【高考数学】2008年真题试卷及答案解析--辽宁文科

合集下载

2008年普通高等学校招生全国统一考试数学(辽宁文科)

2008年普通高等学校招生全国统一考试数学(辽宁文科)

2008年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用) 第Ⅰ卷(选择题 共60分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径P(A ·B)=P(A) ·P(B) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 V=43πR3n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 P n (k )=C k n P k (1-p )n-k (k =0,1,2,…,n )一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合M ={x |-3<x <1|,N={x |x ≤-3},则M =⋃N (A)∅ (B) {x|x ≥-3} (C){x|x ≥1}(D){x |x <1|(2)若函数y=(x +1)(x-a )为偶函数,则a = (A)-2 (B) -2 (C)1 (D)2(3)圆x 2+y 2=1与直线y=kx +2没有公共点的充要条件是 (A)2,2(-∈k )(B) 3,3(-∈k )(C)k ),2()2,(+∞⋃--∞∈(D) k ),3()3,(+∞⋃--∞∈(4)已知0<a <1,x =log a 2log a 3,y =,5log 21a z =loga 3,则 (A)x >y >z(B)z >y >x(C)y >x >z(D)z >x >y(5)已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且2=,则顶点D 的坐标为 (A)(2,27) (B)(2,-21) (C)(3,2) (D)(1,3)(6)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处切线倾斜角的取值范围为⎥⎦⎤⎢⎣⎡4,0π,则点P 横坐标的取值范围为 (A)⎥⎦⎤⎢⎣⎡--21,1(B)[-1,0] (C)[0,1](D)⎥⎦⎤⎢⎣⎡1,21(7)4张卡片上分别写有数字1,2,3,4从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为 (A)31 (B)21 (C)32 (D)43 (8)将函数y=2x +1的图象按向量a 平移得到函数y =2x +1的图象,则 (A)a =(-1,-1) (B)a =(1,-1) (C)a =(1,1) (D)a=(-1,1)(9)已知变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+,01,013,01x y x y x y 则z =2x+y 的最大值为第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)函数23()x y ex +=-∞+∞的反函数是 .(14)在体积为的球的表面上有A 、B 、C 三点,AB =1,BCA 、C 两点的球面距离为3π,则球心到平面ABC 的距离为 . (15)3621(1)()x x x++展开式中的常数项为 . (16)设(0,)2x π∈,则函数22sin 1sin 2x y x +=的最小值为 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)在△ABC 中,内角A ,B ,C ,对边的边长分别是a ,b ,c .已知2,3c C π==. (Ⅰ)若△ABC,求a ,b ;(Ⅱ)若sin 2sin B A =,求△ABC 的面积. (18)(本小题满分12分)某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率; (Ⅱ)若以上述频率作为概率,且各周的销售量相互独立,求 (i )4周中该种商品至少有一周的销售量为4吨的概率; (ii )该种商品4周的销售量总和至少为15吨的概率. (19)(本小题满分12分)如图,在棱长为1的正方体ABCD -A ′B ′C ′D ′中,AP =BQ =b (0<b <1),截面PQEF ∥A ′D ,截面PQGH ∥AD ′.(Ⅰ)证明:平面PQEF 和平面PQGH 互相垂直;(Ⅱ)证明:截面PQEF 和截面PQGH 面积之和是定值,并求出这个值; (Ⅲ)若12b =,求D ′E 与平面PQEF 所成角的正弦值. (20)(本小题满分12分)已知数列{a n },{b n }是各项均为正数的等比数列,设(N*)nn nb c n a =∈. (Ⅰ)数列{c n }是否为等比数列?证明你的结论;(Ⅱ)设数列{tna n },{lnb n }的前n 项和分别为S n ,T n .若12,,21n n S n a T n ==+求数列{c n }的前n 项和.(21)(本小题满分12分)在平面直角坐标系xOy 中,点P 到两点(0,-3)、(0,3)的距离之和等于4.设点P 的轨迹为C .(Ⅰ)写出C 的方程;(Ⅱ)设直线y =kx +1与C 交于A 、B 两点.k 为何值时?OB OA ⊥此时||的值是多少?(22)(本小题满分14分)设函数f(x)=ax3+bx2-3a2x+1(a、b∈R)在x=x1,x=x2处取得极值,且|x1-x2|=2. (Ⅰ)若a=1,求b的值,并求f(x)的单调区间;(Ⅱ)若a>0,求b的取值范围.。

2008年普通高等学校招生全国统一考试数学卷(辽宁.文)含详解

2008年普通高等学校招生全国统一考试数学卷(辽宁.文)含详解

2008年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用) 第Ⅰ卷(选择题 共60分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径P(A ·B)=P(A) ·P(B) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 V=43πR 3n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 P n (k )=C k n P k (1-p )n-k (k =0,1,2,…,n )一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合M ={x |-3<x <1|,N={x |x ≤-3},则M =⋃N (A)∅ (B) {x|x ≥-3} (C){x|x ≥1}(D){x |x <1|(2)若函数y=(x +1)(x-a )为偶函数,则a = (A)-2 (B) -2 (C)1 (D)2(3)圆x 2+y 2=1与直线y=kx +2没有公共点的充要条件是 (A)2,2(-∈k )(B) 3,3(-∈k )(C)k ),2()2,(+∞⋃--∞∈(D) k ),3()3,(+∞⋃--∞∈(4)已知0<a <1,x =log a 2log a 3,y =,5log 21a z =loga 3,则 (A)x >y >z(B)z >y >x(C)y >x >z(D)z >x >y(5)已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且2=,则顶点D 的坐标为 (A)(2,27) (B)(2,-21) (C)(3,2) (D)(1,3)(6)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处切线倾斜角的取值范围为⎥⎦⎤⎢⎣⎡4,0π,则点P 横坐标的取值范围为 (A)⎥⎦⎤⎢⎣⎡--21,1(B)[-1,0] (C)[0,1](D)⎥⎦⎤⎢⎣⎡1,21(7)4张卡片上分别写有数字1,2,3,4从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为 (A)31 (B)21 (C)32 (D)43 (8)将函数y=2x +1的图象按向量a 平移得到函数y =2x +1的图象,则 (A)a =(-1,-1) (B)a =(1,-1) (C)a =(1,1) (D)a=(-1,1)(9)已知变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+,01,013,01x y x y x y 则z =2x+y 的最大值为第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)函数23()x y e x +=-∞+∞ 的反函数是 .(14)在体积为的球的表面上有A 、B 、C 三点,AB =1,BCA 、C 两点的球面距离为3π,则球心到平面ABC 的距离为 . (15)3621(1)()x x x++展开式中的常数项为 . (16)设(0,)2x π∈,则函数22sin 1sin 2x y x+=的最小值为 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)在△ABC 中,内角A ,B ,C ,对边的边长分别是a ,b ,c .已知2,3c C π==. (Ⅰ)若△ABCa ,b ;(Ⅱ)若sin 2sin B A =,求△ABC 的面积. (18)(本小题满分12分)某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:(Ⅱ)若以上述频率作为概率,且各周的销售量相互独立,求 (i )4周中该种商品至少有一周的销售量为4吨的概率; (ii )该种商品4周的销售量总和至少为15吨的概率. (19)(本小题满分12分)如图,在棱长为1的正方体ABCD -A′B ′C ′D ′中,AP =BQ =b (0<b <1),截面PQEF ∥A ′D ,截面PQGH ∥AD ′.(Ⅰ)证明:平面PQEF 和平面PQGH 互相垂直;(Ⅱ)证明:截面PQEF 和截面PQGH 面积之和是定值,并求出这个值; (Ⅲ)若12b =,求D ′E 与平面PQEF 所成角的正弦值. (20)(本小题满分12分)已知数列{a n },{b n }是各项均为正数的等比数列,设(N*)nn nb c n a =∈. (Ⅰ)数列{c n }是否为等比数列?证明你的结论;(Ⅱ)设数列{tna n },{lnb n }的前n 项和分别为S n ,T n .若12,,21n n S n a T n ==+求数列{c n }的前n 项和.(21)(本小题满分12分)在平面直角坐标系xOy 中,点P 到两点(0,-3)、(0,3)的距离之和等于4.设点P 的轨迹为C .(Ⅰ)写出C 的方程;(Ⅱ)设直线y =kx +1与C 交于A 、B 两点.k 为何值时?OB OA ⊥此时||的值是多少?(22)(本小题满分14分)设函数f (x )=ax 3+bx 2-3a 2x +1(a 、b ∈R )在x =x 1,x =x2处取得极值,且|x 1-x 2|=2. (Ⅰ)若a =1,求b 的值,并求f (x )的单调区间; (Ⅱ)若a >0,求b 的取值范围.2008年普通高等学校招生全国统一考试(辽宁卷)数学(供文科考生使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共60分)参考公式:如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(012)k k n kn n P k C P p k n -=-= ,,,,其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}31M x x =-<<,{}3N x x =-≤,则M N = ( D ) A .∅ B .{}3x x -≥C .{}1x x ≥D .{}1x x <答案:D解析:本小题主要考查集合的相关运算知识。

