三角形总复习练习

合集下载

小学四年级下册数学期末总复习:三角形常考易错题

小学四年级下册数学期末总复习:三角形常考易错题

四年级下册数学(期末总复习:三角形常考易错题】—、《内角和》1.在一个等腰三角形中,顶角是72°,求底角的度数。

180°-72°=108°答:底角的度数为108°2.已知一个等腰三角形的一个底角是35°,求其他两个角的度数?180°-35°×2=110°答:另一个底角是35°,顶角是110°。

3.已知一个等腰三角形的一个顶角是70°,它的每一个底角是多少度?(180°-70)-2=55°答:它的每个底角是55°。

4.已知么么A、么B、么C是三角形中的三个内角,∠A=4∠B,∠B=∠C,求∠A的度数?这是一个什么三角形?180°÷(1+4+1)=30°30°×4=120°答:这是个等腰钝角三角形。

5.任意一个七边形的内角和是多少度?(7-2)×180°=900°答:任意一个七边形的内角和是900°。

二、《面积》1.一个三角形面积是20平方厘米,高是8厘米,底是多少厘米?三角形的面积=底×高÷2底=三角形的面积×2÷高20×2÷8=5(厘米)答:底是5厘米。

2.一个平行四边形的底是6厘米,高14厘米,与它等底等高的三角形面积是多少平方厘米?6×14÷2=42(平方厘米)答:与它等底等高的三角形面积是42平方厘米。

3.一个等腰三角形的周长是16厘米,底边上的高是4厘米,一条腰是5厘米,它的面积是多少平方厘米?16-5×2=6(厘米)6×4÷2=12(平方厘米)答:它的面积是12平方厘米。

4.在一个长9厘米,周长26厘米的长方形内画一个最大的三角形,这个三角形的面积是多少平方厘米?26÷2-9=4(厘米)9×4÷2=18(平方厘米)答:这个三角形的面积是18平方厘米。

人教版 八年级数学上册 第11章 三角形 复习题

人教版 八年级数学上册 第11章 三角形 复习题

人教版八年级数学第11章三角形复习题一、选择题1. 下面是小强用三根火柴组成的图形,其中符合三角形概念的是()2. 如图,小方做了一个长方形框架,发现它很容易变形,请你帮小方选择一个最好的加固方案()3. 若一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.64. 如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,则∠BAC的度数为()A. 40°B. 45°C. 60°D. 70°5. 如图,足球图片正中的黑色正五边形的内角和是A .180°B .360°C .540°D .720°6. 下列哪一个度数可以作为某一个多边形的内角和 ( ) A .240° B .600° C .540°D .2180°7. 把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是( ) A .六边形 B .五边形C .四边形D .三角形8. 如图,在△ABC 中,BC 边不动,点A 竖直向上运动,∠A 越来越小,∠B ,∠C 越来越大.若∠A 减小x °,∠B 增加y °,∠C 增加z °,则x ,y ,z 之间的关系是 ( )A .x=y+zB .x=y-zC .x=z-yD .x+y+z=180二、填空题9. (2019•江西)如图,在ABC △中,点D 是BC 上的点,40BAD ABC ∠=∠=︒,将ABD △沿着AD 翻折得到AED △,则CDE ∠=__________°.10. 若正多边形的一个外角是60°,则这个正多边形的内角和是________.11. 如图,已知直线a∥b,△ABC的顶点B在直线b上,∠C=90°,∠1=36°,则∠2=________.12. 如图,含30°角的三角尺的直角边AC,BC分别经过正八边形的两个顶点,则∠1+∠2=________°.13. 如图,AD是△ABC的中线,已知△ABD的周长为25 cm,AB比AC长6 cm,则△ACD的周长为cm.14. 如图,小明从点A出发,沿直线前进12米后向左转36°,再沿直线前进12米,又向左转36°……照这样走下去,他第一次回到出发地点A时,一共走了________米.15. 如图,在四边形ABCD中,AB∥CD,将四边形ABCD沿对角线AC折叠,使点B落在点B′处.若∠1=∠2=44°,则∠B=________°.16. 如图,在△ABC中,三角形的外角∠DAC和∠ACF的平分线交于点E.(1)若∠B=50°,则∠DAC+∠ACF=________°,∠E=________°;(2)若∠B=α,则∠DAC+∠ACF=______,∠E=________.三、解答题17. 如图11-Z-11,点B在点A的南偏西45°方向,点C在点A的南偏东30°方向,点C在点B的北偏东60°方向,求∠C的度数.18. 观察探究观察并探求下列各问题.(1)如图①,在△ABC中,P为边BC上一点,则BP+PC________AB+AC(填“>”“<”或“=”);(2)将(1)中的点P移到△ABC内,如图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由;(3)将(2)中的点P变为两个点P1,P2,如图③,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.19. 如图①所示,在△ABC中,∠1=∠2,∠C>∠B,E为AD上一点,且EF⊥BC 于点F.(1)试探索∠DEF与∠B,∠C之间的数量关系;(2)如图②所示,当点E在AD的延长线上时,其余条件都不变,你在(1)中探索得到的结论是否还成立?人教版八年级数学第11章三角形复习题-答案一、选择题1. 【答案】C2. 【答案】D3. 【答案】B4. 【答案】A【解析】由AE∥BD,可得∠DBC=∠E=35°,由BD平分∠ABC 可得∠ABC=2∠DBC=70°,由AB=AC可得∠ABC=∠C=70°,由三角形内角和定理可得∠BAC=180°-70°-70°=40°.5. 【答案】C【解析】黑色正五边形的内角和为:(5–2)×180°=540°, 故选C .6. 【答案】C[解析] ∵多边形内角和公式为(n -2)×180°,∴多边形内角和一定是180°的倍数. ∵540°=3×180°,∴540°可以作为某一个多边形的内角和.7. 【答案】A[解析] 剪去一个角的方法有三种:经过两个顶点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.所以一个n 边形剪去一个角后,剩下的形状可能是n 边形或(n +1)边形或(n -1)边形.8. 【答案】A[解析] 根据题意,得∠A+∠ABC+∠ACB=180°①,变化后的三角形的三个角的度数分别是∠A-x °,∠ABC+y °,∠ACB+z °,∴∠A-x °+∠ABC+y °+∠ACB+z °=180°②,①②联立整理可得x=y+z.二、填空题9. 【答案】20【解析】∵40BAD ABC ∠=∠=︒,将ABD △沿着AD 翻折得到AED △, ∴404080ADC ∠=︒+︒=︒,1804040100ADE ADB ∠=∠=︒-︒-︒=︒, ∴1008020CDE ∠=︒-︒=︒,故答案为:20.10. 【答案】720°[解析] 该正多边形的边数为360°÷60°=6.该正多边形的内角和为(6-2)×180°=720°.11. 【答案】54°【解析】如解图,过点C作直线CE∥a,则a∥b∥CE,则∠1=∠ACE,∠2=∠BCE,∵∠ACE+∠BCE=90°,∴∠1+∠2=90°,∵∠1=36°,∴∠2=54°.12. 【答案】180[解析] 正八边形的每一个内角为(8-2)×180°8=135°,所以∠1+∠2=2×135°-90°=180°.13. 【答案】19[解析] ∵AD是BC边上的中线,∴BD=CD.∴△ABD的周长-△ACD的周长=(AB+BD+AD)-(AC+CD+AD)=AB-AC.∵△ABD的周长为25 cm,AB比AC长6 cm,∴△ACD的周长为25-6=19(cm).14. 【答案】120[解析] 由题意得360°÷36°=10,则他第一次回到出发地点A时,一共走了12×10=120(米).故答案为120. 15. 【答案】114[解析] 因为AB∥CD,所以∠BAB′=∠1=44°.由折叠的性质知∠BAC=12∠BAB′=22°.在△ABC中,∠B=180°-(∠BAC+∠2)=114°.16. 【答案】(1)23065(2)180°+α90°-1 2α三、解答题17. 【答案】解:∵∠NBC=60°,∠NBA=∠BAS=45°,∴∠ABC=∠NBC-∠NBA=60°-45°=15°.又∵∠BAC=∠BAS+∠SAC=45°+30°=75°,∴在△ABC中,∠C=180°-(75°+15°)=90°.18. 【答案】解:(1)<(2)△BPC的周长<△ABC的周长.理由:如图①,延长BP交AC于点M.在△ABM中,BP+PM<AB+AM.在△PMC中,PC<PM+MC.两式相加,得BP+PC<AB+AC,∴△BPC的周长<△ABC的周长.(3)四边形BP1P2C的周长<△ABC的周长.理由:如图②,分别延长BP 1,CP 2交于点M. 由(2)知,BM +CM <AB +AC. 又∵P 1P 2<P 1M +P 2M ,∴BP 1+P 1P 2+P 2C <BM +CM <AB +AC. ∴四边形BP 1P 2C 的周长<△ABC 的周长.19. 【答案】解:(1)∵∠1=∠2,∴∠1=12∠BAC. 又∵∠BAC =180°-(∠B +∠C),∴∠1=12[180°-(∠B +∠C)]=90°-12(∠B +∠C).∴∠EDF =∠B +∠1=∠B +90°-12(∠B +∠C)=90°+12(∠B -∠C). ∵EF ⊥BC ,∴∠EFD =90°.∴∠DEF =90°-∠EDF =90°-[90°+12(∠B -∠C)]=12(∠C -∠B).(2)当点E 在AD 的延长线上时,其余条件都不变,在(1)中探索得到的结论仍成立.。

