第一讲 函数、极限、连续内容提要
函数极限连续知识点总结

函数极限连续知识点总结一、函数极限的定义1.1 函数的极限概念首先,我们先来了解一下函数的极限概念。
对于给定的函数$f(x)$和实数$a$,如果当$x$趋于$a$时,函数$f(x)$的取值无限接近某个确定的实数$L$,那么我们称$L$为函数$f(x)$在$x$趋于$a$时的极限,记作$\lim_{x \to a}f(x) = L$,并称函数$f(x)$在$x$趋于$a$时收敛于$L$。
1.2 函数极限的定义根据上面的概念,我们可以得到函数极限的严格定义:设函数$f(x)$在点$a$的某个去心邻域内有定义,如果对于任意给定的正数$\varepsilon$,总存在正数$\delta$,使得当$0 <|x - a| < \delta$时,就有$|f(x) - L| < \varepsilon$成立,那么就称函数$f(x)$在$x$趋于$a$时的极限为$L$,记作$\lim_{x \to a}f(x) = L$。
上述定义可以用符号表示为:对于任意给定的$\varepsilon > 0$,总存在$\delta > 0$,使得当$0 < |x - a| < \delta$时就有$|f(x) - L| < \varepsilon$成立。
1.3 函数极限的几何意义函数极限的定义反映了函数在某一点附近的变化趋势。
通过函数图像可以直观地理解函数极限的几何意义:当$x$在点$a$的邻域内时,函数$f(x)$的图像逐渐接近直线$y=L$,并且可以任意地靠近直线$y=L$。
这也就意味着函数在$x$趋于$a$时,其值可以无限接近于$L$。
1.4 函数极限存在的充分条件函数极限的存在需要满足一定的条件,下面给出函数极限存在的充分条件:(1)函数$f(x)$在点$a$的某个邻域内有定义;(2)存在实数$L$,使得对任意给定的$\varepsilon > 0$,总存在$\delta > 0$,使得当$0 < |x - a| < \delta$时就有$|f(x) - L| < \varepsilon$成立。
高等数学第一章函数极限和连续讲义

第一章函数、极限和连续【考试要求】一、函数1.理解函数的概念:函数的定义,函数的表示法,分段函数.2.理解和掌握函数的简单性质:有界性,单调性,奇偶性,周期性.3.了解反函数:反函数的定义,反函数的图像.4.掌握函数的四则运算与复合运算.5.理解和掌握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数.6.了解初等函数的概念.二、极限1.理解数列极限的概念:数列,数列极限的定义.2.了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,掌握极限的四则运算法则.3.理解函数极限的概念:函数在一点处极限的定义,左右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限.4.掌握函数极限的定理:唯一性定理,夹逼定理,四则运算定理.5.理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较.6.熟练掌握用两个重要极限求极限的方法.7.熟练掌握分段函数求极限的方法.三、连续1.理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的间断点及其分类.2.掌握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的间断点及确定其类型.3.掌握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题.4.理解初等函数在其定义区间上连续,并会利用连续性求极限. 5.熟练掌握分段函数连续性的判定方法.【考试内容】一、函数(一)函数的概念1.函数的定义:设数集D R ⊂,则称映射:f D R →为定义在D 上的函数,通常简记为()yf x =,x D ∈,其中x 称为自变量,y 称为因变量,D 称为定义域.说明:表示函数的记号是可以任意选取的,除了常用的f外,还可以用其他的英文字母或希腊字母,如“g ”、“F ”、“ϕ”等,相应的,函数可记作()y g x =,()y F x =,()y x ϕ=等.有时还直接用因变量的记号来表示函数,即把函数记作()y y x =,这一点应特别注意.2.函数的解析(公式)表示法 (1)函数的显式表示法(显函数):()yf x =形式的函数,即等号左端是因变量的符号,而右端是含有自变量的式子,如2cos xy xe x =-,13sin ln x x e y x e x-=++等.(2)函数的隐式表示法(隐函数):函数的对应法则由方程(,)0F x y =所确定,即如果方程(,)0F x y =确定了一个函数关系()y f x =,则称()y f x =是由方程(,)0F x y =所确定的隐函数形式.说明:把一个隐函数化成显函数,叫做隐函数的显化.例如从方程310x y +-=解出31y x =-,就把隐函数化成了显函数.但并非所有的隐函数都能显化,隐函数的显化有时是非常困难的,甚至是不可能的.(3)分段函数:如果函数的对应法则是由几个解析式表示的,则称之为分段函数,如1,0()1,0x x f x x x +≥⎧=⎨-<⎩ 是由两个解析式表示的定义域为(,)-∞+∞的一个函数.(4)由参数方程确定的函数:如果自变量x 与因变量y 的关系是通过第三个变量t 联系起来 ()()x t y t ϕφ=⎧⎨=⎩ (t 为参变量),则称这种函数关系为参数方程所确定的函数.例如:参数方程 2cos 2sin x t y t=⎧⎨=⎩ 表示的图形即为圆心在原点,半径为4的圆.(二)函数的几种特性1.有界性设函数()f x 的定义域为D ,数集X D ⊂,如果存在正数M,使得()f x M≤对任一x X ∈都成立,则称函数()f x 在X 上有界.如果这样的M不存在,就称函数()f x 在X 上无界.说明:我们这里只讨论有界无界的问题而不区分上界和下界,并且,由上述定义不难看出,如果正数M 是函数()f x 的一个界,则比M大的数都是函数()f x 的界.2.单调性 设函数()f x 的定义域为D ,区间I D ∈.如果对于区间I 上任意两点1x 及2x ,当12x x <时,恒有12()()f x f x <,则称函数()f x 在区间I 上是单调增加的;如果对于区间I 上任意两点1x 及2x ,当12x x <时,恒有12()()f x f x >,则称函数()f x 在区间I 上是单调减少的.单调增加和单调减少的函数统称为单调函数. 3.奇偶性 设函数()f x 的定义域D 关于原点对称.如果对于任一x D ∈,()()f x f x -=恒成立,则称()f x 为偶函数.如果对于任一x D ∈,()()f x f x -=-恒成立,则称()f x 为奇函数.例如:()cos f x x =、2()f x x =都是偶函数,()s i n f x x =、()arctan f x x =是奇函数,而()sin cos f x x x =+则为非奇非偶函数.偶函数的图形关于y 轴对称,而奇函数的图形关于原点对称.说明:两个偶函数的和是偶函数,两个奇函数的和是奇函数;两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数与奇函数的乘积是奇函数.其余结论读者可自行论证. 4.周期性设函数()f x 的定义域为D .如果存在一个正数l ,使得对于任一x D ∈有()x l D ±∈,且()()f x l f x +=恒成立,则称()f x 为周期函数,l 称为()f x 的周期,通常我们说周期函数的周期是指最小正周期.例如:函数sin x 、cos x 都是以2π为周期的周期函数,函数tan x 是以π为周期的周期函数.(三)函数的运算1.和差积商运算 设函数()f x ,()g x 的定义域依次为1D ,2D ,12D D D φ=≠,则我们可以定义这两个函数的下列运算: (1)和(差)f g ±:()()()()f g x f x g x ±=±,x D ∈;(2)积f g ⋅:()()()()f g x f x g x ⋅=⋅,x D ∈;(3)商f g :()()()f f x x g g x ⎛⎫= ⎪⎝⎭,\{()0,}x D x g x x D ∈=∈. 2.反函数(函数的逆运算)对于给定的y 是x 的函数()y f x =,若将y 当作自变量而x 当作因变量,则由关系式()y f x =所确定的函数()x y ϕ=称为函数()f x 的反函数,记为1()y f x -=,()f x 叫做直接函数.若直接函数()yf x =的定义域为D ,值域为M ,则反函数1()y f x -=的定义域为M ,值域为D .且直接函数的图像与反函数的图像关于直线y x =对称.3.复合函数(函数的复合运算)设函数()y f u =的定义域为fD ,函数()ug x =的定义域为g D ,且其值域g f R D ⊂,则由下式确定的函数[()]y f g x =,g x D ∈称为由函数()u g x =与函数()y f u =构成的复合函数,它的定义域为g D ,变量u 称为中间变量.说明:g 与f能构成复合函数的条件是函数g 的值域g R 必须含在函数f的定义域fD 内,即gf R D ⊂,否则不能构成复合函数.此外,复合函数可以由多个函数复合而成.(四)基本初等函数与初等函数1.基本初等函数 幂函数:yx μ=(R μ∈是常数); 指数函数:x y a =(0a >且1a ≠);对数函数:log a y x =(0a >且1a ≠,特别当a e =时记为ln y x =);三角函数:sin yx =,cos y x =,tan y x =,cot y x =,sec y x =,csc y x =;反三角函数:arcsin y x =,arccos y x =,arctan y x =,cot y arc x =.