数学模拟试题(13)

合集下载

六年级下册数学试题-22019年小升初数学模拟试卷 (13)通用版(解析版)

六年级下册数学试题-22019年小升初数学模拟试卷 (13)通用版(解析版)

2019年小升初数学模拟试卷一、单选题。

(共14分)1.下列选项中,都是四边形的是()。

A. ①③④都是四边形B. ④和⑤是四边形C. ②③④都是四边形D. ③和④是四边形2.甲地到乙地路程一定,每小时行的速度和行的小时数( )A. 成正比例B. 成反比例C. 不成比例D. 不成反比例3.五年级(1)班和(2)各选派3名同学参加合唱队,五年级(1)班选出了全班人数的,五年级(2)选出了全班人数的,两个班的人数相比,()。

A. 五年级(1)班多一些。

B. 五年级(2)班多一些。

C. 不能确定哪个班人数多。

4.下列图形中,能折成正方体的是()A. B. C.5.观察下面图形,()是四边形。

A. B. C.6.从108里连续减9,减()次结果是0。

A. 20B. 12C. 157.用一根48厘米长的铁丝围成一个正方体框架,并用彩纸糊上,糊这个正方体框架至少需要彩纸()平方厘米。

A. 64B. 96C. 60D. 864二、填空题。

(共22分)8.在横线上填上合适的数.5________8965≈51万9.3060立方厘米=________立方分米 5平方米40平方分米=________平方米10.一个正方形,可以折成两个相等的________和________。

11.如果把小明所在的位置记为0,并规定向东走为正,那么小明先向东走5米记作________米,再向西走9米,此时,小明所在的位置是________米。

12.的倒数是________,的倒数是________。

13.4克糖放在6克水中,糖与水的比是________∶________;糖与糖水的比是________∶________;水与糖水的比是________∶________。

糖水的含糖率是________%。

14.布袋里有红、黄、蓝、白四种颜色的玻璃球各2颗,至少摸出________颗玻璃球,才能保证有两颗玻璃球的颜色相同.15.一个油瓶可以装0.45 kg油,要装20 kg油需要________个油瓶。

六年级下册数学试题-2019年小升初毕业考试12(含答案) 人教新课标(2014秋)

六年级下册数学试题-2019年小升初毕业考试12(含答案) 人教新课标(2014秋)

2019年小升初毕业考试数学模拟试题一.填空题(共13小题,满分21分)1.(1分)一个三位数,百位上是最小的合数,十位上是10以内最大的奇数,这个三位数是2和5的倍数,这个三位数是.2.(1分)笑笑读一本书,第一天读了全书的20%,第二天读了22页,这时读的页数与剩下页数的比是4:5,笑笑读的这本书一共有页.3.(4分):24=24÷===%4.(1分)把一根绳子对折三次后,这时每段绳子是全长的.5.(2分)要直观地反映今年汽油价格的变化情况,绘制统计图比较合适.6.(1分)在一条小路两旁,每隔6米摆放一盆花(两端都放),从起点到终点一共放了20盆花,这条小路长米.7.(1分)一个圆形水池的周长是37.68米,现要在水池周围铺上一条宽为2米的环形小路,则小路的面积是(结果精确到个位).8.(1分)在下面的横线里填上“>”、“<”或“=”.÷5;÷×;×÷;6÷15.9.(1分)小明和小敏一共有56枚邮票,小敏比小明少4枚,小明有枚邮票.10.(3分)至少需要个小正方形,才能拼成一个大正方形,至少需要个小正方体才能拼成一个大正方体.11.(2分)把两根长度分别是45厘米和15厘米的彩带剪成长度一样的短彩带,并且没有剩余,每根彩带最长是厘米;一共有根这样的彩带.12.(2分)自行车和三轮车共20辆,总共有52个轮子,自行车辆,三轮车辆.13.(1分)有一堆含水量为20%的稻谷,日晒一段时间以后,含水量降为,现在这堆稻谷的重量是原来的%.二.判断题(共5小题,满分5分,每小题1分)14.(1分)X=10是方程..(判断对错)15.(1分)一个合数至少有3个因数(判断对错)16.(1分)如果a:b=5:6,那么a=5,b=6.(判断对错)17.(1分)王叔叔生产一批零件,有2个不合格,合格率是98%.(判断对错)18.(1分)人的年龄和体重成正比例.(判断对错)三.选择题(共5小题,满分10分,每小题2分)19.(2分)把圆沿半径剪开,平均分成若干份,拼成一个近似的长方形(如图),圆的面积是()cm2.A.9.42B.15.7C.18.84D.28.2620.(2分)用一块长25.12厘米,宽18.84厘米的长方形铁皮,配上下面()圆形铁片正好可以做成圆柱形容器.A.无法计算B.d=3厘米C.r=4厘米D.d=6厘米或8厘米21.(2分)一个平行四边形的面积是35dm2,底是5dm,高是()dm.A.175B.7C.87.5D.1422.(2分)a、b、c都是大于1的自然数.根据a×=×b=c÷的等式判断,最大的是()A.a B.b C.c D.一样大23.(2分)下列说法中,只有()才是正确的.A.假分数大于1B.所有偶数都是合数C.除0外,所有自然数的公约数是1D.成为互质的两个数都是质数四.计算题(共3小题,满分26分)24.(12分)直接写出得数165+399=1﹣0.22=+=×÷×=5.2﹣4.02=×20%=÷=12.5×(0.2×8)=25.(8分)脱式计算(能简算的要简算).6.3﹣2.9﹣7.1+5.715.72×+2.28÷[1﹣(+)]××3.5+5.5×80%+0.826.(6分)利用等式的基本性质解方程2x﹣13=3913x﹣7.5x=3.43(x+2.1)=1.4五.操作题(共2小题,满分8分)27.(2分)(1)图形B可以看作图形A绕点顺时针方向旋转度得到的.(2)图形C可以看作图形B绕点O方向旋转度得到的.(3)在图中画出图形C绕点O顺时针方向旋转90度得到的图形D.28.(6分)如图,按要求填空与画图.(1)小青家在学校的偏°方向上,距离是m.(2)小亮家在学校的北偏东35方向的1000m处.在图中标出小亮家的位置.(3)小青从家经学校到小华家,他先向偏走m到学校,再向(偏走m到小华家.六.应用题(共7小题,满分30分)29.(4分)在一幅比例尺为1:8000000的地图上,量得A、B两地的距离为10厘米,有两辆汽车分别从A、B两地同时出发,相向而行,速度分别是55千米/时和45千米/时.两车经过多长时间相遇?30.(4分)张强存入银行10万元,定期两年,当时两年期的年利率为4.5%,到期后,张强得到的利息能买一台6000元的电脑吗?31.(4分)果园里茘枝树比龙眼树多520棵,荔枝树的棵数是龙眼树的3.6倍.龙眼树和荔枝树各有多少棵?(用方程解)32.(4分)五(1)班的学生人数在40~50人之间,一次大扫除,按6人一组分组,则少1人;按8人一组分组,还是少1人.五(1)班有学生多少人?33.(4分)张大伯家有一堆小麦,堆成了圆锥形.张大伯量得其底面周长是9.42m,高是2m,这堆小麦的体积是多少立方米?如果每立方米小麦的质量为700kg,这堆小麦有多少千克?34.(5分)电信公司推出两种手机套餐服务.(1)李叔叔每月的通话时间大约是70分钟,上网流量大约是10G.他选择哪个套餐比较便宜?每月大约花费多少元?(2)王阿姨买了B套餐,12月份缴费140元,其中使用上网流量18G,王阿姨这个月的通话时间是多少分钟?35.(5分)学校组织32名同学去游乐园,并由8名老师带队,票价如下:方案一:学生票35元/张,成人票70元/张;方案二:团体票40元/张(10人及以上).(1)如果按方案一买票,要花多少钱?(2)如果按方案二买票,要花多少钱?(3)你有没有更省钱的方法,请你算一算.参考答案一.填空题(共13小题,满分21分)1.【解答】解:由分析可知:这个三位数的个位是0,十位是9,百位是4,所以这个三位数是490,故答案为:490.2.【解答】解:设笑笑读的这本书一共有x页,(20%x+22):(x﹣20%x﹣22)=4:5(22+0.2x):(0.8x﹣22)=4:53.2x﹣88=110+x2.2x=198x=90答:笑笑读的这本书一共有90页.故答案为:90.3.【解答】解:18:24=24÷32===75%.故答案为:18,32,6,75.4.【解答】解:1÷8=故答案为;.5.【解答】解:根据统计图的特点可知,要直观地反映今年汽油价格的变化情况,绘制折线统计图比较合适.故答案为:折线.6.【解答】解:(20÷2﹣1)×6=9×6=54(米)答:这条小路长54米.故答案为:54.7.【解答】解:小圆的半径:37.68÷(2×3.14)=37.68÷6.28=6(米);大圆的半径:6+2=8(米)小路的面积:3.14×(82﹣62)=3.14×(64﹣36)=3.14×28=87.92(平方米)≈88(平方米);答:这条小路面积是88平方米.故答案为:88平方米.8.【解答】解:在下面的横线里填上“>”、“<”或“=”.÷5=;÷>×;×<÷;6÷=15.故答案为:=,>,<,=.9.【解答】解:(56﹣4)÷2=52÷2=26(枚)26+4=30(枚)答:小明有30枚邮票.故答案为:30.10.【解答】解:(1)小正方形拼成大正方形:大正方形的每条边长至少是两个小正方形的边长之和,需要小正方形2×2=4(个)(2)小正方体拼成大正方体:大正方体的每条棱长至少是两个小正方体的棱长之和,需要小正方体2×2×2=8(个)故答案为:4;8.11.【解答】解:45=3×3×5,15=3×5,所以45和15的最大公因数是:5×3=15,即每根彩带最长是15厘米;(45÷15)+(15÷15)=3+1=4(根)答:每根短彩带最长15厘米,一共有4根这样的彩带.故答案为:15,4.12.【解答】解:假设全是自行车,那么三轮车有:(52﹣20×2)÷(3﹣2)=12÷1=12(辆)则自行车有:20﹣12=8(辆);答:自行车有8辆,三轮车有12辆.故答案为:8,12.13.【解答】解:(1﹣20%)÷(1﹣)=0.8÷=88%答:现在这堆稻谷的重量是原来的88%.故答案为:88.二.判断题(共5小题,满分5分,每小题1分)14.【解答】解:x﹣=10,既含有未知数又是等式,具备了方程的条件,因此是方程;故答案为:√.15.【解答】解:根据合数的意义可知,合数除了1和它本身外,至少还要有一个因数,即至少有3个因数.所以一个合数至少有3个因数说法正确.故答案为:√.16.【解答】解:假设a=15,b=18,则a:b=15:18=5:6,所以题干的说法是错误的.故答案为:×.17.【解答】解:由分析可知:王叔叔生产一批零件,有2个不合格,合格率是98%.说法错误;故答案为:×.18.【解答】解:因为:年龄×体重=?(不一定),年龄÷体重=?(不一定)即乘积和比值都不一定,所以人的年龄和体重不成比例;故答案为:×.三.选择题(共5小题,满分10分,每小题2分)19.【解答】解:9.42÷3.14=3(厘米),3.14×32=3.14×9=28.26(平方厘米),答:圆的面积是28.26平方厘米.故选:D.20.【解答】解:25.12÷3.14=8(厘米),18.84÷3.14=6(厘米),答:可以配上直径6厘米或8厘米的圆形铁片正好做成圆柱形容器.故选:D.21.【解答】解:35÷5=7(分米),答:高是7分米.故选:B.22.【解答】解:c÷=c×a×=×b=c×因为>>所以:a>c>b,最大的是a.故选:A.23.【解答】解:假分数大于1不正确;所有偶数都是合数不正确;除0外,所有自然数的公约数是1正确;成为互质的两个数都是质数不正确;故选:C.四.计算题(共3小题,满分26分)24.【解答】解:165+399=5641﹣0.22=0.96+=×÷×=5.2﹣4.02=1.18×20%=÷=12.5×(0.2×8)=20 25.【解答】解:(1)6.3﹣2.9﹣7.1+5.7=(6.3+5.7)﹣(2.9+7.1)=12﹣10=2(2)15.72×+2.28÷=15.72×+2.28×=(15.72+2.28)×=18×=8(3)[1﹣(+)]×=[1﹣]×=×=(4)×3.5+5.5×80%+0.8=0.8×3.5+5.5×0.8+0.8=0.8×(3.5+5.5+1)=0.8×10=826.【解答】解:(1)2x﹣13=392x﹣13+13=39+132x=522x÷2=52÷2x=26(2)13x﹣7.5x=3.45.5x=3.45.5x÷5.5=3.4÷5.5x=(3)3(x+2.1)=1.43(x+2.1)÷3=1.4÷3x+2.1=x+2.1﹣2.1=﹣2.1x=﹣五.操作题(共2小题,满分8分)27.【解答】解:(1)图形B可以看作图形A绕点O顺时针方向旋转90度得到.(2)图形C可以看作图形B绕点O顺时针方向旋转90度得到.(3)根据旋转的定义,画出图形C绕点O顺时针方向旋转90度得到的图形D,画图如下:.故答案为:O,90,顺时针,90.28.【解答】解:(1)根据比例尺,先计算实际距离:500×3=1500(米)然后根据图上确定方向的方法,利用量角器,得出:小青家在学校的北偏西60°方向上,距离是150m.•(2)先计算小亮家到学校的图上距离,然后根据图上确定方向的方法,利用量角器画图.1000÷500=2(厘米)小亮家的位置如图所示:(3)先计算小青家到学校及学校到小华家的实际距离:500×3=1500(米)500×4=2000(米)根据图上确定方向的方法,利用量角器测量可得:小青从家经学校到小华家,他先向南偏东60°方向走1500m到学校,再向南偏东30°方向走2000m到小华家.故答案为:北;西;60;1500;南;东60°;1500;南;东;30°;2000.六.应用题(共7小题,满分30分)29.【解答】解:10÷=80000000(厘米)80000000厘米=800千米800÷(55+45)=800÷100=8(小时)答:两车经过8小时后相遇.30.【解答】解:10万元=100000元100000×4.50%×2=9000(元)9000元>6000元.答:得到的利息能买一台6000元的电脑.31.【解答】解:设龙眼树有x棵,则荔枝树3.6x棵,得:3.6x﹣x=5202.6x=520x=520÷2.6x=200200+520=720(棵)答:龙眼树有200棵,荔枝树有720棵.32.【解答】解:6=2×3,8=2×2×2,6和8的最小公倍数是2×2×2×3=24;24×2=48,48﹣1=47,答:五(1)班有学生47人.33.【解答】解:×3.14×(9.42÷3.14÷2)2×2=×3.14×1.52×2=×3.14×2.25×2=4.71(立方米)4.71×700=3297(千克)答:这堆小麦的体积是4.71立方米,重3297千克.34.【解答】解:(1)李叔叔选择A套餐比较好.因为李叔叔每月的通话时间和上网流量都是最接近A套餐,而李叔叔的通话时间和上网流量都比B套餐的通话时间和上网流量要少得多,李叔叔不需要这么多的通话时间和上网流量,所以选择A套餐比较好.78+(10﹣8)×5=78+10=88(元)答:他选择A套餐比较便宜,每月大约花费88元.(2)(140﹣128)÷0.2+150=60+150=210(分钟)答:王阿姨这个月的通话时间是210分钟.35.【解答】解:(1)35×32+8×70=1120+560=1680(元)答:按方案一买票,要花1680元.(2)(32+8)×40=40×40=1600(元)答:按方案二买票,要花2800元.(3)30×35+(2+8)×40=1050+400=1450(元)答:用30人买学生票,剩下10人买团体票,这样更省钱.。