中考数学总复习《三角形的综合题》练习题及答案

中考数学总复习《三角形的综合题》练习题及答案

中考数学总复习《三角形的综合题》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.如图,在平面直角坐标系中直线y=−x与双曲线y=kx交于A、B两点,P是以点C(2,2)为圆心,半径长1的圆上一动点,连结AP,Q为AP的中点.若线段OQ长度的最大值为2,则k的值为()A.−12B.−32C.−2D.−142.如图,已知AB∥CD,点E在线段AD上(不与点A,点D重合),连接CE.若∠C=20°,∠AEC=50°,则∠A=()A.10°B.20°C.30°D.40°3.如图,在Rt△ABC中AD是∠BAC的平分线,DE⊥AB垂足为E.若BC=8cm,BD=5cm则DE的长为()A.2√3cm B.3cm C.4cm D.5cm4.如图,矩形纸片ABCD中AD=8cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=10cm,则AB的长为()A.12cm B.14cm C.16cm D.18cm5.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()A.20°B.25°C.30°D.15°6.如图,锐角∠ABC的两条高BD,CE相交于点O,且CE=BD,若∠CBD=20°,则∠A的度数为()A.20°B.40°C.60°D.70°7.下列长度的三条线段与长度为5的线段能组成四边形的是()A.1,1,1B.1,1,8C.1,2,2D.2,2,28.如图,在∠ABC中AB=AC,BE=CD,BD=CF,若∠A=40°,则∠EDF等于()A.40°B.50°C.60°D.70°9.若点O是等腰∠ABC的外心,且∠BOC=60°,底边BC=2,则∠ABC的面积为() A.2+√3B.2√3C.2+√3或2-√3D.4+2√3或2-√3310.如图,等边ΔABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()A.15°B.22.5°C.30°D.45°11.如图,在△ABC中∠A=30°,∠ABC=100°,观察尺规作图的痕迹,则∠BFC的度数为()A.130°B.120°C.110°D.100°12.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,测得AB=5厘米,EF=6厘米,圆形容器的壁厚是()A.5厘米B.6厘米C.2厘米D.12厘米二、填空题13.如图,要测量河两岸相对的两点A、B的距离,在AB的垂线段BF上取两点C、D,使BC=CD,过D作BF的垂线DE,与AC的延长线交于点E,若测得DE的长为20米,则河宽AB长为米.14.如图1,点P从△ABC的项点A出发,以每秒2个单位长度的速度沿A→B→C→A的方向匀速运动到点A.图2是点P运动时线段AP的长度y随时间t(s)变化的关系图象,其中点M为曲线部分的最低点,则△ABC的面积是.15.如图,在正方形ABCD中AC为对角线,E为AC上一点,连接EB,ED,BE的延长线交AD于点F,∠BED=120∘,则∠EFD的度数为.16.如图,△ABC中∠A=40°,D、E是AC边上的点,把△ABD沿BD对折得到△A′BD,再把△BCE沿BE对折得到△BC′E,若C′恰好落在BD上,且此时∠C′EB=80°,则∠ABC=.17.如图,测量三角形中线段AB的长度为cm.判断大小关系:AB+AC BC(填“ >”,“ =”或“ <”).18.如图,已知AB是∠O的弦,AB=8,C是∠O上的一个动点,且∠ACB=45°.若M,N分别是AB,BC的中点,则线段MN长度的最大值是三、综合题19.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a,b,c分别为∠ABC三边的长.(1)如果x=﹣1是方程的根,试判断∠ABC的形状,并说明理由;(2)如果∠ABC是等边三角形,试求这个一元二次方程的根.20.如图,在Rt∠OAB中∠OAB=90°,OA=AB=6,将∠OAB绕点O沿逆时针方向旋转90°得到∠OA1B1.(1)线段OA1的长是,∠AOB1的度数是;(2)连接AA1,求证:四边形OAA1B1是平行四边形.21.已知一次函数y=2x−2的图像为l1,函数y=12x−1的图像为l2.按要求完成下列问题:(1)求直线l1与y轴交点A的坐标;求直线l2与y轴的交点B的坐标;(2)求一次函数y=2x−2的图象l1与y=12x−1的图象l2的交点P的坐标;(3)求由三点P、A、B围成的三角形的面积.22.在图中利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A′B′C′;(2)图中AC与A′C′的关系怎样?(3)记网格的边长为1,则△A′B′C′的面积为多少?23.如图,在∠ABC中点D在AB上,且CD=CB,E为BD的中点,F为AC的中点,连接EF交CD 于点M,连接AM.(1)求证:EF= 12AC;(2)若EF∠AC,求证:AM+DM=CB.24.如图①,Rt△ABC中∠C=90°,AC=6cm.动点P以acm/s的速度由B出发沿线段BA 向A运动,动点Q以1cm/s的速度由A出发沿射线AC运动.当点Q运动2s时,点P开始运动;P点到达终点时,P、Q一起停止.设点P运动的时间为ts,△APQ的面积为ycm2,y与t的函数关系图像如图②所示.(1)点P运动的速度a=cm/s,AB=cm;(2)当t为何值时,△APQ的面积为12cm2;(3)是否存在t,使得直线PQ将Rt△ABC的周长与面积同时平分?若存在,求出t的值;若不存在,请说明理由.参考答案1.【答案】A2.【答案】C3.【答案】B4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】D9.【答案】C10.【答案】C11.【答案】C12.【答案】D13.【答案】2014.【答案】1215.【答案】105º16.【答案】60°17.【答案】2.0;>18.【答案】4√219.【答案】(1)解:ΔABC是等腰三角形;理由:把x=−1代入方程得a+c−2b+a−c=0,则a=b,所以ΔABC为等腰三角形(2)解:∵ΔABC为等边三角形∴a=b=c∴方程化为x2+x=0解得x1=0,x2=−1.20.【答案】(1)6;135°(2)证明:∵∠OAB绕点O沿逆时针方向旋转90°得到∠OA1B1∴∠AOA1=90°,∠OA1B1=90°,OA1=A1 B1=OA=6∴∠AO A1=∠O A1B1∴OA∠A1B1∵A1B1=OA∴四边形OAA1B1是平行四边形.21.【答案】(1)解:当x =0时,y= -2,即直线l 1与y 轴交点A 的坐标为(0,−2)当x =0时,y= -1,即直线l 2与y 轴交点B 的坐标为(0,−1);(2)解:∵一次函数y =2x −2的图象l 1与y =12x −1的图象l 2相交∴2x −2=12x −1∴x =23∴y =2×23−2=−23∴交点P 的坐标为(23,−23);(3)解:三点P 、A 、B 围成的三角形,如下图,作PD ⊥AB 交y 轴于点DAB =|−1−(−2)|=1△ABP 的高DP 为:23∴S △ABP =12AB ×DP =12×1×23=13即由三点P 、A 、B 围成的三角形的面积:13.22.【答案】(1)解:如图,∠A′B′C′为所作;(2)解:线段AC 与A′C′的位置关系是平行,数量关系是相等 (3)解:∠A′B′C′的面积=12×4×4=8.23.【答案】(1)证明:连接CE∵CD=CB,点E为BD的中点∴CE⊥BD∵点F为AC的中点∴EF=12AC;(2)解:∵点F是AC中点∴AF=FC,又EF⊥AC∴∠AFM=∠CFM,且AF=FC∴ΔAFM≅ΔCFM(SAS)∴AM=CM∵BC=CD=DM+CM=DM+AM.24.【答案】(1)1;10(2)解:当运动时间为t时,AQ=t+2,BP=t,AP=10−t 如图,作PH⊥AC,则△APH∽△ABC∴PH=APAB·BC=4(10−t)5∴S△APQ=12AQ·PH=12(t+2)4(10−t)5=2(t+2)(10−t)5∴△APQ的面积为12cm2时,解方程12=2(t+2)(10−t)5,得t1=4+√6∴当t=4+√6或4−√6时,△APQ的面积为12cm2;(3)解:∵S△ABC=24cm2,C△ABC=6+8+10=24cm∴12S△ABC=12cm2①当0<t≤4时由(2)可知,当t=4−√6时,△APQ的面积为12cm2此时,AQ=4−√6+2=6−√6∴AP+AQ=6+√6+6−√6=12,即AP+AQ=12C△ABC∴t=4−√6时,直线PQ将Rt△ABC的周长与面积同时平分;②当4<t≤10时设PQ与BC交于点N,作PM⊥BC则有:△PBM∽△ABC∴PM AC=BPBA=BMBC,∴PM=3t5,BM=4t5,MC=8−4t5∵PM QC=MNCN,∴MN=3t2−30t25−10t当BN+BP=12时,解方程4t5+3t2−30t25−10t+t=12,得t=5或t=4(舍去)此时,PM=3,BM=4,BP=5∴BN=4+3=7∴当4<t≤10时,不存在t使得直线PQ将Rt△ABC的周长与面积同时平分;∴综上,当t=4−√6时,直线PQ将Rt△ABC的周长与面积同时平分;当4<t≤10时,不存在t使得直线PQ将Rt△ABC的周长与面积同时平分.第11页共11页。

