………………………………夏骋祥,李克娟(90) 名刊要览公司治理和并购收益 (94)规制——自由化的必由之路:以色列电信市场1984-2005 (94)金融与收入分配不平等:渠道与证据 (94)特别主题论坛:重新审视组织内部和组织自身的“污名”问题 (95)经济理论与经济管理[月刊]= Economic Theory and Business Management.—第11期,2007年.—北京:《经济理论与经济管理》编辑部,(100080).8.00元ISSN 1000-596X CN 11-1517/F索书号:F2/12 馆藏地:本部四楼江宁二楼本期目录内容深入贯彻落实科学发展观的经济视阈……………………………………………………张雷声(5) 科学发展观与中国特色社会主义经济理论体系的创新与发展…………………………张宇(9) 关于转变经济发展方式的三个问题……………………………………………………方福前(12) 统筹城乡协调发展是落实科学发展观的重大历史任务………………………………秦华(16) 中国进出口贸易顺差的原因、现状及未来展望………………………………王晋斌李南(19) 劳动力市场收入冲击对消费行为的影响………………………………………杜凤莲孙婧芳(26) 中国经济增长中土地资源的“尾效”分析……………………………………………崔云(32) 货币需求弹性、有效货币供给与货币市场非均衡模型解析“中国之谜”与长期流动性过剩……………………………………………………………………………………李治国 (38) 全流通进程中的中国股市全收益率研究………………………………………陈璋李惊(45) 金融体系内风险转移及其对金融稳定性影响研究……………………………………许荣(50) 金融衍生品交易监管的国际合作……………………………………………………谭燕芝等(56) 税收饶让发展面临的挑战及我国的选择………………………………………………张文春(61) 区域产业结构对人民币升值“逆效应”的影响………………………………………孙伯良(66) 企业社会责任管理新理念:从社会责任到社会资本……………………………………易开刚(71) 关于建设创新型国家的讨论综述………………………………………………………杨万东(76)经济理论与经济管理[月刊]= Economic Theory and Business Management.—第1期,2008年.—北京:《经济理论与经济管理》编辑部,(100080).8.00元ISSN 1000-596X CN 11-1517/F索书号:F2/12 馆藏地:本部四楼江宁二楼本期目录内容经济热点中国宏观经济形势与政策:2007—2008年………………………中国人民大学经济学研究所(5) 理论探索出口战略、代工行为与本土企业创新——来自江苏地区制造业企业的经验证据…张杰等(12) FDI在华独资化的动因——基于吸收能力的分析……………………………秦凤鸣张中楠(20) 学术前沿主权财富基金的发展及对21世纪初世界经济的影响………………………宋玉华李锋(27) 公共经济环境税“双重红利”假说述评……………………………………………………………司言武(34) 基于合谋下的税收征管激励机制设计………………………………………………岳朝龙,等(39) 金融研究内生货币体系下房价波动对货币供求的冲击…………………………………丁晨屠梅曾(43) 基于DEA的中小企业债务融资效率研究………………………………………曾江洪陈迪宇(50) 区域经济地区经济增长中的金融要素贡献的差异与金融资源配置优化——基于环北部湾(中国)经济区的实证分析…………………………………范祚军等(54) 工商管理基于价值链的预算信息协同机制研究………………………………………………张瑞君,等(59) 公司特征、行业特征和产业转型类型的实证研究……………………………王德鲁宋学锋(64) 国际经济基于市场体系变迁的中国与欧洲银行业发展比较……………………………胡波郭艳(70) 动态与综述我国发展现代农业问题讨论综述………………………………………………………王碧峰(75) 全国马克思列宁主义经济学说史学会第十一次学术研讨会纪要……………………张旭(80)国有资产管理[月刊]= State assets management /中国人民共和国财政部.-第1期,2008年.—北京:《国有资产管理》杂志社,(100036) .10.00元ISSN 1002-4247 CN 11-2798索书号:F2/51 馆藏地:西康校区四楼本期目录内容贯彻落实科学发展观开创中央企业又好又快发展新局面.................................李荣融(4)努力做好新形势下的监事会工作..................................................................黄丹华(8)资产评估行业发展的重要里程碑...............................................................朱志刚(13)加快评估立法步伐加强评估法律体系建设................................................石秀诗(15)资产评估行业将进入新的发展时期............................................................李伟(16)提升资产评估执业质量促进资本市场健康发展..........................................李小雪(17)评估准则对中国不动产及相关资产评估的作用..............................埃尔文.费南德斯(18)发挥评估准则对中国资产评估行业健康发展的作用.......................................林兰源(20)正确发展适合中国国情的评估准则..........................................格来格.麦克纳马拉(21)财政部国资委关于印发《中央企业国有资本收益收取管理暂行办法》的通知 (22)财政部关于印发《中央国有资本经营预算编报试行办法》的通知 (25)力口快建立国有资本经营预算推动国民经济又好又快发展..............................贾谌(28)关于国有企业改制和整体上市..................................................................季晓南(30)加快建立科学规范的财务监督体系............................................................孟建民(39)贯彻科学发展观’开创财务监督管理工作新局面..........................................赵杰(43)寓监管于服务之中——对做好四川国资监管工作的思考.................................李成云(47)努力实现广西区国资国企健康发展............................................................尹建国(49)新企业会计准则对国资监管可能带来的影响................................................安玉理(52)2007年宏观经济形势分析及2008年展望 (54)央企人力资源管理的“蜕变”......................................................周放生张应语(57)推进预算管理与资产管理相结合的实践探索.......................................广东省财政厅(60)规范事业资产管理保障水利事业可持续发展..............................水利部财务经济司(63)全面提高产权管理水平推动中国石化快速发展.....................中国石油化工集团公司(66)规范运作加快整合提高控股上市公司的核心竞争力......中国航空工业第一集团公司(69)强化产权制度建设实现产权规范有序流转.................................国家开发投资公司(71)加强国有资产评估管理确保国有资产有效流转...........................中国电信集团公司(74)上市公司国有股价值变化的信息披露.............................................文宗瑜谭静(77)进一步提高中央企业安全生产管理水平 (80)国有资产管理[月刊]= State assets management /中国人民共和国财政部—2期,2008年.—北京:《国有资产管理》杂志社,(100036) .10.00元ISSN 1002-4247 CN 11-2798索书号:F2/51 馆藏地:西康校区四楼本期目录内容进一步提高中央企业安全生产管理水平.........................................................黄淑和(4)关于中央企业履行社会责任的指导意见 (10)深入贯彻落实科学发展观更好地推进中央企业履行社会责任工作——国务院国资委就《关于中央企业履行社会责任的指导意见》答记者问 (12)完善体制机制和政策措施促进经济发展方式转变.......................................陈柱兵(17)转变国有经济发展方式实现国有资产保值增值.......................................郭复初等(21)国有独资公司董事会的重塑.....................................................................赵大鹏(25)加强沟通交流提高监督质量......................................................张仆杨中静(29)以科学发展理念构建地方国资监管体系的思考.............................................汤光强(31)2008年宏观经济增长趋势展望及政策建议...................................................课题组(34)强化资产安全与效益监管服务交通事业又好又快发展........................交通部财务司(38)积极探索整合资源加强事业单位国有资产处置管理........................湖南省财政厅(41)全面开创国有资产管理工作新局面...................................................河南省财政厅(43)在实践中不断捉高集团公司产权管理水平.................................