贸易引力模型实用教程

合集下载

贸易非效率随机前沿引力模型

贸易非效率随机前沿引力模型

贸易非效率随机前沿引力模型引言在经济全球化的背景下,贸易的重要性日益凸显。

然而,贸易非效率成为制约贸易发展的一个重要问题。

本文将以人类视角,探讨贸易非效率随机前沿引力模型的相关内容。

一、贸易非效率的定义和表现贸易非效率指的是在贸易过程中出现的各种效率低下的现象。

这些现象可能包括高额的关税、贸易壁垒、不完善的贸易制度等。

这些非效率的因素会导致贸易的成本增加,降低贸易的效益,从而限制贸易的发展。

贸易非效率的表现形式多种多样。

例如,一些国家对进口商品征收高额关税,导致进口商品价格上涨,消费者购买力下降;另外一些国家设置了各种贸易壁垒,限制了贸易的自由化程度;还有一些国家的贸易制度不完善,导致贸易流程繁琐、效率低下。

二、贸易非效率的影响贸易非效率对各方面都会产生影响。

首先,贸易非效率会导致贸易成本的增加,使得商品价格上涨,降低消费者的福利水平。

其次,贸易非效率会限制贸易的规模和范围,影响各国的经济增长和发展。

此外,贸易非效率还会导致资源配置的不合理,影响生产效率和产业结构的优化。

三、贸易非效率随机前沿引力模型贸易非效率随机前沿引力模型是一种用于研究贸易非效率的经济学模型。

该模型基于贸易引力模型的基本框架,考虑了贸易非效率因素的影响。

通过引入非效率因素的随机变动,模型可以更好地反映实际贸易中的不确定性和随机性。

在该模型中,贸易非效率被视为随机变量,其取值可以是正值或负值,分别表示贸易的非效率和效率。

通过建立合适的概率分布函数,可以模拟贸易非效率的随机波动。

通过对贸易非效率的研究,可以评估贸易的效率水平,为贸易政策的制定提供依据。

四、对贸易非效率的应对措施为了解决贸易非效率问题,国际社会需要采取一系列措施。

首先,各国应加强贸易合作,推动贸易自由化和便利化。

其次,各国应建立健全的贸易制度和规则,打破贸易壁垒,提高贸易效率。

此外,各国还应加强贸易监管和合作,共同应对贸易非效率所带来的挑战。

结语贸易非效率是当前贸易发展面临的一个重要问题。

贸易引力模型实用教程

贸易引力模型实用教程

AGRODEP Technical Note TN-05April 2013Hands-on gravity estimation with STATAVersion 2Maria Cipollina and Luca SalvaticiHands-on gravity estimation with STATAIn this document we give several examples of hands-on estimation to familiarize yourself with the gravity equation methodological choices highlighted in the literature review. This guide provides an illustrative dataset with alternative Stata codes presenting the different possible estimation strategies.Part 1 describes how estimations are carried out with panel data and are directed to show the relevance of the multilateral resistance term as well as the modeling of the (trade) policy variables. In Part 2, cross-sections estimations show the importance of working with disaggregated data. Finally, Part 3 shows how you can solve the ‘zero (trade flows) problem’ using either Heckman or Poisson estimators.As you read this guide, you will use STATA to carry out estimations designed to familiarize you with the software and, more importantly, the gravity model. STATA is a statistical software program and we assume that you have a recent version of STATA (version 11.2 or later). The instructions in this guide are quite detailed. Our aim is to give sufficient detail to enable a new user of this software to follow the examples relying solely on this guide. On the other hand, the guide is strictly related to the literature review that highlights the main theoretical and methodological issues illustrated in the regressions.Data filesThere are two Data files:∙dataset_def.dta: it contains all the essential variables used in the regressions using panel data (Part 1). The dataset covers the period from 1996 to 2006 and includes 154 developed and developing countries.∙us_agr.dta: it contains all the essential variables used in the regressions using cross-section data (Part 2 and Part 3). It refers to year 2004 US agricultural imports from 226 countries. Data are disaggregated at the most detailed level allowed by the international Harmonized System (HS) classification (6 digits) and include 689 products.The variable names are largely self-explanatory and are described when the labels are created: their generation and construction can thus be directly inspected. The data sources are described in the Appendix.Do filesThere are three Do files:∙regressions aggregated data.do: it runs regressions using panel, aggregated data (Part1).∙regressions disaggregated data.do: it runs regressions using cross-section, disaggregated as well as aggregated data (Part 2).∙regressions zeroes treatment.do: it runs regressions using non-linear estimators (Heckman or Poisson) dealing with ‘zero’ trade flows (Part 3).Part 1: Aggregated dataA.Variable Generation.Part A brings in the data and generates the variables used in the analysis:(a)We use the data file dataset_defuse dataset_def.dta(b)We take the logs of all continuous variables included in the regressions:g limports=ln(imports)g lgdp_o=ln(gdp_o)g lgdp_d=ln(gdp_d)g ldist= ln(distw)g ltariff=ln(1+s_average)(c)We label the variables to be included in the tables.l a var limports “Ln(Imports)”la var colony “Colonial link”la var comlang_off “Common language”la var contig “Border”la var ldist “Ln(distance)”la var lgdp_d “Ln(GDP_importer)”la var lgdp_o “Ln(GDP_exporter)”la var rta “Regional Trade Agreement”la var ltariff “Ln(1+Tariff)”(d)Finally, we generate the different fixed effects.qui tab imp, g(dimp)qui tab exp, g(dexp)qui tab pair, g(dpair)qui tab year, g(dyear)B. Regression SpecificationsPart B runs panel regressions with aggregated data, and the dummy RTA (i.e., Regional Trade Agreements) as (trade) policy variable. Regressions