2024年上海市高考高三数学模拟试卷试题及答案详解

2024年上海市高考高三数学模拟试卷试题及答案详解

2024上海高考高三数学模拟试卷(本试卷共10页,满分150分,90分钟完成.答案一律写在答题纸上)命题:侯磊审核:杨逸峰一、填空题.(本题共12小题,前6题每小题4分;后6题每小题5分,共54分.请在横线上方填写最终的、最简的、完整的结果)1.已知集合{}()1,2,3,4,5,2,5A B ==,则A B =.2.已知圆柱底面圆的周长为2π,母线长为4,则该圆柱的体积为.3.101x x ⎛⎫+ ⎪⎝⎭的二项展开式中,2x 项的系数为.4.等比数列{}n a 的各项和为2,则首项1a 的取值范围为.5.已知平面向量()()1,2,,4a b m == ,若a 与b的夹角为锐角,则实数m 的取值范围为.6.已知复数z 满足22z z -==,则3z =.7.已知空间向量()()1,1,0,0,1,1a b == ,则b 在a方向上的投影为.8.已知()ln(4f x ax c x =++(a 、b 、c 为实数),且3(lg log 10)5f =,则(lglg3)f 的值是9.已知A B 、是抛物线24y x =上的两个不同的点,且10AB =,若点M 为线段10AB =的中点,则M 到y 轴的距离的最小值为.10.一个飞碟射击运动员练习射击,每次练习可以开2枪.当他发现飞碟后,开第一枪命中的概率为0.8;若第一枪没有命中,则开第二枪,且第二枪命中的概率为0.6;若2发子弹都没打中,该次练习就失败了.若已知在某次练习中,飞碟被击中的条件下,则飞碟是运动员开第二枪命中的概率为.11.已知ABC 中,,,A B C 为其三个内角,且tan ,tan ,tan A B C 都是整数,则tan tan tan A B C ++=.12.已实数m n 、满足221m n +≤,则2263m n m n +-+--的取值范围是.二、选择题(本题共4小题,前2题每小题4分;后2题每小题5分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的,请填写符合要求的选项前的代号)13.以下能够成为某个随机变量分布的是()A .0111⎛⎫ ⎪⎝⎭B .101111236-⎛⎫ ⎪⎝⎭C .123111248⎛⎫ ⎪ ⎝⎭D .11.222.40.50.50.30.7⎛⎫⎪-⎝⎭14.某高级中学高一年级、高二年级、高三年级分别有学生1400名、1200名、1000名,为了解学生的健康状况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,若从高三年级抽取25名学生,则n 为A .75B .85C .90D .10015.设等比数列{}n a 的前n 项和为n S ,设甲:123a a a <<,乙:{}n S 是严格增数列,则甲是乙的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件16.椭圆具有如下的声学性质:从一个焦点出发的声波经过椭圆反射后会经过另外一个焦点.有一个具有椭圆形光滑墙壁的建筑,某人站在一个焦点处大喊一声,声音向各个方向传播后经墙壁反射(不考虑能量损失),该人先后三次听到了回音,其中第一、二次的回音较弱,第三次的回音较强;记第一、二次听到回音的时间间隔为x ,第二、三次听到回音的时间间隔为y ,则椭圆的离心率为()A .2xx y+B .2x x y+C .2y x y +D .2y x y+三、解答题.(本大题共5小题,满分78分.请写出必要的证明过程或演算步骤)17.三棱柱111ABC A B C -中,1AA ⊥平面ABC ,且1AB BC ==,12,90,AA ABC D =∠=︒为1CC中点.(1)求四面体1A ABD -的体积:(2)求平面ABD 与1ACB 所成锐二面角的余弦值.18.(1)在用“五点法”作出函数[]1sin ,0,2πy x x =-∈的大致图象的过程中,第一步需要将五个关键点列表,请完成下表:x0sin x -01sin x-1(2)设实数0a >且1a ≠,求证:()ln x x a a a '=;(可以使用公式:()e e x x '=)(3)证明:等式()()()32123x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x a x x x x x x bx x x c ++=-⎧⎪++=⎨⎪=-⎩19.为帮助乡村脱贫,某勘探队计划了解当地矿脉某金属的分布情况,测得了平均金属含量y (单位:克每立方米)与样本对原点的距离x (单位:米)的数据,并作了初步处理,得到了下面的一些统计量的值.(表中9111,9i i i i u u u x ===∑).xyu921()ii x x =-∑921()i i u u =-∑921()i i y y =-∑91(())i ii x y x y =--∑91()()i ii u u y y =--∑697.900.212400.1414.1226.13 1.40-(1)利用相关系数的知识,判断y a bx =+与dy c x=+哪一个更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型;(2)根据(1)的结果建立y 关于x 的回归方程,并估计样本对原点的距离20x =米时,平均金属含量是多少?20.已知抛物线2:2(0)C y px p =>,过点()(),00M a a ≠与x 轴不垂直的直线l 与C 交于()()1122,,A x y B x y 、两点.(1)求证:OA OB ⋅是定值(O 是坐标原点);(2)AB 的垂直平分线与x 轴交于(),0N n ,求n 的取值范围;(3)设A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出定点的坐标.21.已知2()ln(1)2x f x a x x =++-,函数()y f x =的导函数为()y f x '=.(1)当1a =时,求()y f x =在2x =处的切线方程;(2)求函数()y f x =的极值点;(3)函数()y f x =的图象上是否存在一个定点(,)(.(0,))m n m n ∈+∞,使得对于定义域内的任意实数00()x x m ≠,都有000()()()2x mf x f x m n +'=-+成立?证明你的结论.1.{3,4}【分析】根据给定条件,利用交集的定义直接求解即可.【详解】集合{}()1,2,3,4,5,2,5A B ==,则{3,4}A B = .故答案为:{3,4}2.4π【分析】根据条件,直接求出1r =,再利用圆柱的体积公式,即可求出结果.【详解】设圆柱的底面半径为r ,所以2π2πr =,得到1r =,又圆柱的母线长为4l =,所以圆柱的体积为2π4πV r l ==,故答案为:4π.3.210【分析】先求出二项式展开式的通项公式,然后令x 的次数为2,求出r ,代入通项公式中可求得结果.【详解】101x x ⎛⎫+ ⎪⎝⎭的二项展开式的通项公式为10102110101C C rr r rr r T x x x --+⎛⎫=⋅⋅=⋅ ⎪⎝⎭,令1022r -=,得4r =,所以2x 项的系数为410C 210=,故答案为:2104.(0,2)(2,4)【分析】根据给定条件,利用等比数列各项和公式,结合公比的取值范围求解即得.【详解】依题意,121a q=-,10q -<<或01q <<,则12(1)a q =-,102a <<或124a <<,所以首项1a 的取值范围为(0,2)(2,4) .故答案为:(0,2)(2,4) 5.(8,2)(2,)-+∞ 【分析】根据给定条件,利用向量夹角公式结合共线向量列出不等式组求解即得.【详解】向量()()1,2,,4a b m == 的夹角为锐角,则0a b ⋅> 且a 与b不共线,因此8024m m +>⎧⎨≠⎩,解得8m >-且2m ≠,所以实数m 的取值范围为(8,2)(2,)-+∞ .故答案为:(8,2)(2,)-+∞ 6.8-【分析】设i z a b =+,根据22z z -==得到方程组,求出1,a b ==答案,从而求出3z .【详解】设i z a b =+,则22i z a b -=-+,所以()2222424a b a b ⎧+=⎪⎨-+=⎪⎩,解得1,a b ==当1,a b =1=z ,故()222113i 22z =+=++=-+,()()322126i 8z =-++=-+=-;当1,a b ==1z =-,故()222113i 22z =-=-=--,()()322126i 8z =--=-+=-故答案为:-87.11(,,0)22【分析】根据给定条件,利用投影向量的定义求解即得.【详解】向量()()1,1,0,0,1,1a b == ,则1,||a b a ⋅==,所以b 在a 方向上的投影为2111(,,0)222||a b a a a ⋅==,故答案为:11(,,0)228.3【分析】令()ln(g x ax c x =+,则()()4f x g x =+,然后判断()g x 的奇偶性,再利用函数的奇偶性求值即可【详解】令()ln(g x ax c x =+,则()()4f x g x =+,函数的定义域为R ,因为()ln(g x ax c x -=---ln ax c ⎛⎫=--(1ln ax c x -=--+(ln ax c x =--+(ln ()ax c x g x ⎡⎤=-++=-⎢⎥⎣⎦,所以()g x 为奇函数,因为3(lg log 10)5f =,所以3(lg log 10)45g +=,所以(lg lg 3)1g -=,所以(lg lg 3)1g =-,所以(lg lg3)(lg lg3)4143f g =+=-+=,故答案为:39.4【分析】求出过抛物线焦点的弦长范围,再利用抛物线定义列式求解即得.【详解】抛物线24y x =的焦点(1,0)F ,准线方程=1x -,令过点F 与抛物线交于两点的直线方程为1x ty =+,由214x ty y x=+⎧⎨=⎩消去x 得,2440y ty --=,设两个交点为1122(,),(,)P x y Q x y ,则124y y t +=,21212()242x x t y y t +=++=+,于是212||11444PQ x x t =+++=+≥,当且仅当0=t 时取等号,令点,,A B M 的横坐标分别为0,,A B x x x ,而||104AB =≥,则0111[(1)(1)]1(||||)1||142222A B A B x x x x x FA FB AB +==+++-=+-≥-=,当且仅当,,A F B 三点共线时取等号,所以M 到y 轴的距离的最小值为4.故答案为:410.323【分析】根据给定条件,利用条件概率公式计算即得.【详解】记事件A 为“运动员开第一枪命中飞碟”,B 为“运动员开第二枪命中飞碟”,C 为“飞碟被击中”,则()0.20.60.12P B =⨯=,()()()()0.80.120.92P C P A B P A P B ==+=+= ,所以飞碟是运动员开第二枪命中的概率为()()0.123(|)()()0.9223P BC P B P B C P C P C ====.故答案为:32311.6【分析】不妨令A B C ≤≤,利用正切函数的单调性,结合已知求出tan A ,再利用和角的正切公式分析求解即得.【详解】在ABC 中,不妨令A B C ≤≤,显然A 为锐角,而tan A 是整数,若πtan 2tan3A =>=,又函数tan y x =在π(0,)2上单调递增,则π3A >,此时3πA B C A ++≥>与πA B C ++=矛盾,因此tan 1A =,π3π,44A B C =+=,tan tan tan()11tan tan B CB C B C++==--,整理得(tan 1)(tan 1)2B C --=,又tan ,tan B C 都是整数,且tan tan B C ≤,因此tan 2,tan 3B C ==,所以tan tan tan 6A B C ++=.故答案为:612.[3,13]【分析】确定动点(,)P m n 的几何意义,利用直线现圆的位置关系分段讨论,结合几何意义求解即得.【详解】显然点(,)P m n 在圆22:1O x y +=及内部,直线1:630l x y --=,直线2:220l x y +-=,1=>,得直线1l与圆O相离,且|63|63m n m n--=--,由222201x yx y+-=⎧⎨+=⎩,解得3545xy⎧=⎪⎪⎨⎪=⎪⎩或1xy=⎧⎨=⎩,即直线2l与圆O交于点34(,),(1,0)55A B,①当220m n+-≥时,即点P在直线2l与圆O所围成的小弓形及内部,|22||63|226324m n m n m n m n m n+-+--=+-+--=-+,目标函数124z x y=-+,即142z x y-=-表示斜率为12,纵截距为142z-的平行直线系,画出直线0:20p x y-=,平移直线p分别到直线12,p p,当1p过点A时,142z-取得最大值,1z最小,当2p过点B时,142z-取得最小值,1z最大,因此1min34()24355z=-⨯+=,1max()12045z=-⨯+=,从而3245m n≤-+≤;②当220m n+-<时,即点P在直线2l与圆O所围成的大弓形及内部(不含直线2l上的点),|22||63|(22)63348m n m n m n m n m n+-+--=-+-+--=--+,目标函数2348z x y=--+,即2834z x y-=+表示斜率为34-,纵截距为282z-的平行直线系,画出直线0:340q x y+=,显直线q OA⊥,平移直线q分别到直线12,q q,直线12,q q与圆O分别相切于点34,(,)55A--,当1q过点A时,282z-取得最大值,2z最小,因此2min34()834355z=-⨯-⨯=,当2q过点34(,)55--时,282z-取得最小值,2z最大,因此2max34()8341355z=+⨯+⨯=,从而383413m n<--≤,所以2263m n m n+-+--的取值范围是[3,13].