中国核工业集团公司(46)规范产权管理做好主辅分离助推企业发展........................中国冶金科工集团公司(49)公司治理与企业竞争力...........................................................................周放生(53)中国资产评估协会关于印发《资产评估准则——评估报告》等7项资产评估准则的通知 (55)国有公司治理结构存在的问题及其法律风险防范……………………………………王玉宝(61)加强对外投资及多种经营监管…………………………………………………………张凯(64)盈余管理对企业有益性的探讨…………………………………………………………葛晓红(66)国有企业引进战略投资者的策略……………………………………………屈艳芳郭敏(68)促进我国企业内部控制的建设………………………………………………张宜霞文远怀(71)企业年金信托管理的治理结构研究(一) ……………………………………李连仁周伯岩(74)美英国家政府绩效考评对我国的启示与借鉴…………………………………………聂常虹(76)复印报刊资料·外贸经济、国际贸易[月刊]=Economy of Foreign Trade And Internaional Trade.—第1期,2008年.—北京:中国人民大学书报资料中心,(100086).11.00元ISSN 1001-3407 CN 11-4289/F索书号:F7/17 馆藏地:西康校区四楼本期目录内容本刊综述2007年国际贸易与我国对外贸易问题综述………………………………………………王亚星(3) 研究与探讨试论新贸易理论之新……………………………………………………………郭界秀朱廷捃(9) 比较优势理论的有效性:基于中国历史数据的检验……………………………………管汉晖(14) 制度分析视角中的贸易开放与经济增长——以投资效率为中心……………………盘为龙(23) 国际贸易、外国直接投资、经济增长对环境质量的影响——基于环境库兹涅茨曲线研究的回顾与展望…………………………胡亮潘厉(30) 贸易政策贸易模式与国家贸易政策差异…………………………………………………………曹吉云(37) 分工演进对贸易政策的影响分析——基于交易成本的考虑…………………张亚斌李峰(44) 中国贸易结构的变化特点、决定要素以及政策建议……………………………………章艳红(50) 专题:进出口贸易二元经济结构、实际汇率错位及其对进出口贸易影响的实证分析……………………吕剑(56) 人民币汇率波动性对中国进出口影响的分析……………………………………谷宇高铁梅(66) 中国对外贸易出口结构存在的问题……………………………………………………魏浩(75) 服务贸易国际知识型服务贸易发展的现状、前景及我国对策分析……………………潘菁刘辉煌(80) 国际服务外包趋势与我国服务外包的发展……………………………………李岳云席庆高(86) 文摘加快我国资本输出和经济国际化的建议......................................................裴长洪(90) 双赢的中美经贸关系缘何被扭曲...............................................................李若谷(91) 索引 (93)英文目录 (96)复印报刊资料·市场营销 [月刊]=Marketing.—第2期,2008年.—北京:中国人民大学书报资料中心,(100086).6.00元ISSN 1009-1351 CN 11-4288/F索书号:F7/26 馆藏地:西康校区四楼视点营销资讯 (4)特别关注激情燃烧的岁月——行将远去的2007…………………………………………………刘超等(6) 营销创新数字营销上路……………………………………………………………………………岳占仁(12) 手机广告:精准营销的黄金地段…………………………………………………………王浩(15) 论坛营销分析中小企业网上营销安全问题分析...............................................................潘素琼(17) 如何克服电子邮件营销中的广种薄收.........................................................郝洁莹(19) 国产洗发水何以走出迷局? (21)营销人物校长茅理翔………………………………………………………………………………叶丽雅(23) 营销策略博客营销策略……………………………………………………………………………缪启军(26) 企业社会责任标准下的出口营销策略转变……………………………………于晓玲胡日新(29) 品牌管理品牌管理的价值法则……………………………………………………………………辰平(30) 品牌延伸:中国企业需要补课……………………………………………………………曾朝晖(33) 渠道管理渠道模式:一半是火焰一半是海水………………………………………………………钱言(36) 弱势品牌渠道拓展之路…………………………………………………………吴勇毅陈绍华(39) 销售管理销售经理管控销售队伍的四种工具……………………………………………………谢宗云(41) 遭遇难题,见招拆招……………………………………………………………虞坚老树(44) 销售冠军是怎样炼成的——专访苏宁朝阳路店店长刘玉君…………………………齐鹏(47) 成功策划“右手之戒”成就戴比尔斯 (49)拉芳舍一个休闲餐饮王国扩张之谜……………………………………………………王翼(51) 阿尔迪最赚钱的“穷人店”………………………………………………………………杨育谋(53) 个案解读LG巧克力手机得失之间…………………………………………………………………林景新(56) 南京菲亚特:四面楚歌……………………………………………………………………陈宇祥(58) 奥克斯:反思“三大败笔”…………………………………………………………………刘步尘(62)财经科学[月刊]=Finance And Economics—第4期,2007年.—成都:《财经科学》编辑部,(610074).8.00元ISSN1000-8306 CN51-1104/F索书号: F8/19 馆藏地:本部四楼江宁二楼。

上新世云南铁杉木化石的化学成分

上新世云南铁杉木化石的化学成分
The fossilized Pliocene plants may have experienced various physical, biological, and chemical changes over the long years , resulting in generation of diagenetic products in fossil material after its burial in sediment . Phytochemical investigation of the Pliocenefossil wood of T. dumosa indicated that the components
viously ( Zhao et al . 2005 a, b , 2006 ; Giannasi and Niklas, 1977; Niklas and Giannasi, 1977 , 1978; ) . Abundant plant and animal fossils occured in complicated strata in west Yunnan Province, China ( Ge et al . 1999) , part of which were buried in coal-bearing basins . Tsuga dumosa is an economically important conifer indigenous to the Yunnan Province of China (Southwest College of Forestry , Yunnan Forestry Administration , 1988) . Sesquilignans and lignans from this genus have been reported, previously (Zhao et al . 2004 , 2005c ) . A piece of Pliocene-fossil wood of T. dumosa , which was preserved morphologically , was discovered in an

硼镀酸盐非线性昌体材料研究取得新发现

硼镀酸盐非线性昌体材料研究取得新发现
线 性光 学材料 结构 设计 中一个优 秀 的结构 设计 单元 。
硼铍酸盐体系 的研究工作为新型深紫外非线性光学晶体材料的研究开辟了一个新的探 索方 向。 世界首个新型空气燃料电池在英国问世 世界上第一个新型空气燃料 电池在英国揭开神秘面纱, 这种 电池的储 电能力是传统 电池
的l 。 0倍 科学家表示,如今,革命性 “ T I 即 “ SA R”( 圣安德鲁斯空气”的英文首字母缩写) 燃料
质结构研究所光 电材料化学和物理 院重点实验室叶宁研究员领导的课题组,以 B o 替代简 e4 单硼酸盐 中 B 4 o 结构单元为思路,在构筑新型硼铍氧基 团的基础上发现了一系列具有无心 空 间群 的新型碱 金属硼 镀酸 盐化合 物 。 该课 题组对 碱金属硼 铍酸 盐体 系 AO.e 1O3( =L,Na 2 B O.2 A 3 i ,K,R ,C )进 行 了系 b s 统的研究,发现了 1 种新型的碱金属硼铍酸盐化合物,其中有 4 3 种化合物具有无心结构, 是潜在的深紫外非线性光学晶体材料。 他们首次在无机化合物中发现一种类似于萘分子的新 型阴离子基团(c 3 9 由于其具有较大的共轭结构而表现 出大的微观非线性效应, B 2 O ), B 。 是非
2 4
21 年 第 9 00 期
此次的电池在输出密度为 10W/ 0k k g时,单位重量的能量密度为 2 0 / 。低功率输 0 Wh g k 出时的最大能量密度约为 50 / 。不过,这些数值是相对于 电极的重量计算的。如果相 0Wh g k 对于电池整体的重量计算,“ 将会是这些数值的 l ” / 。也且输出密度约为 2k k 时,能量 5 口 0W/ g 密度约为 4Wh g 0 / ,低功率输出时的最大能量密度约为 10 / 。 k 0Wh g k “ 普通 锂 离 子 充 电 电池 在 输 出密 度 为 lW/g 时 , 相 对 于 电池 重 量 的 能 量 密 度 为 k k

维拉斯托稀有金属-锡多金属矿床铌铁矿族矿物特征及其对岩浆-热液演化的指示

维拉斯托稀有金属-锡多金属矿床铌铁矿族矿物特征及其对岩浆-热液演化的指示