2008年辽宁省高考文科数学试卷及答案

2008年辽宁省高考文科数学试卷及答案

2008年(辽宁卷)数学(文科考生使用)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}31M x x =-<<,{}3N x x =-≤,则M N = ( ) A .∅B .{}3x x -≥C .{}1x x ≥D .{}1x x <2.若函数(1)()y x x a =+-为偶函数,则a =( ) A .2-B .1-C .1D .23.圆221x y +=与直线2y kx =+没有..公共点的充要条件是( )A .(k ∈B . (k ∈C .()k ∈--+ ∞,∞D .()k ∈--+ ∞,∞4.已知01a <<,log log a a x =+1log 52a y =,log log a az =,则( ) A .x y z >>B .z y x >>C .y x z >>D .z x y >>5.已知四边形A B C D 的三个顶点(02)A ,,(12)B --,,(31)C ,,且2BC AD =,则顶点D 的坐标为( )A .722⎛⎫⎪⎝⎭,B .122⎛⎫-⎪⎝⎭, C .(32), D .(13),6.设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P 横坐标的取值范围为( ) A .112⎡⎤--⎢⎥⎣⎦, B .[]10-,C .[]01,D .112⎡⎤⎢⎥⎣⎦,7.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A .13B .12C .23D .348.将函数21xy =+的图象按向量a 平移得到函数12x y +=的图象,则( )A .(11)=--,aB .(11)=-,aC .(11)=,aD .(11)=-,a9.已知变量x y ,满足约束条件1031010y x y x y x +-⎧⎪--⎨⎪-+⎩≤,≤,≥,则2z x y =+的最大值为( )A .4B .2C .1D .4-10.一生产过程有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有( ) A .24种 B .36种 C .48种 D .72种11.已知双曲线22291(0)y m x m -=>的一个顶点到它的一条渐近线的距离为15,则m =( ) A .1B .2C .3D .412.在正方体1111ABC D A B C D -中,E F ,分别为棱1A A ,1C C 的中点,则在空间中与三条直线11A D ,E F ,C D 都相交的直线( ) A .不存在B .有且只有两条C .有且只有三条D .有无数条第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分. 13.函数21()x y e x +=-<<+∞∞的反函数是 .14.在体积为的球的表面上有A 、B ,C 三点,AB =1,BC,A ,C 两点的球面距离为3π,则球心到平面ABC 的距离为_________.15.6321(1)x x x ⎛⎫++ ⎪⎝⎭展开式中的常数项为 .16.设02x π⎛⎫∈ ⎪⎝⎭,,则函数22sin 1sin 2x y x +=的最小值为 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分) 在A B C △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3C π=.(Ⅰ)若A B C △,求a b ,;(Ⅱ)若sin 2sin B A =,求A B C △的面积. 18.(本小题满分12分)某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:周销售量 2 3 4频数20 50 30(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率; (Ⅱ)若以上述频率作为概率,且各周的销售量相互独立,求(ⅰ)4周中该种商品至少有一周的销售量为4吨的概率; (ⅱ)该种商品4周的销售量总和至少为15吨的概率. 19.(本小题满分12分)如图,在棱长为1的正方体A B C D A B C D ''''-中,AP=BQ=b (0<b <1),截面PQEF ∥A D ',截面PQGH ∥A D '.(Ⅰ)证明:平面PQEF 和平面PQGH 互相垂直; (Ⅱ)证明:截面PQEF 和截面PQGH 面积之和是定值,并求出这个值; (Ⅲ)若12b =,求D E '与平面PQEF 所成角的正弦值.20.(本小题满分12分)在数列||n a ,||n b 是各项均为正数的等比数列,设()n n nb c n a =∈*N .(Ⅰ)数列||n c 是否为等比数列?证明你的结论;(Ⅱ)设数列|ln |n a ,|ln |n b 的前n 项和分别为n S ,n T .若12a =,21n nS n T n =+,求数列||n c 的前n 项和. 21.(本小题满分12分)在平面直角坐标系xOy 中,点P到两点(0-,,(0的距离之和等于4,设点P 的轨迹为C . (Ⅰ)写出C 的方程;(Ⅱ)设直线1y kx =+与C 交于A ,B 两点.k 为何值时O A ⊥O B ?此时A B 的值是多少?22.(本小题满分14分)设函数322()31()f x ax bx a x a b =+-+∈R ,在1x x =,2x x =处取得极值,且122x x -=.(Ⅰ)若1a =,求b 的值,并求()f x 的单调区间; (Ⅱ)若0a >,求b 的取值范围.A BCDE FPQ H A ' B 'C 'D ' G2008年(辽宁卷)数学文科参考答案和评分参考.1.D 2.C 3.B 4.C 5.A 6.A 7.C 8.A9.B 10.B11.D12.D . 13.1(ln 1)(0)2y x x =-> 14.3215.351617.本小题主要考查三角形的边角关系等基础知识,考查综合计算能力.满分12分. 解:(Ⅰ)由余弦定理得,224a b ab +-=, 又因为A B C △1sin 2ab C =4ab =.···························· 4分 联立方程组2244a b ab ab ⎧+-=⎨=⎩,,解得2a =,2b =.······················································ 6分(Ⅱ)由正弦定理,已知条件化为2b a =, ································································· 8分 联立方程组2242a b ab b a ⎧+-=⎨=⎩,,解得3a =3b =.所以A B C △的面积1sin 23S ab C ==.·······························································12分18.本小题主要考查频率、概率等基础知识,考查运用概率知识解决实际问题的能力.满分12分. 解:(Ⅰ)周销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3. ························· 4分 (Ⅱ)由题意知一周的销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3,故所求的概率为(ⅰ)4110.70.7599P =-=. ············································································· 8分(ⅱ)334240.50.30.30.0621P C =⨯⨯+=. ·······················································12分19.本小题主要考查空间中的线面关系和面面关系,解三角形等基础知识,考查空间想象能力与逻辑思维能力.满分12分.解法一:(Ⅰ)证明:在正方体中,AD A D ''⊥,AD AB '⊥, 又由已知可得PF A D '∥,PH AD '∥,PQ AB ∥,所以PH PF ⊥,PH PQ ⊥, 所以PH ⊥平面PQEF .所以平面PQEF 和平面PQGH 互相垂直.·································································· 4分 (Ⅱ)证明:由(Ⅰ)知PF PH '==,,又截面PQEF 和截面PQGH 都是矩形,且PQ =1,所以截面PQEF 和截面PQGH 面积之和是)P A P Q '+⨯=····································································· 8分 (Ⅲ)解:设A D '交P F 于点N ,连结E N , 因为AD '⊥平面PQEF ,所以D E N '∠为D E '与平面PQEF 所成的角. 因为12b =,所以P Q E F ,,,分别为A A ',B B ',B C ,A D 的中点.可知4D N '=,32D E '=.所以4sin 322D EN '==∠. ················································································12分解法二:以D 为原点,射线DA ,DC ,DD ′分别为x ,y ,z 轴的正半轴建立如图的空间直角坐标系D -xyz .由已知得1D F b =-,故(100)A ,,,(101)A ',,,(000)D ,,,(001)D ',,,(10)P b ,,,(11)Q b ,,,(110)E b -,,, (100)F b -,,,(11)G b ,,,(01)H b ,,.(Ⅰ)证明:在所建立的坐标系中,可得(010)(0)PQ PF b b ==-- ,,,,,, (101)P H b b =--,,,(101)(101)AD A D ''=-=-- ,,,,,.因为00A D P Q A D P F ''== ,,所以AD '是平面PQEF 的法向量. 因为00A D PQ A D PH ''== ,,所以A D ' 是平面PQGH 的法向量. 因为0AD A D ''= ,所以A D AD ''⊥ ,所以平面PQEF 和平面PQGH 互相垂直. ···································································· 4分(Ⅱ)证明:因为(010)E F =- ,,,所以EF PQ EF PQ ∥,=,又PF PQ ⊥,所以PQEFA BCDEFP Q HA 'B 'C 'D 'GN为矩形,同理PQGH 为矩形.在所建立的坐标系中可求得)PH b =-,PF =,所以PH PF +=1PQ =,所以截面PQEF 和截面PQGH············································· 8分(Ⅲ)解:由(Ⅰ)知(101)AD '=-,,是平面PQEF 的法向量.由P 为A A '中点可知,Q E F ,,分别为B B ',B C ,A D 的中点.所以1102E ⎛⎫ ⎪⎝⎭,,,1112D E ⎛⎫'=- ⎪⎝⎭ ,,,因此D E '与平面PQEF 所成角的正弦值等于|cos |2AD D E ''<>=,. ··························································································12分20.本小题主要考查等差数列,等比数列,对数等基础知识,考查综合运用数学知识解决问题的能力.满分12分.解:(Ⅰ)n c 是等比数列. ·························································································· 2分 证明:设n a 的公比为11(0)q q >,n b 的公比为22(0)q q >,则11121110n n n n n nn n n n c b a b a qc a b b a q +++++===≠ ,故n c 为等比数列.··········································· 5分 (Ⅱ)数列ln n a 和ln n b 分别是公差为1ln q 和2ln q 的等差数列.由条件得1112(1)ln ln 22(1)21ln ln 2n n n a q n n n n b q -+=-++,即11122ln (1)ln 2ln (1)ln 21a n q nb n q n +-=+-+. ···················································································· 7分故对1n =,2,…,212111211(2ln ln )(4ln ln 2ln ln )(2ln ln )0q q n a q b q n a q -+--++-=.于是121112112ln ln 04ln ln 2ln ln 02ln ln 0.q q a q b q a q -=⎧⎪--+=⎨⎪-=⎩,,将12a =代入得14q =,216q =,18b =. ································································10分从而有11816424n nn n c --== .所以数列n c 的前n 项和为 24444(41)3nn+++=-…. ·······································12分 21.本小题主要考查平面向量,椭圆的定义、标准方程及直线与椭圆位置关系等基础知识,考查综合运用解析几何知识解决问题的能力.满分12分. 解:(Ⅰ)设P (x ,y ),由椭圆定义可知,点P 的轨迹C是以(0(0-,,为焦点,长半轴为2的椭圆.它的短半轴1b ==,故曲线C 的方程为2214yx +=. ·················································································· 4分 (Ⅱ)设1122()()A x y B x y ,,,,其坐标满足2214 1.y x y kx ⎧+=⎪⎨⎪=+⎩, 消去y 并整理得22(4)230k x kx ++-=, 故1212222344k x x x x k k +=-=-++,.······································································· 6分OA OB ⊥,即12120x x y y +=. 而2121212()1y y k x x k x x =+++,于是222121222223324114444kkk x x y y k k k k -++=---+=++++.所以12k =±时,12120x x y y +=,故OA OB ⊥. ······················································· 8分当12k =±时,12417x x +=,121217x x =-.AB ==而22212112()()4x x x x x x -=+-23224434134171717⨯⨯=+⨯=,所以17AB = ····································································································12分22.本小题主要考查函数的导数,单调性、极值,最值等基础知识,考查综合利用导数研究函数的有关性质的能力.满分14分解:22()323f x ax bx a '=+-.① ··············································································· 2分 (Ⅰ)当1a =时, 2()323f x x bx '=+-;由题意知12x x ,为方程23230x bx +-=的两根,所以123x x -=由122x x -=,得0b =. ··························································································· 4分 从而2()31f x x x =-+,2()333(1)(1)f x x x x '=-=+-.当(11)x ∈-,时,()0f x '<;当(1)(1)x ∈--+ ∞,,∞时,()0f x '>.故()f x 在(11)-,单调递减,在(1)--∞,,(1)+,∞单调递增.···································· 6分 (Ⅱ)由①式及题意知12x x ,为方程223230x bx a +-=的两根,所以123x x a-=.从而221229(1)x x b a a -=⇔=-,由上式及题设知01a <≤. ························································································· 8分 考虑23()99g a a a =-,22()1827273g a a a a a ⎛⎫'=-=--⎪⎝⎭. ········································································10分 故()g a 在203⎛⎫ ⎪⎝⎭,单调递增,在213⎛⎫ ⎪⎝⎭,单调递减,从而()g a 在(]01,的极大值为2433g ⎛⎫= ⎪⎝⎭.又()g a 在(]01,上只有一个极值,所以2433g ⎛⎫= ⎪⎝⎭为()g a 在(]01,上的最大值,且最小值为(1)0g =.所以2403b ⎡⎤∈⎢⎥⎣⎦,,即b 的取值范围为33⎡-⎢⎣⎦. ···············································14分。

2008年全国统一高考数学试卷(文科)(全国卷ⅰ)(含解析版)

2008年全国统一高考数学试卷(文科)(全国卷ⅰ)(含解析版)