故答案为:[3,13]【点睛】方法点睛:求解线性规划问题的一般方法:①准确作出不等式组表示的平面区域,作图时一定要分清虚实线、准确确定区域;②根据目标函数的类型及几何意义结合图形判断目标函数在何处取得最值.13.B【分析】分布列中各项概率大于0,且概率之和为1,从而得到正确答案.【详解】由题意得,分布列中各项概率非负,且概率之和为1,显然AC 选项不满足概率之和为1,D 选项不满足各项概率大于0,B 选项满足要求.故选:B 14.C【详解】分析:由题意结合分层抽样的性质得到关于n 的方程,解方程即可求得最终结果.详解:由题意结合分层抽样的定义可得:251000140012001000n =++,解得:90n =.本题选择C 选项.点睛:进行分层抽样的相关计算时,常利用以下关系式巧解:(1)n N =样本容量该层抽取的个体数总体的个数该层的个体数;(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.15.D【分析】举出反例得到充分性和必要性均不成立.【详解】不妨设111,2a q =-=,则2311,24a a =-=-,满足123a a a <<,但{}n S 是严格减数列,充分性不成立,当111,2a q ==时,{}n S 是严格增数列,但123a a a >>,必要性不成立,故甲是乙的既非充分又非必要条件.故选:D 16.B【分析】根据给定条件,分析听到的三次回声情况确定几个时刻声音的路程,再列出等式求解即得.【详解】依题意,令声音传播速度为v ,1t 时刻,刚刚呐喊声音传播为0,2t 时刻听到第一次回声,声音的路程为2()-a c ,即从左焦点到左顶点再次回到左焦点,3t 时刻,声音的路程为2()a c +,即从左焦点到右顶点,又从右顶点回到左焦点,4t 时刻,声音的路程为4a ,即从左焦点反射到右焦点,再反射到左焦点,因此32,2()2()x t t a c a c vx =-+--=,43,42()y t t a a c vy =--+=,即4,22c vx a c vy =-=,则2a c y c x -=,即2a c y c x -=,整理得2a y xc x+=,所以椭圆的离心率为2c xa x y=+.故选:B【点睛】关键点点睛:利用椭圆几何性质,确定听到回声的时刻,回声的路程是解题的关键.17.(1)136【分析】(1)利用等体积法11A ABD D A AB V V --=,再根据条件,即可求出结果;(2)建立空间直角坐标系,求出平面ABD 与1ACB 的法向量,再利用面面角的向量法,即可求出结果.【详解】(1)因为1AA ⊥平面ABC ,又BC ⊂面ABC ,所以1AA BC ⊥,又AB BC ⊥,1AA AB A = ,1,AA AB ⊂面11ABB A ,所以CB ⊥面11ABB A ,因为1//CC 面11ABB A ,所以D 到面11ABB A 的距离即BC ,又111112122AA B S AB AA =⋅=⨯⨯= ,1BC =,所以1111133A ABD D A AB A AB V V S CB --=== .(2)如图,建立空间直角坐标系,因为1AB BC ==,12AA =,则1(0,0,0),(0,1,0),(1,0,0),(0,0,2),(1,0,1)B AC BD ,所以1(0,1,0),(1,0,1),(0,1,2),(1,1,0)BA BD AB AC ===-=-设平面ABD 的一个法向量为(,,)n x y z =,由1100BA n BD n ⎧⋅=⎪⎨⋅=⎪⎩ ,得到00y x z =⎧⎨+=⎩,取1x =,得到0,1y z ==-,所以(1,0,1)n =- ,设平面1ACB 的一个法向量为(,,)m a b c =,则由10AC m AB m ⎧⋅=⎪⎨⋅=⎪⎩,得到020a b b c -=⎧⎨-+=⎩,取2a =,则2,1b c ==,所以(2,2,1)m = ,设平面ABD 与1ACB 所成锐二面角为θ,则cos cos ,n mn m n m θ⋅====18.(1)表格见解析;(2)证明见解析;(3)证明见解析.【分析】(1)根据给定条件,结合“五点法”作图完善表格.(2)根据给定条件,利用复合函数求导法则计算即得.(3)根据给定条件,利用恒等式成立的充要条件推理即得.【详解】(1)“五点法”作函数[]sin ,0,2πy x x =∈的图象的5个关键点的横坐标为π3π0,,π,,2π22,所以表格如下:xπ2π3π22πsin x -01-0101sin x-1121(2)实数0a >且1a ≠,则ln ln e e xx a x a a ==,因此ln ln ()(e )e (ln )ln x x a x a x a x a a a '''==⋅=,所以()ln x x a a a '=.(3)212212133)())[()])(((x x x x x x x x x x x x x x =-----++32332121212312()()x x x x x x x x x x x x x x x x =+--+-++32123122331123()()x x x x x x x x x x x x x x x =-+++++-,依题意,3212312233112332()()x x x x x x x x x x x x ax bx x x x x c -+++-+++=++对任意实数x 恒成立,因此123123122331122331123123()a x x x x x x ab x x x x x x x x x x x x bc x x x x x x c=-++++=-⎧⎧⎪⎪=++⇔++=⎨⎨⎪⎪=-=-⎩⎩,所以等式32123()()()x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x ax x x x x x b x x x c ++=-⎧⎪++=⎨⎪=-⎩.19.(1)dy c x=+更适宜作为回归方程类型;(2)10ˆ100yx=-,399.5g /m .【分析】(1)根据题意,分别求得相关系数的值,结合10.449r ≈和20.996r ≈-,结合12r r <,即可得到结论.(2)(i )根据最小二乘法,求得回归系数,进而求得回归方程;(ii )当20x =时,结合回归方程,即可求得预报值.【详解】(1)因为y a bx =+的线性相关系数91)9()(0.44iix y r x y --==≈∑,dy c x=+的线性相关系数92(0.996iiu u y r y --≈-∑,因为12r r <,所以dy c x=+更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型.(2)依题意,992110ˆ()()1(.4010.14)i ii i iu u y u u yβ==----===-∑∑,则ˆˆ97.9(10)0.21100y u αβ=-=--⨯=,于是10ˆ10010100y u x=-=-,所以y 关于x 的回归方程为10ˆ100yx=-.当20x =时,金属含量的预报值为31010099.5g /m 20ˆy=-=.20.(1)证明见解析;(2))||(,p a ++∞;(3)证明见解析,(),0a -.【分析】(1)联立直线和抛物线方程,再利用韦达定理及数量积的坐标表示计算即得..(2)求出弦AB 的中点坐标及弦AB 的中垂线方程,进而求出n ,再结合判别式求解即得.(3)设出D 点的坐标,求出直线BD 的方程211121()y y y x x y x x +=---,借助(1)的信息,推理判断即得.【详解】(1)显然直线l 不垂直于坐标轴,设过点(),0M a 的直线l 的方程为x my a =+,由22y px x my a ⎧=⎨=+⎩消去x 得:2220y pmy pa --=,22Δ480p m pa =+>,则121222y y pm y y pa +=⎧⎨⋅=-⎩,所以22212121212222y y OA OB x x y y y y a pa p p⋅=+=⋅+=- 为定值.(2)设,A B 两点的中点坐标为()33,Q x y ,则21212322x x my my x a pm a ++==+=+,1232y y y pm +==,则()2,Q pm a pm +,即AB 的垂直平分线为()2y m x pm a pm =---+,令0y =,解得2n pm a p =++,显然22480p m pa ∆=+>,当0a >时,恒有220pm a +>成立,则n p a >+,当a<0时,2pm a a +>-,则n p a >-,所以n 的取值范围为)||(,p a ++∞.(3)由A 关于x 轴的对称点为D ,得()11,D x y -,则直线BD :211121()y y y x x y x x +=---,整理得:2112212121y y x y x yy x x x x x ++=---.又()()()1221211212122x y x y y my a y my a my y a y y +=+++=++422pam pam pam =-+=-.因此直线BD 为:212122pm pam y x x x x x =+--,即()212pmy x a x x =+-过定点(),0a -,所以直线BD 过定点(),0a -.【点睛】方法点睛:求解直线过定点问题常用方法如下:①“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;②“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;③求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.21.(1)48ln 333y x =-+;(2)答案见解析;(3)不存在,理由见解析.【分析】(1)利用导数求切线斜率,再求出切点坐标,点斜式写出切线方程即可.(2)利用导数探讨单调性,进而确定函数的极值点.(3)假设存在,利用导数,将等式化简,减少变量,从而可构造适当新函数,研究新函数的性质,即可判断.【详解】(1)当1a =时,2()ln(1),(2)ln 32x f x x x f =++-=,求导得14()1,(2)13f x x f x ''=+-=+,切线方程为4ln 3(2)3y x -=-,所以所求切线方程为48ln 333y x =-+.(2)函数2()ln(1)2x f x a x x =++-的定义域为(1,)-+∞,求导得21()111a x af x x x x -+'=+-=++,令()0f x '=,即210x a -+=,即21x a =-,①当1a ≥时,函数()y f x =在定义域内严格增,无极值点;②当01a <<时,当1x -<<或x >时,()0f x '>,当x <()0f x '<,函数()y f x =在(1,-和)+∞严格增,在(严格减,此时极大值点为③当0a ≤时,当1x -<<时,()0f x '<,当x >时,()0f x '>,函数()y f x =在(-严格减,在)+∞严格增的,所以当1a ≥时,函数()y f x =无极值点;当01a <<时,函数()y f x =极大值点为当0a ≤时,函数()y f x =.(3)假设存在定点(,)m n 满足条件,由000()()()2x mf x f x m n +'=-+得:000)(2()f x n x m f x m -+'=-,又点(,)m n 在曲线()f x 上,则2()ln(1)2mn f m a m m ==++,于是220000001[ln(1)ln(1)])()()(2a x m x m x m f x n x mx m+-++----=--000[ln(1)ln(1)]12a x m x mx m +-++=+--,而()11a f x x x '=+-+,于是000002()1=1222212x m x m x m a af x m x m +++'=+-+-++++,因此000ln(1)ln(1)22x m x m x m +-+=-++,变形得00012(1)11ln 1111x x m x m m +-++=++++,令01(0)1x t t m +=>+,则2(1)ln 1t t t -=+,令函数22()ln ,01t g t t t t -=->+,求导得22214(1)()0(1)(1)t g t t t t t '-=-=≥++,则()g t 在(0,)+∞单调递增,又(1)0g =,于是()0g t =只有唯一解1t =,即0111x m +=+,又0m x ≠,则1t ≠,故不存在定点(,)m n 满足条件.【点睛】结论点睛:函数y =f (x )是区间D 上的可导函数,则曲线y =f (x )在点00(,())x f x 0()x D ∈处的切线方程为:000()()()y f x f x x x '-=-.。