are based on equation (2) with time, importer, exporter and country-pair fixed effects.We start by declaring data to be panel.tsset pair yearIn order to show the consequences of ignoring the multilateral resistance term, we firstly estimate equation (2) without fixed effectseststo: reg limports lgdp_d lgdp_o ldist contig colony comlang_off rta, robust Then, we introduce the different types of fixed effects:eststo: reg limports lgdp_d lgdp_o ldist contig colony comlang_off rta dyear*, robust eststo: reg limports lgdp_d lgdp_o ldist contig colony comlang_off rta dimp* dexp*, robusteststo: reg limports lgdp_d lgdp_o ldist contig colony comlang_off rta dimp* dexp* dyear*,robusteststo: reg limports lgdp_d lgdp_o ldist contig colony comlang_off rta dpair* dyear*, robustThe dummy for pair effects is equal to 1 for all observations of trade occurring between a given pair of countries, for all pairs. Country dummies remove cross-section, but not time-series biases. The latter is a serious shortcoming since omitted factors affecting bilateral trade costs often vary over time. Pair dummies cannot be used in cross-section data since the number of dummies would be equal to the number of observations.The command “esttab” creates the regression table in a file regressions1.docesttab using regressions1.doc, title (aggregate-dummy policy) se ar2 label replace rtf b(2) star (* 0.10 ** 0.05 *** 0.01) se(2) mti drop (dexp* dimp* dyear* dpair*)TABLE: Panel results with different fixed effectsModel 1and 2 report the base regression. Column (1.1) reports results without fixed effects. Column (2.1) reports results where time dummies are added to the regression, to account forthe changing nature of the relationship over time. Column (2.2) and (2.3) show results for time invariant importer and exporter fixed effects and for time varying exporter and importer fixed effects, respectively. Finally, column (2.4) presents a specification where pair effects are also added.* p < 0.10, ** p < 0.05, *** p < 0.01All coefficients have the expected signs, the only exception is the coefficient of the colonial links that seem to have a negative impact if we do not consider country fixed effects (columns 1.1 and 2.1). Focusing on the most widely used specification (column 2.3), the estimated coefficients should be interpreted as follows: size of importer country has a positive and significant impact with an elasticity of 0.91, so that an increase in GDP of 10% increase trade by 9.1%; an increase in distance of 10% reduce trade by around 15%; the existence of border and language links imply an increase in trade of 72% and 118% (e0.54-1=0.72; e0.78-1= 1.18), respectively; the estimated coefficient of dummy for RTA of 0.62 implies that regional trade agreements increase trade of 86% (e0.62-1=0.86).Finally, in order to show the relevance of an actual measure we estimate equation (3) using a continuous variable for trade policyreg limports lgdp_d lgdp_o ldist contig colony comlang_off ltariff dimp* dexp* dyear*, robustThen we create the results tableesttab using regressions1.doc, title (aggregate-tariff) se ar2 label replac rtf b(2) star (* 0.10 ** 0.05 *** 0.01) se(2) mti drop (dexp* dimp* dyear*) appendTABLE: Panel results with continuous policy variable* p < 0.10, ** p < 0.05, *** p < 0.01All coefficients have the expected signs. Trade policies have a negative and significant impact on trade, a tariff factor increase by 10% leads to a 6% reduction of trade.Part 2: Disaggregated dataA.Variable Generation.(a)We use the data file us_agruse us_agr.dta(b)We take the logs of all continuous variables included in the regressionsg limports=ln(trade)g lgdp_o=ln(gdp_o)g lgdp_d=ln(gdp_d)g ldist= ln(distw)g ltariff=ln(1+tariff)(c)We label the variables to be included in the tables.la var limports "Ln(Imports)"la var colony "Colonial link"la var comlang_off "Common language"la var contig “Border”la var ldist "Ln(distance)"la var lgdp_d "Ln(GDP_importer)"la var lgdp_o "Ln(GDP_exporter)"la var ltariff "Ln(1+Tariff)"(d)We generate the exporter and product fixed effectsqui tab exp, g(dexp)qui tab hs6, g(dhs6)B. Regression Specifications(a)As in Part 1, we firstly estimate equation (2) using the OLS estimator without fixedeffectseststo: reg limports lgdp_o ldist contig colony comlang_off ltariff, robust(b)Then, we introduce the different types of fixed effects:eststo: reg limports lgdp_o ldist contig colony comlang_off ltariff dhs6*, robusteststo: reg limports contig colony comlang_off ltariff dexp* dhs6*, robust(c)Finally, we collapse the dataset in order to obtain aggregated