矿床地质MINERAL DEPOSITS2023年6月June ,2023第42卷第3期42(3):463~480*本文得到大兴安岭赤峰地区锡多金属矿产调查评价三级项目(编号:DD20230287)、内蒙古自治区地质勘查基金项目(编号:2015-01-YS01)和内蒙古玉龙矿业股份有限公司科研项目(编号:2020110033002072)共同资助第一作者简介杨飞,男,1992年生,博士研究生,矿物学、岩石学、矿床学专业。

Email:*******************通讯作者武广,男,1965年生,博士生导师,研究员,从事矿床学和地球化学工作。

Email:*****************收稿日期2022-12-13;改回日期2023-02-15。

赵海杰编辑。

文章编号:0258-7106(2023)03-0463-18Doi:10.16111/j.0258-7106.2023.03.001维拉斯托稀有金属-锡多金属矿床铌铁矿族矿物特征及其对岩浆-热液演化的指示*杨飞1,2,武广1**,陈公正3,张彤4,李英雷1,2,李士辉1,2,师江朋1,2(1中国地质科学院矿产资源研究所,自然资源部成矿作用与资源评价重点实验室,北京100037;2北京大学地球与空间科学学院,北京100871;3河北地质大学地球科学学院,河北石家庄050031;4内蒙古自治区地质调查研究院,内蒙古呼和浩特010020)摘要大兴安岭南段维拉斯托大型稀有金属-锡多金属矿床的成矿岩体从深部的中粒花岗岩向上逐渐过渡为斑状细粒碱长花岗岩,记录了岩浆演化的不同阶段。

为查明铌铁矿族矿物成分、结构变化及其与岩浆演化过程的耦合关系,文章对采自不同深度的3种类型花岗岩(中粒花岗岩、石英斑晶不具雪球结构的斑状细粒富云母碱长花岗岩和具雪球结构的斑状细粒碱长花岗岩)中的铌铁矿族矿物进行了详细的电子探针成分分析和元素面扫工作。

维拉斯托矿床铌铁矿族矿物主要为铌铁矿,发育渐变环带结构,从核部到边部Ta 含量增加,且斑状细粒富云母碱长花岗岩和斑状细粒碱长花岗岩铌铁矿族矿物边部的铌铁矿、铌锰矿相较于幔部和核部的铌铁矿,其Ta 含量具有明显的组分间隔;铌铁矿族矿物Mn/(Fe+Mn)原子比具有多种演化趋势,与分离结晶的矿物相和流体交代作用有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ethylcarboxamidoadenosine-2-carboxamide (UK-432097). This highly potent and selectiveagonist, which was developed as a drug candidate for COPD (Chronic ObstructivePulmonary Disease) treatment (15), represents a substituted derivative of the native ligandadenosine and a series of other prototypical adenosine receptor (AR) agonists, e.g. NECA,CGS21680, ATL-146e and CI-936 (16-18). The availability of both agonist- and antagonist-bound A 2A AR structures now provides the opportunity to understand the basic question ofhow ligand binding at the extracellular side of the receptor triggers conformational changesat the intracellular side where G protein and other effectors bind and initiate the cascade ofdownstream signaling pathways.Agonist UK-432097 and its binding cavityThe compound UK-432097 was characterized as a full A 2A AR agonist (19), (20) (fig. S1and S2 (21)) and its structure in complex with human engineered A 2A AR (A 2A AR-T4L-ΔC)was determined similarly to A 2A AR-T4L-ΔC bound to the antagonist ZM241385 at 2.7 Åresolution (10), (22)(table S1). UK-432097 (778 Daltons) is more than twice as large as ZM241385 and occupies most of the A 2A AR ligand-binding cavity (Fig. 1A and fig. S3).The ligand-binding cavity reveals an extensive ligand-receptor interaction network,including 11 hydrogen bonds, one aromatic stacking interaction and a number of non-polar (van der Waals) interactions (Fig. 1B and table S2). These interactions explain the high binding affinity and subtype selectivity of this compound and its strong stabilizing effect on A 2A AR (table S3).The bicyclic adenine core of UK-432097 is a common scaffold and present in nearly all major types of AR agonists (e.g. NECA, CGS21680, and other nucleosides) and many antagonists (23). This moiety aligns to the triazolotriazine core of ZM241385 when the two complex structures are superimposed together (Fig. 1A), as predicted in modeling studies (24,25). The molecular interactions that anchor ZM241385 in this region are also conserved in the UK-432097 binding cavity, including aromatic stacking with Phe168 in extracellularloop 2 (ECL2), non-polar interaction with Ile2747.39, and two hydrogen bonds withAsn2536.55 (26)(27) (Fig. 1C). Significant effects are observed on mutation of these residueson both agonist and antagonist binding: Phe168 (moderate decrease), Ile2747.39 (majordecrease), or Asn2536.55 (complete loss) (25,28).The ribose ring is a key feature of almost all known AR agonists that differentiates themfrom corresponding antagonists. In the A 2A AR/UK-432097 complex, the ribose moiety ofthe ligand inserts deeply into a predominantly hydrophilic region of the binding cavity (Fig.1), with the 2′ and 3′ –OH groups both making hydrogen bonds with His2787.43 (2.8 Å and3.1 Å, table S2). The 3′ –OH is further anchored by a hydrogen-bonding interaction withSer2777.42 (3.0 Å) (Fig. 1D). Mutation of these two residues to alanine abolishes highaffinity binding of A 2A AR agonists (28). His2506.52 forms a hydrogen-bonding interactionwith the carbonyl O4 (3.1 Å) that was not predicted in agonist docking to inactive states ofthe ARs. Mutation to alanine or phenylalanine disrupts agonist binding indicating thisresidue is important for agonist recognition (29). The ribose 5′-N -ethyluronamidesubstitution in UK-432097, as well as in NECA and many other AR agonist chemotypes, isknown to provide additional potency. The N2 of this moiety makes a hydrogen bond withThr883.36 (3.0 Å), in accord with reduction in binding observed for the T88A mutant ofA 2A AR (30). Besides these polar interactions, the ribose part of the ligand has close contactswith Val843.32, Leu853.33, Trp2466.48, Met1775.38 