三角形复习题

三角形复习题

B C 七年级〔下〕第七章《三角形》复习学校 班级 学号 [一] 认识三角形1.三角形有关定义:在图9.1.3〔1〕中画着一个三角形ABC .三角形的顶点采用大写字母A 、B 、C 或K 、L 、M 等表示,整个三角形表示为△ABC 或△KLM 〔参照顶点的字母〕.如图9.1.3〔2〕所示,在三角形中,每两条边所组成的角叫做三角形的内角,如∠ACB ;三角形中内角的一边与另一边的反向延长线所组成的角叫做三角形的外角,如∠ACD 是与△ABC 的内角∠ACB 相邻的外角.图9.1.3〔2〕指明了△ABC 的主要成分.图9.1.32.三角形可以按角来分类:所有内角都是锐角――锐角三角形;有一个内角是直角――直角三角形; 有一个内角是钝角――钝角三角形;3三角形可以按角边分类:.把三条边都相等的三角形称为等边三角形〔或正三角形〕;两条边相等的三角形称为等腰三角形,相等的两边叫做等腰三角形的腰;. 练习:1、图中共有〔 〕个三角形。

A :5B :6C :7D :82、如图,AE ⊥BC ,BF ⊥AC ,CD ⊥AB ,则△ABC 中AC 边上的高是〔 〕A :AE B :CD C :BF D :AF3、三角形一边上的高〔 〕。

A :必在三角形内部B :必在三角形的边上C :必在三角形外部D :以上三种情况都有可能4、能将三角形的面积分成相等的两部分的是〔 〕。

A :三角形的角平分线B :三角形的中线C :三角形的高线D :以上都不对 6、具备以下条件的三角形中,不是直角三角形的是〔 〕。

A :∠A+∠B=∠CB :∠A=∠B=12∠C C :∠A=90°-∠B D :∠A-∠7、一个三角形最多有 个直角,有 个钝角,有 个锐角。

8、△ABC 的周长是12 cm ,边长分别为a ,b , c , 且 a=b+1 , b=c+1 , 则a= cm , b= cm , c= cm 。

9、如图,AB∥CD ,∠ABD 、∠BDC 的平分线交于E ,试判断△BED 的形状?图9.1.4CD AC10 、如图,在4×4的方格中,以AB为一边,以小正方形的顶点为顶点,画出符合以下条件的三角形,并把相应的三角形用字母表示出来。