以上五类函数统称为基本初等函数.说明:反三角函数是学习和复习的难点,因此这里重点给出三角函数和反三角函数的关系,这对于后边学习极限、渐近线及导数等知识是非常有帮助的,请大家牢记. (1)反正弦函数arcsin yx =:是由正弦函数sin y x =在区间[,]22ππ-上的一段定义的反函数,故其定义域为[1,1]-,值域为[,]22ππ-. (2)反余弦函数arccos y x =:是由余弦函数cos y x =在区间[0,]π上的一段定义的反函数,故其定义域为[1,1]-,值域为[0,]π. (3)反正切函数arctan yx =:是由正切函数tan y x =在区间(,)22ππ-上的一段定义的反函数,故其定义域为(,)-∞+∞,值域为(,)22ππ-. (4)反余切函数cot yarc x =:是由余切函数cot y x =在区间(0,)π上的一段定义的反函数,故其定义域为(,)-∞+∞,值域为(0,)π. 2.初等函数由常数和基本初等函数经过有限次的四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数,称为初等函数.例如:22sin cos y x x =,22y x =-,2ln(1)y x x =++,2arccos(1)y x =-等都是初等函数.在本课程中所讨论的函数绝大多数都是初等函数.二、极限(一)数列的极限1.数列极限的定义:设{}n x 为一数列,如果存在常数A ,对于任意给定的正数ε(不论它多么小),总存在正整数N ,使得当n N >时,不等式n x A ε-<都成立,那么就称常数A 是数列{}n x 的极限,或者称数列{}n x 收敛于A ,记为lim n n x A →∞=或n x A →(n →∞).如果不存在这样的常数A ,就说数列{}n x 没有极限,或者说数列{}n x 是发散的,习惯上也说lim n n x →∞不存在.说明:数列极限中自变量n 的趋向只有一种,即n →∞,虽然含义表示正无穷,但不要写做n→+∞,注意与函数极限的区别.2.收敛数列的性质性质(1):(极限的唯一性)如果数列{}n x 收敛,那么它的极限唯一.性质(2):(收敛数列的有界性)如果数列{}n x 收敛,那么数列{}n x 一定有界. 说明:对于数列{}n x ,如果存在正数M ,使得对一切n ,都有n x M ≤,则称数列{}n x 是有界的,否则称数列{}n x 是无界的. 性质(3):(收敛数列的保号性)如果lim nn x A →∞=,且0A >(或者0A <),那么存在正整数N ,当n N >时,都有0n x >(或0n x <). (二)函数的极限1.函数极限的定义 (1)0xx →时函数的极限:设函数()f x 在点0x 的某个去心邻域内有定义.如果存在常数A ,对于任意给定的正数ε(不论它多么小),总存在正数δ,使得当x 满足不等式00x x δ<-<时,对应的函数值()f x 都满足不等式()f x A ε-<,那么常数A就叫做函数()f x 当0x x →时的极限,记作0lim ()x x f x A →=或()f x A →(当0x x →).说明:函数的左极限lim ()x x f x A -→=或0()f x A -=;右极限0lim ()x x f x A +→=或0()f x A +=;左极限与右极限统称单侧极限.函数()f x 当0x x →时极限存在的充要条件是左右极限都存在并且相等,即00()()f x f x -+=.(2)x →∞时函数的极限:设函数()f x 当x大于某一正数时有定义.如果存在常数A ,对于任意给定的正数ε(不论它多么小),总存在正数X ,使得当x 满足不等式x X >时,对应的函数值()f x 都满足不等式()f x A ε-<,那么常数A 就叫做函数()f x 当x →∞时的极限,记作lim ()x f x A →∞=或()f x A →(当x →∞).说明:此定义包含lim ()x f x A →+∞=和lim ()x f x A →-∞=两种情况.2.函数极限的性质(以0xx →为例)性质(1):(函数极限的唯一性)如果0lim ()x x f x →存在,那么这极限唯一.性质(2):(函数极限的局部有界性)如果0lim ()x x f x A →=,那么存在常数0M >和0δ>,使得当00x x δ<-<时,有()f x M ≤.性质(3):(函数极限的局部保号性)如果0lim()x x f x A →=,且0A >(或0A <),那么存在常数0δ>,使得当00x x δ<-<时,有()0f x >(或()0f x <). (三)极限运算法则1.如果0lim()x x f x A →=,0lim ()x x g x B →=,则有(1)0lim[()()]lim ()lim ()x x x x x x f x g x f x g x A B →→→±=±=±; (2)0lim[()()]lim ()lim ()x x x x x x fx g x f x g x A B →→→⋅=⋅=⋅;(3)000lim ()()lim()lim ()x x x x x x f x f x A g x g x B→→→==,其中0B ≠; (4)0lim[()]lim ()x x x x cfx c f x →→=,其中c 为常数;(5)0lim[()][lim ()]n n x x x x fx f x →→=,其中n 为正整数.2.设有数列{}n x 和{}n y ,如果lim nn x A →∞=,lim n n y B →∞=,则有(1)lim()nn n x y A B →∞±=±; (2)lim()nn n x y A B →∞⋅=⋅;(3)lim n n nx Ay B →∞=,其中0n y ≠(1,2,n =)且0B ≠.3.如果()()x x ϕψ≥,而0lim ()x x x A ϕ→=,0lim ()x x x B ψ→=,则A B ≥.4.复合函数的极限运算法则:设函数[()]y f g x =是由函数()u g x =与函数()y f u =复合而成,[()]f g x 在点0x 的某去心邻域内有定义,若00lim ()x x g x u →=,0lim ()u u f u A→=,且存在00δ>,当00(,)x U x δ∈时,有()g x u ≠,则lim [()]lim ()x x u u f g x f u A →→==.说明:本法则以0xx →为例,其他趋向下亦成立.(四)极限存在准则1.准则I 如果数列{}n x 、{}n y 及{}n z 满足下列条件: (1)从某项起,即0n N ∃∈,当0n n >时,有n n n y x z ≤≤,(2)lim nn y A →∞=,lim n n z A →∞=,那么数列{}n x 的极限存在,且lim nn x A →∞=.准则I ' 如果函数()f x 、()g x 及()h x 满足下列条件:(1)当0(,)x U x r ∈(或x M >)时,()()()g x f x h x ≤≤,(2)0()lim ()x x x g x A →→∞=,0()lim ()x x x h x A →→∞=,那么0()lim ()x x x f x →→∞存在,且等于A .说明:准则I 及准则I '称为夹逼准则.2.准则II 单调有界数列必有极限.准则II ' 单调有界函数必有极限.(函数有界一般是指在某个邻域内有界)(五)两个重要极限1.0sin lim1x xx→=,可引申为()0sin ()lim1()x x x ϕϕϕ→=,式中不管自变量x 是哪种趋向,只要在此趋向下()0x ϕ→即可(()0x ϕ+→或()0x ϕ-→时亦成立).2.10lim(1)xx x e →+= 或 1lim(1)x x e x→∞+=,可引申为1()()0lim (1())x x x e ϕϕϕ→+=(()0x ϕ+→或()0x ϕ-→时亦成立)或()()1lim (1)()x x ex ϕϕϕ→∞+=(()x ϕ→+∞或()x ϕ→-∞时亦成立). 说明:数列亦有第二种极限形式,即1lim(1)nn e n→∞+=.两个重要极限是考试的必考内容,请大家务必好好掌握.(六)无穷小和无穷大1.定义(1)无穷小的定义:如果函数()f x 当0x x →(或x →∞)时的极限为零,那么称函数()f x 为当0x x →(或x →∞)时的无穷小量(简称无穷小).特别地,以零为极限的数列{}n x 称为n→∞时的无穷小.说明:以后我们再提到无穷小时,把数列{}n x 当作特殊的函数来看待,故所谓的无穷小本质上就是函数,并且一定是在自变量x 的某一趋向下才有意义. (2)无穷大的定义:如果在自变量的某一变化过程中,函数()f x 的绝对值无限增大,则称函数()f x 为自变量在此变化过程中的无穷大量(简称无穷大).说明:在自变量的同一变化过程中,如果()f x 为无穷大,则1()f x 为无穷小;反之,如果()f x 为无穷小且()0f x ≠,则1()f x 为无穷大. 2.无穷小的比较设α,β均为自变量同一趋向下的无穷小,且0α≠,(1)如果lim0βα=,则称β是比α高阶的无穷小,记作()o βα=; (2)如果lim βα=∞,则称β是比α低阶的无穷小;(3)如果lim0c βα=≠,则称β与α是同阶无穷小; (4)如果lim 1βα=,则称β与α是等价无穷小,记作~αβ;(5)如果lim0k c βα=≠,0k >,则称β是关于α的k 阶无穷小. 3.无穷小的性质(1)有限个无穷小的和是无穷小. (2)常数与无穷小的乘积是无穷小. (3)有限个无穷小的乘积是无穷小. (4)有界函数与无穷小的乘积是无穷小.(5)求两个无穷小之比的极限时,分子及分母都可用等价无穷小来替换,即设α,β,α',β'均为自变量同一趋向下的无穷小,且~αα',~ββ',limβα''存在,则lim lim ββαα'='(lim 表示自变量的任一趋向下的极限,以后文中出现此符号时均为此意,不再解释).