and Leu2496.51. Previous mutagenesisdata on V84A or L249A suggested these non-polar interactions are essential for agonistbinding (25,29).NIH-PA Author ManuscriptNIH-PA Author ManuscriptNIH-PA Author ManuscriptThe bulky 2-(3-(1-(pyridin-2-yl)piperidin-4-yl)ureido)ethylcarboxamido substitution inUK-432097 is located at the adenine C2 position; similar extended chains are found in manyof the selective A 2A AR agonists under development (15). The carboxamide moiety forms anindirect water-mediated hydrogen bond with Tyr91.35 and the carbonyl group of Ala632.61,which contributes to a closer contact of the ligand with helices I and II (Fig. 1E). The ureagroup is coordinated on both sides by Glu169 (ECL2) forming two hydrogen bonds at N8and N9 positions (2.8 Å and 2.7 Å) and Tyr2717.36 forming one hydrogen bond at O6 (2.7Å). Finally, the pyridinyl-piperidine moiety leans to the two phenyl rings and bulges towardhelix VII and ECL3. This combined moiety might impose an allosteric effect on structuraland conformational changes of the receptor and contribute to subtype binding selectivity(18,31-33).Antagonist-bound to agonist-bound transformations in A 2A AR Changes in ligand binding cavity A comparison of the A 2A AR complexes with antagonist ZM241385 and agonist UK-432097shows that while the core adenine interactions are conserved between the two structures,binding of the agonist UK-432097 triggers a series of conformational changes within the binding cavity of A 2A AR (Fig. 2). Importantly, some of these modest local changes promote large-scale rearrangements in the 7TM helical bundle (Fig. 3). The specific molecular interactions with the ribose moiety of UK-432097 are likely a common feature for all A 2A AR agonists, with motions of the ribose-coordinating residues related to the receptor activation. In helix VI, for example, His2506.52 moves ~1.8 Å inward to a position that would otherwise clash with the furan ring of ZM241385 and forms a hydrogen bond with the carbonyl group (Fig. 1D and fig. 2A). The conserved Trp2466.48 indole moves ~1.9 Å to avoid a steric clash with the ribose ring of the agonist, a movement that facilitates rotation and tilt of the intracellular side of helix VI below Pro2486.50. Although helix V residues Met1775.38, Asn1815.42 and Val1865.47 make only limited non-polar contacts with theagonist, the movement of His2506.52 allows an inward shift of Val1865.47, promoting aninward tilt of the whole intracellular side of helix V (Fig. 2A).In helix VII, Ser2777.42 and His2787.43 move about 2 Å closer to helix III and together withthe side chain of Thr883.36 form a hydrogen-bonding network coordinating the ribosemoiety (Fig. 1D and fig. 2A). Two residues on the extracellular end of helix VII, Leu2677.32and Met2707.35, form additional non-polar interactions with the two phenyl rings andpiperidine rings of UK-432097, resulting in an outward movement of these two residuesalong with the extracellular part of helix VII by about 2 Å (Fig. 2B). The motion of the helixVII apex correlates with an even more pronounced (3-4 Å) outward movement of theadjacent ECL3 backbone, where the His264 imidazole swings by 100° from beneath thepyridine ring to the top of the ligand-binding cavity (Fig. 2B). Also, Glu169 (ECL2) has adifferent rotamer conformation than in the A 2A AR/ZM241385 structure, where itscarboxylic group forms a hydrogen bond with the exocyclic amine of ZM241385. Due to asubstitution in the exocyclic amino group of UK-432097, the Glu169 carboxyl group movesabout 4 Å to form hydrogen bonds with the urea substituent instead, coordinating both theurea group and the two phenyl rings in position. The latter two changes in ECL3 and ECL2largely depend on substituted moieties in the agonist and are likely to be specific forUK-432097 or agonists with similar bulky substitutions.In helix III, coordination of the ribose ring through hydrogen bonding interaction withThr883.36 side chain, as well as non-polar contacts with Val843.32 and Leu853.33, requires a~2 Å shift of these residues, resulting in an upward shift of the entire helix III along thehelical axis (Fig. 2A and Fig. 3A).NIH-PA Author ManuscriptNIH-PA Author ManuscriptNIH-PA Author ManuscriptRearrangement within 7TM bundlesComparison of this A 2A AR-agonist complex structure to its antagonist-bound form showsthat helices I-IV form a stable helical bundle “core” with minimal structural changes, whilehelices V-VII undergo substantial conformational changes (34). The movements areillustrated in Fig. 3A-D by graphical superimposition of the two protein conformations(using C α atoms of TM helices), as well as by plotting full