2008年全国统一高考数学试卷(文科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数y=+的定义域为()A.{x|x≤1}B.{x|x≥0}C.{x|x≥1或x≤0}D.{x|0≤x≤1}2.(5分)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是()A .B .C .D .3.(5分)(1+)5的展开式中x2的系数()A.10B.5C .D.14.(5分)曲线y=x3﹣2x+4在点(1,3)处的切线的倾斜角为()A.30°B.45°C.60°D.120°5.(5分)在△ABC 中,=,=.若点D 满足=2,则=()A .B .C .D .6.(5分)y=(sinx﹣cosx)2﹣1是()A.最小正周期为2π的偶函数B.最小正周期为2π的奇函数C.最小正周期为π的偶函数D.最小正周期为π的奇函数7.(5分)已知等比数列{a n}满足a1+a2=3,a2+a3=6,则a7=()A.64B.81C.128D.2438.(5分)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称,则f(x)=()A.e2x﹣2B.e2x C.e2x+1D.e2x+29.(5分)为得到函数的图象,只需将函数y=sin2x的图象()A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向右平移个长度单位10.(5分)若直线=1与圆x2+y2=1有公共点,则()A.a2+b2≤1B.a2+b2≥1C .D .11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC 的中心,则AB1与底面ABC所成角的正弦值等于()A .B .C .D .12.(5分)将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有()A.6种B.12种C.24种D.48种二、填空题(共4小题,每小题5分,满分20分)13.(5分)若x,y 满足约束条件,则z=2x﹣y的最大值为.14.(5分)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为.15.(5分)在△ABC中,∠A=90°,tanB=.若以A、B为焦点的椭圆经过点C,则该椭圆的离心率e=.16.(5分)已知菱形ABCD中,AB=2,∠A=120°,沿对角线BD将△ABD折起,使二面角A﹣BD ﹣C为120°,则点A到△BCD所在平面的距离等于.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A、B、C所对的边长分别为a、b、c,且acosB=3,bsinA=4.(Ⅰ)求边长a;(Ⅱ)若△ABC的面积S=10,求△ABC的周长l.18.(12分)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.19.(12分)在数列{a n}中,a1=1,a n+1=2a n+2n.(Ⅰ)设b n=.证明:数列{b n}是等差数列;(Ⅱ)求数列{a n}的前n项和S n.20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.求依方案甲所需化验次数不少于依方案乙所需化验次数的概率.21.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.22.(12分)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.2008年全国统一高考数学试卷(文科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数y=+的定义域为()A.{x|x≤1}B.{x|x≥0}C.{x|x≥1或x≤0}D.{x|0≤x≤1}【考点】33:函数的定义域及其求法.【专题】51:函数的性质及应用.【分析】保证两个根式都有意义的自变量x的集合为函数的定义域.【解答】解:要使原函数有意义,则需,解得0≤x≤1,所以,原函数定义域为[0,1].故选:D.【点评】本题考查了函数定义域的求法,求解函数的定义域,是求使的构成函数解析式的各个部分都有意义的自变量x的取值集合.2.(5分)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是()A .B .C .D .【考点】3A:函数的图象与图象的变换.【专题】16:压轴题;31:数形结合.【分析】由已知中汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,汽车的行驶路程s看作时间t的函数,我们可以根据实际分析函数值S(路程)与自变量t(时间)之间变化趋势,分析四个答案即可得到结论.【解答】解:由汽车经过启动后的加速行驶阶段,路程随时间上升的速度越来越快,故图象的前边部分为凹升的形状;在汽车的匀速行驶阶段,路程随时间上升的速度保持不变故图象的中间部分为平升的形状;在汽车减速行驶之后停车阶段,路程随时间上升的速度越来越慢,故图象的前边部分为凸升的形状;分析四个答案中的图象,只有A答案满足要求,故选:A.【点评】从左向右看图象,如果图象是凸起上升的,表明相应的量增长速度越来越慢;如果图象是凹陷上升的,表明相应的量增长速度越来越快;如果图象是直线上升的,表明相应的量增长速度保持不变;如果图象是水平直线,表明相应的量保持不变,即不增长也不降低;如果图象是凸起下降的,表明相应的量降低速度越来越快;如果图象是凹陷下降的,表明相应的量降低速度越来越慢;如果图象是直线下降的,表明相应的量降低速度保持不变.3.(5分)(1+)5的展开式中x2的系数()A.10B.5C .D.1【考点】DA:二项式定理.【专题】11:计算题.【分析】利用二项展开式的通项公式求出展开式中x2的系数【解答】解:,故选:C.【点评】本题主要考查了利用待定系数法或生成法求二项式中指定项.4.(5分)曲线y=x3﹣2x+4在点(1,3)处的切线的倾斜角为()A.30°B.45°C.60°D.120°【考点】6H:利用导数研究曲线上某点切线方程.【专题】11:计算题.【分析】欲求在点(1,3)处的切线倾斜角,先根据导数的几何意义可知k=y′|x=1,再结合正切函数的值求出角α的值即可.【解答】解:y′=3x2﹣2,切线的斜率k=3×12﹣2=1.故倾斜角为45°.故选:B.【点评】本题考查了导数的几何意义,以及利用正切函数的图象求倾斜角,本题属于容易题.5.(5分)在△ABC 中,=,=.若点D 满足=2,则=()A .B .C .D .【考点】9B:向量加减混合运算.【分析】把向量用一组向量来表示,做法是从要求向量的起点出发,尽量沿着已知向量,走到要求向量的终点,把整个过程写下来,即为所求.本题也可以根据D点把BC分成一比二的两部分入手.【解答】解:∵由,∴,∴.故选:A.【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题,好多问题都是以向量为载体的6.(5分)y=(sinx﹣cosx)2﹣1是()A.最小正周期为2π的偶函数B.最小正周期为2π的奇函数C.最小正周期为π的偶函数D.最小正周期为π的奇函数【考点】GG:同角三角函数间的基本关系.【分析】把三角函数式整理,平方展开,合并同类项,逆用正弦的二倍角公式,得到y=Asin(ωx+φ)的形式,这样就可以进行三角函数性质的运算.【解答】解:∵y=(sinx﹣cosx)2﹣1=1﹣2sinxcosx﹣1=﹣sin2x,∴T=π且为奇函数,故选:D.【点评】同角三角函数的基本关系式揭示了同一个角的六种三角函数间的相互关系,其主要应用于同角三角函数的求值和同角三角函数之间的化简和证明.单在应用这些关系式子的时候就要注意公式成立的前提是角对应的三角函数要有意义.7.(5分)已知等比数列{a n}满足a1+a2=3,a2+a3=6,则a7=()A.64B.81C.128D.243【考点】87:等比数列的性质.【分析】由a1+a2=3,a2+a3=6的关系求得q,进而求得a1,再由等比数列通项公式求解.【解答】解:由a2+a3=q(a1+a2)=3q=6,∴q=2,∴a1(1+q)=3,∴a1=1,∴a7=26=64.故选:A.【点评】本题主要考查了等比数列的通项及整体运算.8.(5分)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称,则f(x)=()A.e2x﹣2B.e2x C.e2x+1D.e2x+2【考点】4R:反函数.【专题】11:计算题.【分析】由函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称知这两个函数互为反函数,故只要求出函数y=f(x)的反函数即可,欲求原函数的反函数,即从原函数y=ln中反解出x,后再进行x,y互换,即得反函数的解析式.【解答】解:∵,∴,∴x=(e y﹣1)2=e2y﹣2,改写为:y=e2x﹣2∴答案为A.【点评】本题主要考查了互为反函数图象间的关系及反函数的求法.9.(5分)为得到函数的图象,只需将函数y=sin2x的图象()A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向右平移个长度单位【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题.【分析】先根据诱导公式将函数化为正弦的形式,再根据左加右减的原则进行平移即可得到答案.【解答】解:∵,只需将函数y=sin2x 的图象向左平移个单位得到函数的图象.故选:A.【点评】本题主要考查诱导公式和三角函数的平移.属基础题.10.(5分)若直线=1与圆x2+y2=1有公共点,则()A.a2+b2≤1B.a2+b2≥1C .D .【考点】J9:直线与圆的位置关系.【分析】用圆心到直线的距离小于或等于半径,可以得到结果.【解答】解:直线与圆有公共点,即直线与圆相切或相交得:d≤r,∴,故选:D.【点评】本题考查点到直线的距离公式,直线和圆的位置关系,是基础题.11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC 的中心,则AB1与底面ABC所成角的正弦值等于()A .B .C .D .【考点】LP:空间中直线与平面之间的位置关系.【专题】11:计算题;31:数形结合;4R:转化法;5G:空间角.【分析】法一:由题意可知三棱锥A1﹣ABC为正四面体,设棱长为2,求出AB1及三棱锥的高,由线面角的定义可求出答案;法二:先求出点A1到底面的距离A1D的长度,即知点B1到底面的距离B1E的长度,再求出AE的长度,在直角三角形AEB1中求AB1与底面ABC所成角的正切,再由同角三角函数的关系求出其正弦.【解答】解:(法一)因为三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,设为D,所以三棱锥A1﹣ABC为正四面体,设棱长为2,则△AA1B1是顶角为120°等腰三角形,所以AB1=2×2×sin60°=2,A1D==,所以AB1与底面ABC 所成角的正弦值为==;(法二)由题意不妨令棱长为2,点B1到底面的距离是B1E,如图,A1在底面ABC内的射影为△ABC的中心,设为D,故DA=,由勾股定理得A1D==故B1E=,如图作A1S⊥AB于中点S,过B1作AB的垂线段,垂足为F,BF=1,B1F=A1S=,AF=3,在直角三角形B1AF中用勾股定理得:AB1=2,所以AB1与底面ABC所成角的正弦值sin∠B1AE==.故选:B.【点评】本题考查了几何体的结构特征及线面角的定义,还有点面距与线面距的转化,考查了转化思想和空间想象能力.12.(5分)将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有()A.6种B.12种C.24种D.48种【考点】D4:排列及排列数公式.【专题】16:压轴题.【分析】填好第一行和第一列,其他的行和列就确定,因此只要选好第一行的顺序再确定第一列的顺序,就可以得到符合要求的排列.【解答】解:填好第一行和第一列,其他的行和列就确定,∴A33A22=12,故选:B.【点评】排列问题要做到不重不漏,有些题目带有一定的约束条件,解题时要先考虑有限制条件的元素.二、填空题(共4小题,每小题5分,满分20分)13.(5分)若x,y 满足约束条件,则z=2x﹣y 的最大值为9.【考点】7C:简单线性规划.【专题】11:计算题;13:作图题.【分析】首先作出可行域,再作出直线l0:y=2x,将l0平移与可行域有公共点,直线y=2x﹣z在y 轴上的截距最小时,z有最大值,求出此时直线y=2x﹣z经过的可行域内的点的坐标,代入z=2x ﹣y中即可.【解答】解:如图,作出可行域,作出直线l0:y=2x,将l0平移至过点A处时,函数z=2x﹣y有最大值9.【点评】本题考查线性规划问题,考查数形结合思想.14.(5分)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为2.【考点】K8:抛物线的性质.【专题】11:计算题.【分析】先根据抛物线y=ax2﹣1的焦点坐标为坐标原点,求得a,得到抛物线方程,进而可知与坐标轴的交点的坐标,进而可得答案.【解答】解:由抛物线y=ax2﹣1的焦点坐标为坐标原点得,,则与坐标轴的交点为(0,﹣1),(﹣2,0),(2,0),则以这三点围成的三角形的面积为故答案为2【点评】本题主要考查抛物线的应用.考查了学生综合运用所学知识,解决实际问题的能力.15.(5分)在△ABC中,∠A=90°,tanB=.若以A、B为焦点的椭圆经过点C,则该椭圆的离心率e=.【考点】K2:椭圆的定义.【专题】11:计算题;16:压轴题.【分析】令AB=4,椭圆的c可得,AC=3,BC=5依据椭圆定义求得a,则离心率可得.【解答】解:令AB=4,则AC=3,BC=5则2c=4,∴c=2,2a=3+5=8∴a=4,∴e=故答案为.【点评】本题主要考查了椭圆的定义.要熟练掌握椭圆的第一和第二定义.16.(5分)已知菱形ABCD中,AB=2,∠A=120°,沿对角线BD将△ABD折起,使二面角A﹣BD﹣C为120°,则点A到△BCD所在平面的距离等于.【考点】MJ:二面角的平面角及求法;MK:点、线、面间的距离计算.【专题】11:计算题;16:压轴题.【分析】本题考查了立体几何中的折叠问题,及定义法求二面角和点到平面的距离,我们由已知菱形ABCD中,AB=2,∠A=120°,沿对角线BD将△ABD折起,使二面角A﹣BD﹣C为120°,及菱形的性质:对角线互相垂直,我们易得∴∠AOC即为二面角A﹣BD﹣C的平面角,解△AOC后,OC边的高即为A点到平面BCD的距离.【解答】解:已知如下图所示:设AC∩BD=O,则AO⊥BD,CO⊥BD,∴∠AOC即为二面角A﹣BD﹣C的平面角∴∠AOC=120°,且AO=1,∴d=1×sin60°=故答案为:【点评】根据二面角的大小解三角形,一般先作出二面角的平面角.此题是利用二面角的平面角的定义作出∠AOC为二面角A﹣BD﹣C的平面角,通过解∠AOC所在的三角形求得∠AOC.其解题过程为:作∠AOC→证∠AOC是二面角的平面角→利用∠AOC解三角形AOC,简记为“作、证、算”.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A、B、C所对的边长分别为a、b、c,且acosB=3,bsinA=4.(Ⅰ)求边长a;(Ⅱ)若△ABC的面积S=10,求△ABC的周长l.【考点】HR:余弦定理.【专题】11:计算题.【分析】(I)由图及已知作CD垂直于AB,在直角三角形BDC中求BC的长.(II)由面积公式解出边长c,再由余弦定理解出边长b,求三边的和即周长.【解答】解:(I)过C作CD⊥AB于D,则由CD=bsinA=4,BD=acosB=3∴在Rt△BCD中,a=BC==5(II)由面积公式得S=×AB×CD=×AB×4=10得AB=5又acosB=3,得cosB=由余弦定理得:b===2△ABC的周长l=5+5+2=10+2答:(I)a=5;(II)l=10+2【点评】本题主要考查了射影定理及余弦定理.18.(12分)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.【考点】LY:平面与平面垂直;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(1)取BC中点F,证明CE⊥面ADF,通过证明线面垂直来达到证明线线垂直的目的.(2)在面AED内过点E作AD的垂线,垂足为G,由(1)知,CE⊥AD,则∠CGE即为所求二面角的平面角,△CGE中,使用余弦定理求出此角的大小.【解答】解:(1)取BC中点F,连接DF交CE于点O,∵AB=AC,∴AF⊥BC.又面ABC⊥面BCDE,∴AF⊥面BCDE,∴AF⊥CE.再根据,可得∠CED=∠FDC.又∠CDE=90°,∴∠OED+∠ODE=90°,∴∠DOE=90°,即CE⊥DF,∴CE⊥面ADF,∴CE⊥AD.(2)在面ACD内过C点作AD的垂线,垂足为G.∵CG⊥AD,CE⊥AD,∴AD⊥面CEG,∴EG⊥AD,则∠CGE即为所求二面角的平面角.作CH⊥AB,H为垂足.∵平面ABC⊥平面BCDE,矩形BCDE中,BE⊥BC,故BE⊥平面ABC,CH⊂平面ABC,故BE⊥CH,而AB∩BE=B,故CH⊥平面ABE,∴∠CEH=45°为CE与平面ABE所成的角.∵CE=,∴CH=EH=.直角三角形CBH中,利用勾股定理求得BH===1,∴AH=AB﹣BH=AC﹣1;直角三角形ACH中,由勾股定理求得AC2=CH2+AH2=3+(AC﹣1)2,∴AB=AC=2.由面ABC⊥面BCDE,矩形BCDE中CD⊥CB,可得CD⊥面ABC,故△ACD为直角三角形,AD===,故CG===,DG==,,又,则,∴,即二面角C﹣AD﹣E 的大小.【点评】本题主要考查通过证明线面垂直来证明线线垂直的方法,以及求二面角的大小的方法,属于中档题.19.(12分)在数列{a n}中,a1=1,a n+1=2a n+2n.(Ⅰ)设b n =.证明:数列{b n}是等差数列;(Ⅱ)求数列{a n}的前n项和S n.【考点】8E:数列的求和;8H:数列递推式.【专题】11:计算题;14:证明题.【分析】(1)由a n+1=2a n+2n 构造可得即数列{b n}为等差数列(2)由(1)可求=n,从而可得a n=n•2n﹣1利用错位相减求数列{a n}的和【解答】解:由a n+1=2a n+2n.两边同除以2n 得∴,即b n+1﹣b n=1∴{b n}以1为首项,1为公差的等差数列(2)由(1)得∴a n=n•2n﹣1S n=20+2×21+3×22+…+n•2n﹣12S n=21+2×22+…+(n﹣1)•2n﹣1+n•2n∴﹣S n=20+21+22+…+2n﹣1﹣n•2n=∴S n=(n﹣1)•2n+1【点评】本题考查利用构造法构造特殊的等差等比数列及错位相减求数列的和,构造法求数列的通项及错位相减求数列的和是数列部分的重点及热点,要注意该方法的掌握.20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.求依方案甲所需化验次数不少于依方案乙所需化验次数的概率.【考点】C5:互斥事件的概率加法公式.【专题】11:计算题;35:转化思想.【分析】(解法一)主要依乙所验的次数分类,并求出每种情况下被验中的概率,再求甲种方案的次数不少于乙种次数的概率;(解法二)先求所求事件的对立事件即甲的次数小于乙的次数,再求出它包含的两个事件“甲进行的一次即验出了和甲进行了两次,乙进行了3次”的概率,再代入对立事件的概率公式求解.【解答】解:(解法一):主要依乙所验的次数分类:若乙验两次时,有两种可能:①先验三只结果为阳性,再从中逐个验时,恰好一次验中概率为:(也可以用)②先验三只结果为阴性,再从其它两只中验出阳性(无论第二次验中没有,均可以在第二次结束)()∴乙只用两次的概率为.若乙验三次时,只有一种可能:先验三只结果为阳性,再从中逐个验时,恰好二次验中概率为:∴在三次验出时概率为∴甲种方案的次数不少于乙种次数的概率为:(解法二):设A 为甲的次数不小于乙的次数,则表示甲的次数小于乙的次数,则只有两种情况,甲进行的一次即验出了和甲进行了两次,乙进行了3次.则设A1,A2分别表示甲在第一次、二次验出,并设乙在三次验出为B∴∴【点评】本题考查了用计数原理来求事件的概率,并且所求的事件遇过于复杂的,要主动去分析和应用对立事件来处理.21.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.【考点】3D:函数的单调性及单调区间;3E:函数单调性的性质与判断.【专题】16:压轴题.【分析】(1)求单调区间,先求导,令导函数大于等于0即可.(2)已知f(x)在区间(0,)上是减函数,即f′(x)≤0在区间(0,)上恒成立,然后用分离参数求最值即可.【解答】解:(Ⅰ)当a=3时,f(x)=﹣x2+3x+1﹣lnx∴解f′(x)>0,即:2x2﹣3x+1<0函数f(x )的单调递增区间是.(Ⅱ)f′(x)=﹣2x+a ﹣,∵f(x )在上为减函数,∴x ∈时﹣2x+a ﹣≤0恒成立.即a≤2x +恒成立.设,则∵x ∈时,>4,∴g′(x)<0,∴g(x )在上递减,∴g(x)>g ()=3,∴a≤3.【点评】本题考查函数单调性的判断和已知函数单调性求参数的范围,此类问题一般用导数解决,综合性较强.22.(12分)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.【考点】KB:双曲线的标准方程;KC:双曲线的性质.【专题】11:计算题;16:压轴题.【分析】(1)由2个向量同向,得到渐近线的夹角范围,求出离心率的范围,再用勾股定理得出直角三角形的2个直角边的长度比,联想到渐近线的夹角,求出渐近线的斜率,进而求出离心率.(2)利用第(1)的结论,设出双曲线的方程,将AB方程代入,运用根与系数的关系及弦长公式,求出待定系数,即可求出双曲线方程.【解答】解:(1)设双曲线方程为,由,同向,∴渐近线的倾斜角范围为(0,),∴渐近线斜率为:,∴.∵||、||、||成等差数列,∴|OB|+|OA|=2|AB|,∴|AB|2=(|OB|﹣|OA|)(|OB|+|OA|)=(|OB|﹣|OA|)•2|AB|,∴,∴,可得:,而在直角三角形OAB中,注意到三角形OAF也为直角三角形,即tan∠AOB=,而由对称性可知:OA的斜率为k=tan,∴,∴2k2+3k﹣2=0,∴;∴,∴,∴.(2)由第(1)知,a=2b,可设双曲线方程为﹣=1,∴c=b.由于AB的倾斜角为+∠AOB,故AB的斜率为tan(+∠AOB )=﹣cot(∠AOB)=﹣2,∴AB的直线方程为y=﹣2(x﹣b),代入双曲线方程得:15x2﹣32bx+84b2=0,∴x1+x2=,x1•x2=,∴4=•=•,即16=﹣112b2,∴b2=9,所求双曲线方程为:﹣=1.【点评】做到边做边看,从而发现题中的巧妙,如据,联想到对应的是2渐近线的夹角的正切值,属于中档题.。