2023年重庆一中中考数学模拟试卷附参考答案

2023年重庆一中中考数学模拟试卷附参考答案

2023年重庆一中中考数学模拟试题一、选择题(本大题共10小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,请将答题卡上对应选项的代号涂黑.1.−3的相反数是A.3B.13C.−13D.−3 2.下列几何体中,俯视图是三角形的是3.a 2·a 3的运算结果正确的是A.a 2+a 3B.a 6C.a 5D.6a4.下列图象是函数图象的是5.如图,在平面直角坐标系中,已知A(6,4),B(2,3),D(3,2),△ABC 与△DEF 位似,原点O 是位似中心,则E 点的坐标是A.(1,2)B.(1, 32)C.(32,2)D.(32, 32) 6.下列说法正确的是A.代数式x+4π是分式 B.分式xy x−y 中x ,y 都扩大3倍,分式的值不变 C.分式x+1x 2+1是最简分式 D.分式x+1x−1有意义7.一辆汽车的速度(km/h)与时间(min)之间的变化关系如图所示,则下列说法正确的是A.时间是因变量,速度是自变量B.汽车在3~8min 时匀速行驶C.汽车在8~12min 时匀速行驶D.汽车最快的速度是10km/hB. D. B. A.C.D.8.如果m=3√2−1,那么m 的取值范围正确的是A.1<m <2B.2<m <3C.3<m <4D.4<m <59.如图,等腰直角三角形ABC 两腰与圆相切,底边BC 过圆心O 点,⊙O 的半径为1,则线段BD 的长为A.√2−1B.2−√2C.√2+1D.√2+210.已知a >b >0>c >d >e ,对多项式a −b −c −d −e 任意添加绝对值运算(不可添加为单个字母的绝对值或绝对值中含有绝对值的情况)后仍只含减法运算,称这种操作为“绝对领域”,例如:a −|b −c −d|−e ,a −|b −c|−|d −e|等,下列相关说法正确的个数是①一定存在一种“绝对领域”操作使得操作后的式子化简的结果为非负数;②一定存在一种“绝对领域”操作使得操作后的式子化简的结果与原式互为相反数; ③进行“绝对领域”操作后的式子化简的结果可能有11种结果.A.0B.1C.2D.3二、填空题(本大题共8个小题,每小题4分,共32分)请将每小题的答案直接填在答.题卡..中对应的横线上. 11.计算:sin30°−(1+π)0=_______.12.已知第一组数据:1,3,5,7的方差为S 12;第二组数据:6,6,6,6的方差为S 22;第三组数据:2023,2022,2021,2020的方差为S 32,则S 12,S 22,S 32的大小关系是_______.(用“<”连接)13.若y=(m+2)x |m|-3是关于x 的反比例函数,则m 的值为_______.7题图(min) 9题图 5题图14.有四张大小和背面完全相同的不透明卡片,正面分别印有“1”、 “2”、“3”、 “6”四个数字,将这四张卡片背面朝上洗匀,从中随机抽取两张卡片,所抽取的卡片正面上数字的积为6的概率是_______.15.如图,正方形ABCD 中,扇形ABC 与扇形BCD 的弧交于点E ,BC=1cm ,则图中阴影部分的面积为_______cm 2.(结果保留π)16.若关于y 的不等式组{y −1≥2y−13−12(y −a)>0无解,且关于x 的分式方程a x+1+1=x+a x−1的解为负数,则所有满足条件的整数a 的值之和是_______.17.如图,在△ABC 中,∠C=90°,AC=BC=5,点E ,F 分别为边AB 与BC 上两点,连接EF ,将△BEF 沿着EF 翻折,使得B 点落在AC 边上的D 处,AD=2,则EO 的值为_______.18.一个各位数字都不为0的四位正整数m ,若千位与个位数字相同,百位与十位数字 相同,则称这个数m 为“双胞蛋数”,将千位与百位数字交换,十位与个位数字交换,得到一个新的“双胞蛋数”m´,并规定F(m)=m−m ´11.则F(8228)=_______;若已知数m为“双胞蛋数”,且千位与百位数字互不相同,F(m)54是一个完全平方数,则满足条件的m 的最小值为_______. F AE B DOC 17题图15题图三、解答题(本大题共8个小题,19、20每小题8分,21-25每小题10分,26题12分,共78分)解答题时每小题须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.(1)y(4x −3y)+(x −2y)2 (2)( a+1a−1+1)÷2aa 2−120.如图,在矩形ABCD 中,点E 是边AD 上一点,连接CE ,且满足CE=BC.(1)用尺规完成以下基本作图:过点B 作CE 的垂线,垂足为F ;(保留作图痕迹,不写作法)(2)在(1)问所作的图形中,求证:AE=EF.证明:∵四边形ABCD 是矩形,∴①,AD=BC ,∠D=90°.∴∠DEC=∠ECB ,CE=AD.∵BF⊥CE,∴②,∴∠D=∠CFB.在△DCE 和△FBC 中:{∠D =∠CFB∠DEC =∠FCB ③∴△DCE≌△FBC(A AS),∴④∴AD-DE=CE −CF即AE=EF21.国家利益高于一切,国家安全人人有责,2023年4月15日是第八个全民国家安全教育日,某校开展了“树牢总体国家安全观,感悟新时代国家安全成就”的国安知识竞赛,现从该校七、八年级中各随机抽取20名学生的竞赛成绩(100分制)进行整理、A BD C E描述和分析(成绩用x表示,共分成四组:不合格0≤x<60,合格60≤x<80,良好80≤x<100,优秀x=100),下面给出了部分信息:七年级抽取的学生竞赛成绩在良好组的数据是:80,84,85,90,95,98八年级的学生竞赛成绩在良好组的数据是:80,82,84,86,86,90,94,98七年级抽取的学生竞赛成绩条形统计图七、八年级抽取的学生竞赛成绩的统计量根据以上信息,解答下列问题:(1)直接写出a,b的值;(2)根据上述数据,你认为该校七、八年级中哪个年级学生对“国安知识”掌握较好?请说明理由(写出一条理由即可);(3)该校七、八年级各有800人参加此次竞赛活动,估计参加此次竞赛活动成绩优秀的学生人数是多少?22.周末,小明和小红约着一起去公园跑步锻炼身体.若两人同时从A地出发,匀速跑向距离12000m处的B地,小明的跑步速度是小红跑步速度的1.2倍,那么小明比小红早5分钟到达B地.(1)求小明、小红的跑步速度;(2)若从A地到达B地后,小明以跑步形式继续前进到C地(整个过程不休息).据了解,在他从跑步开始前30分钟内,平均每分钟消耗热量10卡路里,超过30分钟后,每多跑步1分钟,平均每分钟消耗的热量就增加1卡路里,在整个锻炼过程中,小明共消耗2300卡路里的热量,小明从A地到C地锻炼共用多少分钟?23.长嘴壶茶艺表演是一项深受群众喜爱的民俗文化,所用到的长嘴壶更是历史悠久, 源远流长.如图是长嘴壶放置在水平桌面上,l 是水平桌面,测得AD=BC=4AE ,AB=30cm ,CD=22cm ,且CD∥AB,∠DAB=60°,壶嘴EF 与水平面的夹角为α(0°<α<90°).(参考数据:√2≈1.414,√3≈1.732,√6≈2.449)(1)如图,当壶嘴EF 与水平面的夹角为45°时,壶嘴口F 离桌面高度恰好为壶身高度的3倍,求壶嘴EF 的长度;(结果保留根号)(2)若长嘴壶放置在水平桌面上,为使得长嘴壶能够装满茶水,求EF 的取值范围.(结果保留两位小数)24.如图,在正方形ABCD 中,AD=4,动点F ,E 分别从点A ,B 出发,F 点沿着A→D→C 运动,到达C 点停止运动,点E 沿着B→A→D 运动,到达D 点停止运动,连接EC ,BF ,己知F 点的速度v F =1且BF⊥CE,令S △AEC =y 1,S △ABF =y 2,运动时间为t ,请回答下列问题:(1)请直接写出y 1,y 2与t 之间的函数关系式以及对应的t 的取值范围;(2)请写出函数y 1的一条性质;(3)在直角坐标系中画出y 1、y 2的图象;并根据图形直接写出当y 1≥y 2时t 的取值范围. B C DFEl25.如图1,抛物线y=a x 2+b x +c(a≠0)与x 轴相交于点A 、B(点B 在点A 左侧),与y 轴相交于点C(0,3),已知点A 坐标为(1,0),△ABC 面积为6.(1)求抛物线的解析式;(2)点P 是直线BC 上方抛物线上一动点,过点P 作直线BC 的垂线,垂足为点E ,过点P 作PF∥y 轴交BC 于点F ,求△PEF 周长的最大值及此时点P 的坐标;(3)如图2,将该抛物线向左平移2个单位长度得到新的抛物线y ´,平移后的抛物线与原抛物线相交于点D ,点M 为直线BC 上的一点,点N 是平面坐标系内一点,是否存在点M ,N ,使以点B ,D ,M ,N 为顶点的四边形为菱形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.26.如图,在△ABC 中,AB=AC=3,∠BAC=120°,点D 为直线AC 右上方一点,且满足∠ADC=6O °,连接BD.(1)如图1,若CD⊥AC,BD 交AC 于点O ,求CO 的长;图2 图1 A DC B EF(2)如图2,点E 为线段BD 上一点,连接EA ,EC ,且满足∠EAD=60°,试证明AD=CD+2AE ;(3)如图3,在(2)的条件下,以AC ,CD 为边构造平行四边形ACDF ,当AE+AF=2时,直接写出△ADF 的面积.参考答案图1D图2 A B C E D 图3 F D C B A E。