residue RMSDs (root meansquare deviations; shown on Y axis) and deviations of C α atoms (shown by color) forindividual residues in Fig. 3E. This “RMSD fingerprint” representation convenientlydifferentiates side-chain rotameric switches (green-blue colored outliers, marked by residuelabels) and global motions of helices (clusters of yellow-red dots).One of the most prominent changes associated with the agonist-bound structure involvescoordinated movements of the intracellular parts of helices VI and V. While the extracellularpart of helix VI is fixed in place by the key interactions of Asn2536.55 with the exocyclicamino group of UK-432097, the agonist-induced shift of the conserved Trp2466.48 promotesan outward tilt of the intracellular part of helix VI by about 3-4 Å and clockwise rotation byabout 30 deg. (Fig. 3). The shift of helix VI is accompanied by coordinated rotamericswitches in Phe2015.62 and Tyr1975.58 side chains. While in A 2A AR/ZM241385 theconserved Tyr1975.58 is placed in the middle of the helical bundle between helices III andVI, in the UK-432097-bound form this residue moves outward allowing helix V shift towardhelix VI. As a result of this combined tilt, the intracellular ends of helices V and VI movecloser together in the A 2A AR/UK-432097 structure (~6 Å) as compared to the A 2A AR/ZM241385 structure (~8 Å) (Fig. 3D).Another response to the binding of the agonist UK-432097 is a seesaw-like movement ofhelix VII around the ribose ring. While interactions of the ribose ring hydroxyls withSer2777.42 and His2787.43 pull these residues of helix VII inwards, strong clashes of the twophenyl rings with Leu2677.32, Met2707.35, Tyr2717.36 and ECL3 residues push theextracellular part of helix VII outwards, creating a lever that promotes a tilt of helix VII. Theconserved NPxxY motif composed of Asn2847.49, Pro2857.50, Phe2867.51, Ile2877.52 andTyr2887.53 at the cytoplasmic end of helix VII shifts as much as 4-5 Å inwards, resulting inreorganizations of these side chains, especially Tyr2887.53 (Fig. 3, also Fig. 4 A and C).Insight into a GPCR activation mechanismThe conformational changes observed between the A 2A AR-agonist and A 2A AR-antagonistcomplexes can be further understood in the context of comparison with the structuraltransitions in the light-activated rhodopsin/opsin system (13,14). Unliganded opsin at lowpH adopts a conformation similar to the light-activated rhodopsin at physiological pH (35).Concomitant structural transitions between the inactive rhodopsin and active-like opsininclude side-chain switches in the conserved D[E]RY and NPxxY motifs andrearrangements of helices V-VII. Structural superimposition along with “RMSD fingerprint”of individual residues between the two pairs of models: inactive/active A 2A AR structuresand rhodopsin/opsin structures reveals considerable similarity attributed to a general GPCRactivation mechanism (Fig. 4).The RMSD fingerprint plots shown in Fig. 4D for both inactive/active pairs (rhodopsin/opsin and A 2A AR-antagonist/A 2A AR-agonist) of TM domains illustrate similarities betweenthe conformational transitions in these two different receptor systems. For example, asimilar pattern is observed of very low deviations in helices I, II and IV, and of elevatedbackbone deviations in helices III, V and VI (Correlation Coefficient between two sets ofRMSDs R 2=0.64 for helices I to VI, and R 2=0.84 for helix VI alone). In contrast, the plotsuggests a lack of similarity in helix VII (R 2=0.25 for helix VII alone).NIH-PA Author Manuscript NIH-PA Author ManuscriptNIH-PA Author ManuscriptThe predominant feature common between opsin and A 2A AR is the overall movement of helices V and VI, with their extracellular parts being the least mobile and intracellular parts deviating dramatically. The conserved Trp 6.48 is an important residue triggering the motion of helix VI during activation in A 2A AR, however, contrary to previous “toggle switch”model, this residue does not undergo a rotamer transition, but rather moves along with the backbone in both opsin and A 2A AR. The overall backbone shifts in both opsin and A 2A AR are accompanied by rotameric switches of Tyr 5.58, however the observed changes in this residue upon activation are very different – while in opsin this side chain swings from outside toward the axis of the TM bundle, the movement in A 2A AR is the opposite (36).Also, rotameric changes in non-conserved rhodopsin side chains Phe 5.55 and Phe 5.43 were not observed in the same positions of Leu 5.55 and Phe 5.43 in A 2A AR.Another characteristic molecular switch in rhodopsin/opsin activation model is a salt bridge (so called ionic lock) between Arg 3.50 