data for a robustnessanalysis.collapse (sum) trade (mean) tariff gdp_o distw contig colony comlang_off, by(exp)g limports=ln(trade)g lgdp_o=ln(gdp_o)g ldist= ln(distw)g ltariff=ln(1+tariff)(d)and we run again the regression to highlight the relevance of the aggregation issueeststo: reg limports lgdp_o ldist contig colony comlang_off ltariff, robust(e)The command “esttab” creates the regression table in a file regressions2.docesttab using regressions2.doc, title (dati_us_agr) se ar2 label replac rtf b(2) star (*0.10 ** 0.05 *** 0.01) se(2) mti drop (dexp* dhs6*) appendeststo clearTABLE: Cross-section results with different fixed effects and different levels of aggregation Cross-sectional model covering imports in 689 agricultural commodities from 227 countries to US in 2004.Columns (1) to (3) show results with disaggregated data using different fixed-effects specifications. Column (4) reports result of aggregated data.* p < 0.10, ** p < 0.05, *** p < 0.01Most empirical analyses use gravity models with aggregated data, but using aggregate trade flows to analyze the effects of trade policies applied at product level seems misleading. As a matter of fact, the estimated coefficient related to trade policy, namely Ln(1+tariff), is not significant in column (4).Part 3: Zeroes treatmentA.Variable Generation(a)We use the data file us_agruse us_agr.dtaWe take the logs of all continuous variables included in the regressionsg limports=ln(trade)g lgdp_o=ln(gdp_o)g lgdp_d=ln(gdp_d)g ldist= ln(distw)g ltariff=ln(1+tariff)(c)We label the variables to be included in the tables.la var limports "Ln(Imports)"la var colony "Colonial link"la var comlang_off "Common language"la var ldist "Ln(distance)"la var lgdp_d "Ln(GDP_importer)"la var lgdp_o "Ln(GDP_exporter)"la var ltariff "Ln(1+Tariff)"(d)We generate the exporter and product fixed effectsqui tab exp, g(dexp)qui tab hs6, g(dhs6)B. Regression Specifications(a)We firstly run the regression using the Heckman estimatoreststo: heckman limports contig colony comlang_off ltariff , select(contig colony ltariff) mills(lambda)(b)Then we run the regression using the Poisson Pseudo-Maximum Likelihood estimatoreststo: ppml trade contig colony comlang_off ltariff(c)The command “esttab” creates the regression table in a file regressions3.docesttab using regressions3.doc, title (treatment of zeros) se ar2 label replace rtf b(2) star (* 0.10 ** 0.05 *** 0.01) se(2) mtiTABLE: Results with different estimators: Heckman and PoissonModel (1) reports results obtained using the Heckman two-step procedure. The first column shows the second stage estimates of the trade flow, whereas the second column reports the first-stage Probit selection equation. Model (2) shows results obtained using Poisson Pseudo-Maximum Likelihood estimator.The use of disaggregated data raises the “zero trade flows” issue, which introduces obvious problems in the log-linear form of the gravity equation. Several authors consider the Heckman two-step estimator as the best procedure, others argue that gravity type models should be estimated in multiplicative form, and recommend the Poisson Pseudo-Maximum Likelihood (PPML) estimator to deal with the problem of zeros in the trade matrix, in order to achieve unbiased and consistent estimates. The significant coefficient of the Mills ratio confirms that correcting for sample selection bias is justified, however, because of the presence of heteroskedasticity, estimates of the log-linear form of the gravity equation are biased and inconsistent, and this may lead to prefer the Poisson specification of the trade gravity model.APPENDIX: Data SourceDataset_def.dta: Dataset is building on extraction from WITS (/wits/index.html) and on information provided by the CEPII dataset (http://www.cepii.fr/).The WITS application gives access to international trade statistics of UN COMTRADE (The United Nations Commodity Trade Statistics database) and tariff database of UNCTAD-TRAINS (Trade Analysis and Information System).The Cepii dataset includes data on GDP and distances between countries and dummies for contiguity, common language, and former colonial links.Us_agr.dta: Data on trade and tariffs at the HS6 level of detail are taken from the MAcMapHS6-V2 database (/publication/picture-tariff-protection-across-world-2004). MAcMapHS6 provides a consistent worldwide assessment of protection, including ad valorem equivalent rates of specific duties and tariff rate quotas (including those introduced at the end of the Uruguay Round), for 2004. Data for the remaining explanatory variables are from the Cepii dataset.。