说明:等价无穷小非常重要,故将常用的等价无穷小列举如下,请大家务必牢记.0x →时sin ~x x ,可引申为()0x ϕ→时,sin ()~()x x ϕϕ; 0x →时tan ~x x ,可引申为()0x ϕ→时,tan ()~()x x ϕϕ;0x →时sin ~arc x x ,可引申为()0x ϕ→时,sin ()~()arc x x ϕϕ; 0x →时211cos ~2x x -,可引申为()0x ϕ→时,211cos ()~()2x x ϕϕ-;0x →时111~n x x n +-,可引申为()0x ϕ→时,11()1~()n x x nϕϕ+-;0x →时1~x e x -,可引申为()0x ϕ→时,()1~()x e x ϕϕ-;0x →时ln(1)~x x +,可引申为()0x ϕ→时,ln(1())~()x x ϕϕ+.三、连续(一)连续的概念1.连续的定义连续性定义(1):设函数()f x 在点0x 的某一邻域内有定义,如果000lim lim[()()]0x x y f x x f x ∆→∆→∆=+∆-=,则称函数()yf x =在点0x 连续(即自变量的变化量趋于零时函数值的变化量也趋于零). 连续性定义(2):设函数()f x 在点0x 的某一邻域内有定义,如果00lim ()()x x f x f x →=,则称函数()yf x =在点0x 连续.2.左连续、右连续及区间连续 (1)左连续:lim ()x x f x -→存在且等于0()f x ,即00()()f x f x -=;(2)右连续::lim ()x x f x +→存在且等于0()f x ,即00()()f x f x +=;(3)区间连续:若函数()f x 在区间每一点都连续,则称()f x 为该区间上的连续函数,或者说函数()f x 在该区间上连续.如果区间包括端点,则函数()f x 在右端点连续是指左连续,()f x 在左端点连续是指右连续.说明:一切初等函数在其定义区间内都是连续的.(二)函数的间断点1.定义:设函数()f x 在点0x 的某去心邻域内有定义,如果函数有下列三种情形之一:(1)在0xx =处没有定义;(2)虽在0x x =处有定义,但0lim ()x x f x →不存在;(3)虽在0x x =处有定义,且0lim ()x x f x →存在,但00lim ()()x x f x f x →≠,则函数()f x 在点0x 为不连续,而点0x 称为函数()f x 的不连续点或间断点.2.分类:(1)第一类间断点:如果0x 是函数()f x 的间断点,但左极限0()f x -和右极限0()f x +都存在,那么0x 称为函数()f x 的第一类间断点.00()()f x f x -+=时称0x 为可去间断点,00()()f x f x -+≠时称0x 为跳跃间断点.(2)第二类间断点:不是第一类间断点的任何间断点,称为第二类间断点.常见的第二类间断点有无穷间断点和振荡间断点.(三)闭区间上连续函数的性质1.有界性与最值定理:在闭区间[,]a b 上连续的函数在该区间上有界且一定能取得它的最大值和最小值. 2.零点定理:设函数()f x 在闭区间[,]a b 上连续,且()f a 与()f b 异号(即()()0f a f b ⋅<),那么在开区间(,)a b 内至少有一点ξ,使得()0f ξ=. 3.介值定理:设函数()f x 在闭区间[,]a b 上连续,且在这区间的端点取不同的函数值()f a A =及()f b B =,那么对于A 与B 之间的任意一个数C ,在开区间(,)a b 内至少有一点ξ,使得()f C ξ=(a b ξ<<).【典型例题】【例1-1】求复合函数. 1.设()12xf x x =-,求[()]f f x . 解:求[()]f f x 就是用()f x 代替x 然后化简,得12[()]122141212xx xx f f x x x x x x -===----⋅-. 2.设2,01()3,12x x f x x x ⎧≤≤=⎨<≤⎩ ,()xg x e =,求[()]f g x .解:当01xe ≤≤即0x ≤时,22[()]()x xfg x e e ==, 当12xe <≤即0ln 2x <≤时,[()]3xfg x e =,故2,0[()]3,0ln 2x x e x f g x e x ⎧≤=⎨<≤⎩ .【例1-2】求函数的定义域. 1.()arcsin(21)ln(1)f x x x =-+-.解:由arcsin(21)x -可得1211x -≤-≤,即01x ≤≤;由arcsin(21)x -可得arcsin(21)0x -≥,即0211x ≤-≤,112x ≤≤;由l n (1)x -可得10x->,即1x <,故原函数的定义域为三部分的交集,即1[,1)2. 2.21()arccos(2)2x f x x x x -=+---. 解:由1x -可得10x -≥,即1x ≥;由220x x --≠即(1)(2)0x x +-≠可得1x ≠-且2x ≠;由arccos(2)x -可得121x -≤-≤,13x ≤≤,故原函数的定义域为三部分的交集,即为[1,2)(2,3].【例1-3】判断函数的奇偶性. 1.设()f x 和()g x 为任意函数,定义域均为(,)-∞+∞,试判定下列函数的奇偶性. (1)()()()()f x f x g x g x +-++-解:由奇偶性的判定可知,()()f x f x +-与()()g x g x +-均为偶函数,故其和亦为偶函数. (2)()()()()f x f x g x g x --++-解:由奇偶性的判定可知,()()f x f x --为奇函数,()()g x g x +-为偶函数,故其和为非奇非偶函数. 2.判定函数2()ln(1)f x x x =++的奇偶性.解:因2()ln(()1)f x x x -=-+-+2ln(1)x x =-++21ln 1x x=++2ln(1)()x x f x =-++=-,故原函数为奇函数.【例1-4】计算下列极限.1.22212lim()n nn n n→∞+++.解:当n →∞时,此题是无限个无穷小之和,不能直接求极限,先变形化简再计算:222221(1)121212lim()lim lim 2n n n n n n n n n n n n →∞→∞→∞+++++++===. 2.222111lim()12n n n n n→∞++++++. 解:因22222111121nn n n n n n nn <+++<+++++,并且2l i m1n nn n→∞=+,2lim 11n nn →∞=+,故原极限值为1.(夹逼准则)3.222lim(1)nn n n→∞++.解:22(22)222222222222lim(1)lim(1)lim(1)n n n n n n n n n n n n e n n n n+⋅+→∞→∞→∞++++=+=+=.4.23lim()21nn n n →∞-+.解:21424212344lim()lim(1)lim(1)212121n nn n n n n n n e n n n +-⋅--+→∞→∞→∞---=+=+=+++. 【例1-5】计算下列极限. 1.sin limx xx→∞.解:当x →∞时,1x为无穷小,sin x 虽没有极限但却是有界函数,故根据无穷小与有界函数的乘积仍为无穷小,可得sin lim0x xx→∞=.说明:本极限与01lim sin x x x →意义是一样的.2.21lim 1n x x x x nx →+++--.解:2211111lim lim 11n n x x x x x n x x x x x →→+++--+-++-=--2121lim[1(1)(1)(1)]n n x x x x x x x --→=+++++++++++(1)1232n n n +=++++=. 说明:此题也可用洛必达法则(见第三章)求解,过程如下:2111(1)lim lim(12)12n n x x x x x n n n x nx x -→→+++-+=+++=-.3.0sin(1)lim 3x x e x→-.解:因当0x →时,sin(1)~1xx ee --,1~x e x -,故 00sin(1)11limlim 333x x x x e e x x →→--==. 说明:本题可以使用洛必达法则求解如下:00sin(1)cos(1)1lim lim 333x x x x x e e e x →→--⋅==. 4.sin 0limsin x x x e e x x→--.解:sin sin sin 00(1)lim lim 1sin sin x x x x x x x e e e e x x x x-→→--==--(0x →时,sin ~sin x x e x x --).5.23lim()2xx x x→∞++. 解:2(2)2222311lim()lim(1)lim(1)222x x x x xx x x x e x x x+⋅+→∞→∞→∞+=+=+=+++. 6.11lim(sincos )x x x x→∞+. 解:111(sin cos 1)11sin cos 11111lim(sin cos )lim[1(sin cos 1)]x x x x x xx x x x x x⋅+-+-→∞→∞+=++-211111sin cos 1sincos 12limlim lim 1lim 111110x x x x x x x x x xx xxe e e e e →∞→∞→∞→∞-+--+++=====.【例1-6】已知()f x 是多项式,且32()2lim 2x f x x x →∞-=,0()lim 3x f x x→=,求()f x . 解:利用前一极限式可令32()22f x x x ax b =+++,再利用后一极限式,得 00()3lim lim()x x f x ba x x→→==+,则 3a =,0b =,故32()223f x x x x =++.【例1-7】当0x →时,比较下列无穷小的阶. 1.2x 比1cos x -.