2008年高考数学试卷(辽宁.文)含详解

2008年高考数学试卷(辽宁.文)含详解

2008年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用) 第Ⅰ卷(选择题 共60分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径P(A ·B)=P(A) ·P(B) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 V=43πR3n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 P n (k )=C k n P k (1-p )n-k (k =0,1,2,…,n )一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合M ={x |-3<x <1|,N={x |x ≤-3},则M =⋃N (A)∅ (B) {x|x ≥-3} (C){x|x ≥1}(D){x |x <1|(2)若函数y=(x +1)(x-a )为偶函数,则a = (A)-2 (B) -2 (C)1 (D)2(3)圆x 2+y 2=1与直线y=kx +2没有公共点的充要条件是 (A)2,2(-∈k )(B) 3,3(-∈k )(C)k ),2()2,(+∞⋃--∞∈(D) k ),3()3,(+∞⋃--∞∈(4)已知0<a <1,x =log a 2log a 3,y =,5log 21a z =loga 3,则 (A)x >y >z(B)z >y >x(C)y >x >z(D)z >x >y(5)已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且AD BC 2=,则顶点D 的坐标为 (A)(2,27) (B)(2,-21) (C)(3,2) (D)(1,3)(6)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处切线倾斜角的取值范围为⎥⎦⎤⎢⎣⎡4,0π,则点P 横坐标的取值范围为 (A)⎥⎦⎤⎢⎣⎡--21,1(B)[-1,0] (C)[0,1](D)⎥⎦⎤⎢⎣⎡1,21(7)4张卡片上分别写有数字1,2,3,4从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为 (A)31 (B)21 (C)32 (D)43 (8)将函数y=2x +1的图象按向量a 平移得到函数y =2x +1的图象,则 (A)a =(-1,-1) (B)a =(1,-1) (C)a =(1,1) (D)a=(-1,1)(9)已知变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+,01,013,01x y x y x y 则z =2x+y 的最大值为第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)函数23()x y ex +=-∞+∞的反函数是 .(14)在体积为的球的表面上有A 、B 、C 三点,AB =1,BCA 、C 两点的球面距离为3π,则球心到平面ABC 的距离为 . (15)3621(1)()x x x++展开式中的常数项为 . (16)设(0,)2x π∈,则函数22sin 1sin 2x y x +=的最小值为 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)在△ABC 中,内角A ,B ,C ,对边的边长分别是a ,b ,c .已知2,3c C π==. (Ⅰ)若△ABC,求a ,b ;(Ⅱ)若sin 2sin B A =,求△ABC 的面积. (18)(本小题满分12分)某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:频数205030(Ⅱ)若以上述频率作为概率,且各周的销售量相互独立,求 (i )4周中该种商品至少有一周的销售量为4吨的概率; (ii )该种商品4周的销售量总和至少为15吨的概率. (19)(本小题满分12分)如图,在棱长为1的正方体ABCD -A ′B ′C ′D ′中,AP =BQ =b (0<b <1),截面PQEF ∥A ′D ,截面PQGH ∥AD ′.(Ⅰ)证明:平面PQEF 和平面PQGH 互相垂直;(Ⅱ)证明:截面PQEF 和截面PQGH 面积之和是定值,并求出这个值; (Ⅲ)若12b =,求D ′E 与平面PQEF 所成角的正弦值. (20)(本小题满分12分)已知数列{a n },{b n }是各项均为正数的等比数列,设(N*)nn nb c n a =∈. (Ⅰ)数列{c n }是否为等比数列?证明你的结论;(Ⅱ)设数列{tna n },{lnb n }的前n 项和分别为S n ,T n .若12,,21n n S n a T n ==+求数列{c n }的前n 项和.(21)(本小题满分12分)在平面直角坐标系xOy 中,点P 到两点(0,-3)、(0,3)的距离之和等于4.设点P 的轨迹为C .(Ⅰ)写出C 的方程;(Ⅱ)设直线y =kx +1与C 交于A 、B 两点.k 为何值时?⊥此时||的值是多少?(22)(本小题满分14分)设函数f (x )=ax 3+bx 2-3a 2x +1(a 、b ∈R )在x =x 1,x =x2处取得极值,且|x 1-x 2|=2. (Ⅰ)若a =1,求b 的值,并求f (x )的单调区间; (Ⅱ)若a >0,求b 的取值范围.2008年普通高等学校招生全国统一考试(辽宁卷)数学(供文科考生使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共60分)参考公式:如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(012)k kn k n n P k C P p k n -=-=,,,,其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}31M x x =-<<,{}3N x x =-≤,则M N =( D )A .∅B .{}3x x -≥C .{}1x x ≥D .{}1x x <答案:D解析:本小题主要考查集合的相关运算知识。

2008年普通高等学校招生全国统一考试数学(辽宁卷_文科)(附答案,完全word版)

2008年普通高等学校招生全国统一考试数学(辽宁卷_文科)(附答案,完全word版)