2024年浙江省嘉兴市海宁第一中学中考数学模拟试卷

2024年浙江省嘉兴市海宁第一中学中考数学模拟试卷

浙江省嘉兴市海宁一中2024年初中学业水平模拟测试数学试题卷卷I一、选择题(本题有10小题,每小题3分,共30分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.数1,01中,是负数的是()A.1B.0C D.-12.如图所示的几何体,它的主视图是()A.B.C.D.3.2023年12月27日,第58颗北斗卫星成功定点于距地球36000公里的同步轨道上,数据36000用科学记数法表示为()A.0.36×105B.3.6×105C.3.6×104D.36×1034.一个不透明的布袋里装有5个只有颜色不同的球,其中3个白球,2个红球.从布袋里任意摸出1个球,是白球的概率()A.45B.35C.25D.155.如图,△ABC与△DEF是位似三角形,点O为位似中心.OA=AD,则△ABC与△DEF的位似比为()A.1∶1B.2∶3C.1∶2D.1∶36.化简(-2a)3∙a=()A.-8a4B.-8a3C.-6a4D.-6a37.如图所示的△ABC,进行以下操作:①以A,B为圆心,大于12AB为半径作圆弧,相交点D,E;②以A,C为圆心,大于12AC为半径作圆弧,相交于点F,G.两直线DE,FG相交于△ABC外一点P,且分别交BC点M,N.若∠MAN=50°,则∠MPN等于()A.60°B.65°C.70°D.75°8.已知y是关于x的一次函数,下表列出了部分对应值,则m的值为()A.-1B.12C.0D.129.如图1,在矩形ABCD中,点E在BC上,连结AE,过点D作DF⊥AE于点F.设AE=x,DF=y,已知x,y满足反比例函数y=kx(k>0,x>0),其图象如图2所示,则矩形ABCD的面积为()图1图2A.B.9C.10D.10.如图,量筒的液面A-C-B呈凹形,近似看成圆弧,读数时视线要与液面相切于最低点C(即弧中点).小温想探究仰视、俯视对读数的影响,当他俯视点C时,记录量筒上点D的高度为37mm;仰视点C(点E,C,B在同一直线),记录量筒上点E的高度为23mm,若点D在液面圆弧所在圆上,量筒直径为10mm,则平视点C,点C的高度为()mm.A.30-B.37-C.23+D.23+卷Ⅱ二、填空题(本题有6小题,每小题3分,共18分)11.分解因式:m 2-4= .12.某校九(1)班同学每周课外阅读时间的频数直方图如图所示(每组含前一个边界值,不含后一个边界值).由图可知,该班每周阅读时间不低于4小时的学生一共有 人.13.已知扇形的圆心角为120°,它的半径为2,则扇形的面积为 (计算结果保留π).14.不等式2(x -1)>x +3的解为 .15.已知二次函数y =x 2+bx +c (b ,c 为常数且b >0,c <0),当-5≤x ≤0时,-11≤y ≤5,则c 的值为 . 16.如图1是古塔建筑中的方圆设计,寓意天圆地方.据古塔示意图,以塔底座宽AB 为边作正方形ABCD (图2),塔高AF =AC ,分别以点A ,B 为圆心,AF 为半径作圆弧,交于点G .正方形ABCD 内部由四个全等的直角三角形和一个小正方形组成,若点G 落在AM 的延长线上,连接GP 交DQ 于点T ,则GT GP的值为 .图1 图2三、解答题(本题有8小题,共72分)17.(本题8分)(10(1)|5|---.(2)计算:223221a a a a a a --+--. 18.(本题8分)如图,在△ABC 中,AB =AC ,AD 是BC 边上的高线,点E ,F 分别在AC ,CD 上,且∠1=∠2(1)求证:AD∥EF.(2)当CE∶AE=3∶5,CF=6时,求BC的长.19.(本题8分)如图,是3个相同大小的6×6的方格,图1中放置一副七巧板组成的正方形图案,其顶点均在格点上,称之为格点图形.利用七巧板中的3种图形,按下列要求作出符合条件的格点图形.(1)在图2中,拼成一个轴对称但不是中心对称的图形.(2)在图3中,拼成一个中心对称但不是轴对称的图形.图1图2图320.(本题8分)某校组织的知识竞赛中,每班参加的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次为100分,90分,80分,70分,学校将九年级一班和九年级二班的成绩整理并绘制统计图,如图所示.(1)分别求出九年级一班成绩的平均数、中位数和众数;(2)规定成绩在90分以上为优秀(含90分),已知九年级二班成绩的平均数为87.6分,中位数为80分,众数为100分,优秀率为48%,请你选择两个统计量综合评价两个班的成绩.21.(本题8分)汽车刹车后,还会继续向前滑行一段距离,这段距离称为“刹车距离”.刹车距离y(m)与刹车时间的速度x(m/s)有以下关系式:y=ax2+bx(a,b为常数,且a≠0).某车辆测试结果如下:当车速为10m/s时,刹车距离y为3m;当车速为15m/s,刹车距离y为7.5m.(1)求出a,b的值;(2)行车记录仪记录了该车行驶一段路程的过程,汽车在刹车前匀速行驶了20s,然后刹车直至停下.测得刹车距离为5m,问:记录仪中汽车行驶路程为多少米?22.(本题10分)在Y ABCD中,E,F分别是AB,CD的中点,EG⊥BD于点G,FH⊥BD于点H,连接GF,EH.(1)求证:四边形EHFG是平行四边形.(2)当∠ABD=45°,tan∠EHG=14,EG=1时,求AD的长.23.(本题10分)综合与实践:测算校门所在斜坡的坡度.【背景】如图1,某学校校门在一道斜坡上,该校兴趣小组想要测量斜坡的坡度.图1图2【素材1】校门前的斜坡上铺着相同的长方形石砖,如图2,从测量杆AB到校门所在位置DE在斜坡上有15块地砖.【素材2】在点A处测得仰角tan∠1=19,俯角tan∠2=524;在点B处直立一面镜子,光线BD反射至斜坡CE的点N处,测得点B的仰角tan∠3=15;测量杆上AB∶BC=5∶8,斜坡CE上点N所在位置恰好是第9块地砖右边线.【讨论】只需要在∠1,∠2,∠3中选择两个角,再通过计算,可得CE的坡度.24.(本题12分)如图,在Rt△ABC中,∠ABC=90°,BC=6,AB=8,点D在AC上,过点B,D,C所作的弧为优弧BDC,交AB于点E,作DF//BC交BDC于点F,BF与CE,CD分别交于点G,H,连接DE.(1)求证:点H 是AC 的中点.(2)当»BE,»ED ,»DF 中的两段相等时,求DE 的长. (3)记△ADE 的面积为1S ,△CDF 的面积为2S ,若122596S S ,求¼BDC 所在圆的半径.。

小升初数学考试题(含答案)

小升初数学考试题(含答案)

小升初数学考试题(含答案)小升初数学模拟试题一.填空题(共13小题)1.二千万、三万和七个十组成的数是xxxxxxxx,用“四舍五入”法省略万位后面的尾数是xxxxxxxx。

2.在数轴上,所有的正数都在0的右边,所有的负数都在0的左边,即所有的正数都比所有的负数大。

3.看图,A岛在雷达站的偏度方向上,距离雷达站5km。

4.46人去划船,共租12只船,刚好都坐满。

大船每船坐5人,小船每船坐3人。

租6只大船,6只小船。

5.三个数的平均数是40,其中的两个数分别是20和30,另一个数是50.6.与0.8相比最简单的整数比是4:5,它们的比值是0.8.7.把红、黄、蓝三种颜色的球各8个放到一个袋子里。

至少要取4个球,才可以保证取到两个颜色相同的球;至少要取13个球,才能保证取到两个颜色不同的球。

8.16÷0.04=400=400%。

9.6吨90千克=6090千克;4.05升=4050毫升。

10.把10米长的丝带平均分成5段,每段是全长的1/5,每段长2米。

11.一个正方体的棱长为24分米,这个正方体的表面积是1728平方分米,体积是立方分米。

12.2.83里面有个0.01,在加上另一个0.01就是2.85.13.把0.8、2/3、83%按从大到小的顺序排列,83%、0.8、2/3.二.判断题(共5小题)14.+1和-1之间只有一个数。

(判断错误)15.人的年龄和体重成正比例。

(判断错误)16.任何假分数的倒数都小于1.(判断正确)17.在六年级的数学测验中,及格的人数是不及格人数的19倍,六年级数学测验的及格率是95%。

(判断错误)18.一瓶糖水共重400克,其中糖有20克,这瓶糖水的含糖率是5%。

(判断正确)三.选择题(共5小题)19.一根72厘米长的铁丝围成一个长方形,长与宽的比是5:4.这个长方形的面积是540平方厘米。

(选C)20.依次掷两枚完全相同的硬币,出现“两个正面朝上”和“一正一反”这两种情况的可能性相比,可能性相等。

中考数学模拟试卷 (13)

中考数学模拟试卷 (13)