of the conserved D[E]RY motif in helix III and Glu 6.30 in helix VI. The ionic lock breaks in opsin upon activation resulting in rotameric changes in Glu 6.30 and movement of helix VI away from helix III (Fig. 4A). While the ionic lock is already broken in A 2A AR-antagonist structure (10), the concerted movements of helices III and VI observed in the A 2A AR/UK-432097 complex also pull Arg1023.50 and Glu2286.30 further apart, precluding any potential interactions between these residues. A noteworthy difference in this region is that while in our A 2A AR-agonist complex structure the middle segment of the cytoplasmic half of helix VI bulges outward by ~3-4 Å, the movement of the intracellular tip of helix VI is not as pronounced as in opsin (~3 Å vs. 6-7Å, Fig. 4A). However, such partial “attenuation” of the outward tilt of helix VI in this structure may be attributed to the fused T4 lysozyme (T4L), which is likely to limit mobility of the cytoplasmic ends of helices V and VI.A third featured transition that may be related to activation is a ~2 Å movement of helix III in the context of the overall well-preserved helices I-IV bundle “core” (37). The movementthat involves helix III sliding along its axis toward the extracellular side, can be found inboth rhodopsin/opsin and A 2A AR systems; in the case of the A 2A AR/UK-432097 complex itallows formation of new contacts with the ribose ring of the agonist.Conformational changes in helix VII also reveal both common and distinct features forA 2A AR and rhodopsin/opsin (Fig. 4). One common feature is a large-scale (>5 Å)movement and rotameric switch of the Tyr 7.53 side chain in the highly conserved NPxxYmotif at the intracellular tip of helix VII. In the A 2A AR-agonist structure, however, theTyr2887.53 movement is coordinated by a dramatic rigid body tilt of helix VII, so that the C αatoms in this region move more than 5 Å. Conversely, in opsin the backbone of helix VIIdoes not move overall, while movement of Tyr 7.53 is achieved via local bulging of thebackbone in this region. This conformational change in Tyr 7.53 has been implicated in theactivation mechanism of rhodopsin and other GPCRs, and is likely to be important for thetransition from the inactive to active state in A 2A AR (14,38-40). Note that while the changesdescribed above in A 2A AR helices III, V, VI, and VII have a major component of “rigidbody” movement, a more detailed analysis shows certain conformational plasticity of thehelices. In other words, rather than being “rigid sticks”, the movements of TM helices aremore consistent with elastic spring behavior (see fig. S4 for details).Recently, agonist-bound structures of β1- and β2- adrenergic receptors (β1-/β2ARs) havebeen reported (2,5,9). The β1AR structures (9) and the structure of β2AR bound to anirreversible agonist (5) highlighted important conformational changes in the orthostericbinding site, but did not exhibit agonist-induced conformational changes at the intracellularside of these receptors. The pseudo active-like state conformation in β2AR with intracellularconformational changes was achieved by additional stabilization of an agonist–boundNIH-PA Author ManuscriptNIH-PA Author ManuscriptNIH-PA Author Manuscriptreceptor with a G-protein mimicking nanobody (2). The nanobody-stabilized agonist-boundβ2AR structure revealed large-scale movements of helices III, V, VI and VII along withrotamer switches of conserved residues at the cytoplasmic G-protein binding interface,similar to those observed in the activated opsin and in the current agonist-bound A 2A ARstructure. Some variations in the magnitude of these movements may be partially explainedby intrinsic differences between these three receptors, as well as by specific effects of thereceptor binding partners. For example, a larger magnitude of helix VII movement inA 2A AR may result from conformational changes specific for the bulky UK-432097 ligand,while the magnitude of helix VI movement in β2AR may be exaggerated by the nanobodybinding. Despite the similar conformational transformations occurring at the intracellularside of the agonist/nanobody stabilized-β2AR and agonist bound A 2A AR, these changesappeared to be induced by rather disparate triggers associated with agonist binding indifferent receptors. Ligand-induced activation in β2AR is largely driven by an inwardmovement of helix V (2,41), while binding of A 2A AR agonist does not directly affect helixV, instead the most pronounced ligand-induced changes involve helices III, VI and VII.The observed resemblance in the overall structural rearrangements in the A 2A AR, opsin andβ2AR suggests common features of activation