中考《三角形认识》复习练习题及答案

中考《三角形认识》复习练习题及答案

中考数学复习专题练习认识三角形一、选择题:1、一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2、有5根小木棒,长度分别为2cm、3cm、4cm、5cm、6cm,任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为()A.5个 B.6个 C.7个 D.8个3、如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.54、如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )A.15° B.25° C.30° D.10°5、如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20° B.25° C.30° D.40°6、一个多边形少加了一个内角时,它的度数和是1310°,则这个内角的度数为()A.120° B.130° C.140° D.150°7、已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为()A.20°或100° B.120° C.20°或120° D.36°8、一个正多边形的每个内角都等于140°,那么它是正()边形A.正六边形 B.正七边形 C.正八边形 D.正九边形9、如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米 B.150米 C.160米 D.240米10、如图,已知点D是△ABC的重心,连接BD并延长,交AC于点E,若AE=4,则AC的长度为()A.6 B.8 C.10 D.1211、.光线a照射到平面镜CD上,然后在平面镜AB和CD之间来回反射,光线的反射角等于入射角.若已知∠1=52°,∠3=70°,则∠2是( )A.52° B.61° C.65° D.70°12、如图,在四边形ABCD中,E、F分别是AB、AD的中点.若EF=2,BC=5,CD=3,则tanC等于()A. B. C. D.二、填空题:13、a、b、c为三角形的三条边,则= .14、如图,△ABC的两条高线AD、BE交于点F,∠BAD=45°,∠C=60°,则∠BFD的度数为15、如果将长度为a﹣2,a+5和a+2的三根线段首尾顺次相接可以得到一个三角形,a取值范围是.16、一个三角形的两边长为8和10,若另一边为a,当a为最短边时,a的取值范围是;当a为最长边时,a的取值范围是 .17、已知△ABC 的三边长 a、b、c,化简│a+b-c│-│b-a-c│的结果是 .18、将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是.19、如图,∠2+∠3+∠4=320°,则∠1= .20、如图,七星形中∠A+∠B+∠C+∠D+∠E+∠F+∠G= .21、如图,将∠BAC沿DE向∠BAC内折叠,使AD与A′D重合,A′E与AE重合,若∠A=30°,则∠1+∠2= .22、如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为.23、如图,已知矩形ABCD,一条直线将该矩形ABCD分割成两个多边形,若这两个多边形的内角和分别为M和N,则M+N= _.24、如图,一个面积为50平方厘米正方形与另一个小正方形并排放在一下起,则△ABC面积是平方厘米.三、简答题:25、如图,在△ABC中,AB=AC,AC边上的中线把三角形的周长分为24cm和30cm两部分,求三角形各边的长.26、如图,AD为△ABC的中线,BE为△ABD的中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)作出△BED的BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?27、(1)如图,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度数.(2)上题中若∠B=40°,∠C=80°改为∠C>∠B,其他条件不变,请你求出∠EAD与∠B、∠C之间的数列关系?并说明理由.28、如图,∠O=30°,任意裁剪的直角三角形纸板两条直角边所在直线与∠O的两边分别交于D、E两点.(1)如图1,若直角顶点C在∠O的边上,则∠ADO+∠OEB= 度;(2)如图2,若直角顶点C在∠O内部,求出∠ADO+∠OEB的度数;(3)如图3,如果直角顶点C在∠O外部,求出∠ADO+∠OEB的度数.29、如图(甲),D是△ABC的边BC的延长线上一点.∠ABC、∠ACD的平分线相交于P1.(1)若∠ABC=80°,∠ACB=40°,则∠P1的度数为;(2)若∠A=α,则∠P1的度数为;(用含α的代数式表示)(3)如图(乙),∠A=α,∠ABC、∠ACD的平分线相交于P1,∠P1BC、∠P1CD的平分线相交于P2,∠P2BC、∠P2CD的平分线相交于P3依此类推,则∠Pn的度数为(用n与α的代数式表示)30、阅读下列材料:某同学遇到这样一个问题:如图1,在△ABC中,AB=AC,BD是△ABC的高.P是BC边上一点,PM,PN分别与直线AB,AC垂直,垂足分别为点M,N.求证:.他发现,连接AP,有,即.由AB=AC,可得.他又画出了当点P在CB的延长线上,且上面问题中其他条件不变时的图形,如图2所示.他猜想此时BD,PM,PN之间的数量关系是:.请回答:(1)请补全以下该同学证明猜想的过程;证明:连接AP.∵,∴.∵AB=AC,∴.(2)参考该同学思考问题的方法,解决下列问题:在△ABC中,AB=AC=BC,BD是△ABC的高.P是△ABC所在平面上一点,PM,PN,PQ分别与直线AB,AC,BC垂直,垂足分别为点M,N,Q.①如图3,若点P在△ABC 的内部,则BD,PM,PN,PQ之间的数量关系是:;②若点P在如图4所示位置,利用图4探究得出此时BD,PM,PN,PQ之间数量关系是:.31、已知锐角△ABC中,CD、BE分别是AB、AC边上的高,M是线段BC的中点,连接DM、EM.(1)若DE=3,BC=8,求△DME的周长;(2)若∠A=60°,求证:∠DME=60°;(3)若BC2=2DE2,求∠A的度数.参考答案1、A.2、C.3、A.4、A.5、D.6、B.7、C.8、D.9、B.10、B.11、B.12、B.13、答案为:2a.14、答案为:60° 15、答案为:a>5.16、答案为:2<a≤8,10≤a<18.17、答案为:2b-2c. 18、答案为:75°.19、答案为:40°.20、答案为:180°.21、答案为:60°.22、答案为:40°.23、答案为:360°或540°或720°.24、答案为25.25、解:设AB=AC=2,则AD=CD=,(1)当AB+AD=30,BC+CD=24时,有2=30,∴ =10,2 =20,BC=24-10=14.三边长分别为:20 cm,20 cm,14 cm.(2)当AB+AD=24,BC+CD=30时,有=24,∴ =8,,BC=30-8=22.三边长分别为:16 cm,16 cm,22 cm.26、解:(1)∵∠BED是△ABE的一个外角,∴∠BED=∠ABE+∠BAD=15°+35°=50°。

2023年中考数学总复习第四章《三角形》综合测试卷及答案

2023年中考数学总复习第四章《三角形》综合测试卷及答案

2023年中考数学总复习第四章《三角形》综合测试卷一、选择题(每小题3分,共36分)1.将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°(第1题图)(第2题图)2.如图,平行线AB,CD 被直线EF 所截,过点B 作BG⊥EF 于点G,已知∠1=50°,则∠B=()A.20°B.30°C.40°D.50°3.如图,太阳光线与水平线成70°角,窗子高AB=2米,要在窗子外面上方0.2米的点D 处安装水平遮阳板DC,使光线不能直接射入室内,则遮阳板DC 的长度至少是()A.米B.2sin70°米C.米D. 2.2cos70°米(第3题图)(第5题图)4.在Rt△ABC 中,∠C=90°,若斜边AB 是直角边BC 的3倍,则tanB 的值是()A.B.3C.D.5.如图,每个小方格的边长为1,A,B 两点都在小方格的顶点上,点C 也是图中小方格的顶点,并且△ABC 是等腰三角形,那么点C 的个数为()A.1B.2C.3D.46.已知三角形三边长分别为2,x,13,若x 为正整数,则这样的三角形个数为()A.2B.3C.5D.137.如图,在Rt△ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=()A.2B.3C.4D.(第7题图)(第8题图)8.如图,在Rt△ABC 中,∠BAC=90°,∠ABC 的平分线BD 交AC 于点D,DE 是BC 的垂直平分线,点E 是垂足.已知DC=5,AD=2,则图中长为的线段有()A.4条B.3条C.2条D.1条9.如图,在△ABC 外任取一点O,连接AO,BO,CO,并取它们的中点D,E,F,连接DE,EF,DF,得△DEF,则下列说法错误的是()A.△ABC 与△DEF 是位似图形B.△ABC 与△DEF 是相似图形C.△ABC 与△DEF 的周长比为1∶2D.△ABC 与△DEF 的面积比为4∶1(第9题图)(第10题图)10.如图,在数轴上有A,B,C,D 四个整数点(即各点均表示整数),且2AB=BC=3CD,若A,D 两点表示的数分别为-5和6,且AC 的中点为E,BD 的中点为M,BC 之间距点B 的距离为BC 的点为N,则该数轴的原点为()A.点EB.点FC.点MD.点N 11.如图,将宽为1cm 的纸条沿BC 折叠,使∠CAB=45°,则折叠后重叠部分的面积为()(第11题图)(第12题图)12.如图,在△ABC 中,∠ABC=∠C,将△ABC 绕点B。