2019年四川省巴中市恩阳区中考数学一模试卷一.选择题(共10小题,满分30分,每小题3分)1.如果|a|=a,下列各式成立的是()A.a>0B.a<0C.a≥0D.a≤02.下列计算正确的是()A.=﹣4B.(a2)3=a5C.a•a3=a4D.2a﹣a=23.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人4.下图中是中心对称图形而不是轴对称图形的共有()A.1个B.2个C.3个D.4个5.将不等式组的解集在数轴上表示出来,应是()A.B.C.D.6.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为()A.2+B.2+2C.4D.37.甲、乙两人进行射击比赛,在相同条件下各射击10次,他们的平均成绩一样,而他们的方差分别是S甲2=1.8,S乙2=0.7,则成绩比较稳定的是()A.甲稳定B.乙稳定C.一样稳定D.无法比较8.如图,在△ABC中,CD⊥AB,且CD2=AD•DB,AE平分∠CAB交CD于F,∠EAB=∠B,CN =BE.①CF=BN;②∠ACB=90°;③FN∥AB;④AD2=DF•DC.则下列结论正确的是()A .①②④B .②③④C .①②③④D .①③9.如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =2,则阴影部分图形的面积为( )A .4πB .2πC .πD .10.二次函数y =﹣(x ﹣1)2+3图象的对称轴是( )A ..直线x =1B .直线x =﹣1C .直线x =3D .直线x =﹣3二.填空题(共10小题,满分30分,每小题3分)11.分解因式:4m 2﹣16n 2= .12.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E = 度.13.要使代数式有意义,x 的取值范围是 .14.一个多边形的每一个外角为30°,那么这个多边形的边数为 .15.如图,△ABC 中,点E 是BC 上的一点,CE =2BE ,点D 是AC 中点,若S △ABC =12,则S △ADF ﹣S △BEF = .16.如图,点D是等边三角形ABC内一点,△ABD绕点A逆时针旋转△ACE的位置,则∠AED =.17.函数y=k(x﹣1)的图象向左平移一个单位后与反比例函数y=的图象的交点为A、B,若A 点坐标为(1,2),则B点的坐标为.18.设a、b是一元二次方程x2+2x﹣7=0的两个根,则a2+3a+b=.19.如图,直线,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O 为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A4的坐标为,点A n.20.如图,直线l与x轴、y轴分别交于点A、B,且OB=4,∠ABO=30°,一个半径为1的⊙C,圆心C从点(0,1)开始沿y轴向下运动,当⊙C与直线l相切时,⊙C运动的距离是三.解答题(共11小题,满分90分)21.(6分)计算:﹣|1﹣|﹣sin30°+2﹣1.22.(6分)如图,在一块长为a,宽为2b的长方形铁皮中,以2b为直径分别剪掉两个半圆,(1)求剩下铁皮的面积(用含a,b的式子表示);(2)当a=4,b=1时,求剩下铁皮的面积是多少?(π取3.14)23.(6分)对于实数m、n,定义一种运算“※”为:m※n=mn+n.(1)求2※5与2※(﹣5)的值;(2)如果关于x的方程x※(a※x)=﹣有两个相等的实数根,求实数a的值.24.(6分)已知,如图,菱形ABCD中,E、F分别是CD、CB上的点,且CE=CF;(1)求证:△ABE≌△ADF.(2)若菱形ABCD中,AB=4,∠C=120°,∠EAF=60°,求菱形ABCD的面积.25.(10分)2015年2月27日,在中央全面深化改革领导小组第十次会议上,审议通过了《中国足球改革总体方案》,体制改革、联赛改革、校园足球等成为改革的亮点.在联赛方面,作为国内最高水平的联赛﹣﹣中国足球超级联赛今年已经进入第12个年头,中超联赛已经引起了世界的关注.图9是某一年截止倒数第二轮比赛各队的积分统计图.(1)根据图,请计算该年有支中超球队参赛;(2)补全图一中的条形统计图;(3)根据足球比赛规则,胜一场得3分,平一场得1分,负一场得0分,最后得分最高者为冠军.倒数第二轮比赛后积分位于前4名的分别是A队49分,B队49分,C队48分,D队45分.在最后一轮的比赛中,他们分别和第4名以后的球队进行比赛,已知在已经结束的一场比赛中,A 队和对手打平.请用列表或者画树状图的方法,计算C队夺得冠军的概率是多少?26.(6分)在如图所示的方格中,每个小正方形的边长为1,点A、B、C在方格纸中小正方形的顶点上.(1)按下列要求画图:①过点A画BC的平行线DF;②过点C画BC的垂线MN;③将△ABC绕A点顺时针旋转90°.(2)计算△ABC的面积.27.(10分)某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.(1)求A、B型号衣服进价各是多少元?(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.28.(10分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.29.(8分)如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进60米到达点E(点E在线段AB上),测得∠DEB=60°,求河的宽度.30.(10分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC =∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.31.(12分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a <b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.2019年四川省巴中市恩阳区中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】由条件可知a是绝对值等于本身的数,可知a为0或正数,可得出答案.【解答】解:∵|a|=a,∴a为绝对值等于本身的数,∴a≥0,故选:C.【点评】本题主要考查绝对值的计算,掌握绝对值等于它本身的数有0和正数(即非负数)是解题的关键.2.【分析】根据=|a|;幂的乘方法则:底数不变,指数相乘;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变分别进行分析即可.【解答】解:A、=4,故原题计算错误;B、(a2)3=a6,故原题计算错误;C、a•a3=a4,故原题计算正确;D、2a﹣a=a,故原题计算错误;故选:C.【点评】此题主要考查了幂的乘方、同底数幂的乘法、合并同类项,关键是掌握各知识点,记住计算法则.3.【分析】根据科学记数法的定义及表示方法进行解答即可.【解答】解:∵530060是6位数,∴10的指数应是5,故选:B.【点评】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.4.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图形,既是中心对称图形,又是轴对称图形,故错误;第二个图形,是轴对称图形,不是中心对称图形,故错误;第三个图形,是轴对称图形,不是中心对称图形,故错误;第四、五个是中心对称图形而不是轴对称图形,故正确.故选:B.【点评】掌握好中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180度后与原图重合.5.【分析】根据一元一次不等式组的解法解出不等式组,根据小于等于或大于等于用实心圆点在数轴上表示解答.【解答】解:不等式组的解集为:1≤x≤3,故选:A.【点评】本题考查的是解一元一此不等式组及在数轴上表示一元一次不等式组的解集,在解答此类题目时要注意实心圆点与空心圆点的区别.6.【分析】根据线段垂直平分线的性质得到BE=AE,可得AE+EC=BC=2,即可得到结论【解答】解:∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选:B.【点评】本题考查了线段垂直平分线性质,等腰三角形的性质等知识点,主要考查运用性质进行推理的能力.7.【分析】根据方差的定义,方差越小数据越稳定.【解答】解:∵S甲2=1.8,S乙2=0.7,∴S甲2>S乙2,∴成绩比较稳定的是乙;故选:B.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.【分析】根据已知条件可证△ADC∽△CDB,得出∠ACB=90°.根据等量关系及等腰三角形的性质得到CF=BN.根据同位角相等,证明FN∥AB.证明△ADF∽△CDA,根据相似三角形的性质得出AD2=DF•DC.【解答】解:①∵AE平分∠CAB∴∠CAE=∠DAF,∴△CAE∽△DAF,∴∠AFD=∠AEC,∴∠CFE=∠AEC,∴CF=CE,∵CN=BE,∴CE=BN,∴CF=BN,故本选项正确;②∵CD⊥AB,∴∠ADC=∠CDB=90°,∵CD2=AD•DB,∴,∴△ADC∽△CDB,∴∠ACD=∠B,∴∠ACB=90°,故本选项正确;③∵∠EAB=∠B,∴EA=EB,易知:∠ACF=∠ABC=∠EAB=∠EAC,∴FA=FC,易证:CF=CE,∴CF=AF=CE,∵FA=FC=BN,EA=EB,∴EF=CE,∴∵∠FEN=∠AEB,∴△EFN∽△EAB,∴∠EFN=∠EAB,∴FN∥AB,故本选项正确;④易证△ADF∽△CDA,∴AD2=DF•DC,故本选项正确;故选:C.【点评】本题综合考查了相似三角形的判定和性质,平行线的判定,等腰三角形的性质等知识点.9.【分析】根据垂径定理求得CE=ED=;然后由圆周角定理知∠COE=60°.然后通过解直角三角形求得线段OC,求出扇形COB面积,即可得出答案.【解答】解:∵AB是⊙O的直径,弦CD⊥AB,CD=2,∴CE=CD=,∠CEO=90°,∵∠CDB=30°,∴∠COB=2∠CDB=60°,∴OC==2,==,∴阴影部分的面积S=S扇形COB故选:D.【点评】本题考查了垂径定理、解直角三角形,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键.10.【分析】直接根据二次函数的顶点式进行解答即可.【解答】解:二次函数y=﹣(x﹣1)2+3图象的对称轴是直线x=1,故选:A.【点评】本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.二.填空题(共10小题,满分30分,每小题3分)11.【分析】原式提取4后,利用平方差公式分解即可.【解答】解:原式=4(m+2n)(m﹣2n).故答案为:4(m+2n)(m﹣2n)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.【分析】设∠EPC=2x,∠EBA=2y,根据角平分线的性质得到∠CPF=∠EPF=x,∠EBF=∠FBA=y,根据外角的性质得到∠1=∠F+∠ABF=42°+y,∠2=∠EBA+∠E=2y+∠E,由平行线的性质得到∠1=∠CPF=x,∠2=∠EPC=2x,于是得到方程2y+∠E=2(42°+y),即可得到结论.【解答】解:设∠EPC=2x,∠EBA=2y,∵∠EBA、∠EPC的角平分线交于点F∴∠CPF=∠EPF=x,∠EBF=∠FBA=y,∵∠1=∠F+∠ABF=40°+y,∠2=∠EBA+∠E=2y+∠E,∵AB∥CD,∴∠1=∠CPF=x,∠2=∠EPC=2x,∴∠2=2∠1,∴2y+∠E=2(40°+y),∴∠E=80°.故答案为:80.【点评】本题考查了平行线的性质以及三角形的外角的性质:三角形的外角等于两个不相邻的内角的和,正确设未知数是关键.13.【分析】根据二次根式有意义的条件可得x≥0,根据分式有意义的条件可得x﹣1≠0,再解即可【解答】解:由题意得:x≥0,且x﹣1≠0,解得:x≥0且x≠1,故答案为:x≥0且x≠1.【点评】此题主要考查了二次根式有意义的条件和分式有意义的条件,关键是掌握分式有意义,分母不为0;二次根式的被开方数是非负数.14.【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360°,利用360°除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.【点评】根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.15.【分析】本题需先分别求出S △ABD ,S △ABE 再根据S △ADF ﹣S △BEF =S △ABD ﹣S △ABE 即可求出结果.【解答】解:∵点D 是AC 的中点,∴AD =AC ,∵S △ABC =12,∴S △ABD =S △ABC =×12=6.∵EC =2BE ,S △ABC =12,∴S △ABE =S △ABC =×12=4,∵S △ABD ﹣S △ABE =(S △ADF +S △ABF )﹣(S △ABF +S △BEF )=S △ADF ﹣S △BEF ,即S △ADF ﹣S △BEF =S △ABD ﹣S △ABE =6﹣4=2.故答案为:2.【点评】本题考查三角形的面积,关键知道当高相等时,面积等于底边的比,根据此可求出三角形的面积,然后求出差.16.【分析】先利用等边三角形的性质得到AB =AC ,∠BAC =60°,再根据旋转的性质得到AE =AD ,∠EAD =∠CAB =60°,则可判断△AED 为等边三角形,然后利用等边三角形的性质 可得到∠AED 的度数.【解答】解:∵△ABC 为等边三角形,∴AB =AC ,∠BAC =60°,∵△ABD 绕点A 逆时针旋转△ACE 的位置,∴AE =AD ,∠EAD =∠CAB =60°,∴△AED为等边三角形,∴∠AED=60°.故答案为60°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质.17.【分析】应先得到一次函数平移后的函数解析式,进而判断与反比例函数的交点.【解答】解:y=k(x﹣1)的图象向左平移一个单位为y=kx,为正比例函数,∵正比例函数与反比例函数的交点关于原点对称,A点坐标为(1,2),∴另一交点坐标为(﹣1,﹣2).故答案为:(﹣1,﹣2).【点评】用到的知识点为:一次函数y=kx+b平移规律:“左加右减”,即向左(右)移几个单位就加(减)几个单位;正比例函数与反比例函数的交点关于原点对称.18.【分析】根据根与系数的关系可知a+b=﹣2,又知a是方程的根,所以可得a2+2a﹣7=0,最后可将a2+3a+b变成a2+2a+a+b,最终可得答案.【解答】解:∵设a、b是一元二次方程x2+2x﹣7=0的两个根,∴a+b=﹣2,∵a是原方程的根,∴a2+2a﹣7=0,即a2+2a=7,∴a2+3a+b=a2+2a+a+b=7﹣2=5,故答案为:5.【点评】本题主要考查了根与系数的关系,解题的关键是把a2+3a+b转化为a2+2a+a+b的形式,结合根与系数的关系以及一元二次方程的解即可解答.19.