一般初等黉舍招生天下一致测验〔辽宁卷〕数学〔供理科考生应用〕本试卷分第一卷〔选择题〕跟第二卷〔非选择题〕两局部.第一卷 1至2页,第二卷3至4页,测验完毕后,将本试卷跟答题卡一并交回.第一卷〔选择题共60分〕参考公式:假如事情A ,B 互斥,那么球的外表积公式S4πR 2此中R 表现球的半径 球的体积公式4 P(AB)P(A)P(B)假如事情A ,B 相互独破,那么P(AB)P(A)P(B)A 在一次实验中发作的概率是P ,那么VπR 3 3假如事情 n 次独破反复实验中事情A 恰恰发作k 次的概率 k knkP n (k)CP(1p)(k01,,2,,n)此中R 表现球的半径n一、选择题:本年夜题共 12小题,每题5分,共60分,在每题给出的四个选项中,只有一项为哪一项契合标题请求的.1.曾经明白聚集M x3x1,N xx ≤3,那么MN 〔〕xx ≥3xx ≥1xx1D .A .B .C . 2.假定函数 y (x1)(xa)为偶函数,那么a=〔 C .1〕212A .B . D . 223.圆xy1与直线ykx2不年夜众点的充要前提是〔 〕k(2,2) k(3,3) A . B . D .k(∞,2)(2,∞)k(∞,3)(3,∞)C . 10a1xlog2log3,y log5zlog21log3,那么〔 4.曾经明白, , 〕a aa aa 2xyz zyxyxzzxy D .A .B .C . ABCD 的三个极点A(02)B(12)C(31)BC2AD ,那么极点,,且5.曾经明白四边形D 的坐标为〔,, , ,〕A .2,72B .2,12C .(3,2)D .(1,3)2yx2x3上的点,且曲线C 在点P 处切线倾歪角的取值范畴为6.设P 为曲线C :0,,那么点P 横坐标的取值范畴为〔 4〕,1 2D .1,12B .10,C .01,A .17.4张卡片上分不写有数字 1,2,3,4,从这4张卡片中随机抽取2张,那么掏出的2张卡 片上的数字之跟为奇数的概率为〔 〕 1 31 22 33 4A .B .C .D .x8.将函数y21的图象按向量 a 平移失掉函数y2x1的图象,那么〔〕A .a (1,1)B .a (1,1)C .a (11),D .a (11),yx1≤0,x ,y 满意束缚前提 y3x1≤0,那么z2xy 的最年夜值为〔 yx1≥0,〕9.曾经明白变量4 2 C .1 10.一消费进程有4道工序,每道工序需求布置一人照看.现从甲、乙、丙等 排4人分不照看一道工序,第一道工序只能从甲、乙两工人中布置1人,第四道工序只能从1人,那么差别的布置计划共有〔B .36种C .48种D .72种4A .B . D . 6名工人中安甲、丙两工人中布置 〕A .24种15 22 211.曾经明白双曲线9ymx1(m0)的一个极点到它的一条渐近线的间隔为 m,那么〔 〕A .1B .2C .3D .4ABCDABCD ,的中点,那么在空间中与三E ,F 分不为棱AACC1112.在正方体中,1 11 1 条直线AD EFCD 都订交的直线〔 , , 〕1 1 A .不存在B .有且只要两条C .有且只要三条D .有有数条第二卷〔非选择题共90分〕二、填空题:本年夜题共 4小题,每题4分,共16分. 2x113.函数ye(∞x ∞)的反函数是.14.在体积为43的球的外表上有A 、B ,C 三点,AB=1,BC=2,A ,C 两点的球面距3 离为ABC 的间隔为_________.,那么球心到破体 361 315.(1x)x开展式中的常数项为 .x 222sinx1 16.设x0 ,,那么函数y 的最小值为 .2sin2x三、解答题:本年夜题共 6小题,共74分.解容许写出笔墨阐明,证实进程或演算步调. 17.〔本小题总分值12分〕在△ABC 中,内角A ,B ,C 对边的边长分不是a ,b ,c ,曾经明白c2,C .3〔Ⅰ〕假定 △ABC 的面积即是3,求a ,b ;〔Ⅱ〕假定sinB2sinA ,求△ABC 的面积.18.〔本小题总分值12分〕某零售市场对某种商品的周贩卖量〔单元:吨〕进展统计,近来 示:100周的统计后果如下表所 2 3 4 周贩卖量 频数205030〔Ⅰ〕依照下面统计后果,求周贩卖量分不为2吨,3吨跟4吨的频率;〔Ⅱ〕假定以上述频率作为概率,且各周的贩卖量相互独破,求〔ⅰ〕4周中该种商品至多有一周的贩卖量为 〔ⅱ〕该种商品4周的贩卖量总跟至多为4吨的概率; 15吨的概率.19.〔本小题总分值12分〕如图,在棱长为1的正方体ABCDABCD 中,AP=BQ=b 〔0<b<1〕,截面PQEF ∥AD , 截面PQGH ∥AD .D〔Ⅰ〕证实:破体PQEF 跟破体PQGH 相互垂直; CHGB〔Ⅱ〕证实:截面PQEF 跟截面PQGH 面积之跟是定值, A并求出那个值; 1 PQ 〔Ⅲ〕假定bDE 与破体PQEF 所成角的正弦值.,求 DC2FE A B20.〔本小题总分值12分〕b n *(n N ).在数列|a||b|是各项均为负数的等比数列,设, c nn n a n〔Ⅰ〕数列|c|能否为等比数列?证实你的论断;nSTa 12,S n .假定nn|lna||lnb| 〔Ⅱ〕设数列n的前项跟分不为,求数,,n nn T n 2n1列|c|的前项跟. n n21.〔本小题总分值12分〕在破体直角坐标系xOy 中,点P 到两点(0,3),(0,3)的间隔之跟即是4,设点P 的轨 迹为C .〔Ⅰ〕写出C 的方程;〔Ⅱ〕设直线ykx1与C 交于A ,B 两点.k 为何值时 OAOB ?如今AB 的值是多少?22.〔本小题总分值14分〕322设函数f(x)axbx3ax1(a ,b R )xxxx 处获得极值,且 在,1 2x 1x2.2〔Ⅰ〕假定a1,求b 的值,并求f(x)的枯燥区间; 〔Ⅱ〕假定a0,求b 的取值范畴.一般初等黉舍招生天下一致测验〔辽宁卷〕数学〔供理科考生应用〕试题参考谜底跟评分参考一、选择题:此题考察根本常识跟根本运算.每题5分,共60分.1.D 7.C 2.C8.A3.B9.B4.C 5.A 6.A10.B 11.D 12.D二、填空题:此题考察根本常识跟根本运算.每题4分,总分值16分.1 2 3 213.y (lnx1)(x0) 14.15.35 16. 3三、解答题17.本小题要紧考察三角形的边角关联等根底常识,考察综算盘算才能.总分值12分.2 2解:〔Ⅰ〕由余弦定理得,abab4,1又由于△ABC的面积即是 3 ,因而absinC 3,得ab4 .·······················4分22 2abab4,解得a2,b2.··············································6分ab4,联破方程组〔Ⅱ〕由正弦定理,曾经明白前提化为b2a,·························································8分2 2abab4,233 43 3联破方程组解得a ,b .b2a,1 2 23 3因而△ABC的面积S absinC .····················································12分18.本小题要紧考察频率、概率等根底常识,考察应用概率常识处理实践咨询题的才能.总分值12分.解:〔Ⅰ〕周贩卖量为2吨,3吨跟4吨的频率分不为0.2,0.5跟0.3.······················4分〔Ⅱ〕由题意知一周的贩卖量为概率为2吨,3吨跟4吨的频率分不为0.2,0.5跟0.3,故所求的4〔ⅰ〕P10.70.7599.···································································8分13 3 4〔ⅱ〕PC0.50.30.30.0621.···············································12分2 419.本小题要紧考察空间中的线面关联跟面面关联,解三角形等根底常识,考察空间设想能力与逻辑思想才能.总分值解法一:12分.〔Ⅰ〕证实:在正方体中,又由曾经明白可得AD AD,AD AB,PF∥ADPH∥AD,PQAB,,∥因而PHPF ,PHPQ , 因而PH破体PQEF .因而破体PQEF 跟破体PQGH 相互垂直.·························································4分 〔Ⅱ〕证实:由〔Ⅰ〕知PF 2AP ,PH 2PA ,又截面PQEF 跟截面PQGH 基本上矩形,且PQ=1,因而截面PQEF 跟截面PQGH 面积之跟是(2AP2PA)PQ 2,是定值.···························································8分〔Ⅲ〕解:设AD 交PF 于点N ,贯穿连接EN , AD破体PQEF ,由于 D CC 因而∠DEN 为DE 与破体PQEF 所成的角. HB GQ A1 由于b,P ,Q ,E ,F 分不为AA ,BB ,BCAD 的中点.,因而D 2PNFE BA 3243 可知DNDE 32, .22 43 因而sin ∠DEN.···································································12分22解法二:以D 为原点,射线DA ,DC ,DD ′分不为x ,y ,z 轴的正半轴树破如图的空间直角坐标系 DF1b ,故 D -xyz .由曾经明白得A(1,0,0),A(1,0,1),D(0,0,0),D(0,0,1),P(1,0,b),Q(11,,b),E(1b ,1,0), zDCHGABB F(1b ,0,0)G(b ,11),H(b ,0,1)., , C PQ 〔Ⅰ〕证实:在所树破的坐标系中,可得DFyEA PQ(010),,,PF(b ,0,b), xPH(b101,,b),AD(101),,,AD(10,,1).ADPQ0ADPF0,由于AD 是破体PQEF 的法向量.,因而由于ADPQ0ADPH0,因而,AD 是破体PQGH 的法向量.由于ADAD0,因而ADAD ,因而破体PQEF 跟破体PQGH 相互垂直.···························································4分 〔Ⅱ〕证实:由于EF(0,10),,因而EF ∥PQ ,EF=PQ ,又PFPQ ,因而PQEF 为矩形,同理PQGH 为矩形. 在所树破的坐标系中可求得 PH 2(1b),PF 2b ,因而PHPF 2,又PQ1,因而截面PQEF 跟截面PQGH 面积之跟为2,是定值.·······································8分 〔Ⅲ〕解:由〔Ⅰ〕知AD(101),,是破体PQEF 的法向量. PAA 中点可知,Q ,E ,F 分不为BB ,BCAD 的中点. 由 为 ,112因而E ,1,0,DE,1,1,因而DE 与破体PQEF 所成角的正弦值即是 2|cosAD ,DE|2.·············································································12分 220.本小题要紧考察等差数列,等比数列,对数等根底常识,考察综合应用数学常识处理咨询 题的才能.总分值12分. c n 解:〔Ⅰ〕是等比数列.··············································································2分证实:设a n 的公比为q 1(q0)b q 2(q0),那么2,的公比为1nc n1b n1a n b n1a n q 20,故c 为等比数列.····································5分nc na n1b nba n1q 1n〔Ⅱ〕数列lna nlnb nlnqlnq 的等差数列. 跟 分不是公役为 跟 1 2n(n1)lnq 1nlna 12 2 由前提得,即n(n1)lnq 22n1nlnb 122lna(n1)lnq 1 n1 .·········································································7分2lnb(n1)lnq 22n11故对n1,2,⋯,2(2lnqlnq)n(4lnalnq2lnblnq)n(2lnalnq)0.1 2 1 1 1 2 1 1因而2lnqlnq0, 12 4lnalnq2lnblnq 20, 1 1 1 2lnalnq0. 11将a2代入得q 14q16b8.·······················································10分 , , 12 1 816n1 24n1n从而有c n4.因而数列c nn的前项跟为4 244⋯4nn(41).·········································································12分 321.本小题要紧考察破体向量,椭圆的界说、规范方程及直线与椭圆地位关联等根底常识, 考察综合应用剖析多少何常识处理咨询题的才能.总分值 解:12分. 〔Ⅰ〕设P 〔x ,y 〕,由椭圆界说可知,点 P 的轨迹C 是以(0,3),(0,3)为核心,长半22(3)21,轴为2的椭圆.它的短半轴by 2 故曲线C 的方程为x 21 .······································································4分4〔Ⅱ〕设A(x ,y),B(x ,y),其坐标满意 1 1 2 2y 24x 21,ykx1.消去y 并收拾得(k4)x2kx30,2k 2 2 3 故xx 21,xx12.····························································6分2k42k4OAOB ,即xxyy0. 121 22而yykxxk(xx)1, 1 2 1212233k 22k 24k1. 因而xxyy 2112 12222k4k4k4k412因而kx 1x 2yy0,故OAOB .···············································8分12 时,1 24 12172当kx 1x 2,xx12时, .17(xx)(yy)222 AB(1k)(xx),2 12 12 122而(xx)(xx)4xx 2 2 12 114217243413 34,17172因而AB465.····················································································12分 1722.本小题要紧考察函数的导数,枯燥性、极值,最值等根底常识,考察综合应用导数研讨 函数的有关性子的才能.总分值 解:f(x)3ax2bx3a2 〔Ⅰ〕当a1时,14分2 .①·····································································2分2f(x)3x2bx3;2由题意知x ,x3x2bx30的两根,因而为方程1 2 24b36 3x 1x 2.由xx2,得b0.···············································································分 41 2 22从而f(x)x3x1f(x)3x33(x1)(x1).,当x(11),时,f(x)0;当x(∞,1)(1,∞)时,f(x)0.故f(x)在(11),枯燥递加,在(∞,1),(1,∞)枯燥递增.······························6分 223x2bx3a0的两根,〔Ⅱ〕由①式及题意知x ,x1为方程 24b36a 32因而xx 21.3a22从而xx2b9a(1a), 1 2由上式及题设知0a ≤1.············································································8分2思索g(a)9a9a 3,2 g(a)18a27a 227aa.······························································10分32 23 234.3故g(a)在0,枯燥递增,在,1枯燥递加,从而g(a)在01,的极年夜值为g 32 3 4 3又g(a)在g(1)0.因而b2 01,上只要一个极值,因而g 为在g(a)01,上的最年夜值,且最小值为4 2323,.········································14分30,,即b的取值范畴为3 3。

