正反比例函数
正比例函数和反比例函数比较

? 趋向
– 图象的两个分支都 无限接近但永远不能达到 x轴和y轴。
反比例函数图象性质的运用
已知y ? a(a ? 1) xa2 ? a?1,当a为何值时, (1)y与x成正比例,此时,图象 经过哪几个象限? (2)y与x成反比例,此时,图象 位于哪几个象限内?
– 当k<0时,它的图象经过 第二、四象限 ,y随x 的增大而减小 ;
? 倾斜程度
– k的绝对值越大,图象越接近y轴。
– 也就是说: 比例系数k决定了直线 y=kx与x轴 正方向所成的角, k叫做直线y=kx的斜率。
正比例函数性质
设函数 y ? (m ? 2) xm2 ? 5m? 5 ? (m ? 4), (1)当 m是什么值时,是正比例 函数? (2)此时它的图象经过哪 几个象限?
正比例函数图象
? 在同一坐标平面作下列函数图象:
1 y ? x y ? x y ? 3x
2
? 在同一坐标平面作下列函数图象:
y? ? 1x 4
y? ?x
y ? ?3x
你发现正比 例函数中的 比例系数k有 什么作用?
正比例函数性质
? 增减性
– 当k>0时,它的图象经过 第一、三象限 ,y随x 的增大而增大 ;
函数关系式是:
量叫做成反比例,把
– 一个物体作匀速直线运动,行程120它m们,之则间运的函数关系
动速度v(m/秒)与所需时间t(秒)叫之做间反的比函例函数。
数关系是:
? 反比例函数的 一般形式: ? k是不等于零的常数。 ? 不同的k值代表不同的反比例函数,因此
确定了 k,就可以确定一个反比例函数。
正比例函数反比例函数

反比例函数的表达式X是自变量,Y是X的函数y=k/x=k·1/xxy=ky=k·x^(-1)(即:y等于x的负一次方,此处X必须为一次方)y=k\x(k为常数且k≠0,x≠0)若y=k/nx此时比例系数为:k/n∙函数式中自变量取值的范围①k≠0;②在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;③函数y的取值范围也是任意非零实数。
解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数y=k/x=k·1/xxy=ky=k·x^(-1)y=k\x(k为常数(k≠0),x不等于0)∙反比例函数图象反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。
∙反比例函数中k的几何意义是什么?有哪些应用?过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值*y的绝对值=(x*y)的绝对值=|k|研究函数问题要透视函数的本质特征。
反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM·PN=|y|·|x|=|xy|=|k|。
所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。
从而有k的绝对值。
在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。
反比例函数性质有哪些?1.当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。
2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。
反比例函数和正比例函数最小值

反比例函数和正比例函数最小值
反比例函数和正比例函数都是数学中的函数类型。
反比例函数指的是如果一个函数的输入变量与输出变量的乘积为
一个常数,则该函数被称为反比例函数。
通常表示为y = k/x,其中k
为常数。
反比例函数的特点是随着输入变量的增大,输出变量会减小;随着输入变量的减小,输出变量会增大。
反比例函数的图像通常为一
个拋物线的两侧开口向下。
正比例函数指的是如果一个函数的输入变量与输出变量成正比例
关系,则该函数被称为正比例函数。
通常表示为y = kx,其中k为常数。
正比例函数的特点是随着输入变量的增大,输出变量也会增大;
随着输入变量的减小,输出变量也会减小。
正比例函数的图像通常为
一条通过原点的直线。
反比例函数和正比例函数都不具有最小值。
在反比例函数中,由
于输入变量可以取任意正实数,输出变量也不受限制,因此无法找到
最小值。
在正比例函数中,由于输入变量可以取任意实数(包括负数),输出变量也不受限制,因此同样无法找到最小值。
总结起来,反比例函数和正比例函数都不具有最小值。
正比例函数与反比例函数(含图像)