【分析】由直线解析式求出B1点的坐标,解直角三角形得出∠B1OA1=30°,由此可发现,OA2=OB1=OA1÷cos30°=OA1,同理OA3=OA2=()2OA1,OA4=OA3=()3OA1,…,由此得出一般规律.【解答】解:由A1坐标为(1,0),可知OA1=1,把x=1代入直线y=x中,得y=,即A1B1=,tan∠B1OA1==,所以,∠B1OA1=30°,则OA2=OB1=OA1÷cos30°=OA1=,OA3=OA2=()2,OA4=OA3=()3,故点A4的坐标为(,0),点A n(()n﹣1,0).故答案为:(,0),(()n﹣1,0).【点评】本题考查了一次函数的综合运用.关键是由直线解析式求出直线与x轴正方向的夹角为30°,再依次求OA2,OA3,OA4,…的长,得出一般规律.20.【分析】设第一次相切的切点为E,第二次相切的切点为F,连接EC′,FC″,利用勾股定理即可解决问题;【解答】解:设第一次相切的切点为E,第二次相切的切点为F,连接EC′,FC″,在Rt△BEC′中,∠ABC=30°,EC′=1,∴BC′=2EC′=2,∵BC=5,∴CC′=3,同法可得CC″=7,故答案为3或7.【点评】本题考查切线的性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,注意一题多解.三.解答题(共11小题,满分90分)21.【分析】原式利用二次根式性质,绝对值的代数意义,特殊角的三角函数值,以及负整数指数幂法则计算即可求出值.【解答】解:原式=3﹣+1﹣+=2+1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.【分析】根据长方形与圆形的面积即可求出阴影部分的面积,然后代入a、b的值即可求出答案.【解答】解:(1)长方形的面积为:a×2b=2ab,两个半圆的面积为:π×b2=πb2,∴阴影部分面积为:2ab﹣πb2(2)当a=4,b=1时,∴2ab﹣πb2=2×4×1﹣3.14×1=4.86【点评】本题考查列代数式,涉及代入求值,有理数运算等知识.23.【分析】(1)根据新运算“※”的运算公式进行运算即可得出结论;(2)根据新运算“※”的运算公式将方程进行变形,再根据方程有两个相等的实数根结合根的判别式,即可得出关于a的一元一次不等式及一元二次方程,解之即可得出结论.【解答】解:(1)2※5=2×5+5=15;2※(﹣5)=2×(﹣5)+(﹣5)=﹣15.(2)x ※(a ※x )=x ※[(a +1)x ]=x (x +1)(a +1)=﹣,整理得:4(a +1)x 2+4(a +1)x +1=0.∵关于x 的方程x ※(a ※x )=﹣有两个相等的实数根, ∴,∴a =0. 【点评】本题考查了实数的运算、根的判别式以及解一元一次不等式,解题的关键是:(1)根据新运算“※”的运算公式进行运算;(2)由原方程有两个相等的实数根,找出关于a 的一元一次不等式及一元二次方程.24.【分析】(1)根据SAS 即可判断出△ABE ≌△ADF .(2)连接AC ,则可将菱形分成两个全等的等边三角形,从而根据AB =4可求出面积.【解答】证明:(1)∵四边形ABCD 是菱形,∴AB =AD ,BC =CD ,∠B =∠D ,∵CE =CF ,∴BE =DF ,在△ABE 与△ADF 中, ∵,∴△ABE ≌△ADF (SAS )(2)连接AC ,∵∠C =120°,∴可得△ABC 和△ACD 为两个全等的等边三角形,又∵AB =4,S △ABC =S △A ,DC =4,∴S 菱形ABCD =.【点评】本题考查了菱形的性质及全等三角形的判定,难度一般,解答本题的关键是根据题意条件得出证明结论需要的条件.25.【分析】根据题意列表得出A、B、C、D四个队与第4名以后的球队进行比赛所有得分结果,由表格中体现的所有情况,选出符合题意C队获胜的情况的情况总数,从而估算出C队获胜的概率.【解答】解:(1)4÷25%=16(支),答:该年有16支中超球队参赛;故答案为:16;(2)积分为39.5﹣44.5的球队为16﹣1﹣3﹣6﹣4=2(支),补全条形统计图如图所示;(3)依题意列表格:由表格得到共有如下27种比赛积分结果:(50,52,51,48);(50,52,51,46);(50,52,51,45);(50,52,49,48);(50,52,49,46);(50,52,49,45);(50,52,48,48);(50,52,48,46);(50,52,48,45);(50,50,51,48);(50,50,51,46);(50,50,51,45);(50,50,49,48);(50,50,49,46);(50,50,49,45);(50,50,48,48);(50,50,48,46);(50,50,48,45);(50,49,51,48);(50,49,51,46);(50,49,51,45);(50,49,49,48);(50,49,49,46);(50,49,49,45);(50,49,48,48);(50,49,48,46);(50,49,48,45);其中已知A队打平,C队获胜的情况恰有6种,==.故P(C队获胜)【点评】本题考察了限定组合求概率的方法,较为复杂.26.【分析】(1)利用BC为小方格正方形的对角线,画DF∥BC,MN⊥BC,利用网格特点和旋转的性质画出B、C旋转后的对应点B′、C′,从而得到△AB′C′;(2)利用三角形面积公式计算.【解答】解:(1)如图,DF、MN、△AB′C′为所作;(2)△ABC的面积=×2×1=1.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.27.【分析】(1)等量关系为:A种型号衣服9件×进价+B种型号衣服10件×进价=1810,A种型号衣服12件×进价+B种型号衣服8件×进价=1880;(2)关键描述语是:获利不少于699元,且A型号衣服不多于28件.关系式为:18×A型件数+30×B型件数≥699,A型号衣服件数≤28.【解答】解:(1)设A种型号的衣服每件x元,B种型号的衣服y元,则:,解之得.答:A 种型号的衣服每件90元,B 种型号的衣服100元;(2)设B 型号衣服购进m 件,则A 型号衣服购进(2m +4)件, 可得:, 解之得, ∵m 为正整数,∴m =10、11、12,2m +4=24、26、28.答:有三种进货方案:(1)B 型号衣服购买10件,A 型号衣服购进24件;(2)B 型号衣服购买11件,A 型号衣服购进26件;(3)B 型号衣服购买12件,A 型号衣服购进28件.【点评】解决本题的关键是读懂题意,找到符合题意的不等关系式组,及方程组.28.【分析】(1)把点A 坐标分别代入反比例函数y =,一次函数y =x +b ,求出k 、b 的值,再把点B 的坐标代入反比例函数解析式求出n 的值,即可得出答案;(2)求出直线AB 与y 轴的交点C 的坐标,分别求出△ACO 和△BOC 的面积,然后相加即可; (3)根据A 、B 的坐标结合图象即可得出答案.【解答】解:(1)把A 点(1,4)分别代入反比例函数y =,一次函数y =x +b ,得k =1×4,1+b =4,解得k =4,b =3,∵点B (﹣4,n )也在反比例函数y =的图象上,∴n ==﹣1;(2)如图,设直线y =x +3与y 轴的交点为C ,∵当x =0时,y =3,∴C (0,3),∴S △AOB =S △AOC +S △BOC =×3×1+×3×4=7.5;(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.【点评】本题考查了一次函数和反比例函数的交点问题,用待定系数法求函数的解析式,三角形的面积,一次函数的图象等知识点,题目具有一定的代表性,是一道比较好的题目,用了数形结合思想.29.【分析】根据题意中的数据和锐角三角函数可以解答本题.【解答】解:由题意可得,tan∠DAB=,tan,∠CAB=90°,∠DAB=30°,AE=60米,∴=60,解得,DB=30米,即河的宽度是30米.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用锐角三角函数解答.30.【分析】(1)连接OB,由垂径定理的推论得出BE=DE,OE⊥BD,=,由圆周角定理得出∠BOE=∠A,证出∠OBE+∠DBC=90°,得出∠OBC=90°即可;(2)由勾股定理求出OC,由△OBC的面积求出BE,即可得出弦BD的长.【解答】(1)证明:连接OB,如图所示:∵E是弦BD的中点,∴BE=DE,OE⊥BD,=,∴∠BOE=∠A,∠OBE+∠BOE=90°,∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切线;(2)解:∵OB=6,BC=8,BC⊥OB,∴OC==10,∵△OBC的面积=OC•BE=OB•BC,∴BE===4.8,∴BD=2BE=9.6,即弦BD的长为9.6.【点评】本题考查了切线的判定、垂径定理的推论、圆周角定理、勾股定理、三角形面积的计算;熟练掌握垂径定理的推论和圆周角定理是解决问题的关键.31.【分析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N 的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m ,解得m =﹣2,∴y =2x ﹣2, 则,得ax 2+(a ﹣2)x ﹣2a +2=0,∴(x ﹣1)(ax +2a ﹣2)=0,解得x =1或x =﹣2,∴N 点坐标为(﹣2,﹣6),∵a <b ,即a <﹣2a ,∴a <0,如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为x =﹣=﹣,∴E (﹣,﹣3),∵M (1,0),N (﹣2,﹣6),设△DMN 的面积为S ,∴S =S △DEN +S △DEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=, (3)当a =﹣1时,抛物线的解析式为:y =﹣x 2﹣x +2=﹣(x +)2+, 有,﹣x 2﹣x +2=﹣2x ,解得:x 1=2,x 2=﹣1,∴G (﹣1,2),∵点G 、H 关于原点对称,∴H (1,﹣2),设直线GH 平移后的解析式为:y =﹣2x +t ,﹣x 2﹣x +2=﹣2x +t ,x2﹣x﹣2+t=0,△=1﹣4(t﹣2)=0,t=,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.北师大版九年级数学上册期中测试题一、选择题(本大题共10小题,每小题3分,共30分) 1.随机掷两枚硬币,落地后全部正面朝上的概率是 A.1 B.12 C.13 D.14 2. 关于方程x 2-2=0的理解错误的是 A.这个方程是一元二次方程 B.方程的解C.这个方程可以化成一元二次方程的一般形式D.这个方程可以用公式法求解 3.下列说法正确的个数是 ①菱形的对角线相等 ②对角线互相垂直的四边形是菱形; ③有两个角是直角的四边形是矩形 ④正方形既是菱形又是矩形 ⑤矩形的对角线相等且互相垂直平分 A.1 B.2 C.3 D.4 4.方程x 2-3x+6=0的根的情况是 A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.不能确定 5.如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..果.下面有三个推断:①某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则“钉尖向上”的频率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖向上"”的频率一定是0.620.其中合理的是 A.①② B.②③ C.①③ D.①②③ 6.将一张正方形纸片按如图所示步骤①②沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是 7.现有三张质地大小完全相同的卡片,上面分别标有数字-2,-1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,记下数字后放回,洗匀,再任意抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是 A.23 B.12 C.13 D.49 8.如图,在菱形ABCD 中,AB =13,对角线AC =10,若过点A 作乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..AE ⊥BC 垂足为E ,则AE 的长为 A.8 B.6013 C.12013 D.24013 9.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =3,BC =10,则OB 的长为 A.5 B.4 C.342 D.34 10.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG:②GB =2AG:③3∠GDE =45°④S △BEF =725,在以上4个结论中,正确的有 A.1个 B.2个 C.3个 D.4个 二、填空题(本题共6小题,每小题4分,共24分) 11.将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..拌均匀.随机摸出一球不放回,再随机摸出球,两次摸出的球上的汉字能组成“柠幪”的概率是________. 12.如图,菱形ABCD 中,∠ABC =2∠A ,若对角线BD =3,则菱形ABCD 的周长为________. 13.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字记为P ,再随机摸出一张卡片,其数字记为q ,则关于的方程x 2+px+q =0有实数根的概率是________. 14.某种油菜籽在相同条件下的发芽试验结果如下: 由此可以估计油菜籽发芽的概率约为________.(精确到0.1) 15.一个两位数,十位数字比个位数字大3,而这两个数字之积等于这个两位数的27,若设个位数字为x ,则列出的方程为________. 16.如图,已知正方形ABCD 的边长为4,点E ,F 分別在AD ,DC 乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..上,AE =DF =1,BE 与AF 相交于点G ,点为BF 的中点,连接GH ,则GH 的长为________. 三、解答题(本题共7小题,共66分) 17.(8分)解方程: (1)2x 2-4x+1=0 (2)(x+8)(x+1)=-12 18.(8分)甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某数字,否则重转 (1)请用画树状图法或列表法列出所有可能的结果; (2)若指针所指的两个数字都是方程x2-5x+6=0的解,则甲获胜 若指针所指的两个数字都不是方程x2-5x+6=0的解,则乙获 胜.问他们两人谁获胜的概率大?请分析说明乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..。