八年级数学 《三角形》全章复习与巩固—巩固练习(提高)【名校试题+详解答案】

八年级数学 《三角形》全章复习与巩固—巩固练习(提高)【名校试题+详解答案】

《三角形》全章复习与巩固(提高)巩固练习【巩固练习】一、选择题1.如果三条线段的比是:①1:3:4;②1:2:3;③1:4:6;④3:3:6;⑤6:6:10;⑥3:4:5,其中可构成三角形的有( )A.1个 B.2个 C.3个 D.4个2.下列正多边形能够进行镶嵌的是()A.正三角形与正五边形 B.正方形与正六边形C.正方形与正八边形 D.正六边形与正八边形3.一个三角形的周长是偶数,其中的两条边分别为5和9,则满足上述条件的三角形个数为 ( )A.2个 B.4个 C.6个 D.8个4.如图,如果把△ABC沿AD折叠,使点C落在边AB上的点E处,那么折痕(线段AD)是△ABC 的( )A.中线 B.角平分线 C.高 D.既是中线,又是角平分线5.如图,AC⊥BC,CD⊥AB,DE⊥BC,则下列说法中错误的是 ( )A.在△ABC中,AC是BC边上的高B.在△BCD中,DE是BC边上的高C.在△ABE中,DE是BE边上的高D.在△ACD中,AD是CD边上的高6.每个外角都相等的多边形,如果它的一个内角等于一个外角的9倍,则这个多边形的边数( )A.19 B.20 C.21 D.227.给出下列图形:其中具有稳定性的是( )A.① B.③ C.②③ D.②③④8.已知三角形的一个外角等于60°,且三角形中与这个外角不相邻的两个内角中,其中一个比另一个大10°,则这个三角形的三个内角分别是()A.120°,35°,25° B.110°,45°,25°C.100°,55°,25° D.120°,40°,20°二、填空题10.若a、b、c表示△ABC的三边长,则|a-b-c|+|b-c-a|+|c-a-b|=________.11.三角形的两边长分别为5 cm和12 cm,第三边与前两边中的一边相等,则三角形的周长为________.12.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为.13.如图,在△ABC中,D是BC边上的任意一点,AH⊥BC于H,图中以AH为高的三角形的个数为______个.14. 用正三角形和正方形镶嵌平面,每一个顶点处有个正三角形和个正方形.15.请你观察上图的变化过程,说明四条边形的四条边一定时,其面积________确定.(填“能”或“不能”)16.如图,是用四根木棒搭成的平行四边形框架,AB=8cm,AD=6cm,使AB固定,转动AD,当∠DAB=_____时,ABCD的面积最大,最大值是________.三、解答题17.草原上有4口油井,位于四边形ABCD的四个顶点上,如图所示,如果现在要建一个维修站H,试问H建在何处,才能使它到4口油井的距离之和HA+HB+HC+HD为最小,说明理由.18.一个多边形截去一个角后,形成新多边形的内角和为2520°,求原多边形边数.19.已知AD是△ABC的高,∠BAD=70°,∠CAD=20°,(1)求∠BAC的度数.(2)△ABC是什么三角形.20.如图,一个四边形木框,四边长分别为AB=8cm,BC=6cm,CD=4cm.AD=5cm,它的形状是不稳定的,求AC和BD的取值范围.【答案与解析】一、选择题1. 【答案】B;【解析】根据两边之和大于第三边:⑤⑥满足.2. 【答案】C;【解析】解:A、正三角形的每个内角是60°,正五边形每个内角是180°﹣360°÷5=108°,60m+108n=360°,m=6﹣n,显然n取任何正整数时,m不能得正整数,故不能够进行镶嵌,不符合题意;B、正方形的每个内角是90°,正六边形的每个内角是120°,90m+120n=360°,m=4﹣n,显然n取任何正整数时,m不能得正整数,故不能够进行镶嵌,不符合题意;C、正方形的每个内角是90°,正八边形的每个内角为:180°﹣360°÷8=135°,∵90°+2×135°=360°,∴能够组成镶嵌,符合题意;D、正八边形的每个内角为:180°﹣360°÷8=135°,正六边形的每个内角是120°,135m+120n=360°,n=3﹣m,显然m取任何正整数时,n不能得正整数,故不能够进行镶嵌,不符合题意.3. 【答案】B;【解析】5+9=14,所以第三边长应为偶数,大于4而小于14的偶数有4个,所以4. 【答案】B;【解析】折叠前后的图形完全相同.5. 【答案】C;【解析】三角形高的定义.6. 【答案】B;【解析】设外角为x则内角为9x,因为每一个内角与它的外角互为邻补角∴x+ 9x=180°;x=18°∵多边形的外角和为360°∴360°÷18°=20∴ 此多边形为20边形7. 【答案】C;【解析】均是由三角形构成的图形,具有稳定性.8. 【答案】AB;【解析】设三角形中与这个外角不相邻的两个内角中较小的为x,则另一个为x+10.x+x+10=60°,解得x=25°.所以三个内角分别是:120°,35°,25°.二、填空题++;10. 【答案】a b c【解析】根据三角形的三边关系可以去掉绝对值,再对原式进行化简.11.【答案】29cm;12.【答案】7;13.【答案】6;14.【答案】3;2;【解析】正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,∴用正三角形和正方形镶嵌平面,每一个顶点处有3个正三角形和2个正方形.15.【答案】不能;【解析】因为四边形的高不能确定.16.【答案】90°, 48 cm2;三、解答题17.【解析】解:维修站应建在四边形两对角线AC、BD的交点H处,理由如下:取不同于H的F点,根据三角形两边之和大于第三边可得;FD+FB>HD+HB,FC+FA>HC+HA.所以:FD+FB+FC+FA>HD+HB+HC+HA,即HD+HB+HC+HA为最小.18.【解析】解:设新多边形的边数为n,则(n﹣2)•180°=2520°,解得n=16,①若截去一个角后边数增加1,则原多边形边数为15,②若截去一个角后边数不变,则原多边形边数为16,③若截去一个角后边数减少1,则原多边形边数为17,所以多边形的边数可以为15,16或17.故答案为:15,16或17.19.【解析】解:(1)当高AD在△ABC的内部时(如图(1)).因为∠BAD=70°,∠CAD=20°,所以∠BAC=∠BAD+∠CAD=70°+20°=90°.当高AD在△ABC的外部时(如图(2)).因为∠BAD=70°,∠CAD=20°,所以∠BAC=∠BAD-∠CAD=70°-20°=50°.综上可知∠BAC的度数为90°或50°.(2)如图(1),当AD在△ABC的内部时,因为∠BAC=∠BAD+∠CAD=70°+20°=90°,所以△ABC是直角三角形.如图(2),当AD在△ABC的外部时,因为∠BAC=∠BAD-∠CAD=70°-20°=50°,∠ABC=90°-∠BAD=90°-70°=20°,所以∠ACB=180°-∠ABC-∠BAC=180°-50°-20°=110°.所以△ABC为钝角三角形.综上可知,△ABC是直角三角形或钝角三角形.20.【解析】解:2cm<AC<9cm 3cm<BD<10cm。

专题11.16 《三角形》全章复习与巩固(专项练习)-八年级数学上册基础知识专项讲练(人教版)

专题11.16 《三角形》全章复习与巩固(专项练习)-八年级数学上册基础知识专项讲练(人教版)