解:因 22002limlim 211cos 2x x x x x x →→==-,故2x 与1cos x -是同阶无穷小. 2.2x 比11x +-.解:因 220limlim 01112x x x x x x→→==+-,故2x 是比11x +-高阶的无穷小. 3.11x x +--比x .解:因 0011(11)(11)lim lim (11)x x x x x x x x x x x x →→+--+--++-=++-2lim 1(11)x x x x x →==++-,故11x x +--与x 是等价无穷小. 4.2x 比tan sin x x -.解:因 2220002cos limlim lim 1tan sin sin (1cos )2x x x x x x x x x x x x x →→→===∞--⋅, 故2x 是比tan sin x x -低阶的无穷小. 说明:本题中的四个题目均可用洛必达法则求解. 【例1-8】讨论下列分段函数在指定点处的连续性.1.2,01()1,11,1x x f x x x x ⎧≤<⎪==⎨⎪+>⎩在1x =处的连续性. 解:因(1)1f =,11(1)lim ()lim 22x x f f x x ---→→===, 11(1)lim ()lim(1)2x x f f x x +++→→==+=,从而1lim ()2(1)x f x f →=≠,故函数在1x =处不连续.2.1,0()ln(1),0x e x f x x x ⎧⎪<=⎨⎪+≥⎩ 在0x =处的连续性.解:因(0)0f =,1(0)lim ()lim 0xx x f f x e ---→→===,(0)lim ()lim ln(1)0x x f f x x +++→→==+=,从而0lim ()0(0)x f x f →==,故函数在0x =处连续.【例1-9】当常数a 为何值时,函数2,0()ln(1),0x a x f x x x x-≤⎧⎪=⎨+>⎪⎩ 在0x =处连续?解:因(0)f a =-,0(0)lim ()lim(2)x x f f x x a a ---→→==-=-,10000ln(1)1(0)lim ()lim lim ln(1)lim ln(1)1xx x x x x f f x x x xx +++++→→→→+===+=+=,故由连续性可得,(0)(0)(0)f f f -+==,即1a -=,故1a =-.【例1-10】求下列函数的间断点并判断其类型. 1.1()xf x e= .解:所给函数在0x =处无定义,故0x =是间断点.又1lim x x e +→=+∞,10lim 0xx e -→=,故0x=是()f x 的第二类间断点.2.()sin xf x x= .解:所给函数在x k π=(0,1,2,k =±±)处无定义,故0x =、x k π=(1,2,k=±±)是间断点.又0lim1sin x xx→=,故0x =是第一类间断点,且是可去间断点;lim sin x k xxπ→=∞,故x k π=是第二类间断点,且是无穷间断点.3.111()1xxe f x e -=+ .解:所给函数在0x=处无定义,故0x =是间断点.又111(0)lim 11xx xe f e ++→-==+,111(0)lim 11xx xe f e --→-==-+,故0x =是()f x 的第一类间断点且是跳跃间断点.4.1arctan ,0()0,0x f x xx ⎧≠⎪=⎨⎪=⎩ . 解:该题是分段函数的连续性问题,因0x ≠时1arctanx 是初等函数,故1arctan x在0x ≠时是连续的,所以该题主要考虑分界点0x =处的连续性.由1(0)lim arctan 2x f x π++→==,01(0)lim arctan 2x f x π--→==-,可知0x =是()f x 的第一类间断点且是跳跃间断点.【例1-11】证明方程32410x x -+=在区间(0,1)内至少有一个根.证:函数32()41f x x x =-+在闭区间[0,1]上连续,又(0)10f =>,(1)20f =-<,根据零点定理,在(0,1)内至少有一点ξ,使得()0f ξ=,即32410ξξ-+= (01ξ<<),该等式说明方程32410x x -+=在区间(0,1)内至少有一个根是ξ.【例1-12】证明方程21xx ⋅=至少有一个小于1的正根.证:由题意,函数()21x f x x =⋅-在区间[0,1]上连续,又(0)10f =-<,(1)10f =>,根据零点定理,在(0,1)内至少有一点ξ,使得()0f ξ=,即210ξξ⋅-= (01ξ<<),该等式说明方程21x x ⋅=在区间(0,1)内至少有一个小于1的正根ξ.【历年真题】一、选择题1.(2010年,1分)函数211arccos 2x y x +=--的定义域是( )(A )[3,1]- (B )[3,1]-- (C )[3,1)-- (D )[1,1]-解:因 2101112x x ⎧-≥⎪⎨+-≤≤⎪⎩,故 11212x x -≤≤⎧⎨-≤+≤⎩ , 1131x x -≤≤⎧⎨-≤≤⎩ ,所以 11x -≤≤,故选(D ). 2.(2010年,1分)极限0sin3lim x xx→等于( )(A )0 (B )1 (C )13(D )3 解:00sin33limlim 3x x x xx x→→==,故选(D ). 3.(2009年,1分)极限(1)limnn n n→∞+-=( ) (A )1 (B )0 (C )∞ (D )不存在解:(1)(1)(1)lim lim[1]1lim 101n n n n n n n n n n→∞→∞→∞+---=+=+=+=,故选(A ).4.(2009年,1分)若1,0()0,01,0x x f x x x x -<⎧⎪==⎨⎪+>⎩,则0lim ()x f x →=( )(A )1- (B )0 (C )1 (D )不存在解:因00lim ()lim(1)1x x f x x --→→=-=-,0lim ()lim(1)1x x f x x ++→→=+=,lim ()lim ()x x f x f x -+→→≠,故0lim ()x f x →不存在,选(D ). 5.(2009年,1分)2x π=是函数tan xy x=的( ) (A )连续点 (B )可去间断点 (C )跳跃间断点 (D )第二类间断点解:因 2lim 0tan x x x π→=,故2x π=是函数tan xy x =的可去间断点,选(B ). 6.(2008年,3分)设1()sinf x x x= ,则lim ()x f x →∞等于( )(A )0 (B )不存在 (C )∞ (D )1解:1sin1lim ()lim sin lim11x x x x f x x x x→∞→∞→∞===,故选(D ).7.(2008年,3分)当0x →时,23x 是2sinx 的( )(A )高阶无穷小 (B )同阶无穷小,但不等价 (C )低阶无穷小 (D )等价无穷小解:因 22220033lim lim 3sin x x x x x x→→==,故选(B ).8.(2007年,3分)当0x →时,tan 2x 是( )(A )比sin3x 高阶的无穷小 (B )比sin3x 低阶的无穷小 (C )与sin3x 同阶的无穷小 (D )与sin3x 等价的无穷小解:因0tan 222limlim sin333x x x x x x →→==,故选(C ). 9.(2006年,2分)设()sin f x x = ,,0(),0x x g x x x ππ-≤⎧=⎨+>⎩ ,则[()]f g x =( )(A )sin x (B )cos x (C )sin x - (D )cos x - 解:当0x ≤时,[()]()sin()sin()sin f g x f x x x x πππ=-=-=--=-;当0x>时,[()]()sin()sin f g x f x x x ππ=+=+=-,故选(C ). 10.(2005年,3分)设120lim(1)xx mx e →-=,则m =( )(A )12- (B )2 (C )2- (D )12解:由11()20lim(1)lim[1()]m m xmxx x mx mx e e ⋅---→→-=+-==,得2m =-,选(C ).11.(2005年,3分)设1xy e-=是无穷大,则x 的变化过程是( )(A )0x+→ (B )0x -→ (C )x →+∞ (D )x →-∞解:0x +→时,1x →+∞,1x-→-∞,10x e -→;0x -→时,1x →-∞,1x-→+∞,1x e -→+∞;故选(B ). 二、填空题1.(2010年,2分)若函数21,1(),1x x f x x a x -+≤⎧=⎨->⎩ 在1x =处连续,则a = .解:11lim()lim(21)1x x f x x --→→=-+=-,11lim ()lim()1x x f x x a a ++→→=-=-,因()f x 在点1x =处连续,故11lim ()lim ()x x f x f x -+→→=,即11a -=-,2a =. 2.(2010年,2分)0x =是函数1()cos f x x x=的第 类间断点.解:因1lim ()lim cos0x x f x x x→→==,故0x =是函数()f x 的第一类间断点.3.(2009年,2分)设1,1()0,11,1x f x x x ⎧<⎪==⎨⎪->⎩,()x g x e =,则[(l n 2)]g f = .解:因0ln 21<<,故 (ln 2)1f =,所以 1[(ln 2)](1)g f g e e ===.4.(2009年,2分)1sin y x=在0x =处是第 类间断点.解:因0x →时,1x→∞,1sin x 没有极限,故 0x = 是第二类间断点.5.(2008年,4分)函数ln arcsin yx x =+的定义域为 .解:由题意,011x x >⎧⎨-≤≤⎩ ,故原函数的定义域为 (0,1].6.