2008年辽宁省高考数学试卷(文科)答案与解析

2008年辽宁省高考数学试卷(文科)答案与解析

2008年辽宁省高考数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2008•辽宁)已知集合M={x|﹣3<x<1},N={x|x≤﹣3},则M∪N=()A.∅B.{x|x≥﹣3} C.{x|x≥1} D.{x|x<1}【考点】并集及其运算.【分析】根据并集的意义,做出数轴,观察可得答案.【解答】解:根据题意,做出数轴可得,分析可得,M∪N={x|x<1},故选D.【点评】本小题主要考查集合的相关运算知识,注意并集的意义即可.2.(5分)(2008•辽宁)若函数y=(x+1)(x﹣a)为偶函数,则a=()A.﹣2 B.﹣1 C.1 D.2【考点】偶函数.【分析】本小题主要考查函数的奇偶性的定义:f(x)的定义域为I,∀x∈I都有,f(﹣x)=f(x).根据定义列出方程,即可求解.【解答】解:f(1)=2(1﹣a),f(﹣1)=0∵f(x)是偶函数∴2(1﹣a)=0,∴a=1,故选C.【点评】本题主要考查偶函数的定义,对于函数的奇偶性问题要注意恰当的使用特殊值法.3.(5分)(2008•辽宁)圆x2+y2=1与直线y=kx+2没有公共点的充要条件是()A.B.C.D.【考点】直线与圆相交的性质.【分析】当圆心到直线的距离大于半径时,直线与圆没有公共点,这是充要条件.【解答】解:依题圆x2+y2=1与直线y=kx+2没有公共点故选C.【点评】本小题主要考查直线和圆的位置关系;也可以用联立方程组,△<0来解;是基础题.4.(5分)(2008•辽宁)已知0<a<1,x=log a+log a,y=log a5,z=log a﹣log a,则()A.x>y>z B.z>y>x C.y>x>z D.z>x>y【考点】对数值大小的比较.【分析】先化简x、y、z然后利用对数函数的单调性,比较大小即可.【解答】解:x=log a+log a=log a,y=log a5=log a,z=log a﹣log a=log a,∵0<a<1,又<<,∴log a>log a>log a,即y>x>z.故选C.【点评】本题考查对数函数的性质,对数的化简,是基础题.5.(5分)(2008•辽宁)已知四边形ABCD的三个顶点A(0,2),B(﹣1,﹣2),C(3,1),且,则顶点D的坐标为()A.B. C.(3,2)D.(1,3)【考点】平面向量坐标表示的应用.【分析】本小题主要考查平面向量的基本知识,先设出点的坐标,根据所给的点的坐标,写出向量的坐标,根据向量的数乘关系,得到向量坐标之间的关系,由横标和纵标分别相等,得到结果.【解答】解:设顶点D的坐标为(x,y)∵,,且,∴故选A【点评】向量首尾相连,构成封闭图形,则四个向量的和是零向量,用题目给出的三个点的坐标,再设出要求的坐标,写出首尾相连的四个向量的坐标,让四个向量相加结果是零向量,解出设的坐标.6.(5分)(2008•辽宁)设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处切线倾斜角的取值范围是,则点P横坐标的取值范围是()A.B.[﹣1,0]C.[0,1]D.[,1]【考点】导数的几何意义.【专题】压轴题.【分析】根据题意知,倾斜角的取值范围,可以得到曲线C在点P处斜率的取值范围,进而得到点P横坐标的取值范围.【解答】解:设点P的横坐标为x0,∵y=x2+2x+3,∴y′=2x 0+2,利用导数的几何意义得2x0+2=tanα(α为点P处切线的倾斜角),又∵,∴0≤2x0+2≤1,∴.故选:A.【点评】本小题主要考查利用导数的几何意义求切线斜率问题.7.(5分)(2008•辽宁)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【专题】概率与统计.【分析】4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,基本事件总数n==6,取出的2张卡片上的数字之和为奇数包含的基本事件个数m==4,由此能求出取出的2张卡片上的数字之和为奇数的概率.【解答】解:4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,基本事件总数n==6,取出的2张卡片上的数字之和为奇数包含的基本事件个数m==4,∴取出的2张卡片上的数字之和为奇数的概率为=.故选:C.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件的概率计算公式的合理运用.8.(5分)(2008•辽宁)将函数y=2x+1的图象按向量平移得到函数y=2x+1的图象,则等于()A.(﹣1,﹣1)B.(1,﹣1)C.(1,1)D.(﹣1,1)【考点】函数的图象与图象变化.【分析】本小题主要考查函数图象的平移与向量的关系问题.依题由函数y=2x+1的图象得到函数y=2x+1的图象,需将函数y=2x+1的图象向左平移1个单位,向下平移1个单位;故.【解答】解:设=(h,k)则函数y=2x+1的图象平移向量后所得图象的解析式为y=2x﹣h+1+k∴∴∴=(﹣1,﹣1)故选A【点评】求平移向量多采用待定系数法,先将平移向量设出来,平移后再根据已知条件列出方程,解方程即可求出平移向量.9.(5分)(2008•辽宁)已知变量x,y满足约束条件则z=2x+y的最大值为()A.4 B.2 C.1 D.﹣4【考点】简单线性规划的应用.【专题】计算题;数形结合.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=2x+y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.【解答】解:作图易知可行域为一个三角形,其三个顶点为(0,1),(1,0),(﹣1,﹣2),验证知在点(1,0)时取得最大值2当直线z=2x+y过点A(1,0)时,z最大是2,故选B.【点评】本小题是考查线性规划问题,本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.10.(5分)(2008•辽宁)生产过程有4道工序,每道工序需要安排一人照看,现从甲乙丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲乙两工人中安排1人,第四道工序只能从甲丙两工人中安排1人,则不同的安排方案有()A.24种B.36种C.48种D.72种【考点】排列、组合的实际应用.【专题】计算题.【分析】根据题意,按第一道工序由甲或乙来完成,分2种情况讨论,再分析第四道工序的完成的情况数目,由分类计数原理的公式,计算可得答案.【解答】解:依题若第一道工序由甲来完成,则第四道工序必由丙来完成,故完成方案共有A42=12种;若第一道工序由乙来完成,则第四道工序必由丙二人之一来完成,故完成方案共有A21•A42=24种;∴则不同的安排方案共有A42+A21•A42=36种,故选B.【点评】本题考查排列、组合的综合运用,注意分情况讨论时,一定要不重不漏.11.(5分)(2008•辽宁)已知双曲线9y2﹣m2x2=1(m>0)的一个顶点到它的一条渐近线的距离为,则m=()A.1 B.2 C.3 D.4【考点】双曲线的简单性质.【专题】计算题;压轴题.【分析】由双曲线9y2﹣m2x2=1(m>0)可得,顶点,一条渐近线为mx﹣3y=0,再由点到直线的距离公式根据一个顶点到它的一条渐近线的距离为可以求出m.【解答】解:,取顶点,一条渐近线为mx﹣3y=0,∵故选D.【点评】本小题主要考查双曲线的知识,解题时要注意恰当选取取公式.12.(5分)(2008•辽宁)在正方体ABCD﹣A1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线()A.不存在B.有且只有两条 C.有且只有三条 D.有无数条【考点】空间中直线与直线之间的位置关系.【专题】压轴题.【分析】先画出正方体,然后根据题意试画与三条直线A1D1,EF,CD都相交的直线,从而发现结论.【解答】解:在EF上任意取一点M,直线A1D1与M确定一个平面,这个平面与CD有且仅有1个交点N,当M取不同的位置就确定不同的平面,从而与CD有不同的交点N,而直线MN与这3条异面直线都有交点.如图:故选D.【点评】本题主要考查立体几何中空间直线相交问题,同时考查学生的空间想象能力.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2008•辽宁)函数y=e2x+1(﹣∞<x<+∞)的反函数是.【考点】反函数.【专题】计算题.【分析】利用指数式与对数式的互换关系,从条件中函数式y=e2x+1(﹣∞<x<+∞)中反解出x,再将x,y互换即得.【解答】解:∵,所以反函数是故答案为:.【点评】本小题主要考查反函数问题.求反函数,一般应分以下步骤:(1)由已知解析式y=f(x)反求出x=Ф(y);(2)交换x=Ф(y)中x、y的位置;(3)求出反函数的定义域(一般可通过求原函数的值域的方法求反函数的定义域).14.(4分)(2008•辽宁)在体积为的球的表面上有A,B,C三点,两点的球面距离为,则球心到平面ABC的距离为.【考点】点、线、面间的距离计算;球的体积和表面积.【专题】计算题.【分析】根据球的体积,首先就要先计算出球的半径.再根据A、C两点的球面距离,可求得所对的圆心角的度数,进而根据余弦定理可得线段AC的长度为,所以△ABC为直角三角形,所以线段AC的中点即为ABC所在平面的小圆圆心,进而可得球心到平面ABC 的距离.【解答】解析:设球的半径为R,则,∴设A、C两点对球心张角为θ,则,∴,∴由余弦定理可得:,∴AC为ABC所在平面的小圆的直径,∴∠ABC=90°,设ABC所在平面的小圆圆心为O',则球心到平面ABC的距离为d=OO'=【点评】本小题主要考查立体几何球面距离及点到面的距离.15.(4分)(2008•辽宁)展开式中的常数项为35.【考点】二项式定理;二项式系数的性质.【专题】计算题;压轴题.【分析】展开式的常数项是由的常数项与x﹣3项的系数和,利用二项展开式的通项公式求出第r=1+1项,令x的指数分别为0,﹣3得解.【解答】解:展开式的通项为,展开式中的常数项共有两种来源:①6﹣3r=0,⇒r=2,C62=15;②6﹣3r=﹣3,⇒r=3,C63=20;相加得15+20=35.故答案为35【点评】本题考查等价转换的能力;考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.16.(4分)(2008•辽宁)设,则函数的最小值为.【考点】三角函数的最值.【专题】计算题;压轴题.【分析】先根据二倍角公式对函数进行化简,然后取点A(0,2),B(﹣sin2x,cos2x)且在x2+y2=1的左半圆上,将问题转化为求斜率的变化的最小值问题,进而看解.【解答】解:∵,取A(0,2),B(﹣sin2x,cos2x)∈x2+y2=1的左半圆,如图易知.故答案为:.【点评】本小题主要考查二倍角公式的应用和三角函数的最值问题.考查知识的综合运用能力和灵活能力.三、解答题(共6小题,满分74分)17.(12分)(2008•辽宁)在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知c=2,C=.(Ⅰ)若△ABC的面积等于,求a,b;(Ⅱ)若sinC+sin(B﹣A)=2sin2A,求△ABC的面积.【考点】余弦定理的应用.【分析】(Ⅰ)先通过余弦定理求出a,b的关系式;再通过正弦定理及三角形的面积求出a,b的另一关系式,最后联立方程求出a,b的值.