国际贸易引力模型

国际贸易引力模型

国际贸易引力模型1.什么是国际贸易引力模型?国际贸易引力模型(Gravity Model)是一种用于描述贸易量之间的关系的经济模型,基本思想是:根据经济理论中因素互相作用的规律,可以用一个数学方程来估算国家之间的贸易量。

国际贸易引力模型涉及到两个实体之间的主观和客观因素,它们影响两个国家或地区之间的贸易。

通俗地讲,就是根据两国的距离和经济发展水平,估算两国之间的贸易量。

2. 国际贸易引力模型的构成(1) 双方的经济规模:这是描述双方贸易量大小的最重要因素。

我们常用国民生产总值(GDP)来作为代表国家经济规模的指标,因为GDP 可以反映一个国家或地区的实力,能力以及有能力生产的商品和服务种类的多少。

(2) 交通距离:这是描述两个国家贸易关系的重要因素之一,主要是反映货物的运输成本以及货物的流动性。

根据经济学的理论,贸易成本随着距离的增加而增加,而距离的递增会减少两国之间的贸易。

(3) 两国的相似性:从文化角度看,语言和宗教有可能影响两国之间的贸易关系,所以把这种相似性也作为一个重要因素。

(4) 贸易条件:贸易条件指的是两个国家之间有关贸易的政策、协议、许可证等等,这也可能影响两国之间的贸易量。

3. 国际贸易引力模型的优点(1) 它提供了一种统一的框架,可以客观准确地衡量两个国家贸易关系的状态,可以从宏观上了解国际贸易的发展情况,看出全球经济的大致态势。

(2) 通过该模型,对于促进国际贸易合作与发展也具有很好的策略指导意义,可以通过调整政策组合,从而有效地控制双方的贸易量的大小。

(3) 模型具有良好的可预测性、模型简洁,可以快速拟合和计算,可以预测和分析国际贸易水平运动趋势。

4. 国际贸易引力模型的局限性(1) 双方的经济规模不等:每个国家的经济规模和货物的需求量大小不同,通过国际贸易引力模型可能会忽略到这一点的影响。

(2) 单一货币条件:国际贸易引力模型假定货币是单一的,没有货币差异或汇率重估等,实际情况中现实是复杂合共性,国际贸易涉及到多种影响因素,可能破坏模型的正确性。

引力模型stata计量步骤

引力模型stata计量步骤

引力模型stata计量步骤嘿,朋友们!今天咱就来讲讲引力模型的 Stata 计量步骤。

这可就像是打开一扇通往奇妙数据世界的大门哟!首先呢,你得把相关的数据准备好,就像厨师要先有食材才能做出美味佳肴一样。

这些数据可不能马虎,得准确又全面。

然后,在 Stata 里输入各种命令,就像是给机器下达指令,让它按照咱的要求行动起来。

这一步可得小心谨慎,不能出错呀,不然就像走路摔了一跤似的。

接着呢,要对模型进行设定啦。

这就好比是给房子搭框架,框架搭得好,房子才稳固呀。

咱得根据实际情况和研究目的,把模型设定得恰到好处。

之后,就是运行模型啦。

看着那一串串的数据和结果跑出来,是不是有点小激动呢?这就像是等待开奖一样,充满了期待呢。

跑完模型后,可不能就不管啦,还得仔细分析那些结果。

看看哪些是有意义的,哪些是需要进一步探讨的。

这就好像是在宝藏中寻找最珍贵的宝贝一样。

哎呀,你说这引力模型的 Stata 计量步骤是不是很有趣呀?它就像是一个神秘的魔法,能让我们从一堆数据中发现好多秘密呢。

咱可别小瞧了这些步骤,每一步都很重要呢。

就像盖房子,少了哪一块砖都不行呀。

而且,在这个过程中,咱得保持耐心和细心,不能急躁。

你想想看,如果数据准备得不好,那后面的步骤不就都白费力气了吗?就像跑步比赛,起跑就没跑好,后面再怎么努力也很难追上来啦。

还有啊,在设定模型和分析结果的时候,可得动点小脑筋,多思考思考。

不能看到结果就盲目相信,得好好琢磨琢磨才行。

总之呢,引力模型的 Stata 计量步骤虽然有点复杂,但只要咱认真对待,一步一个脚印地去做,肯定能掌握好的啦!加油吧,朋友们,让我们一起在这个数据的海洋里畅游,发现更多的精彩!。