1、正比例函数
定义:
形如y=kx(k为常数,且k≠0),我们就说y是x的正比例函数。
正比例函数是特殊的一次函数【一次函数的一般形式为y=kx+b(b不为0,k为常数)】。
图象作法:
a.列表(待定系数)
b.描点
c.连线
正比例函数的图象是一条直线,一定经过坐标的原点;
当k>0时,图象经过一、三象限,y随x的增大而增大;
当k<0时,图象经过二、四象限,y随x的增大而减小。
具体图像:
正比例函数y=x的函数图像
2、反比例函数
定义:
形如y=k/x(k为常数且k≠0)的函数,我们就说y是x的反比例函数。
(自变量x的取值范围是不等于0的一切实数)
图像作法:
反比例函数的图像为双曲线。
它可以无限地接近坐标轴,但永不相交;
当k>0时,图象在一、三象限,在每个象限内,y随x的增大而减小;
当k<0时,图象在二、四象限,在每个象限内,y随x的增大而增大。
具体图像:
反比例函数y=1/x的函数图像。
高中数学 常见函数:正比例函数、反比例函数与对勾函数

1 / 3常见函数之 正比例函数、反比例函数与对勾函数1.正比例函数如果y=kx (k 是常数,K ≠0),那么,y 叫做x 的正比例函数一次函数的图象是直线,画一次函数的图象,只要先描出两点,再连成直线一次函数的性质当k>0时y 随x 的增大而增大,当k<0时,y 随x 的增大而减小。
2、反比例函数(1) 反比例函数及其图象如果)0,(≠=k k xk y 是常数,那么,y 是x 的反比例函数。
反比例函数的图象是双曲线,它有两个分支,可用描点法画出反比例函数的图象(2)反比例函数的性质当K>0时,图象的两个分支分别在一、三象限内,在每个象限内, y 随x 的增大而减小;当K<0时,图象的两个分支分别在二、四象限内,在每个象限内,y 随x 的增大而增大。
3.对勾函数()b f x ax x=+的图象与性质 对勾函数是数学中一种常见而又特殊的函数。
它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。
(1) 对勾函数的图像对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+(接下来写作f(x)=ax+b/x )。
当a≠0,b≠0时,f(x)=ax+b/x 是正比例函数f(x)=ax 与反比例函数f(x)= b/x “叠加”而成的函数。
这个观点,对于理解它的性质,绘制它的图象,非常重要。
当a ,b 同号时,f(x)=ax+b/x 的图象是由直线y =ax 与双曲线y= b/x 构成,形状酷似双勾。
故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。
如下图所示:a>0 b>0 a<0b<0对勾函数的图像(ab 同号)2 /3 当a ,b 异号时,f(x)=ax+b/x 的图象发生了质的变化。
但是,我们依然可以看作是两个函数“叠加”而成。
(请自己在图上完成:他是如何叠加而成的。
)一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和渐进线的位置有所改变罢了。
正、反比例函数的图像和性质

图像形状
反比例函数的图像是两条 关于原点对称的双曲线, 分别位于第一、三象限和 第二、四象限。
图像趋势
当 $x$ 趋近于正无穷或负 无穷时,$y$ 趋近于 0; 当 $x$ 趋近于 0 时,$y$ 趋近于无穷大。
图像与坐标轴关系
反比例函数的图像与坐标 轴没有交点,即不经过任 何象限的角平分线。
反比例函数性质分析
正比例函数性质分析
01
02
03
比例性
正比例函数中,$y$ 与 $x$ 成正比,即当 $x$ 增 大时,$y$ 也随之增大; 当 $x$ 减小时,$y$ 也随 之减小。
直线性
正比例函数的图像是一条 直线,因此具有直线性, 即函数值的变化是均匀的 。
过原点性
正比例函数的图像经过原 点,这意味着当 $x = 0$ 时,$y = 0$。
函数的对称性
如果函数的图像关于某条直线对称,则称该函数具有对称性。例如,二次函数$f(x)=ax^2+bx+c$的图像关于直 线$x=-frac{b}{2a}$对称。
02
正比例函数图像与性质
正比例函数定义及表达式
定义
正比例函数是形如 $y = kx$ ( $k$ 为常数,且 $k neq 0$)的 函数。
反比例函数图像
反比例函数 $y = frac{k}{x}$($k > 0$)的图像是两条分别位于第一象限 和第三象限的双曲线。这两条曲线关 于原点对称,且随着 $x$ 的增大, $y$ 逐渐减小并趋近于 0。
性质异同点分析
相同点
正比例函数和反比例函数都是关于原点对称的,即它们都是奇函数。
不同点
正比例函数的图像是直线,而反比例函数的图像是双曲线;正比例函数的值随着 $x$ 的增大而增大, 而反比例函数的值随着 $x$ 的增大而减小。
正比例函数和反比例函数