专题11.16 《三角形》全章复习与巩固(专项练习)一、单选题知识点一、三角形的三边关系1.现有两根木棒,它们的长分别是30cm和70cm,若要钉成一个三角形木架,则应选取的第三根木棒长可以为()A.40cm B.70cm C.100cm D.130cm2.下列长度的三条线段,不能组成三角形的是()A.3,7,5B.4,8,5C.5,12,7D.7,13,83.如图,∠ABC=90°,BD∠AC,下列关系式中不一定成立的是()A.AB>AD B.AC>BC C.BD+CD>BC D.CD>BD知识点二、三角形中重要线段4.下列尺规作图,能判断AD是ABC的BC边上的高是()A.B.C.D.5.如图所示的网格由边长相同的小正方形组成,点A、B、C、D、E、F、G在小正方形的顶点上,则∠ABC的重心是().A .点DB .点EC .点FD .点G6.下列说法正确的个数有( )∠三角形的高、中线、角平分线都是线段;∠三角形的三条角平分线都在三角形内部,且交于同一点;∠三角形的三条高都在三角形内部;∠三角形的一条中线把该三角形分成面积相等的两部分.A .1个B .2个C .3个D .4个知识点三、与三角形有关的角7.将一副三角板按如图所示的位置摆放,90C EDF ∠=∠=︒ ,45E ∠=︒, 60B ∠=︒ ,点D 在边BC 上,边DE ,AB 交于点G .若 //EF AB ,则CDE ∠的度数为( )A .105︒B .100︒C .95︒D .75C ︒8.一副直角三角板如图摆放,点F 在CB 的延长线上,∠C =∠DFE =90°,若DE ∠CF ,则∠BEF 的度数为( )A .10°B .15°C .20°D .25°∠的度数是()9.将一副直角三角板按如图所示的方式叠放在一起,则图中αA.15°B.30°C.65°D.75°知识点四、三角形的稳定性10.如图所示,具有稳定性的有()A.只有(1),(2)B.只有(3),(4)C.只有(2),(3)D.(1),(2),(3)11.如图,木工师傅做窗框时,常常像图中那样钉上两条斜拉的木条起到稳固作用,这样做的数学原理是()A.三角形的稳定性B.两点之间线段最短C.长方形的轴对称性D.两直线平行,同位角相等12.要使如图所示的五边形木架不变形,至少要再钉上几根木条()A.1根B.2根C.3根D.4根知识点五、多边形内角和及外角和公式13.若一个多边形的内角和与外角和之差是720︒,则此多边形是()边形.A.6B.7C.8D.914.如果一个正多边形的内角和等于1080°,那么该正多边形的一个外角等于()A.30°B.45°C.60°D.72°15.一个多边形的内角和是外角和的2倍,这个多边形是()A.三角形B.四边形C.五边形D.六边形知识点六、多边形对角线公式的运用16.下列说法正确的是()A.射线AB和射线BA是同一条射线B.连接两点的线段叫两点间的距离C.两点之间,直线最短D.七边形的对角线一共有14条17.为了丰富同学们的课余生活,东辰学校初二年级计划举行一次篮球比赛,从3个分部中选出15支队伍参加比赛,比赛采用单循环制(即每个队与其他各队比赛一场),则这次联赛共有()场比赛.A.30B.45C.105D.21018.八边形从一个顶点引出的对角线的条数为()A.4条B.5条C.6条D.7条知识点七、镶嵌问题19.下列四组多边形∠正三角形与正方形∠正三角形与正十二边形∠正方形与正六边形∠正八边形与正方形,其中能铺满地面的是()A.∠∠∠B.∠∠∠C.∠∠D.∠∠∠20.小飞家房屋装修时,选中了一种漂亮的正八边形地砖,建材店老板告诉她,只用一种八边形地砖是不能铺满地面的,但可以与另外一种形状的地砖混合使用,你认为要使地面铺满,小飞应选择另一种形状的地砖是()A.B.C.D.21.下列正多边形不能实施平面镶嵌的是().A.正方形B.正五边形C.正六边形D.等边三角形二、填空题知识点一、三角形的三边关系22.已知三角形ABC,且AB=3厘米,BC=2厘米,A、C两点间的距离为x厘米,那么x的取值范围是________.23.小华要从长度分别为5cm、6cm、11cm、16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是:_____,_____,_____(单位:cm ).24.已知ABC 的三边长分别为a ,b ,c ,则a b c b c a c a b --+--+-+=______. 知识点二、三角形中重要线段25.在直角三角形ABC 中,90ACB ∠=︒,3cm AC =,4cm BC =,CD 是AB 边的中线,则AC 边上的高为__cm ,BCD ∆的面积=__2cm .26.(1)线段AD 是ABC ∆的角平分线,那么BAD ∠=∠__12=∠__. (2)线段AE 是ABC ∆的中线,那么BE =__=__BC .27.如图,在∠ABC 中,点D ,点E 分别是BC ,AB 的中点,若∠AED 的面积为1,则∠ABC 的面积为_____.知识点三、与三角形有关的角28.如图摆放的一副学生用直角三角板,∠F =30°,∠C =45°,AB 与DE 相交于点G ,当EF //BC 时,∠EGB 的度数是___.29.如图,有一个含有30°角的直角三角板,一顶点放在直尺的一条边上,若∠2=68°,则∠1=_____°.30.如图,将纸片ABC 沿DE 折叠,使点A 落在BE 边上的点A '处,若18A ∠=︒,则1∠=__________.知识点四、三角形的稳定性31.下图是跪姿射击的情形.我们可以看到,跪姿射击的动作构成了三个三角形∠一是由右脚尖、右膝、左脚构成的三角形支撑面;二是由左手、左肘、左肩构成的托枪三角形;三是由左手、左肩、右肩所构成的近乎水平的三角形.这三个三角形可以使射击者在射击过程中保持稳定.其中,蕴含的数学道理是___.32.如图,在四边形木架上再钉一根木条,将它的一对不相邻的顶点连接起来,这时木架的形状不会改变,这是因为三角形具有____.33.要使五边形木架(用5根木条钉成)不变形,至少要再钉_____根木条.知识点五、多边形内角和及外角和公式34.若一个多边形的内角和是其外角的和1.5倍,则这个多边形的边数是________. 35.五边形的内角和是_______度,外角和是________度.36.如图所示,在五边形ABCDE中,∠A=∠C=80°,∠B=140°,∠DEF为五边形ABCDE 的一个外角,且∠DEF=60°,则∠D=_____.知识点六、多边形对角线公式的运用37.一个n边形共有n条对角线,将这个n边形截去一个角后它的边数为__.38.八边形中过其中一个顶点有__条对角线.39.若一个多边形的内角和为900︒,则从该多边形一个顶点出发引的对角线条数是______.知识点七、镶嵌问题40.用边长相等的三角形、四边形、五边形、六边形、七边形中的一种;能进行平面镶嵌的几何图形有_________种.41.使用下列同一种正多边形不能铺满地面的是________(填序号)∠正三角形;∠正方形;∠正六边形;∠正八边形42.下列正多边形中能单独镶嵌平面的是________.(填写序号)∠正三角形;∠正方形;∠正五边形;∠正六边形.三、解答题知识点一、三角形的三边关系43.如图所示,(1)图中有几个三角形?∆的边和角.(2)说出CDE∠是哪些三角形的角?(3)AD是哪些三角形的边?C知识点二、三角形中重要线段44.已知a b c ,,满足()2240a c -+-=.(1)求a b c ,,的值.(2)以a b c ,,为边能否构成三角形,如果能,求出三角形的周长;如果不能,请说明理由.知识点三、与三角形有关的角45.如图,已知BD //AC ,CE //BA ,且D 、A 、E 在同一条直线上,设∠BAC =x ,∠D +∠E =y .(1)试用x 的一次式表示y ;(2)当x =90°,且∠D =2∠E 时,DB 与EC 具有怎样的位置关系?知识点四、三角形的稳定性46.凸六边形钢架ABCDEF 由6条钢管连接而成,为使这一钢架稳固,试用三条钢管连接,使之不能活动,方法很多,请列举三个.