贸易引力模型操作方法

贸易引力模型操作方法

贸易引力模型操作方法贸易引力模型是描述国际贸易模式的一种数学模型,它通过分析不同国家之间的经济和地理条件来解释贸易活动的发生和规模。

这个模型的核心思想是,贸易的规模受到不同地区之间的经济规模和距离的影响。

下面将对贸易引力模型的操作方法进行详细解释。

首先,贸易引力模型的操作方法通常涉及到一些基本的变量和概念。

其中,最重要的变量包括两个国家(或地区)之间的贸易量、两个国家的经济规模、两国之间的地理距离、两国之间的贸易壁垒等。

此外,贸易引力模型还需要采用一些特定的数学方法和统计工具,来分析这些变量之间的关系。

其次,贸易引力模型的操作方法通常包括以下几个步骤。

首先,需要收集关于各个国家之间的贸易量、经济规模、地理距离和贸易壁垒等数据。

这些数据可以通过各种渠道获取,包括政府公开数据、国际组织的统计数据以及学术研究的成果等。

其次,需要对这些数据进行处理和整理,以便能够进行进一步的分析。

这可能涉及到数据清洗、数据转换和数据标准化等步骤。

接下来,就可以使用适当的数学方法和统计工具,来建立贸易引力模型,并对模型进行参数估计和检验。

最后,通过对模型进行分析和解释,可以得出关于不同国家之间贸易模式的一些重要结论。

除了上述基本的操作方法之外,还有一些高级的操作方法,可以进一步提高贸易引力模型的分析能力。

其中之一是引入更多的变量,以考虑其他可能的影响因素。

例如,可以考虑一些国家之间的共同语言、共同文化、政治关系等因素,来分析它们对贸易活动的影响。

另外,还可以考虑采用一些高级的统计方法,如面板数据模型、空间计量经济模型等,来对数据进行更深入的分析。

总之,贸易引力模型的操作方法包括了一系列基本的和高级的操作步骤,通过这些操作,可以建立起一个较为完善的模型,来解释不同国家之间的贸易模式。

这些分析结果对于制定国际贸易政策、推动区域一体化和促进经济发展等方面都具有重要的参考价值。

因此,贸易引力模型的操作方法在学术研究和实际政策制定中都具有重要的意义。

林内曼贸易引力模型解释

林内曼贸易引力模型解释

林内曼贸易引力模型解释林内曼贸易引力模型(Gravity Model of Trade)是国际贸易研究领域中被广泛使用的一种模型,用来解释国际贸易的规模和模式。

该模型源自牛顿万有引力定律的思想,通过考虑两个国家之间的经济规模、距离和其他因素,来预测它们之间的贸易量。

本文将从简到繁,由浅入深地探讨林内曼贸易引力模型的原理、优缺点以及在国际贸易研究中的应用。

一、林内曼贸易引力模型的原理1. 经济规模影响林内曼贸易引力模型认为,经济规模越大的国家在国际贸易中的吸引力越大。

大国之间的贸易量通常比小国之间的更大。

这是因为大国拥有更丰富的资源、更多的消费者和更多的生产者,从而能够提供更多的贸易机会。

2. 距离影响林内曼贸易引力模型也考虑了国家之间的距离对贸易量的影响。

该模型认为,距离越远的国家之间的贸易量越小。

这是因为距离增加会导致贸易成本的增加,包括运输费用、时间成本和信息不对称。

国家之间的距离被认为是一个重要的阻碍因素,在贸易中起到着限制作用。

3. 其他因素除了经济规模和距离,林内曼贸易引力模型还考虑了其他因素对贸易量的影响。

这些因素包括经济发展水平、人口规模、贸易政策、共同语言和文化等。

所有这些因素都会影响国家之间的贸易量,进一步塑造贸易模式。

二、林内曼贸易引力模型的优缺点1. 优点林内曼贸易引力模型相对简单,易于应用和理解。

它提供了一种定量分析国际贸易的方法,能够较好地解释贸易量的变化和贸易模式的形成。

该模型还可以用于预测未来的贸易流向,并为政策制定者提供决策依据。

2. 缺点尽管林内曼贸易引力模型在解释贸易量方面表现出色,但它也存在一些局限性。

该模型未考虑国家之间的差异性,尤其是在经济结构和贸易竞争方面的差异。

距离作为影响因素虽然重要,但该模型忽略了其他可能影响贸易量的因素,如交通和通信技术的发展、地理环境等。

该模型是基于历史数据和统计分析得出的,无法完全准确地预测未来的贸易模式和贸易量。

三、林内曼贸易引力模型的应用林内曼贸易引力模型在国际贸易研究中得到了广泛的应用。

引力模型对我国服务贸易的效应分析和定量研究

引力模型对我国服务贸易的效应分析和定量研究

一、文献综述(一)引力模型的提出和基本构架Tinbergen(1962)和Poyhotnen(1963)最早分别独立地提出了贸易引力模型。

简单来说,这个模型表现的两个国家之间的单项贸易流量特征,是与它们各自的经济规模成正比,与它们之间的距离成反比。

这一特性与物理学引力经典模型的共通之处使它得名。

引力模型的基本表达形式为Tij=AY i Y j/D ij。

其中T ij为j国和i国两国的贸易量,A为常数,Yi 和Yj分别为i国和j国的经济总量,Dij为两国间的距离。

Tinbergen在运用双边贸易流量模型的简化形式和最小二乘法时间回归分析系列技术时,先对15个发达国家和3个最不发达国家共18个国家1959年的贸易数据进行了分析,后选用了42个国家的样本做了同样的计算,均发现国家间距离对于贸易的扩张效用具有很强的作用,可以解释所谓名义贸易值的75%。

Poyhonen在研究过程中采用截面数据(panel data)对1958年欧洲国家的贸易数据进行了整理计算。

通过建立结构性的通用国际商品交换模型(general model for the structure of the international ex-change of goods),他得出了与Tinbergen相似的模型。

Linnemann(1966)在随后的研究中将人口作为变量引入模型,在模型构造和变量设计方面形成了独特的技术路径和学术思想。

Bergstrand(1985)则在模型中引入了人均收入和汇率及多个虚拟变量,使模型包含更多影响贸易量的因素。

他根据SITC把贸易量分为9个行业,对1965、1966、1975、1976年OECD国家的贸易数据进行行业分析,发现不同行业的回归系数差别很大,但单个行业的历年回归系数相对稳定,他同时指出,系数差别可能是因为不同行业资本或劳动要素密集程度不同造成的。