mechanism in GPCRs (Fig. 5). While agonistbinding at the extracellular domain triggers only subtle conformational changes within thebinding pocket, some of these changes propagate toward the cytoplasmic domainspromoting large-scale 7TM rearrangement required for G-protein binding and signaling.Movements on helices V-VII are supported by a relatively stable core bundle composed ofhelices I-IV. Comparison of activation transitions in A 2A AR, opsin and β2AR reveals verydifferent types of molecular triggers in the binding pocket, which promote or stabilize anactive state. Further understanding of these specific agonist-induced changes in GPCRs mayhelp to establish a structural basis for the functional selectivity of ligands and benefit thedesign of better agonist-based pharmaceuticals.Prior to this study, the examination of a number of different agonists in crystallization trialswith different types of GPCRs suggested that agonists increased the dynamics of thereceptor leading to poor quality crystal x-ray diffraction. This observation coupled to mostprevious ligand-bound GPCR structures being determined in inactive state, suggested that itwould be difficult to obtain an agonist-bound structure in an active state without additionalstabilization by a G-protein or a mimetic. This study now shows that it is possible to obtainagonist-bound structures at high resolution with a careful choice of conformationallyselective ligands, such as the agonist UK-432097 that forms an extensive network of ligand-receptor interactions. It appears that agonist binding does not always induce a greater degreeof dynamics on the receptor structure. The type of agonists may be broader than previouslybelieved, where some ligands, such as UK-432097, predominately stabilize only onereceptor conformation (conformationally selective ligands), while others shift the dynamicequilibrium of multiple receptor conformations (42).Supplementary MaterialRefer to Web version on PubMed Central for supplementary material.AcknowledgmentsThis work was supported in part by the PSI:Biology grant U54 GM094618. Additionally, KJ and ZG acknowledgesupport from the Intramural Research Program of NIDDK, NIH. RCS thanks Dr. Niek Dekker at Astra Zeneca forsuggesting the UK-432097 compound for biochemical and structural studies. The authors thank Jeffrey Velasquezfor help on molecular biology, Cromwell Cornillez-Ty, Tam Trinh and Kirk Allin for help on baculovirusexpression, Ellen Chien and Wei Liu for advice on protein purification and LCP crystallization, Ian Wilson,MikeHanson, and Ad IJzerman for careful review and scientific feedback on the manuscript, Katya Kadyshevskaya forNIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscriptassistance with figure preparation and Angela Walker for assistance with manuscript preparation. The authorsacknowledge Laura Heitman for A 2A AR compounds used in thermal stability studies; Yuan Zheng, The Ohio StateUniversity, and Martin Caffrey, Trinity College (Dublin, Ireland), for use of an in meso robot (built with supportfrom the National Institutes of Health [GM075915], the National Science Foundation [IIS0308078], and ScienceFoundation Ireland [02-IN1-B266]); and Janet Smith, Robert Fischetti and Nukri Sanishvili at the GM/CA-CATbeamline at the Advanced Photon Source, for assistance in development and use of the minibeam and beamtime.The GM/CA-CAT beamline (23-ID) is supported by the National Cancer Institute (Y1-CO-1020) and the NationalInstitute of General Medical Sciences (Y1-GM-1104). RS is a founder and member of the Board of Directors ofReceptos, a GPCR structure based drug discovery company. Atomic coordinates and structure factors have beendeposited in the Protein Data Bank with the identification code 3QAK.References and Notes1. Cherezov V, et al. Science. 2007; 318:1258. [PubMed: 17962520]2. Rasmussen SG, et al. Nature. 2011; 469:175. [PubMed: 21228869]3. Rasmussen SG, et al. Nature. 2007; 450:383. [PubMed: 17952055]4. Rosenbaum DM, et al. Science. 2007; 318:1266. [PubMed: 17962519]5. Rosenbaum DM, et al. Nature. 2011; 469:236. [PubMed: 21228876]6. Wacker D, et al. J Am Chem Soc. 2010; 132:11443. [PubMed: 20669948]7. Hanson MA, et al. Structure. 2008; 16:897. [PubMed: 18547522]8. Warne T, et al. Nature. 2008; 454:486. [PubMed: 18594507]9. Warne T, et al. Nature. 2011; 469:241. [PubMed: 21228877]10. Jaakola VP, et al. Science. 2008; 322:1211. [PubMed: 18832607]11. Wu B, et al. Science. 2010; 330:1066. [PubMed: 20929726]12. Chien EY, et al. Science. 2010; 330:1091. [PubMed: 21097933]13. Park JH, Scheerer P, Hofmann KP, Choe HW, Ernst OP. Nature. Jul 10.2008 454:183. [PubMed:18563085]14. Scheerer P, et al. Nature. 