(2008年,4分)设数列n x 有界,且lim 0n n y →∞=,则lim n n n x y →∞= .解:数列可看作特殊的函数,因数列n x 有界,数列n y 为无穷小,所以根据无穷小与有界函数的乘积仍然是无穷小可得,lim 0n nn x y →∞=.7.(2008年,4分)函数31y x =+的反函数为 .解:由31yx =+可得,31y x =+,31x y =-,故反函数为 31y x =-.8.(2007年,4分)函数21arcsin 3x y -=的定义域为 .解:由21113x --≤≤得,3213x -≤-≤,即12x -≤≤,所以定义域为[1,2]-. 9.(2007年,4分)21lim()xx x x→∞-= .解:22(2)2111lim()lim(1)lim(1)x x x x x x x e x x x-⋅--→∞→∞→∞---=+=+=.10.(2006年,2分)若函数2121212(),0()12,0x x x f x xx a x +⎧->⎪=⎨+⎪-≤⎩在0x =处连续,则a = .解:0lim()lim(2)x x f x x a a --→→=-=-,22211221(3)3322000123lim ()lim()lim(1)11x x x x x x xx f x e xx+++++⋅---→→→--==+=++, 因()f x 在0x =处连续,故0lim ()lim ()x x f x f x -+→→=,即3a e --=,故3a e -=-. 三、计算题1.(2010年,5分)求极限lim xx x c x c →∞+⎛⎫⎪-⎝⎭,其中c 为常数.解:22222lim lim 1lim 1x c cxxxc x cc x x x x c c c e x c x c x c -⋅-→∞→∞→∞+⎛⎫⎛⎫⎛⎫=+=+=⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭.2.(2010年,5分)求极限3tan limx x xx→-. 解:22322000tan sec 1tan 1lim lim lim 333x x x x x x x x x x →→→--===. 说明:此题也可多次使用洛必达法则,解法如下:232000tan sec 12sec sec tan 1lim lim lim 363x x x x x x x x x x x x →→→--⋅===. 3.(2009年,5分)求极限 3113lim 11x x x →⎛⎫- ⎪--⎝⎭ . 解:此题为“∞-∞”型的极限,解法如下:23321111313(1)(2)lim lim lim 1111(1)(1)x x x x x x x x x x x x x →→→++--+⎛⎫-===- ⎪----++⎝⎭. 4.(2009年,5分)求极限 0limsin x x x e e x-→- .解:002limlim 2sin cos 1x x x x x x e e e e x x --→→-+===.5.(2008年,5分)求极限 2sin 2lim cos()x xx ππ→- .解:22sin 22cos2limlim 2cos()sin()(1)x x x x x x ππππ→→==----⋅-.6.(2007年,5分)求极限011lim()1x x x e →-- . 解:20000111111lim()lim lim lim 1(1)22x x x x x x x x x e x e x e x e x e x x →→→→------====--. 说明:0x →时,1~xex -.7.(2006年,4分)求极限 011limcot ()sin x x x x→- .解:2300011cos (sin )sin limcot ()lim lim sin sin x x x x x x x xx x x x x x→→→---== 2220011cos 12lim lim 336x x xx x x →→-===.8.(2006年,4分)设1cos 20()sin xf x t dt -=⎰,56()56x xg x =+,求0()lim()x f x g x →. 解:因0x →时,1cos 20()sin 0xf x t dt -=→⎰,56()056x xg x =+→,且1cos 220()(sin )sin sin(1cos )xf x t dt x x -''==-⎰,45()g x x x '=+,故 2245450000()()sin sin(1cos )(1cos )lim lim lim lim ()()x x x x f x f x x x x x g x g x x x x x →→→→'--==='++224454500011()124lim lim lim 041x x x x x x x x x x x x x→→→⋅====+++.9.(2005年,5分)求极限111lim()1ln x x x→-- .解: 1111111ln 1lim()lim lim 11ln (1)ln ln x x x x x xx x x x x x x→→→--+-==---+11111limlim ln 1ln 112x x x x x x x →→--===-+-++.。
函数极限与连续知识点总结大一

函数极限与连续知识点总结大一函数极限与连续知识点总结函数极限和连续是微积分中非常重要的概念,对于大一学生来说,掌握这些知识点是非常关键的。
在本文中,我将对函数极限和连续的相关知识进行总结,并强调一些必要的注意事项。
一、函数极限1. 定义:函数极限是指当自变量趋近于某个特定值时,函数对应的因变量的值也趋近于一个确定的值。
数学上可以表示为lim(f(x))=L,其中lim表示极限,f(x)表示函数,L表示极限值。
2. 基本性质:- 极限存在唯一性:当自变量趋近于某个特定值时,函数对应的极限值唯一。
- 有界性:如果函数在某个区间内有极限,那么函数在该区间内是有界的。
- 保号性:如果函数在某个点的左侧极限和右侧极限大于(或小于)某个特定值,那么函数在该点处的极限也大于(或小于)该特定值。
3. 常用的函数极限:- 常数函数的极限:对于常数函数f(x)=C,其极限值为C。
- 多项式函数的极限:多项式函数的极限与最高次项的系数有关。
- 幂函数的极限:幂函数的极限与指数之间的关系有关。
- 三角函数的极限:三角函数的极限可以通过泰勒展开或利用三角函数的性质推导得出。
二、连续函数1. 定义:连续函数是指在定义域内,函数的图像可以画成一条连续的曲线,即没有间断点。
数学上可以表示为f(x)在[a, b]上连续。
2. 基本性质:- 连续函数的和、差、积仍然是连续函数。
- 连续函数与常数的乘积仍然是连续函数。
- 连续函数的复合函数仍然是连续函数。
- 定义域上的有界函数与连续函数的乘积仍然是连续函数。
3. 常见连续函数:- 多项式函数与有理函数在其定义域上都是连续函数。
- 正弦函数、余弦函数、指数函数、对数函数在其定义域上都是连续函数。
三、注意事项1. 极限的计算要点:- 直接代入法:当极限形式符合直接代入法的条件时,可以直接将自变量的值代入函数中计算极限值。
- 四则运算法则:对于在极限运算过程中出现的加、减、乘、除操作,可以利用四则运算法则进行简化。
(完整版)高等数学笔记

第一章 函数、极限和连续§1.1 函数一、 主要内容 ㈠ 函数的概念1. 函数的定义: y=f(x), x ∈D定义域: D(f), 值域: Z(f).2.分段函数: ⎩⎨⎧∈∈=21)()(D x x g D x x f y3.隐函数: F(x,y)= 04.反函数: y=f(x) → x=φ(y)=f -1(y)y=f -1(x)定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数:y=f -1(x), D(f -1)=Y, Z(f -1)=X且也是严格单调增加(或减少)的。
㈡ 函数的几何特性1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2),则称f(x)在D 内单调增加( );若f(x 1)≥f(x 2),则称f(x)在D 内单调减少( );若f(x 1)<f(x 2),则称f(x)在D 内严格单调增加( );若f(x 1)>f(x 2),则称f(x)在D 内严格单调减少( )。
2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x)3.函数的周期性:周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数1.常数函数: y=c , (c 为常数)2.幂函数: y=x n, (n 为实数)3.指数函数: y=a x, (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数1.复合函数: y=f(u) , u=φ(x)y=f[φ(x)] , x ∈X2.初等函数:由基本初等函数经过有限次的四则运算(加、减、乘、除)和复合所构成的,并且能用一个数学式子表示的函数§1.2 极 限一、 主要内容 ㈠极限的概念1. 数列的极限:A ynn =∞→lim 称数列{}n y 以常数A 为极限;或称数列{}n y 收敛于A.定理: 若{}n y 的极限存在⇒{}n y 必定有界. 2.函数的极限:⑴当∞→x 时,)(x f 的极限:A x f A x f A x f x x x =⇔⎪⎪⎭⎫==∞→+∞→-∞→)(lim )(lim )(lim ⑵当0x x→时,)(x f 的极限:A x f xx =→)(lim 0左极限:A x f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0⑶函数极限存的充要条件: 定理:A x f x f A x f x x x x x x ==⇔=+-→→→)(lim )(lim )(lim㈡无穷大量和无穷小量 1.无穷大量:+∞=)(limx f称在该变化过程中)(x f 为无穷大量。