(二)引力模型研究的发展随着对引力模型的重视和发展,对引力模型的理论基础研究可分为两个流派:一派是以Anderson(1979)、Wincoop(2003)为代表的独立理论推导引力模型;另一派是以Bergstrand(1989)、Deardorff(1995)、Evenett和Keller(2002)为代表的基于国际贸易理论推导引力模型。

贸易非效率随机前沿引力模型

贸易非效率随机前沿引力模型

贸易非效率随机前沿引力模型引言贸易是促进经济发展和国际合作的重要方式之一。

然而,由于各国之间的经济、文化、地理等差异,导致国际贸易中存在着一定程度的非效率。

为了理解和解决这一问题,学者们提出了非效率随机前沿引力模型,在衡量和预测贸易非效率的同时,为政策制定者提供了重要的参考。

贸易非效率随机前沿引力模型的基本概念和原理贸易非效率随机前沿引力模型是在传统引力模型的基础上引入了非效率的观点,用于衡量国际贸易中的非效率情况。

该模型的基本原理如下:引力模型-:引力模型认为,两个国家之间的贸易规模与它们之间的经济规模成正比,与它们之间的距离成反比。

这是基于经验观察而得出的一个经济规律。

非效率观点-:非效率观点认为,由于各国之间存在着差异,如市场结构、技术水平、法律制度等,导致贸易中存在着一定程度的非效率,即有些贸易可能是可以避免的,或者可以通过改善贸易方式和条件来提高效率。