2008; 455:497. [PubMed: 18818650]15. Mantell SJ, et al. Bioorg Med Chem Lett. 2009; 19:4471. [PubMed: 19501510]16. Fredholm BB, Ijzerman AP, Jacobson KA, Linden J, Muller C. Pharmacol. Rev. 2011; 63:1.[PubMed: 21303899]17. Rieger JM, Brown ML, Sullivan GW, Linden J, Macdonald TL. J Med Chem. 2001; 44:531.[PubMed: 11170643]18. Tchilibon S, et al. Bioorg Med Chem. 2004; 12:2021. [PubMed: 15080906]19. The ligand binding properties of UK-432097 and related nucleosides were examined in membranesfrom A2A AR-T4L-ΔC-expressing Sf9 cells (Fig. S1). The Ki of UK-432097 at the A 2A AR-T4L-ΔC receptor was 4.75 nM. The agonist property of UK-432097 was characterized using CHO cells expressing human WT A 2A AR. The efficacy and potency of UK-432097 in comparison to otherthree known agonists (NECA, CGS21680 and CI-936) were followed using a cylic AMPaccumulation assay in intact CHO cells. The EC50 values of UK-432097, NECA, CGS21680 andCI-936 are 0.66 ± 0.19, 5.99 ± 1.86, 3.25 ± 1.22 and 14.5 ± 5.81 nM, respectively (Fig. S2).20. Gao ZG, Ijzerman AP. Biochem Pharmacol. 2000; 60:669. [PubMed: 10927025]21. Materials and methods are available as supporting material on Science online.22. To overcome the inherent structural flexibility of GPCRs, we employed the same engineeredA 2A AR construct, termed A 2A AR-T4L-ΔC, as was used in A 2A AR/ZM241385 complexstructure. Briefly, this construct contains an insertion of T4 lysozyme (T4L) at the intracellularloop 3 (ICL3) and removal of C-terminal 96 residues of A 2A AR. Stabilization of the A 2A AR-T4L-ΔC construct in an active state was achieved by screening a broad range of A 2A AR agonistsusing a thermal melting CPM assay. Among the tested ligands, UK-432097 exhibited the highestthermal stability (Tm ~65 °C; Table S3). The stabilized A 2A AR-T4L-ΔC in complex withUK-432097 was crystallized in a cholesterol-doped monoolein lipidic cubic phase (LCP).Crystallographic data were collected on the GM/CA CAT beamline at the Argonne Photon Sourceusing a 10 μm minibeam. A complete dataset at 2.7 Å resolution was assembled using datacollected from 20 crystals. The final model includes residues Ile3 to Leu308 of the humanA 2A AR, residues 2 to 161 of T4L replacing the ICL3 of A 2A AR (Lys209 to Ala221), two partialNIH-PA Author ManuscriptNIH-PA Author ManuscriptNIH-PA Author Manuscriptlipid (OLC, (2R)-2,3-dihydroxypropyl (9Z)-octadec-9-enoate) chains, 6 water molecules and the agonist UK-432097 bound in the ligand-binding cavity. Part of the extracellular loop 2 (ECL2;Pro149 to Gln157) was not modeled due to a weak electron density.23. Cristalli G, Muller CE, Volpini R. Handb Exp Pharmacol. 2009:59. [PubMed: 19639279]24. Ivanov AA, Barak D, Jacobson KA. J Med Chem. 2009; 52:3284. [PubMed: 19402631]25. Jaakola VP, et al. J Biol Chem. 2010; 285:13032. [PubMed: 20147292]26. In Ballesteros-Weinstein numbering, a single most conserved residue among the class A GPCRs is designated x.50, where x is the transmembrane helix number. All other residues on that helix are numbered relative to this conserved position.27. Ballesteros JA, Weinstein H. Meth Neurosci. 1995; 25:366.28. Kim J, Wess J, van Rhee AM, Schoneberg T, Jacobson KA. J Biol Chem. 1995; 270:13987.[PubMed: 7775460]29. Jiang Q, Lee BX, Glashofer M, van Rhee AM, Jacobson KA. J Med Chem. 1997; 40:2588.[PubMed: 9258366]30. Jiang Q, et al. Mol Pharmacol. 1996; 50:512. [PubMed: 8794889]31. Conn PJ, Christopoulos A, Lindsley CW. Nat Rev Drug Discov. 2009; 8:41. [PubMed: 19116626]32. Gao ZG, et al. Mol Pharmacol. 2003; 63:1021. [PubMed: 12695530]33. Katritch V, Kufareva I, Abagyan R. Neuropharmacology. 2011; 60:108. [PubMed: 20637786]34. Note that global superimposition of TM helical bundle in this case almost exactly overlaps common features of A 2A AR/ZM241385 and A 2A AR/UK-432097 complexes, so that the Asn2536.55 α-carbonyls of A 2A AR are within 0.2 Å and exocyclic amines of ZM241385 and UK-432097 are within 0.6 Å distance.35. Vogel R, Siebert F. J Biol Chem. 2001; 276:38487. [PubMed: 11502747]36. Hofmann KP, et al. Trends Biochem Sci. 2009; 34:540. [PubMed: 19836958]37. Sansuk K, et al. Mol Pharmacol. 2011; 79:262. [PubMed: 21081645]38. Ahuja S, Smith SO. Trends Pharmacol Sci. 2009; 30:494. [PubMed: 19732972]39. Vanni S, Neri M, Tavernelli I, Rothlisberger U. J Mol Biol. 2010; 397:1339. [PubMed: 20132827]40. Wess J, Han SJ, Kim SK, Jacobson KA, Li JH. Trends Pharmacol Sci. 2008; 29:616. [PubMed:18838178]41. Katritch V, et al. J Mol Recognit. 2009; 22:307. [PubMed: 19353579]42. Yao XJ, et al. Proc Natl Acad Sci U S A. 2009; 106:9501. [PubMed: 19470481]NIH-PA Author ManuscriptNIH-PA Author ManuscriptNIH-PA Author Manuscript。

相关文档
最新文档