函数、极限、连续重要概念公式定理

一、函数、极限、连续重要概念公式定理(一)数列极限的定义与收敛数列的性质数列极限的定义:给定数列{}n x ,如果存在常数A ,对任给0ε>,存在正整数N ,使当n N >时,恒有n x A ε-<,则称A 是数列{}n x 的当n 趋于无穷时的极限,或称数列{}n x 收敛于A ,记为lim n n x A →∞=.若{}n x 的极限不存在,则称数列{}n x 发散. 收敛数列的性质:(1)唯一性:若数列{}n x 收敛,即lim n n x A →∞=,则极限是唯一的.(2)有界性:若lim n n x A →∞=,则数列{}n x 有界,即存在0M >,使得对n ∀均有n x M ≤.(3)局部保号性:设lim n n x A →∞=,且()00A A ><或,则存在正整数N ,当n N >时,有()00n n x x ><或.(4)若数列收敛于A ,则它的任何子列也收敛于极限A .(二)函数极限的定义(了解记忆)1.海涅定理:()0lim x x f x A →=⇔对任意一串0n x x →()0,1,2,n x x n ≠=,都有()l i m n n fx A →∞=.2.充要条件:(1)()()0lim ()lim lim x x x x x x f x A f x f x A +-→→→=⇔==; (2)lim ()lim ()lim ()x x x f x A f x f x A →∞→+∞→-∞=⇔==.3.柯西准则:()0lim x x f x A →=⇔对任意给定的0ε>,存在0δ>,当100x x δ<-<,200x x δ<-<时,有()()12f x f x ε-<.4.夹逼准则:若存在0δ>,当00x x δ<-<时,有)()()x f x x ϕφ≤≤(,且0lim ()lim (),x x x x x x A ϕφ→→==则0lim ()x x f x A →=.5.单调有界准则:若对于任意两个充分大的1212,,x x x x <,有()()12f x f x <(或()()12f x f x >),且存在常数M ,使()f x M <(或()f x M >),则()lim x f x →+∞存在.(四)无穷小量的比较 (重点记忆)1.无穷小量阶的定义,设lim ()0,lim ()0x x αβ==. (1)若()lim0()x x αβ=,则称()x α是比)x β(高阶的无穷小量. (2)()lim ,())()x x x x ααββ=∞若则是比(低阶的无穷小量. (3)()lim (0),())()x c c x x x ααββ=≠若则称与(是同阶无穷小量. (4)()lim 1,())()x x x x ααββ=若则称与(是等价的无穷小量,记为()()x x αβ~. (5)()lim(0),0,())()k x c c k x x k x ααββ=≠>若则称是(的阶无穷小量 2.常用的等价无穷小量 (命题重点,历年必考) 当0x →时,(五)重要定理 (必记内容,理解掌握)定理1 000lim ()()()x x f x A f x f x A -+→=⇔==.定理2 0lim ()()(),lim ()0x x x x f x A f x A a x a x →→=⇔=+=其中.定理3 (保号定理):0lim (),0(0),0x x f x A A A δ→=><∃>设又或则一个,当000(,),()0(()0)x x x x x f x f x δδ∈-+≠><且时,或.定理4 单调有界准则:单调增加有上界数列必有极限;单调减少有下界数列必有极限. 定理5 (夹逼定理):设在0x 的领域内,恒有)()()x f x x ϕφ≤≤(,且lim ()lim (),x x x x x x A ϕφ→→==则0lim ()x x f x A →=.定理6 无穷小量的性质:(1)有限个无穷小量的代数和为无穷小量; (2)有限个无穷小量的乘积为无穷小量; (3)无穷小量乘以有界变量为无穷小量.定理7 在同一变化趋势下,无穷大量的倒数为无穷小量;非零的无穷小量的倒数为无穷大量. 定理8 极限的运算法则:设()()lim ,lim f x A g x B ==,则 (1)lim(()())f x g x A B ±=± (2)lim ()()f x g x A B =⋅ (3)()lim(0)()f x AB g x B= ≠ 定理9 数列的极限存在,则其子序列的极限一定存在且就等于该数列的极限. 定理10 初等函数在其定义域的区间内连续. 定理11 设()f x 连续,则()f x 也连续.(六)重要公式 (重点记忆内容,应考必备)(1)0sin lim1x xx→=(2)11lim(1)e,lim(1)e n xx n x n→→∞+=+=.(通过变量替换,这两个公式可写成更加一般的形式:设()lim 0f x =,且()0f x ≠则有()()sin lim1f x f x =,()()1lim 1f x f x e +=⎡⎤⎣⎦)(3)10110100110,lim,,n n n n m m x m m n ma x a x a x a a n mb b x b x b x b n m---→∞-⎧ <⎪++++⎪= =⎨++++⎪⎪∞ >⎩.(4)函数()f x 在0x x =处连续()()()000f x f x f x -+⇔==. (5)当x →+∞时,以下各函数趋于+∞的速度 (6)几个常用极限lim e 0,x x →-∞= lim e ,x x →+∞=∞ 0lim 1x x x +→=. (七)连续函数的概念1. ()f x 在0x x =处连续,需满足三个条件:①()f x 在点0x 的某个领域内有定义②()f x 当0x x →时的极限存在③()()00lim x x f x f x →=()()0000lim lim 0x x x y f x x f x ∆→→⇔∆=+∆-=⎡⎤⎣⎦. 2. ()f x 在0x 左连续:()f x 在(]00,x x δ-内有定义,且()()00lim x x f x f x -→=. 3. ()f x 在0x 右连续:()f x 在[)00,x x δ+内有定义,且()()00lim x x f x f x +→=. 4. ()f x 在(),a b 内连续:如果()f x 在(),a b 内点点连续.5. ()f x 在[],a b 内连续:如果()f x 在(),a b 内连续,且左端点x a =处右连续,右端点x b =处左连续.(八)连续函数在闭区间上的性质 (重点记忆内容)1.有界性定理:设函数()f x 在[],a b 上连续,则()f x 在[],a b 上有界,即∃常数0M >,对任意的[],x a b ∈,恒有()f x M ≤. 2.最大最小值定理:设函数()f x 在[],a b 上连续,则在[],a b 上()f x 至少取得最大值与最小值各一次,即,ξη∃使得:()(){}[]max ,,a x bf f x a b ξξ≤≤=∈; ()(){}[]m i n ,,a x bf f xa b ηη≤≤=∈. 3.介值定理:若函数()f x 在[],a b 上连续,μ是介于()f a 与()f b (或最大值M 与最小值m )之间的任一实数,则在[],a b 上至少∃一个ξ,使得()().f a b ξμξ=≤≤.4.零点定理:设函数()f x 在[],a b 上连续,且()()0f a f b ⋅<,则在(),a b 内至少∃一个ξ,使得()()0.f a b ξξ=<<(九)连续函数有关定理1.连续函数的四则运算:连续函数的和、差、积、商(分母在连续点处的数值不为零)仍为连续函数.2.反函数的连续性:单值、单调增加(减少)的连续函数,其反函数在对应区间上也单值、单调增加(减少)且连续.3.复合函数的连续性:()u x ϕ=在点0x 连续,()00x u ϕ=,而函数()y f u =在点0u 连续,则复合函数()y f x ϕ=⎡⎤⎣⎦在点0x 连续.4.初等函数的连续性:一切初等函数在其定义区间内是连续函数.(十)间断点的定义及分类1.定义:若在0x x =处,()0lim x x f x →不存在,或()0f x 无定义,或()()00lim x x f x f x →≠,则称()f x 在0x x =处间断,0x x =称为()f x 的间断点.2.间断点的分类。
第01章 《函数、极限、连续》~主要内容

1、连续的定义
定义1 设函数 f ( x )在点 x 0 的某一邻域内有定义, 如果当自变量的增量 ∆x 趋向于零时,对应的函数 的增量 ∆y 也趋向于零,即
∆x → 0
lim ∆y = 0
或
∆x → 0
lim [ f ( x 0 + ∆x ) − f ( x 0 )] = 0
那末就称函数 f ( x ) 在点 x 0 连续, x 0 称为 f ( x ) 的连 续点.
图象对称于直线 y = x .
o
6、基本初等函数 1)幂函数 y = x µ
x y = a 2)指数函数
(µ是常数 ) (a > 0, a ≠ 1)
3)对数函数 y = log a x 4)三角函数 y = sin x;
(a > 0, a ≠ 1) y = cos x; y = cot x;
y = tan x;
lim x n = a , 或 x n → a ( n → ∞ ).
n→ ∞
"ε − N "定义
∀ ε > 0, ∃N > 0, 使n > N时, 恒有 xn − a < ε .
定义 2
如果对于任意给定的正数 ε (不论它多么小),
总存在正数 δ ,使得对于适合不等式 0 < x − x 0 < δ 的 一切 x ,对应的函数值 f ( x ) 都满足不等式
(2)
某过程
lim (1 + α )α = e .
1
7、无穷小的比较
定义:设α, β 是同一过程中的两个无 穷小, 且α ≠ 0.