知识点五、多边形内角和及外角和公式47.(1)一个多边形的内角和比它的外角和多720︒,求该多边形的边数;(2)如图,已知AD 是ABC 的角平分线,CE 是ABC 的高,AD 与CE 相交于点F ,30CAD ∠=︒,50B ∠=︒,求ADC ∠和AFC ∠的度数.知识点六、多边形对角线公式的运用48.观察下面图形,并回答问题.()1四边形有条对角线;五边形有条对角线;六边形有条对角线.()2根据()1中得到的规律,试猜测十边形的对角线条数.参考答案1.B【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形三边关系,∠三角形的第三边x 满足:70303070x -<<+,即40100x <<,故选:B .【点睛】本题考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和是解决问题的关键.2.C【分析】根据两边之和等于第三边的原则去判断即可【详解】∠3+5>7,∠能构成三角形,不符合题意;∠4+5>8,∠能构成三角形,不符合题意;∠7+5=12,∠不能构成三角形,符合题意;∠8+7>13,∠能构成三角形,不符合题意;故选C .【点睛】本题考查了三角形的存在性,熟练掌握两边之和大于第三边是判断的根本标准. 3.D【分析】根据直角三角形斜边大于直角边判断A 、B 、D 选项,根据三角形的三边关系判断C 选项.【详解】解:∠BD ∠AC ,∠∠ADB=90°,∠AB>AD,∠∠ABC=90°,∠AC>BC,∠BD+CD>BC,∠选项A,B,C正确;∠∠BDC=90°,∠CD不一定大于BD,∠选项D不一定成立,故选:D.【点睛】此题考查直角三角形斜边大于直角边的性质,三角形的两边和大于第三边的性质,熟记性质并熟练运用是解题的关键.4.B【分析】过点A作BC的垂线,垂足为D,能满足此条件的AD即为所求,依次判断即可.【详解】解:A. 所作图BC的垂线未过点A,故此项错误;B.所作图过点A作BC的垂线,垂足为D,故此项正确;C.所作过点A作的线AD不垂直BC,故此项错误;D.所作图仅为过点A的AB边上的垂线,不符合题意,故此项错误;故选:B.【点睛】本题主要考查了三角形的高的作法,解题的关键是掌握几何图形的性质和基本作图方法.5.A【分析】结合题意,根据三角形重心的定义分析,即可得到答案.【详解】根据题意可知,直线CD经过∠ABC的AB边上的中线,直线AD经过∠ABC的BC边上的中线∠点D是∠ABC重心.故选:A .【点睛】本题考查了三角形的知识;解题的关键是熟练掌握三角形重心、中线的性质,从而完成求解.6.C【分析】根据三角形的三条中线都在三角形内部;三角形的三条角平分线都在三角形内部;三角形三条高可以在内部,也可以在外部,直角三角形有两条高在边上即可作答.【详解】解:∠三角形的中线、角平分线、高都是线段,故正确;∠三角形的三条角平分线都在三角形内部,且交于同一点,故正确;∠钝角三角形的高有两条在三角形外部,故错误;∠三角形的一条中线把该三角形分成面积相等的两部分,故正确.所以正确的有3个.故选:C .【点睛】本题考查对三角形的中线、角平分线、高的正确理解,熟练掌握三角形的中线、角平分线、高的概念是解决本题的关键.7.A【分析】根据EF AB ∥,可得45BGD E ,再根据外角的性质,利用 CDE B BGD 可求得结果.【详解】解:EF AB ∥,45BGD E ∠=∠=︒.又CDE ∠是BDG ∆的外角,60B ∠=︒=6045105CDE B BGD ,故选:A .【点睛】本题考查了平行线的性质,外角的性质,熟悉相关性质是解题的关键. 8.B【分析】根据一副直角三角锐角大小一定,根据平行线的性质内错角相等,可得∠DEF = ∠EFB = 45°,再由三角形外角的性质,即可求出∠BEF = ∠ABC - ∠EFB = 15°.【详解】解:∠DE ∠CF ,∠DEF = 45°,∠∠DEF = ∠EFB = 45°,∠∠ABC = 60°,∠∠BEF = ∠ABC - ∠EFB = 60°-45°= 15°故选B .【点睛】本题主要考查了平行线的性质以及三角形一个外角与其不相邻两个内角的性质. 9.D【分析】根据三角形内角和定理求出即可.【详解】解:如图,∠ABC ∆和DEF ∆都是直角三角形,且30,45B E ∠=︒∠=︒∠45,60EFD ACB ∠=︒∠=︒∠++180EFD ACB FAC ∠∠∠=︒∠180456075FAC ∠=︒-︒-︒=︒,即75α=︒故选:D .【点睛】此题主要考查了三角形的内角和,熟练掌握三角形内角和定理是解答此题的关键.10.C【分析】根据三角形具有稳定性而四边形不具有稳定性判断即可.由于四边形不具有稳定性,故(1)不具有稳定性;根据三角形的稳定性,图中具有稳定性的有(2),(3),而(4)虽然含有三角形,但右侧的四边形不具稳定性,所以整体也就不具稳定性.故选:C.【点睛】本题考查了三角形的稳定性性质,四边形的不稳定性,无论是三角形的稳定性还是四边形的不稳定性,它们在生产生活中都有着广泛的应用.11.A【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【详解】解:这样做的数学原理是三角形的稳定性.故选:A.【点睛】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.12.B【分析】三角形具有稳定性,钉上木条后,使五边形变为三角形的组合即可解题.【详解】AC CE,使五边形变为三个三角形,解:如图,钉上木条,根据三角形具有稳定性,可知这样的五边形不变形,故选:B.【点睛】本题考查三角形的稳定性,是基础考点,难度较易,掌握相关知识是解题关键.【分析】先求出多边形的内角和,再根据多边形的内角和公式求出边数即可.【详解】解:∠一个多边形的内角和与外角和之差为720°,多边形的外角和是360°,∠这个多边形的内角和为720°+360°=1080°,设多边形的边数为n,则(n-2)×180°=1080°,解得:n=8,即多边形的边数为8,故选:C.【点睛】本题考查了多边形的内角和外角,能列出关于n的方程是即此题的关键,注意:边数为n的多边形的内角和=(n-2)×180°,多边形的外角和等于360°.14.B【分析】首先设此多边形为n边形,根据题意得:(n-2)•180°=1080°,即可求得n=8,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180°×(n-2)=1080°,解得:n=8,∠这个正多边形的每一个外角等于:360°÷8=45°.故选:B.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.15.D【分析】根据多边形的内角和公式(n-2)•180°和外角和定理列出方程,然后求解即可.【详解】解:设多边形的边数为n,由题意得,(n-2)•180°=2×360°,所以,这个多边形是六边形.故选:D.【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.16.D【分析】根据两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线对各小题分析判断即可得解.【详解】解:A、射线AB和射线BA是不同的射线,故本选项不符合题意;B、连接两点的线段的长度叫两点间的距离,故本选项不符合题意;C、两点之间,线段最短,故本选项不符合题意;D、七边形的对角线一共有7(73)142条,正确故选:D【点睛】本题考查了两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线,熟练掌握概念是解题的关键.17.C【分析】根据多边形对角线的计算方式可得出,m支球队举行比赛,若每个球队与其他队比赛(m-1)场,则两队之间比赛两场,由于是单循环比赛,则共比赛12m(m-1).