正比例函数与反比例函数一、知识梳理1. 如果变量y 就是自变量x 的函数,对于x 在定义域内取定的一个值a ,变量y 的对应值叫做当x=a 时的函数值。
(为了深入研究函数,我们把“y 就是x 的函数”用记号y=f(x)表示,这里括号里的x 表示自变量,括号外的字母f 表示y 随x 变化而变化的规律。
f(a)表示当x=a 时的函数值) 2. 函数的自变量允许取值范围,叫做这个函数的定义域。
3. 正、反比例函数的解析式、定义域、图像、性质4、函数的表示法有三种:列表法,图像法,解析法。
二、典型题选讲 ●概念辨析1. 在问题研究过程中,可以取不同数值的量叫做________.保持数值不变的量叫做________________表达两个变量之间依赖关系的数学式子称为________________、 2. 写出下列函数的定义域: (1)1y x =+ (2)21y x =-(3)y =y = 3、已知:2()1f x x =-+,(0)f =________,(1)f -=______,(2)f =________、 4、解析式形如(0)y kx k =≠的函数叫做_____________、5、函数3y x =的图像就是经过(1,3)与___________的一条____________、当自变量x 的值从小到大逐渐变化时,函数值y 相应地从_________到_______逐渐变化、 6、反比例函数的解析式就是_________,反比例函数的图像叫_____________、 7、已知:反比例函数8y x=,点A(-2,-4)________它的图像上(填“在”或“不在”)、8、反比例函数y x=-的图像的两支在第______象限。
在其各自的象限内,y 随x 的增大而____________、9、函数有三种表示法,分别为_________,__________,__________、 10.已知函数12)(+=x x f ,则=)1(f ____________.11.在公式C =2πr 中,C 与r 成 比例、(填“正”或“反”). 12.函数1-=x y 的定义域为_________________. 13.如果13)(-+=x x x f ,那么=)3(f ______________. 14.已知点P (2,1)在正比例函数kx y =的图象上,则k =___________. 15.函数y =-2 x 的图象就是一条过原点及(2,a )的直线,则a = . 16.若正比例函数152)3(--=m x m y 的图像经过二、四象限,则m 的值为 .17.已知反比例函数2k y x-=,其图象在第一、第三象限内,则k 的取值范围就是 . 18.已知函数xky =的图象不经过第一、三象限, 则kx y -= 的图象经过第 象限. ●待定系数法求函数解析式1.若正比例函数经过(2,6),则函数解析式就是 .2.若反比例函数经过(-2,1),则函数解析式就是 .3.y 与3x 成正比例,当x =8时,y =-12,则y 与x 的函数解析式为___________.4.如果一个等腰三角形的周长为12,那么它的腰长y 与底边x 的函数关系式就是 ,自变量x 的取值范围为 .5.已知反比例函数图像上有一点A ,过点A 做x 轴的垂线,垂足为B ,ΔAOB 的面积为6,则 这个反比例函数的解析式为 .6.已知正比例函数与反比例函数的图象相交于点A (–3,4)与(3,a )两点,(1)求这两个函数解析式;(2)求a 的值.7、已知21y y y +=,1y 与2x 成正比例,2y 与1-x 成反比例,当x =-1时,y =3;46(a,-3)QyxPlNMQxy当x =2时,y =-3,(1)求y 与x 之间的函数关系式; (2)当2=x 时,求y 的值。
正比例函数和反比例函数的区别(附图)