β (1) 如果 lim = 0, 就说β 是比α高阶的无穷小 , α 记作 β = o(α );
函数的极限与连续性知识点总结

函数的极限与连续性知识点总结在微积分学里,极限和连续性是两个非常重要的概念。
它们为我们理解函数的性质和行为提供了基础。
本文将对函数的极限与连续性知识点进行总结,旨在帮助读者更好地掌握这些概念和相关的数学技巧。
一、函数的极限函数的极限是指当自变量趋近于某个特定值时,函数值的变化趋势。
它可以帮助我们研究函数在某点附近的性质和趋势。
下面是一些关于函数极限的重要知识点:1. 数列的极限:在介绍函数的极限之前,我们首先需要了解数列的极限。
数列的极限是指当数列中的元素趋近于无穷大或无穷小时,数列的极限趋于某个特定值。
这个概念为后续对函数极限的理解奠定了基础。
2. 函数的左极限和右极限:对于函数在某点x=a的极限,我们可以用左极限和右极限来描述。
左极限表示当x趋近于a时,函数的取值趋近于a的左侧值;右极限表示当x趋近于a时,函数的取值趋近于a的右侧值。
3. 函数的极限存在性:函数的极限存在性是指函数在某一点存在极限。
对于一些简单的函数,极限存在性可以通过直接代入法或观察法来确定;而对于一些复杂的函数,我们需要借助极限的定义和性质来判断极限是否存在。
4. 函数的无穷极限:函数的无穷极限是指当自变量趋近于无穷大或无穷小时,函数的极限趋于某个特定值。
无穷极限的研究可以帮助我们了解函数在无穷远处的行为。
二、函数的连续性函数的连续性是指函数在某一点以及其附近的取值的稳定性。
连续性可以通过函数的图像来直观地判断,也可以通过数学定义来推导和证明。
下面是一些关于函数连续性的重要知识点:1. 函数的连续性定义:函数在某一点x=a处连续,意味着函数在x=a的极限存在,且函数在x=a的函数值等于极限值。
这个定义确保了函数在这一点的连续性。
2. 连续函数的性质:连续函数在函数值和自变量之间保持了一定的关系。
例如,两个连续函数的和、差、积、商仍然是连续函数。
3. 函数的间断点:函数的间断点指的是函数在某一点不连续的情况。
这种不连续可以是可去间断、跳跃间断或无穷间断。
函数极限连续知识点概况

函数极限连续知识点概况函数是一种映射关系,用来描述两个集合之间的元素对应关系。
在数学中,常常用字母f、g、h等表示函数。
函数可以用公式、图像、数据表等形式进行表示。
函数的定义域是指函数中所有可能的输入值,值域是指函数中所有可能的输出值。
函数的图像可以通过将函数的输入值和输出值对应起来,绘制成平面直角坐标系中的点的形式来表示。
极限是函数中一个非常重要的概念。
极限描述了函数在一些点附近的行为。
当自变量趋向于一些特定的值时,函数的值也会趋向于一个特定的值。
这个特定的值就是函数在该点的极限。
极限可以用数学符号“lim”进行表示,例如lim(x->a) f(x)表示当x趋向于a时,f(x)的极限。
连续是函数的一个性质,它描述了函数图像上不存在突变的现象,即函数的值在一些点附近变化不大。
连续可以用数学语言表述为:如果对于函数f(x)的定义域中的任意数a,当x趋向于a时,lim(x->a) f(x)存在且等于f(a),那么函数f(x)就在点a处连续。
这意味着函数在整个定义域上都不会出现断裂、间断或跳跃的情况。
函数、极限和连续是紧密相关的概念。
在函数的定义中,我们常常要用到极限的概念。
例如,导数和积分就是通过极限的方法来定义的。
而连续则是函数在定义域上的一种性质,通过极限的概念可以更准确地描述函数的连续性。
在实际应用中,函数、极限和连续有着广泛的应用。
函数可以用来描述各种自然现象中的规律和关系,例如物体运动的轨迹、电路中电压和电流的关系等。
极限的概念可以用来描述各种变化趋势,例如速度的极限可以用来描述物体在一些时刻的瞬时速度。
连续性是数学建模中的一个重要要求,对于许多实际问题的解答和分析,需要用到连续函数的性质。
综上所述,函数、极限和连续是高等数学中的重要概念,它们是数学分析的基础,并在各个科学领域中有广泛的应用。
深入理解和掌握这三个概念对于学好高等数学和其他科学学科都有着重要的意义。
对于学生来说,通过大量的练习和实例分析,结合具体问题的实际背景和应用,能够更好地理解和应用这些概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“函数、极限、连续”内容提要(一)函数1.函数概念函数是微积分学研究的对象,它具有两个要素(定义域与对应法则),函数与自变量及因变量选用字母无关.另外,两个函数相等指其对应两个要素相同.2.函数的奇偶性,单调性,周期性和有界性(1)奇函数与偶函数的定义域均关于坐标原点对称,并且奇函数对应的图形关于坐标原点对称,偶函数对应的图形关于y轴对称.(2)函数的单调性是在其相关定义区间上讨论,研究函数的单调性既可以用单调性定义的方法也可以采用将在第三章介绍的方法.(3)周期函数的定义域是无界集,其周期通常指最小正周期,但并非每个周期函数都有最小正周期.(4)函数的有界性依赖于所讨论的区间.函数在区间I上有界的充要条件是既有上界又有下界.3.复合函数多个函数能否复合成一个函数要满足一定条件,得到的复合函数的定义域可能减小.另外,复杂的函数则可分解为形式较简单的函数.复合函数是微积分学研究的主要对象之一,读者应熟练掌握函数的复合与分解的方法.4.分段函数在定义域内的若干部分定义域上分别给出不同表达式的一个函数称之为分段函数.常见分段函数表示法:(1)分段表示的函数.如1sin ,0()0, 0x x f x xx ⎧≠⎪=⎨⎪=⎩, 1, 0sgn 0, 01,0x x x x >⎧⎪==⎨⎪-<⎩ (符号函数)等.(2)含有绝对值符号的函数,也是分段函数.如, 0()||,0≥⎧==⎨-<⎩x x f x x x x .(3)含参变量的极限式表示的函数.如212111()lim n n n n x f x x x x+++→∞+=-+,||0x > 等,此类函数应当通过求极限把函数写成分段表示式:1,0||10, 1()2, 11, ||1x x x f x x x ⎧<<⎪⎪⎪=-=⎨⎪=⎪>⎪⎩.(4)其他形式的分段函数,如()f x02x π≤≤;()g x =2min{2,}x , 32x -≤≤;()h x =[]x x,0x > 等.这些函数实际上也是分段函数,均可改写成分段表示式cos 2sin 2,08()sin 2cos 2,82x x x f x x x x πππ⎧-≤≤⎪⎪==⎨⎪-≤≤⎪⎩,22, [3,(), [x g x x x ⎧∈-⎪=⎨∈⎪⎩ , 0, 01(), 1,x h x nn x n n N x<<⎧⎪=⎨≤<+∈⎪⎩. 后面将对分段函数的极限、连续性、导数与微分等问题分别进行讨论.5.反函数在同一坐标系下,()y f x =与其反函数1()y f x -=的图形关于直线y x =对称;另外, ()y f x =的定义域为1()y f x -=的值域;()y f x =的值域为1()y f x -=的定义域.利用两者的这一关系,有时可用来求函数的定义域与值域.6.隐函数通过方程式(,)0F x y =给出的两个变量x 和y 之间的函数关系称为隐函数.从(,)0F x y =中解出()y f x =或()x g y =这一过程称为隐函数的显化.并非所有的隐函数都可以显化,比如x y xy e +=就不能显化.7.基本初等函数和初等函数 (1)基本初等函数共有五类:幂函数、指数函数、对数函数、三角函数、反三角函数.读者应熟练掌握基本初等函数的定义域、值域以及它们的图形与性质.(2)初等函数是由常数和基本初等函数经过有限次的四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数.(二)极限 1.极限的定义(1)lim n n x A →∞=⇔0,0N ε∀>∃>,使得当n N >时,有||n x A ε-<. (2)0lim ()x xf x A →=⇔0,0εδ∀>∃>,当00||x x δ<-<时,有|()|f x A ε-<. (3)0lim()x xf x A +→=⇔0,0εδ∀>∃>,当00x x x δ<<+时,有|()|f x A ε-<.(4)0lim()x xf x A -→=⇔0,0εδ∀>∃>,当00x x x δ-<<时,有|()|f x A ε-<.(5)lim ()x f x A →∞=⇔0,0X ε∀>∃>,当||x X >时,有|()|f x A ε-<. (6)lim ()x f x A →+∞=⇔0,0X ε∀>∃>,当x X >时,有|()|f x A ε-<. (7)lim ()x f x A →-∞=⇔0,0X ε∀>∃>,当x X <-时,有|()|f x A ε-<. 2.数列与函数极限的性质 (1)唯一性;(2)有界性(或局部有界性); (3)保号性(或局部保号性); (4)数列极限与函数极限的关系. 3.函数极限存在的充要条件 (1)0lim ()x x f x A →=⇔00lim()lim ()x xx x f x f x A +-→→==.(2)lim ()x f x A →∞=⇔lim ()lim ()x x f x f x A →+∞→-∞==. 4.两个准则与两个重要极限(1)夹逼准则:在自变量x 的同一变化过程中,()()()g x f x h x ≤≤.若lim ()lim ()g x h x A ==,则lim ()f x A =.