(Ⅱ)通过C=π﹣(A+B)及二倍角公式及sinC+sin(B﹣A)=2sin2A,求出∴sinBcosA=2sinAcosA.当cosA=0时求出a,b的值进而通过absinC求出三角形的面积;当cosA≠0时,由正弦定理得b=2a,联立方程解得a,b的值进而通过absinC求出三角形的面积.【解答】解:(Ⅰ)∵c=2,C=,c2=a2+b2﹣2abcosC∴a2+b2﹣ab=4,又∵△ABC的面积等于,∴,∴ab=4联立方程组,解得a=2,b=2(Ⅱ)∵sinC+sin(B﹣A)=sin(B+A)+sin(B﹣A)=2sin2A=4sinAcosA,∴sinBcosA=2sinAcosA当cosA=0时,,,,,求得此时当cosA≠0时,得sinB=2sinA,由正弦定理得b=2a,联立方程组解得,.所以△ABC的面积综上知△ABC的面积【点评】本小题主要考查三角形的边角关系,三角函数公式等基础知识,考查综合应用三角函数有关知识的能力.18.(12分)(2008•辽宁)某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:周销售量2 3 4频数20 50 30(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;(Ⅱ)若以上述频率作为概率,且各周的销售量相互独立,求(ⅰ)4周中该种商品至少有一周的销售量为4吨的概率;(ⅱ)该种商品4周的销售量总和至少为15吨的概率.【考点】相互独立事件的概率乘法公式.【分析】(1)由题意得到样本容量是100,周销售量为2吨,3吨和4吨的频数分别为20、50、30,利用样本容量、频数和频率之间的关系得到周销售量分别为2吨,3吨和4吨的频率分别为0.2,0.5和0.3.(2)由题意知本题是一个独立重复试验,根据对立事件和独立重复试验的公式得到要求的结论,实际上本题的关键是理解题意,看清题目的本质,利用数学知识解决实际问题.【解答】解:(Ⅰ)∵样本容量是100,周销售量为2吨,3吨和4吨的频数分别为20、50、30,∴周销售量分别为2吨,3吨和4吨的频率分别为0.2,0.5和0.3.(Ⅱ)由题意知一周的销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3,(ⅰ)4周中该种商品至少有一周的销售量为4吨的对立事件是没有一周的销售量是4吨,根据对立事件和独立重复试验的公式得到P1=1﹣0.74=0.7599.(ⅱ)P2=C43×0.5×0.33+0.34=0.0621.【点评】本小题主要考查频率、概率等基础知识,考查运用概率知识解决实际问题的能力.考查运用概率知识解决实际问题的能力,注意满足独立重复试验的条件.19.(12分)(2008•辽宁)如图,在棱长为1的正方体ABCD﹣A′B′C′D′中,AP=BQ=b(0<b<1),截面PQEF∥A′D,截面PQGH∥AD′.(1)证明:平面PQEF和平面PQGH互相垂直;(2)证明:截面PQEF和截面PQGH面积之和是定值,并求出这个值;(3)若D′E与平面PQEF所成的角为45°,求D′E与平面PQGH所成角的正弦值.【考点】空间中直线与平面之间的位置关系;平面与平面垂直的判定;直线与平面所成的角.【专题】计算题;证明题.【分析】(解法一)(Ⅰ)由题意得A′D∥PF,PH∥AD′,PQ∥AB,又因AD′⊥A′D,AD′⊥AB,得到PH⊥PF,PH⊥PQ,可证PH⊥平面PQEF,用面面垂直的判定定理即证.(Ⅱ)由(Ⅰ)知截面PQEF和截面PQGH都是矩形,且,PQ=1,代入面积公式求解.(Ⅲ)连接BC′交EQ于点M,得到平面ABC′D′∥平面PQGH,所求的角转化到D′E与平面ABC′D′所成角,由(Ⅰ)知EM⊥平面ABC′D则′EM与D′E的比值就是所求的正弦值,根据已知条件求出b的值,在直角三角形中求解.(解法二)(Ⅰ)用数量积为零求平面PQEF的法向量和平面PQGH的法向量,求它们的数量积为零证出面面垂直.(Ⅱ)用数量积为零证出截面PQEF和截面PQGH都是矩形,用两点间的距离公式求出邻边得长度,再求面积和.(Ⅲ)由(Ⅰ)知平面PQEF和平面PQGH的法向量,用数量积根据已知条件先求出b的值,再求向量所成角的余弦值.【解答】解:解法一:(Ⅰ)证明:∵面PQEF∥A′D,平面PQEF∩平面A′ADD′=PF∴A′D∥PF,同理可得PH∥AD′,∵AP=BQ=b,AP∥BQ;∴APBQ是平行四边形,∴PQ∥AB,∵在正方体中,AD′⊥A′D,AD′⊥AB,∴PH⊥PF,PH⊥PQ,∴PH⊥平面PQEF,PH⊂平面PQGH.∴平面PQEF⊥平面PQGH.(4分)(Ⅱ)证明:由(Ⅰ)知,截面PQEF和截面PQGH都是矩形,且PQ=1,∴截面PQEF和截面PQGH面积之和是,是定值.(8分)(Ⅲ)解:连接BC′交EQ于点M.∵PH∥AD′,PQ∥AB;PH∩PQ=P,AD′∩AB=A∴平面ABC′D′∥平面PQGH,∴D′E与平面PQGH所成角与D′E与平面ABC′D′所成角相等.由(Ⅰ)同理可证EQ⊥平面PQGH,可知EM⊥平面ABC′D′,∴EM与D′E的比值就是所求的正弦值.设AD′交PF于点N,连接EN,由FD=1﹣b知.∵AD′⊥平面PQEF,又已知D′E与平面PQEF成45°角,∴,即,解得,可知E为BC中点.∴EM=,又,∴D′E与平面PQCH所成角的正弦值为.(12分)解法二:以D为原点,射线DA,DC,DD′分别为x,y,z轴的正半轴建立如图的空间直角坐标系D ﹣xyz由已知得DF=1﹣b,故A(1,0,0),A′(1,0,1),D(0,0,0),D′(0,0,1),P(1,0,b),Q(1,1,b),E(1﹣b,1,0),F(1﹣b,0,0),G(b,1,1),H(b,0,1).(Ⅰ)证明:在所建立的坐标系中,可得,,.∵,∴是平面PQEF的法向量.∵,∴是平面PQGH的法向量.∵,∴,∴平面PQEF⊥平面PQGH.(4分)(Ⅱ)证明:∵,∴,又∵,∴PQEF为矩形,同理PQGH为矩形.在坐标系中可求得,,∴,又,∴截面PQEF和截面PQGH面积之和为,是定值.(8分)(Ⅲ)解:由已知得与成45°角,又可得,即,解得.∴,又,∴D′E与平面PQGH所成角的正弦值为.(12分)【点评】本题主要考查空间中的线面、面面垂直和平行的定理,线面角的求法,解三角形等基础知识;本题为一题多解的情况,一种是向量法,另一种是几何法,对于求线面角向量法简单,因用此法;还考查转化思想与逻辑思维能力,属于难度很大的题.20.(12分)(2008•辽宁)在数列{a n},{b n}是各项均为正数的等比数列,设.(Ⅰ)数列{c n}是否为等比数列?证明你的结论;(Ⅱ)设数列{lna n},{lnb n}的前n项和分别为S n,T n.若a1=2,,求数列{c n}的前n项和.【考点】等比关系的确定;数列的求和.【专题】综合题.【分析】(Ⅰ)设|a n|的公比为q1,|b n|的公比为q2,根据进而可得化简得进而可证明|c n|为等比数列.(Ⅱ)根据数列{a n},{b n}是各项均为正数的等比数列,可推断数列{lna n},{lnb n}为等差数列.进而可求得S n和T n代入,可求得q1,q2=16和b1=8.代入即可得到数列{c n}的通项公式,结果发现数列{c n}是以4为首项,4为公比的等比数列,进而根据等比数列的求和公式可得到答案.【解答】解:(Ⅰ){c n}是等比数列.证明:设{a n}的公比为q1(q1>0),{b n}的公比为q2(q2>0),则,故{c n}为等比数列.(Ⅱ)数列{lna n}和{lnb n}分别是公差为lnq1和lnq2的等差数列.由条件得,即.故对n=1,可得,又a1=2,可得b1=8,于是可变为(2lnq1﹣lnq2)n2+(4lna1﹣lnq1﹣2lnb1+lnq2)n+(2lna1﹣lnq1)=0对任意的正整数n恒成立于是将a1=2代入得q1=4,q2=16,b1=8.从而有.所以数列{c n}的前n项和为.【点评】本小题主要考查等差数列,等比数列,对数等基础知识,考查综合运用数学知识解决问题的能力.21.(12分)(2008•辽宁)在平面直角坐标系xOy中,点P到两点,的距离之和等于4,设点P的轨迹为C.(Ⅰ)写出C的方程;(Ⅱ)设直线y=kx+1与C交于A,B两点.k为何值时⊥?此时的值是多少?.【考点】直线与圆锥曲线的综合问题.【专题】综合题;压轴题;转化思想.【分析】(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是椭圆.从而写出其方程即可;(Ⅱ)设A(x1,y1),B(x2,y2),其坐标满足,将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根与系数的关系及向量垂直的条件,求出k值即可,最后通牒利用弦长公式即可求得此时的值,从而解决问题.【解答】解:(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是以为焦点,长半轴为2的椭圆.它的短半轴,故曲线C的方程为.(4分)(Ⅱ)设A(x1,y1),B(x2,y2),其坐标满足消去y并整理得(k2+4)x2+2kx﹣3=0,故.(6分),即x1x2+y1y2=0.而y1y2=k2x1x2+k(x1+x2)+1,于是.所以时,x1x2+y1y2=0,故.(8分)当时,,.,而(x2﹣x1)2=(x2+x1)2﹣4x1x2=,所以.(12分)【点评】本小题主要考查平面向量,椭圆的定义、标准方程及直线与椭圆位置关系等基础知识,考查综合运用解析几何知识解决问题的能力.22.(14分)(2008•辽宁)设函数f(x)=ax3+bx2﹣3a2x+1(a,b∈R)在x=x1,x=x2处取得极值,且|x1﹣x2|=2.(Ⅰ)若a=1,求b的值,并求f(x)的单调区间;(Ⅱ)若a>0,求b的取值范围.【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【专题】压轴题.【分析】(Ⅰ)由题意f(x)=ax3+bx2﹣3a2x+1=x3+bx2﹣3x+1,求出其导数f'(x)=3x2+2bx ﹣3,令f′(x)=0,求出极值点x=x1,x=x2利用|x1﹣x2|=2求出b值,并求f(x)的单调区间;(Ⅱ)不知a值,只知a>0,由题意知x1,x2为方程3x2+2bx﹣3a2=0的两根,得=2,求出a的范围,因g(a)=9a2﹣9a3,求出g(a)的单调区间,从而求出a与b的关系,最后根据a的范围确定b的范围.【解答】解:f'(x)=3ax2+2bx﹣3a2.①(2分)(Ⅰ)当a=1时,f'(x)=3x2+2bx﹣3;由题意知x1,x2为方程3x2+2bx﹣3=0的两根,所以.由|x1﹣x2|=2,得b=0.(4分)从而f(x)=x2﹣3x+1,f'(x)=3x2﹣3=3(x+1)(x﹣1).当x∈(﹣1,1)时,f'(x)<0;当x∈(﹣∞,﹣1)∪(1,+∞)时,f'(x)>0.故f(x)在(﹣1,1)单调递减,在(﹣∞,﹣1),(1,+∞)单调递增.(6分)(Ⅱ)由①式及题意知x1,x2为方程3x2+2bx﹣3a2=0的两根,所以.从而|x1﹣x2|=2⇔b2=9a2(1﹣a),由上式及题设知0<a≤1.(8分)考虑g(a)=9a2﹣9a3,.(10分)故g(a)在单调递增,在单调递减,从而g(a)在(0,1]的极大值为.又g(a)在(0,1]上只有一个极值,所以为g(a)在(0,1]上的最大值,且最小值为g(1)=0.所以,即b的取值范围为.(14分)【点评】本小题主要考查函数的导数,单调性、极值,最值等基础知识,考查综合利用导数研究函数的有关性质的能力.。