在贸易非效率随机前沿引力模型中,学者们通过引入随机项来模拟非效率的存在,并结合实际的统计数据进行计量分析。

具体来说,模型包括以下几个要素:贸易流量-:通常用贸易额或贸易价值来度量两个国家之间的贸易规模。

经济规模-:衡量国家经济大小的指标,如国内生产总值(GD P)、人口等。

距离-:考虑地理距离或经济相似性等因素对贸易流量的影响。

随机项-:用于表示非效率因素,例如制度差异、技术不完全等。

贸易非效率随机前沿引力模型的应用贸易非效率随机前沿引力模型在实际应用中具有广泛的意义和应用价值。

以下是一些主要的应用方向:1.贸易政策分析通过贸易非效率随机前沿引力模型,可以评估各国之间的贸易政策对贸易流量的影响。

比如,针对某个特定的贸易政策,可以通过该模型计算出贸易非效率的变化,理解政策改革可能带来的经济影响,从而为政策制定者提供决策依据。

2.贸易预测与风险评估贸易非效率随机前沿引力模型还可以用来进行贸易预测和风险评估。

通过该模型,可以预测不同国家之间的贸易流量,并评估贸易中的非效率风险。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AGRODEP Technical Note TN-05April 2013Hands-on gravity estimation with STATAVersion 2Maria Cipollina and Luca SalvaticiHands-on gravity estimation with STATAIn this document we give several examples of hands-on estimation to familiarize yourself with the gravity equation methodological choices highlighted in the literature review. This guide provides an illustrative dataset with alternative Stata codes presenting the different possible estimation strategies.Part 1 describes how estimations are carried out with panel data and are directed to show the relevance of the multilateral resistance term as well as the modeling of the (trade) policy variables. In Part 2, cross-sections estimations show the importance of working with disaggregated data. Finally, Part 3 shows how you can solve the ‘zero (trade flows) problem’ using either Heckman or Poisson estimators.As you read this guide, you will use STATA to carry out estimations designed to familiarize you with the software and, more importantly, the gravity model. STATA is a statistical software program and we assume that you have a recent version of STATA (version 11.2 or later). The instructions in this guide are quite detailed. Our aim is to give sufficient detail to enable a new user of this software to follow the examples relying solely on this guide. On the other hand, the guide is strictly related to the literature review that highlights the main theoretical and methodological issues illustrated in the regressions.Data filesThere are two Data files:∙dataset_def.dta: it contains all the essential variables used in the regressions using panel data (Part 1). The dataset covers the period from 1996 to 2006 and includes 154 developed and developing countries.∙us_agr.dta: it contains all the essential variables used in the regressions using cross-section data (Part 2 and Part 3). It refers to year 2004 US agricultural imports from 226 countries. Data are disaggregated at the most detailed level allowed by the international Harmonized System (HS) classification (6 digits) and include 689 products.The variable names are largely self-explanatory and are described when the labels are created: their generation and construction can thus be directly inspected. The data sources are described in the Appendix.Do filesThere are three Do files:∙regressions aggregated data.do: it runs regressions using panel, aggregated data (Part1).∙regressions disaggregated data.do: it runs regressions using cross-section, disaggregated as well as aggregated data (Part 2).∙regressions zeroes treatment.do: it runs regressions using non-linear estimators (Heckman or Poisson) dealing with ‘zero’ trade flows (Part 3).Part 1: Aggregated dataA.Variable Generation.Part A brings in the data and generates the variables used in the analysis:(a)We use the data file dataset_defuse dataset_def.dta(b)We take the logs of all continuous variables included in the regressions:g limports=ln(imports)g lgdp_o=ln(gdp_o)g lgdp_d=ln(gdp_d)g ldist= ln(distw)g ltariff=ln(1+s_average)(c)We label the variables to be included in the tables.l a var limports “Ln(Imports)”la var colony “Colonial link”la var comlang_off “Common language”la var contig “Border”la var ldist “Ln(distance)”la var lgdp_d “Ln(GDP_importer)”la var lgdp_o “Ln(GDP_exporter)”la var rta “Regional Trade Agreement”la var ltariff “Ln(1+Tariff)”(d)Finally, we generate the different fixed effects.qui tab imp, g(dimp)qui tab exp, g(dexp)qui tab pair, g(dpair)qui tab year, g(dyear)B. Regression SpecificationsPart B runs panel regressions with aggregated data, and the dummy RTA (i.e., Regional Trade Agreements) as (trade) policy variable. Regressions are based on equation (2) with time, importer, exporter and country-pair fixed effects.We start by declaring data to be panel.tsset pair yearIn order to show the consequences of ignoring the multilateral resistance term, we firstly estimate equation (2) without fixed effectseststo: reg limports lgdp_d lgdp_o ldist contig colony comlang_off rta, robust Then, we introduce the different types of fixed effects:eststo: reg limports lgdp_d lgdp_o ldist contig colony comlang_off rta dyear*, robust eststo: reg limports lgdp_d lgdp_o ldist contig colony comlang_off rta dimp* dexp*, robusteststo: reg limports lgdp_d lgdp_o ldist contig colony comlang_off rta dimp* dexp* dyear*,robusteststo: reg limports lgdp_d lgdp_o ldist contig colony comlang_off rta dpair* dyear*, robustThe dummy for pair effects is equal to 1 for all observations of trade occurring between a given pair of countries, for all pairs. Country dummies remove cross-section, but not time-series biases. The latter is a serious shortcoming since omitted factors affecting bilateral trade costs often vary over time. Pair dummies cannot be used in cross-section data since the number of dummies would be equal to the number of observations.The command “esttab” creates the regression table in a file regressions1.docesttab using regressions1.doc, title (aggregate-dummy policy) se ar2 label replace rtf b(2) star (* 0.10 ** 0.05 *** 0.01) se(2) mti drop (dexp* dimp* dyear* dpair*)TABLE: Panel results with different fixed effectsModel 1and 2 report the base regression. Column (1.1) reports results without fixed effects. Column (2.1) reports results where time dummies are added to the regression, to account forthe changing nature of the relationship over time. Column (2.2) and (2.3) show results for time invariant importer and exporter fixed effects and for time varying exporter and importer fixed effects, respectively. Finally, column (2.4) presents a specification where pair effects are also added.