使用该准则时,将函数(或数列)放大与缩小成一个新的函数(或数列),而新的函数(或数列)与原来的函数(或数列)只相差一个无穷小量.(2)单调有界准则:单调有界数列必有极限. 使用该准则时,通常是用如下两个结论之一: a .单调递增且有上界则极限存在; b .单调递减且有下界则极限存在.有界性的证明通常采用数学归纳法,而证明单调性则用作差或作商的方法.一般地,利用该准则时,先证明有界性,后证明单调性.(3)两个重要极限:0sin lim1x xx→=; 1lim(1)n n e n→∞+= 或1lim(1)x x e x→∞+=. 另外,有以下常用推广形式:设自变量x 在同一变化趋势下,如果lim ()0f x =,且()0f x ≠,则有sin ()lim1()f x f x =, 与1()lim[1()]f x f x e +=.5.极限四则运算法则在自变量x 的同一变化过程中,如果lim ()f x A =,lim ()g x B =,则 (1)lim[()()]lim ()lim ()f x g x f x g x ±=±=A B ±, (2)lim[()()]lim ()lim ()f x g x f x g x ⋅=⋅=A B ⋅,(3)lim ()()lim ()lim ()f x f x g x g x ==AB,其中0B ≠.6.复合函数的极限运算法则 设[()]y f g x =是由()y f u =与()u g x =复合而成,[()]f g x 在点0x 的某去心邻域内有定义.若00lim ()x x g x u →=,0lim ()u uf u →=A 且存在00δ>,当00(,)x U x δ∈o时,有0()g x u ≠,则lim [()]x x f g x →=0lim ()u u f u →=A .该命题表明:如果()f u 和()g x 满足相应的条件,那么作代换()u g x =可把求0lim [()]x x f g x →化为求0lim ()u u f u →,这里00lim ()x xu g x →=. 7.幂指函数的极限在自变量x 的同一变化过程中,对于极限()lim ()v x u x ,其中()0u x >且()u x 不恒等于1,有以下情形:(1)当lim ()u x a =,lim ()v x b =, 且a ,b 有限时,则有()lim ()v x b u x a =.(2)当lim ()1u x =,lim ()v x =∞(或-∞,或+∞)时,则有()lim ()v x u x =1()[()1]()1lim{1[()1]}v x u x u x u x ⋅⋅--+-=exp{lim ()[()1]}v x u x ⋅-,或利用恒等式expln x x =,则有()lim ()v x u x =()limexpln ()v x u x =exp[lim ()ln ()]v x u x ⋅.8.无穷小与无穷大(1)在自变量的某一变化过程中,如果lim ()0f x =,则称()f x 为无穷小;如果lim ()f x =∞,则称()f x 为无穷大.(2)无穷小与无穷大的讨论必须指出自变量的变化过程.理解无穷小与很小的数以及无穷大与很大的数之间的差别.无穷小、无穷大不是数.零是唯一可以作为无穷小的常数.(3)无穷小与无穷大的关系:在自变量x 的同一变化过程中,如果()f x 为无穷大, 则1()f x 为无穷小;反之,如果()f x 为无穷小,且()0f x ≠,则1()f x 为无穷大.(4)无穷大与无界的关系:无穷大量一定无界.反之,则不一定.(5)无穷小与函数极限的关系:设在自变量x 的同一变化过程中,lim ()f x A =⇔()f x A α=+,其中lim 0α=.(6)无穷小的比较:设在自变量的同一变化过程中,α和β均为无穷小,则a .若lim 0αβ=,称α是比β高阶的无穷小.记为()o αβ=.显然()lim0o ββ=.b .若lim αβ=∞,称α是比β低阶的无穷小.从而β比α高阶.c .若lim c αβ=,且0c ≠,则称α与β是同阶无穷小.d .若lim kc αβ=,且0c ≠,0k >,则称α是β的k 阶无穷小.e .若lim 1αβ=,称α与β是等价无穷小.记为αβ .根据如上定义,显然有如下结论成立: f .若αβ 且βγ ,则有αγ . g .()o αββαα⇔=+ h .当0x →时,()()k o x o x ⋅=,()()()o x ko x o x +=,()()o x o x α⋅=,其中0lim 0x α→=,k 为常数.(7)无穷小的运算:在同一极限过程下,有如下常用结论 a .有限个无穷小的代数和仍为无穷小. b .有限个无穷小的乘积仍为无穷小. c .有界量与无穷小的乘积仍为无穷小. (8)利用等价无穷小的代换求极限 a .替换定理在自变量x 的某一变化过程中,α,1α,β,1β均为无穷小,且1αα ,1ββ .则11limlim ααββ=.b .当0x →时,常用等价无穷小:sin x x ,tan x x , a r c s i n x x ,arctan x x ,1x x e - , ln(1)x x + ,1l n x a x a - ,(1)1x x αα+- ,21cos 2x x -.注 上述等价关系中的x 可换成任一无穷小量. (三)连续 1.函数的连续性 (1)函数()y f x =在某点0x 处连续有如下几种形式的等价定义: 定义1 设()y f x =在点0x 的某一邻域内有定义.如果lim x y ∆→∆=000lim[()()]x f x x f x ∆→+∆-=0,则称函数()y f x =在点0x 处连续.定义2 设()y f x =在点0x 的某一邻域内有定义.如果0lim ()()x x f x f x →=,则称函数()y f x =在点0x 处连续.注 1 上述函数()y f x =在某点0x 处连续的定义可用“εδ-”语言来表述:()y f x =在点0x 处连续⇔0ε∀>,0δ∃>,当0||x x δ-<时,恒有0|()()|f x f x ε-<.注2 函数()y f x =在点0x 处连续须具备三个条件:a .函数()y f x =在点0x 处要有定义;b .极限0lim ()x x f x →存在; c .00lim ()()x xf x f x →=. 注3 当()y f x =在点0x 处连续时,不能认为()y f x =在0x 的某一邻域内都连续.例如函数2Q\Q0, (), R x f x x x ∈∈⎧=⎨⎩,仅在点0x =处连续,而在其它点尽管有定义,但不连续.(2)函数()y f x =在某点0x 处的单侧连续a .若00lim()()x xf x f x -→=,称函数()y f x =在点0x 处左连续; b .若00lim()()x xf x f x +→=,则称函数()y f x =在点0x 处右连续.c .单侧连续与函数连续有如下关系:()y f x =在点0x 处连续⇔()f x 在点0x 处既要左连续又要右连续.即000()()()f x f x f x -+==.(3)函数()y f x =在区间上的连续性 如果函数()y f x =在开区间(,)a b 内的每一点都连续,则称函数()y f x =在开区间(,)a b 内连续;如果函数()y f x =在闭区间[,]a b 上有定义,在开区间(,)a b 内连续,且在点x a =处右连续,在点x b =处左连续,则称函数()y f x =在闭区间[,]a b 上连续.2.函数的间断点 (1)定义 若函数()y f x =在点0x 的某去心邻域内有定义(在点0x 处有无定义均可),而()y f x =在点0x 处不连续,即()y f x =在点0x 无定义或者0l i m ()()x x f x f x →≠,则称0x 为()y f x =的间断点. (2)间断点的分类可去间断点(左极限=右极限) 第一类间断点(在0x 处的左、右极限均存在) 跳跃间断点(左极限≠右极限)间断点第二类间断点:在0x 处的左右极限至少有一个不存在(常见的有振荡间断点和无穷间断点).3.连续函数的运算(1)设函数()f x 和()g x 在点0x 处连续,则()()f x g x ±,()()f x g x ⋅,()()f xg x (当0()0g x ≠时)均在点0x 处连续.(2)设函数()f u 在点0u 处连续,函数()u g x =在点0x 处连续,且0u =0()x ϕ,则复合函数y =[()]f x ϕ在点0x 处连续.(3)基本初等函数在其定义域内均连续;初等函数在其定义区间(即定义域内的区间)内是连续的.4.闭区间上连续函数的性质(1)最大与最小值定理若函数()a b上连续,则函f x在闭区间[,]数()a b上一定能取得最大值与最小值.f x在[,]推论若函数()f x在闭区间[,]f x在[,]a b上一定a b上连续,则函数()有界.(2)介值定理设函数()f a A=,a b上连续,且()f x在闭区间[,]=,A Ba b内fb B()≠,那么对于A与B之间的任意一个数C,在开区间(,)至少存在一点ξ,使得()ξ=.f C推论1在闭区间上连续的函数必能取得介于最大值与最小值之间的任何值.推论2(零点定理)设函数()a b上连续,且f x在闭区间[,]fξ=.⋅<,那么在开区间(,)f a f b()()0a b上至少存在一点ξ,使得()0。