2008年高考数学试卷(全国Ⅱ.文)含详解

2008年高考数学试卷(全国Ⅱ.文)含详解

2008年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至10页. 考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k kn k k n P k C p p k n -=-=,,,,一、选择题1.若sin 0α<且tan 0α>是,则α是( ) A .第一象限角 B . 第二象限角 C . 第三象限角 D . 第四象限角2.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,3.原点到直线052=-+y x 的距离为( ) A .1B .3C .2D .54.函数1()f x x x=-的图像关于( )A .y 轴对称B . 直线x y -=对称C . 坐标原点对称D . 直线x y =对称5.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a6.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值为( )A .2-B .4-C .6-D .8-7.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( )A .1B .12C .12-D .1-8.正四棱锥的侧棱长为32,侧棱与底面所成的角为︒60,则该棱锥的体积为( ) A .3 B .6C .9D .189.44)1()1(x x +-的展开式中x 的系数是( )A .4-B .3-C .3D .410.函数x x x f cos sin )(-=的最大值为( ) A .1B .2 C .3D .211.设ABC △是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 的双曲线的离心率为( ) A .221+ B .231+ C . 21+ D .31+12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ) A .1 B .2C .3D .22008年普通高等学校招生全国统一考试文科数学(必修+选修I)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ . 14.从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有 种(用数字作答)15.已知F 是抛物线24C y x =:的焦点,A B ,是C 上的两个点,线段AB 的中点为(22)M ,,则ABF △的面积等于 .16.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在ABC △中,5cos 13A =-,3cos 5B =. (Ⅰ)求sinC 的值;(Ⅱ)设5BC =,求ABC △的面积. 18.(本小题满分12分)等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S .19.(本小题满分12分)甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8环,9环,10环的概率分别为0.6,0.3,0.1,乙击中8环,9环,10环的概率分别为0.4,0.4,0.2.设甲、乙的射击相互独立.(Ⅰ)求在一轮比赛中甲击中的环数多于乙击中环数的概率;(Ⅱ)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率. 20.(本小题满分12分) 如图,正四棱柱1111ABCD A B C D -中,124AA AB ==,点E 在1CC 上且EC E C 31=. (Ⅰ)证明:1A C ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小. 21.(本小题满分12分)设a ∈R ,函数233)(x ax x f -=.(Ⅰ)若2=x 是函数)(x f y =的极值点,求a 的值;(Ⅱ)若函数()()()[02]g x f x f x x '=+∈,,,在0=x 处取得最大值,求a 的取值范围. 22.(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点. (Ⅰ)若6ED DF =,求k 的值; (Ⅱ)求四边形AEBF 面积的最大值.AB CD EA 1B 1C 1D 12008年普通高等学校招生全国统一考试 文科数学试题(必修+选修Ⅰ)参考答案和评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要 考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和 难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.一、选择题1.C 2.B 3.D 4.C 5.C 6.D 7.A 8.B 9.A 10.B 11.B 12.C 二、填空题13.2 14.420 15.216.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分.1.若sin 0α<且tan 0α>是,则α是( ) A .第一象限角 B . 第二象限角 C . 第三象限角 D . 第四象限角 【答案】C【解析】sin 0α<,α在三、四象限;tan 0α>,α在一、三象限,∴选C 2.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,【答案】B【解析】{}1,0,1,2--=M ,{}3,2,1,0,1-=N ,∴{}1,0,1-=N M 【高考考点】集合的运算,整数集的符号识别 3.原点到直线052=-+y x 的距离为( ) A .1B .3C .2D .5【答案】D【解析】52152=+-=d【高考考点】点到直线的距离公式4.函数1()f x x x=-的图像关于( ) A .y 轴对称 B . 直线x y -=对称 C . 坐标原点对称 D . 直线x y =对称【答案】C 【解析】1()f x x x=-是奇函数,所以图象关于原点对称 【高考考点】函数奇偶性的性质5.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a【答案】C【解析】由0ln 111<<-⇒<<-x x e ,令x t ln =且取21-=t 知b <a <c 6.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值为( )A .2-B .4-C .6-D .8-【答案】D【解析】如图作出可行域,知可行域的顶点是A (-2,2)、B(32,32)及C(-2,-2) 于是8)(min -=A z7.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( )A .1B .12C .12-D .1-【答案】A【解析】ax y 2'=,于是切线的斜率a y k x 2'1===,∴有122=⇒=a a8.正四棱锥的侧棱长为32,侧棱与底面所成的角为︒60,则该棱锥的体积为( ) A .3 B .6C .9D .18【答案】B【解析】高360sin 32=︒=h ,又因底面正方形的对角线等于32,∴底面积为 6332212=⨯⨯⨯=S ,∴体积63631=⨯⨯=V【备考提示】在底面积的计算时,要注意多思则少算 9.44)1()1(x x +-的展开式中x 的系数是( )A .4-B .3-C .3D .4【答案】A【解析】41666141404242404-=-+=-+C C C C C C 【易错提醒】容易漏掉1414C C 项或该项的负号 10.函数x x x f cos sin )(-=的最大值为( ) A .1 B .2 C .3D .2【答案】B【解析】)4sin(2cos sin )(π-=-=x x x x f ,所以最大值是2【高考考点】三角函数中化为一个角的三角函数问题【备考提示】三角函数中化为一个角的三角函数问题是三角函数在高考中的热点问题 11.设ABC △是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 的双曲线的离心率为( ) A .221+ B .231+ C . 21+ D .31+【答案】B【解析】由题意BC c =2,所以c c AC 3260sin 220=⨯⨯=,由双曲线的定义,有c a c c BC AC a )13(2322-=⇒-=-=,∴231131+=-==a c e 【高考考点】双曲线的有关性质,双曲线第一定义的应用12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ) A .1 B .2C .3D .2【答案】C【解析】设两圆的圆心分别为1O 、2O ,球心为O ,公共弦为AB ,其中点为E ,则21EO OO 为矩形,于是对角线OE O O =21,而3122222=-=-=AE OA OE ,∴321=O O 【高考考点】球的有关概念,两平面垂直的性质13.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ . 【答案】 2【解析】λ+a b =)32,2(++λλ则向量λ+a b 与向量(47)=--,c 共线274322=⇒--=++⇔λλλ14.从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有 种(用数字作答) 【答案】 420【解析】4202701501621026110=+=+C C C C15.已知F 是抛物线24C y x =:的焦点,A B ,是C 上的两个点,线段AB 的中点为(22)M ,,则ABF △的面积等于 .【答案】 2 【解析】设过M的直线方程为)2(2-=-x k y ,由0)1(444)2(22222=-+-⇒⎩⎨⎧=-=-k kx x k xy x k y ∴k x x 421=+,2221)1(4k k x x -=,由题意144=⇒=k k,于是直线方程为x y = 421=+x x ,021=x x ,∴24=AB ,焦点F (1,0)到直线x y =的距离21=d∴ABF △的面积是216.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)【答案】两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分.三、解答题17.解:(Ⅰ)由5cos 13A =-,得12sin 13A =, 由3cos 5B =,得4sin 5B =. ··········································································· 2分所以16sin sin()sin cos cos sin 65C A B A B A B =+=+=. ····································· 5分(Ⅱ)由正弦定理得45sin 13512sin 313BC B AC A ⨯⨯===. ··········································· 8分 所以ABC △的面积1sin 2S BC AC C =⨯⨯⨯1131652365=⨯⨯⨯83=. ····················· 10分 18.解:设数列{}n a 的公差为d ,则3410a a d d =-=-, 642102a a d d =+=+,1046106a a d d =+=+. ················································································ 3分由3610a a a ,,成等比数列得23106a a a =,即2(10)(106)(102)d d d -+=+, 整理得210100d d -=,解得0d =或1d =.······················································································· 7分 当0d =时,20420200S a ==. ······································································ 9分 当1d =时,14310317a a d =-=-⨯=, 于是2012019202S a d ⨯=+207190330=⨯+=. ············································· 12分 19.解:记12A A ,分别表示甲击中9环,10环,12B B ,分别表示乙击中8环,9环,A 表示在一轮比赛中甲击中的环数多于乙击中的环数,B 表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数,12C C ,分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数.(Ⅰ)112122A A B A B A B =++, ··································································· 2分112122()()P A P A B A B A B =++ 112122()()()P A B P A B P A B =++112122()()()()()()P A P B P A P B P A P B =++0.30.40.10.40.10.40.2=⨯+⨯+⨯=. ····························································· 6分 (Ⅱ)12B C C =+, ······················································································ 8分22213()[()][1()]30.2(10.2)0.096P C C P A P A =-=⨯⨯-=, 332()[()]0.20.008P C P A ===,1212()()()()0.0960.0080.104P B P C C P C P C =+=+=+=. ··························· 12分20.解法一:依题设,2AB =,1CE =.(Ⅰ)连结AC 交BD 于点F ,则BD AC ⊥.由三垂线定理知,1BD A C ⊥. ········································································· 3分 在平面1A CA 内,连结EF 交1A C 于点G ,由于1AA AC FC CE==,故1Rt Rt A AC FCE △∽△,1AA C CFE ∠=∠,CFE ∠与1FCA ∠互余.于是1A C EF ⊥.1A C 与平面BED 内两条相交直线BD EF ,都垂直,所以1A C ⊥平面BED . ·················································································· 6分 (Ⅱ)作GH DE ⊥,垂足为H ,连结1A H .由三垂线定理知1A H DE ⊥,故1A HG ∠是二面角1A DE B --的平面角.························································ 8分EF =CE CF CG EF ⨯==3EG ==. AB CDE A 1B 1C 1D 1 FH G13EG EF =,13EF FD GH DE ⨯=⨯=又1AC ==113A G A C CG =-=.11tan AG A HG HG∠== 所以二面角1A DE B --的大小为arctan ················································· 12分 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴, 建立如图所示直角坐标系D xyz -.依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,.(021)(220)DE DB ==,,,,,,11(224)(204)AC DA =--=,,,,,. ······························ 3分 (Ⅰ)因为10AC DB =,10AC DE =, 故1A C BD ⊥,1A C DE ⊥. 又DBDE D =,所以1A C ⊥平面DBE . ·················································································· 6分 (Ⅱ)设向量()x y z =,,n 是平面1DA E 的法向量,则DE ⊥n ,1DA ⊥n .故20y z +=,240x z +=.令1y =,则2z =-,4x =,(412)=-,,n . ····················································· 9分 1AC <>,n 等于二面角1A DE B --的平面角, 11114cos 42A C A C A C<>==,n n n . 所以二面角1A DE B --的大小为arccos42. ················································· 12分21.解:(Ⅰ)2()363(2)f x ax x x ax '=-=-.因为2x =是函数()y f x =的极值点,所以(2)0f '=,即6(22)0a -=,因此1a =. 经验证,当1a =时,2x =是函数()y f x =的极值点. ········································· 4分 (Ⅱ)由题设,3222()336(3)3(2)g x ax x ax x ax x x x =-+-=+-+. 当()g x 在区间[02],上的最大值为(0)g 时,(0)(2)g g ≥,即02024a -≥.故得65a ≤. ································································································ 9分 反之,当65a ≤时,对任意[02]x ∈,,26()(3)3(2)5g x x x x x +-+≤23(210)5xx x =+- 3(25)(2)5xx x =+- 0≤,而(0)0g =,故()g x 在区间[02],上的最大值为(0)g .综上,a 的取值范围为65⎛⎤-∞ ⎥⎝⎦,. ··································································· 12分22.(Ⅰ)解:依题设得椭圆的方程为2214x y +=, 直线AB EF ,的方程分别为22x y +=,(0)y kx k =>. ····································· 2分 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <,且12x x ,满足方程22(14)4k x +=, 故21x x =-=由6ED DF =知01206()x x x x -=-,得021215(6)77x x x x =+==;由D 在AB 上知0022x kx +=,得0212x k=+.所以212k =+,化简得2242560k k -+=,解得23k =或38k =. ······················································································ 6分 (Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F ,到AB的距离分别为1h ==2h ==······················································· 9分又AB ==,所以四边形AEBF 的面积为121()2S AB h h =+ 1525(14k =+== ≤当21k =,即当12k =时,上式取等号.所以S 的最大值为. ························ 12分 解法二:由题设,1BO =,2AO =.设11y kx =,22y kx =,由①得20x >,210y y =->, 故四边形AEBF 的面积为BEF AEF S S S =+△△222x y =+ ···································································································· 9分===当222x y =时,上式取等号.所以S 的最大值为 ······································· 12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008年普通高等学校招生全国统一考试(辽宁卷)
数 学(供文科考生使用)
第Ⅰ卷(选择题 共60分)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

参考公式:
如果事件A 、B 互斥,那么 球的表面积公式
P(A+B)=P(A)+P(B) S =4πR 2
如果事件A 、B 相互独立,那么 其中R 表示球的半径
P(A ·B)=P(A) ·P(B) 球的体积公式
如果事件A 在一次试验中发生的概率是P ,那么 V=43πR 3
n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径
P n (k )=C k
n P k (1-p )n-k (k =0,1,2,…,n )
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)已知集合M ={x |-3<x <1|,N={x |x ≤-3},则M =⋃N
(A)∅ (B) {x|x ≥-3} (C){x|x ≥1}
(D){x |x <1|
(2)若函数y=(x +1)(x-a )为偶函数,则a =
(A)-2 (B) -2 (C)1
(D)2 (3)圆x 2+y 2=1与直线y=kx +2没有公共点的充要条件是 (A)2,2(-∈k )
(B) 3,3(-∈k ) (C)k ),2()2,(+∞⋃--∞∈
(D) k ),3()3,(+∞⋃--∞∈ (4)已知0<a <1,x =log a 2log a 3,y =
,5log 21a z =loga 3,则 (A)x >y >z (B)z >y >x (C)y >x >z (D)z >x >y
(5)已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且2=,则顶点D 的坐标为 (A)(2,27) (B)(2,-21) (C)(3,2) (D)(1,3)
(6)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处切线倾斜角的取值范围为
⎥⎦
⎤⎢⎣⎡4,0π,则点P 横坐标的取值范围为 (A)⎥⎦⎤⎢⎣⎡--21,1 (B)[-1,0] (C)[0,1] (D)⎥⎦
⎤⎢⎣⎡1,21 (7)4张卡片上分别写有数字1,2,3,4从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为 (A)31 (B)21 (C)32 (D)4
3 (8)将函数y=2x +1的图象按向量a 平移得到函数y =2x +1的图象,则
(A)a =(-1,-1) (B)a =(1,-1)
(C)a =(1,1) (D)a=(-1,1)
(9)已知变量x 、y 满足约束条件⎪⎩
⎪⎨⎧≥+-≤--≤-+,01,013,01x y x y x y 则z =2x+y 的最大值为
第Ⅱ卷(非选择题 共90分)
二、填空题:本大题共4小题,每小题4分,共16分.
(13)函数23()x y e x +=-∞+∞ 的反函数是 .
(14
)在体积为的球的表面上有A 、B 、C 三点,AB =1,BC
A 、C 两点的球
,则球心到平面ABC 的距离为 . (15)3621(1)()x x x ++
展开式中的常数项为 . (16)设(0,)2x π∈,则函数22sin 1sin 2x y x
+=的最小值为 . 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.
(17)(本小题满分12分)
在△ABC 中,内角A ,B ,C ,对边的边长分别是a ,b ,c .已知2,3
c C π==
. (Ⅰ)若△ABC
a ,
b ;
(Ⅱ)若sin 2sin B A =,求△ABC 的面积.
(18)(本小题满分12分)
某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结
(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;
(Ⅱ)若以上述频率作为概率,且各周的销售量相互独立,求
(i )4周中该种商品至少有一周的销售量为4吨的概率;
(ii )该种商品4周的销售量总和至少为15吨的概率.
(19)(本小题满分12分)
如图,在棱长为1的正方体ABCD -A
′B ′C ′D ′中,AP =BQ =b (0<b <1),截面PQEF ∥A ′D ,截面PQGH ∥AD ′.
(Ⅰ)证明:平面PQEF 和平面PQGH 互相垂直;
(Ⅱ)证明:截面PQEF 和截面PQGH 面积之和是定值,并求出这个值;
(Ⅲ)若12
b =,求D ′E 与平面PQEF 所成角的正弦值. (20)(本小题满分12分)
已知数列{a n },{b n }是各项均为正数的等比数列,设(N*)n n n b c n a =
∈. (Ⅰ)数列{c n }是否为等比数列?证明你的结论;
(Ⅱ)设数列{tna n },{lnb n }的前n 项和分别为S n ,T n .若12,
,21
n n S n a T n ==+求数列{c n }的前n 项和.
(21)(本小题满分12分)
在平面直角坐标系xOy 中,点P 到两点(0,-3)、(0,3)的距离之和等于4.设点P 的轨迹为C .
(Ⅰ)写出C 的方程;
(Ⅱ)设直线y =kx +1与C 交于A 、B 两点.k 为何值时?OB OA ⊥此时||的值是多少?
(22)(本小题满分14分)
设函数f(x)=ax3+bx2-3a2x+1(a、b∈R)在x=x1,x=x2处取得极值,且|x1-x2|=2. (Ⅰ)若a=1,求b的值,并求f(x)的单调区间;
(Ⅱ)若a>0,求b的取值范围.。

相关文档
最新文档