* p < 0.10, ** p < 0.05, *** p < 0.01All coefficients have the expected signs, the only exception is the coefficient of the colonial links that seem to have a negative impact if we do not consider country fixed effects (columns 1.1 and 2.1). Focusing on the most widely used specification (column 2.3), the estimated coefficients should be interpreted as follows: size of importer country has a positive and significant impact with an elasticity of 0.91, so that an increase in GDP of 10% increase trade by 9.1%; an increase in distance of 10% reduce trade by around 15%; the existence of border and language links imply an increase in trade of 72% and 118% (e0.54-1=0.72; e0.78-1= 1.18), respectively; the estimated coefficient of dummy for RTA of 0.62 implies that regional trade agreements increase trade of 86% (e0.62-1=0.86).Finally, in order to show the relevance of an actual measure we estimate equation (3) using a continuous variable for trade policyreg limports lgdp_d lgdp_o ldist contig colony comlang_off ltariff dimp* dexp* dyear*, robustThen we create the results tableesttab using regressions1.doc, title (aggregate-tariff) se ar2 label replac rtf b(2) star (* 0.10 ** 0.05 *** 0.01) se(2) mti drop (dexp* dimp* dyear*) appendTABLE: Panel results with continuous policy variable* p < 0.10, ** p < 0.05, *** p < 0.01All coefficients have the expected signs. Trade policies have a negative and significant impact on trade, a tariff factor increase by 10% leads to a 6% reduction of trade.Part 2: Disaggregated dataA.Variable Generation.(a)We use the data file us_agruse us_agr.dta(b)We take the logs of all continuous variables included in the regressionsg limports=ln(trade)g lgdp_o=ln(gdp_o)g lgdp_d=ln(gdp_d)g ldist= ln(distw)g ltariff=ln(1+tariff)(c)We label the variables to be included in the tables.la var limports "Ln(Imports)"la var colony "Colonial link"la var comlang_off "Common language"la var contig “Border”la var ldist "Ln(distance)"la var lgdp_d "Ln(GDP_importer)"la var lgdp_o "Ln(GDP_exporter)"la var ltariff "Ln(1+Tariff)"(d)We generate the exporter and product fixed effectsqui tab exp, g(dexp)qui tab hs6, g(dhs6)B. Regression Specifications(a)As in Part 1, we firstly estimate equation (2) using the OLS estimator without fixedeffectseststo: reg limports lgdp_o ldist contig colony comlang_off ltariff, robust(b)Then, we introduce the different types of fixed effects:eststo: reg limports lgdp_o ldist contig colony comlang_off ltariff dhs6*, robusteststo: reg limports contig colony comlang_off ltariff dexp* dhs6*, robust(c)Finally, we collapse the dataset in order to obtain aggregated data for a robustnessanalysis.collapse (sum) trade (mean) tariff gdp_o distw contig colony comlang_off, by(exp)g limports=ln(trade)g lgdp_o=ln(gdp_o)g ldist= ln(distw)g ltariff=ln(1+tariff)(d)and we run again the regression to highlight the relevance of the aggregation issueeststo: reg limports lgdp_o ldist contig colony comlang_off ltariff, robust(e)The command “esttab” creates the regression table in a file regressions2.docesttab using regressions2.doc, title (dati_us_agr) se ar2 label replac rtf b(2) star (*0.10 ** 0.05 *** 0.01) se(2) mti drop (dexp* dhs6*) appendeststo clearTABLE: Cross-section results with different fixed effects and different levels of aggregation Cross-sectional model covering imports in 689 agricultural commodities from 227 countries to US in 2004.Columns (1) to (3) show results with disaggregated data using different fixed-effects specifications. Column (4) reports result of aggregated data.* p < 0.10, ** p < 0.05, *** p < 0.01Most empirical analyses use gravity models with aggregated data, but using aggregate trade flows to analyze the effects of trade policies applied at product level seems misleading. As a matter of fact, the estimated coefficient related to trade policy, namely Ln(1+tariff), is not significant in column (4).Part 3: Zeroes treatmentA.Variable Generation(a)We use the data file us_agruse us_agr.dtaWe take the logs of all continuous variables included in the regressionsg limports=ln(trade)g lgdp_o=ln(gdp_o)g lgdp_d=ln(gdp_d)g ldist= ln(distw)g ltariff=ln(1+tariff)(c)We label the variables to be included in the tables.la var limports "Ln(Imports)"la var colony "Colonial link"la var comlang_off "Common language"la var ldist "Ln(distance)"la var lgdp_d "Ln(GDP_importer)"la var lgdp_o "Ln(GDP_exporter)"la var ltariff "Ln(1+Tariff)"(d)We generate the exporter and product fixed effectsqui tab exp, g(dexp)qui tab hs6, g(dhs6)B. Regression Specifications(a)We firstly run the regression using the Heckman estimatoreststo: heckman limports contig colony comlang_off ltariff , select(contig colony ltariff) mills(lambda)(b)Then we run the regression using the Poisson Pseudo-Maximum Likelihood estimatoreststo: ppml trade contig colony comlang_off ltariff(c)The command “esttab” creates the regression table in a file regressions3.docesttab using regressions3.doc, title (treatment of zeros) se ar2 label replace rtf b(2) star (* 0.10 ** 0.05 *** 0.01) se(2) mtiTABLE: Results with different estimators: Heckman and PoissonModel (1) reports results obtained using the Heckman two-step procedure. The first column shows the second stage estimates of the trade flow, whereas the second column reports the first-stage Probit selection equation. Model (2) shows results obtained using Poisson Pseudo-Maximum Likelihood estimator.The use of disaggregated data raises the “zero trade flows” issue, which introduces obvious problems in the log-linear form of the gravity equation. Several authors consider the Heckman two-step estimator as the best procedure, others argue that gravity type models should be estimated in multiplicative form, and recommend the Poisson Pseudo-Maximum Likelihood (PPML) estimator to deal with the problem of zeros in the trade matrix, in order to achieve unbiased and consistent estimates. The significant coefficient of the Mills ratio confirms that correcting for sample selection bias is justified, however, because of the presence of heteroskedasticity, estimates of the log-linear form of the gravity equation are biased and inconsistent, and this may lead to prefer the Poisson specification of the trade gravity model.APPENDIX: Data SourceDataset_def.dta: Dataset is building on extraction from WITS (/wits/index.html) and on information provided by the CEPII dataset (http://www.cepii.fr/).The WITS application gives access to international trade statistics of UN COMTRADE (The United Nations Commodity Trade Statistics database) and tariff database of UNCTAD-TRAINS (Trade Analysis and Information System).The Cepii dataset includes data on GDP and distances between countries and dummies for contiguity, common language, and former colonial links.Us_agr.dta: Data on trade and tariffs at the HS6 level of detail are taken from the MAcMapHS6-V2 database (/publication/picture-tariff-protection-across-world-2004). MAcMapHS6 provides a consistent worldwide assessment of protection, including ad valorem equivalent rates of specific duties and tariff rate quotas (including those introduced at the end of the Uruguay Round), for 2004. Data for the remaining explanatory variables are from the Cepii dataset.。

相关文档
最新文档