正比例函数和反比例函数的区别(附图)
一:正比例函数
y=kx(k为常数,且k≠0),我们就说y是x的正比例函数,
正比例函数是特殊的一次函数,一次函数的一般形式为y=kx+b(b不为0,k为常数)。
正比例函数的图象是一条直线,一定经过坐标的原点,
当k>0时,图象经过一、三象限,y随x的增大而增大,
当k<0时,图象经过二、四象限,y随x的增大而减小。
二、反比例函数
y=k/x(k为常数且k≠0) 的函数,我们就说y是x的反比例函数 (自变量x的取值范围是不等于0的一切实数) 。
反比例函数的图像为双曲线,它可以无限地接近坐标轴,但永不相交,
当k>0时,图象在一、三象限,在每个象限内,y随x的增大而减小,
当k<0时,图象在二、四象限,在每个象限内,y随x的增大而增大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正比例函数
一般地,两个变量x、y之间的关系式可以表示成形如y=kx的函数(k 为常数,x的次数为1,且k≠0)(简称f(x)),那么y就叫做x的正比例函数。
正比例函数属一次函数,但一次函数却不一定是正比例函数。
正比例函数是一次函数的特殊形式,即一次函数 y=kx+b 中,若b=0,即所谓"y轴上的截距"为零,则为正比例函数。
正比例函数的关系式表示为:y=kx(k为比例系数) 当K>0时(一三象限),K的绝对值越大,图像与y轴的距离越近。
函数值y随着自变量x的增大而增大. 当K<0时(二四象限),k的绝对值越小,图像与y轴的距离越远。
自变量x的值增大时,y的值则逐渐减小。
单调性
当k>0时,图像经过第一、三象限,从左往右上升,y随x的增大而增大(单调递增),为增函数;
当k<0时,图像经过第二、四象限,从左往右下降,y随x的增大而减小(单调递减),为减函数。
对称性
对称点:关于原点成中心对称;
对称轴:自身所在直线;自身所在直线的垂直平分线。
图像
正比例函数的图像是经过坐标原点(0,0)和定点(1,k)两点的一条直线,它的斜率是k(k表示正比例函数与x轴的夹角大小),横、纵截距都为0。
正比例函数的图像是一条过原点的直线。
正比例函数y=kx(k≠0),当k的绝对值越大,直线越"陡";当k的绝对值越小,直线越"平"。
1、已知一点坐标,用待定系数法求函数解析式。
先设解析式为y=kx,再代入已知点坐标,解出k的值。
2、解出k的值后,在数轴上标出各点并连接个点
反比例函数
一般地,如果两个变量x、y之间的关系可以表示成y=k/x (k为常数,k≠0)的形式,那么称y是x的反比例函数。
因为y=k/x是一个分式,所以自变量X的取值范围是X≠0。
而y=k/x有时也被写成xy=k或
y=k·x^(-1)。
定义
一般的,如果两个变量x,y之间的关系可以表示成y=k/x(k为常数,k≠0),其中k叫做反比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数,且y也不能等于0。
k>0时,图像在一、三象限。
k<0时,图像在二、四象限.k的绝对值表示的是x 与y的坐标形成的矩形的面积。
表达式
x是自变量,y是因变量,y是x的函数
(即:y=kx^-1)
(k为常数且k≠0,x≠0)
若此时比例系数为:
自变量的取值范围
①在一般的情况下 , 自变量 x 的取值范围可以是不等于0的任意实数;②函数 y 的取值范围也是任意非零实数。
解析式
其中x是自变量,y是x的函数,其定义域是不等于0的一切实数,
即 |x|x≠0,x属于R这个范围。
R是实数范围。
也就是x是实数}。
下面是一些常见的形式
k为常数(k≠0),x不等于0
函数图像
反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(y≠0)。
当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内,两个分支无限接近x和y轴,但永远不会与x轴和y轴相交。