人教部编版七年级数学上册期末测试题 (13)

人教部编版七年级数学上册期末测试题 (13)

河南省淅川县大石桥乡2017-2018学年七年级上期末模拟数学试卷一.单选题(共10题;共30分)1.化简的结果是()A. 3B. ﹣3 C. ﹣4 D. 242.“情系玉树,大爱无疆——抗震救灾大型募捐活动”4月20日晚在中央电视台1号演播大厅举行。

据统计,这台募捐晚会共募得善款21.75亿元人民币,约合每秒钟筹集善款16万元。

21.75亿元用科学记数法可以表示为A. 21.75×108B. 2.175×108C. 21.75×109D. 2.175×1093.如图所示的立方体,如果把它展开,可以是下列图形中的()A. B.C. D.4.定义一种运算☆,其规则为a☆b=,根据这个规则,计算2☆3的值是()A. B.C.5 D. 65.规定一种新的运算x⊗y=x﹣y2,则﹣2⊗3等于()A. -11B. -7C. -8D. 256.下列计算正确的是()A. a2•a3=a6B. (x3)2=x6C. 3m+2n=5mnD. y3•y3=y7.计算(-2)×3的结果是()A. -6B.-1 C. 1D. 68.某市一天的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高()A. ﹣10℃B. ﹣6℃ C. 10℃ D. 6℃9.减去﹣3x得x2﹣3x+6的式子为()A. x2+6B. x2+3x+6C. x2﹣6xD. x2﹣6x+610.一组按规律排列的多项式:,,,,…,其中第10个式子是( )A. B. C.D.二.填空题(共8题;共24分)11.观察下面一列数,按其规律在横线上写上适当的数:﹣,,﹣,,﹣,________.12.如图,把14个棱长为1cm的正方体木块,在地面上堆成如图所示的立体图形,然后向露出的表面部分喷漆,若1cm2需用漆2g,那么共需用漆________ g.13.观察下列算式:71=7,72=49,73=343,74=2401,75=16807,76=117649,…通过观察,用你发现的规律,写出72004的末位数字是________.14.多项式x4﹣x2﹣x﹣1的次数、项数、常数项分别为________.15.猜谜语(打书本中两个几何名称).剩下十分钱________ ;两牛相斗________ .16.小明不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是________17.﹣1 的相反数是________,倒数是________.18.计算:①1+2﹣3﹣4+5+6﹣7﹣8+9+…﹣2012+2013+2014﹣2015﹣2016+2017=________ ;②1﹣22+32﹣42+52﹣…﹣962+972﹣982+992=________三.解答题(共6题;共36分)19.如图,已知A、O、B三点在同一条直线上,OD平分∠AOC,OE平分∠BOC.(1)若∠BOC=62°,求∠DOE的度数(2)若∠BOC=a°,求∠DOE的度数(3)图中是否有互余的角?若有请写出所有互余的角20.若“”是一种新的运算符号,并且规定.例如:,求的值.21.如图,M是线段AC中点,B在线段AC上,且AB=2cm、BC=2AB,求BM长度.22.已知a,b是实数,且有 |a-|+(b+)2,求a,b的值.23.如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.24.计算(1)25°34′48″﹣15°26′37″(2)105°18′48″+35.285°.四.综合题(共10分)25.如图,点O是直线AB上一点,射线OA1, OA2均从OA的位置开始绕点O顺时针旋转,OA1旋转的速度为每秒30°,OA2旋转的速度为每秒10°.当OA2旋转6秒后,OA1也开始旋转,当其中一条射线与OB重合时,另一条也停止.设OA1旋转的时间为t秒.(1)用含有t的式子表示∠A1OA=________°,∠A2OA=________°;(2)当t =________,OA1是∠A2OA的角平分线;(3)若∠A1OA2=30°时,求t的值.河南省淅川县大石桥乡2017-2018学年七年级上期末模拟数学试卷参考答案与试题解析一.单选题1.【答案】A【考点】有理数的除法【解析】【解答】解:=(﹣36)÷(﹣12), =36÷12,=3.故选A.【分析】根据有理数的除法运算法则进行计算即可得解.2.【答案】D【考点】科学记数法—表示绝对值较大的数【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】将21.75亿=2175000000用科学记数法表示为2.175×109.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【考点】几何体的展开图【解析】【解答】解:选项A、C、D中折叠后带图案的三个面不能相交于同一个点,与原立方体不符;选项B中折叠后与原立方体符合,所以正确的是B.故选:B.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.同时注意图示中的阴影的位置关系.4.【答案】A【考点】定义新运算【解析】【分析】由a☆b=,可得2☆3=,则可求得答案.【解答】∵a☆b=∴2☆3=故选A.【点评】此题考查了新定义题型.解题的关键是理解题意,根据题意解题.5.【答案】A【考点】有理数的混合运算【解析】【解答】解:∵x⊗y=x﹣y2,∴﹣2⊗ 3=﹣2﹣32=﹣2﹣9=﹣11.故选A.【分析】根据运算“⊗”的规定列出算式即可求出结果.6.【答案】B【考点】同类项、合并同类项,同底数幂的乘法,幂的乘方与积的乘方【解析】【解答】A、a2•a3=a5,故本选项错误;B、(x3)2=x6,故本选项正确;C、3m+2n≠5mn,故本选项错误;D、y3•y3=y6,故本选项错误.故选B.【分析】利用同底数幂的乘法,幂的乘方与合并同类项的知识求解,即可求得答案.注意排除法在解选择题中的应用.7.【答案】A【考点】有理数的乘法【解析】【分析】根据有理数的乘法法则,异号得负可得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

德江县福华小学2017年六年级数学综合试卷(13)
一、我能在括号里填上正确的答案。

(每空1份,共24分)
1、三十亿零五十五零八十五作( ),改成用“万作单位的数是( ),省略“亿”后面的尾数约是( )。

2、把( ):5=
20
)
(=140%=35÷( )=( )(填小数) 3、把7
4
米的铁丝平均分成3份,每份长( )米,每份占全长的( )。

4、32
1 吨=( )吨( )千克 70分=( )小时 6.25公顷= ( )平方米 3085mL=( )L 5、如果甲数比乙数少5
1,那么乙数比甲数多( )%
6、将10克5%的盐水和90克10%的盐水混合,混合后盐水的浓度为( )%。

7、一张桌子坐6人(如图),两张桌子并排坐10人,5张桌子坐( )人,那么n 张桌子坐( )人。

8、一个不透明的盒子里装了红、白、黑球各3个,要保证取出的球有3种颜色,至少取( )个,取出红球的可能性是( )。

9、( )比9千克多3
1
,12吨比( )少4
1。

10、用字母公式表示乘法分配律( )。

11、一个车间生产了280个机器零件,其中有1个是次品,那么至少( )次就能找出其中的次品。

二、对错我来判,(每小题1分,共5分)
1、4:5的后项增加10,要使比值不变,前项应增加8。

( ) 2一件商品甲店打七折销售,乙店买五送一销售,甲店便宜。

( ) 3、周长相等的圆,长方形和正方形,圆的面积最大。

( ) 4、把10克盐溶解在100克水中,盐水的含盐率为10%。

( ) 5、地球公转一周所用的时间是一年。

( )
三、选一选(每小题1分共5分)
1、一根长2米的绳子,先用去31
,再用去3
1米,还剩下( )米 A 、1
31 B 、1 C 、32 D 、3
1 2、在长6cm ,宽3cm 的长方形内,剪一个最大的半圆,那么半圆的周长是 ( )cm
A 、9.42
B 、12.42
C 、15.42
D 、12.56
3、把4根木条钉成一个长方形,再拉成一个平行四边形,它的( )不变。

A 、周长 B 、面积 C 、面积和周长
4、把一个2mm 长的线段扩大20倍后画在图纸上,比例尺是( ) A 、1:20 B 、1:10 C 、20:1 D 、10:1
5、李明同学上楼,每上一层需10秒,那么以同样的速度他从1楼到8楼需要( )秒。

A 、90
B 、18
C 、70
D 、80 四、相信我的计算能力(共30分) 1、直接写出得数(8分)
298+197= 10-0.96= 2÷20%= 125×32=
516÷158= =⨯÷⨯4
3
654365 8-3.5×2 3.8-2.9+3.8-2.9=
2、计算下面各题、能简单的要简算(8分) 2.8×0.25+7.2×25% 54÷[(53+2
1
)×2]
86.27—(28.9+16.27) 2.65×2.7+0.73×26.5
3、解方程或解比例(8分) x —7
2x=14
1
40%x -24×61=
12
7 4
3
:x=20:16 5.6:x=8:412
4、列式计算(6分)
①8
3与4
1的和去除它们的差,商是多少? ②一个数的20%比32的4
1多2,这个数 是多少?(列方程解答)
五、求下图阴影部分的面积。

(单位:cm )(6分)
六、动手画一画。

(5分)
在方格纸上描出下面各点,并连接起来,再画出绕B 点顺时针旋转90度后的图形。

A(2,2) B (6,2) C (5,5)
七、解决问题,(每题5分,共2分)
1、修路队计划修一条长1200米的路,第一周修了全长的15%,第二周修了全长的3
1,第一周比第二周少修多少米?
2、小李林计划栽320棵桃树,栽的苹果树比桃树的4
1少30棵,栽的苹果树和桃树 共多少棵?
3、一件工程,甲独做12天完成,乙3天做这件工程的51
,如果这件工程由甲先2天;乘下的由甲和乙共同完成还需多少天?
4、A 、B 两地相距960千米,一列客车和一列货车从A 、B 两地相对开出,经过5小时相遇,客车每小时行75千米货车每小时行多少千米?(用方程解答)
5、在一个底面直径是20厘米的圆柱形容器中装有一些水,水中全部浸没着一个高1分米,底面半径是6厘米的圆锥形铅锤,当把铅从小中取出后容器中的水下降了几厘米?。

相关文档
最新文档