【详解】解:15支球队举行单循环比赛,比赛的总场数为:12×15×(15-1)=105.故选:C.【点睛】本题考查多边形的对角线的知识,解题的关键是读懂题意,明确单循环赛制的含义,利用多边形的对角线条数的知识进行解答.18.B【分析】由八边形八个顶点即可知从一个定点能引出的对角线条数.∠八边形八个顶点,每个顶点除了本身和相邻点不能作对角线,∠可引出8-3=5条对角线,故选:B.【点睛】此题考查多边形的对角线,可由对角线定义:由某一顶点向其他顶点引出的线段,得出结论.19.B【分析】根据围绕一点的各个角的和为360°进行一一判断即可.【详解】解:∠正三角形与正方形,正三角形每个内角60°,正方形每个内角90°,3×60°+2×90°=360°, 能铺满地面;∠正三角形与正十二边形, 正三角形每个内角60°,正十二边形每个内角150°,1×60°+2×150°=360°, 能铺满地面;∠正方形与正六边形, 正方形每个内角90°,正六边形每个内角120°,k×90°+n×120°=360°,k,n不是整数,不能铺满地面;∠正八边形与正方形,正八边角形每个内角135°,正方形每个内角90°,2×135°+1×90°=360°, 能铺满地面,其中能铺满地面的是∠∠∠.故选择:B.【点睛】本题考查能铺满地面的图形组合,掌握正多边形的内角和公式,会求正多边形的每个内角,抓住围绕一点的各个角的和为360°是解题关键.20.B【分析】正八边形的一个内角为135°,从所给的选项中取出一些进行判断,看其所有内角和是否为360°,并以此为依据进行求解.【详解】正八边形的每个内角为()821808-⨯︒=135°,A、正八边形、正三角形内角分别为135°、60°,显然不能构成360°的周角,故不能铺满;B、正方形、八边形内角分别为90°、135°,由于135×2+90=360,故能铺满;C、正六边形、正八边形内角分别为120°、135°,显然不能构成360°的周角,故不能铺满;D、正五边形和正八边形内角分别为108°、135°,显然不能构成360°的周角,故不能铺满.故选:B.【点睛】本题主要考查了平面镶嵌(密铺),解决此类题,可以记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合.21.B【分析】先求出各个正多边形每个内角的度数,再结合平面图形镶嵌的条件即可得.【详解】A、正方形的每个内角的度数为90︒,且490360⨯︒=︒,∴正方形能实施平面镶嵌,则此项不符题意;B、正五边形的每个内角的度数为()180521085︒⨯-=︒,且360101083︒=︒不是整数,∴正五边形不能实施平面镶嵌,则此项符合题意;C、正六边形的每个内角的度数为()180621206︒⨯-=︒,且3120360⨯︒=︒,∴正六边形能实施平面镶嵌,则此项不符题意;D、等边三角形的每个内角的度数为60︒,且660360⨯︒=︒,∴等边三角形能实施平面镶嵌,则此项不符题意;故选:B.【点睛】本题考查了平面镶嵌、正多边形的内角和,熟练掌握平面镶嵌的条件是解题关键.22.1<x<5【分析】直接根据三角形三边的关系进行求解即可;【详解】根据三角形三边关系可得:AB-BC<AC<AB+BC,∠AB=3,BC=2∠1<x<5,故答案为:1<x <5.【点睛】本题考查了三角形的三边关系,正确理解题意是解题的关键.23.6 11 6【分析】先分析出共有四种情况,再根据三角形三边关系即可求解【详解】解:每三根组合,有5cm ,6cm ,11cm ;5cm ,6cm ,16cm ;11cm ,16cm ,5cm ;11cm ,6cm ,16cm 四种情况.根据三角形三边关系“两边之和大于第三边,两边之差小于第三边”,得其中只有11,6,16能组成三角形.故答案为:6,11,6【点睛】本题考查了三角形的三边关系,熟练掌握三角形三边关系并根据题意分出四种情况是解题关键.24.3c b a +-【分析】三角形三边满足的条件是:两边和大于第三边,两边的差小于第三边,根据此条件来确定绝对值内的式子的正负,从而化简计算即可.【详解】解:∠∠ABC 的三边长分别是a 、b 、c ,∠必须满足两边之和大于第三边,两边的差小于第三边,∠0,0,0a b c b c a c a b --<--<-+>, ∠a b c b c a c a b --+--+-+=()()()a b c b c a c a b ------+-+=++++a b c b c a c a b --+-+=3c b a +-故答案为:3c b a +-.【点睛】此题考查了三角形三边关系,此题的关键是先根据三角形三边的关系来判定绝对值内式子的正负.25.4 3【分析】根据三角形的高线的定义知BC 是边AC 上的高线.由三角形中线的定义知AD =BD ,则∠ACD 与∠BCD 的等底同高的两个三角形,它们的面积相等.【详解】如图,90ACB ∠=︒,4BC cm =,BC ∴是AC 边上的高,即AC 边上的高为4cm ,又CD 是AB 边的中线,BD AD ∴=,21111343()2224BCD ABC S S AC BC cm ∆∆∴==⨯⨯=⨯⨯=. 故答案是:4;3.【点睛】本题考查了三角形的面积,三角形的角平分线、中线和高.此题利用了“等底同高”的两个三角形的面积相等来求∠BCD 的面积的.26.CAD BAC CE12 【分析】(1)根据角平分线定义即可求解;(2)根据中点定义即可求解.【详解】解:(1)线段AD 是ABC ∆的角平分线,那么12BAD CAD BAC ∠=∠=∠. 故答案为:CAD ,BAC ;(2)线段AE 是ABC ∆的中线,那么12BE CE BC ==. 故答案为:CE ,12. 【点睛】本题考查角平分线定义与中线定义,掌握角平分线定义与中线定义是解题关键. 27.4【分析】根据线段中点的概念、三角形的面积公式计算,得到答案.【详解】解:∠点E 是AB 的中点,∠AED 的面积为1,∠∠ABD 的面积=∠AED 的面积×2=2,∠点D是BC的中点,∠∠ABC的面积=∠ABD的面积×2=4,故答案为:4.【点睛】本题考查了三角形的面积计算,掌握三角形的中线把三角形分为面积相等的两部分是解题的关键.28.105°【分析】过点G作HG∠BC,则有∠HGB=∠B,∠HGE=∠E,又因为∠DEF和∠ABC都是特殊直角三角形,∠F=30°,∠C=45°,可以得到∠E=60°,∠B=45°,有∠EGB=∠HGE+∠HGB即可得出答案.【详解】解:过点G作HG∠BC,∠EF∠BC,∠GH∠BC∠EF,∠∠HGB=∠B,∠HGE=∠E,在Rt∠DEF和Rt∠ABC中,∠F=30°,∠C=45°,∠∠E=60°,∠B=45°,∠∠HGB=∠B=45°,∠HGE=∠E=60°,∠∠EGB=∠HGE+∠HGB=60°+45°=105°,故∠EGB的度数是105°,故答案为:105°.【点睛】本题主要考查了平行线的性质和三角形内角和定理,其中正确作出辅助线是解本题的关键.29.22【分析】如图,延长HE,交BC于点G,求出∠2=∠HGF=68°,根据直角三角形两锐角互余即可求解.解:如图,延长HE ,交BC 于点G ,∠AD ∠BC ,∠∠2=∠HGF =68°,由题意得∠FEH =∠FEG =90°,∠∠1=90°-∠EGF =90°-68°=22°.故答案为:22【点睛】本题考查了平行线的性质与直角三角形的两锐角互余,根据题意添加辅助线是解题关键.30.36︒【分析】利用折叠性质得到18DA A A ∠'=∠=︒,然后根据三角形外角性质求解.【详解】 解:纸片ABC ∆沿DE 折叠,使点A 落在BE 边上的点A '处,18DA A A ∴∠'=∠=︒,136DA A A ∴∠=∠'+∠=︒.故答案为36︒.【点睛】本题考查了三角形内角和定理:三角形内角和是180︒.也考查了折叠的性质. 31.三角形的稳定性【分析】直接根据题意进行解答即可.【详解】解:由题意得这三个三角形可以使射击者在射击过程中保持稳定,其中,蕴含的数学道理是三角形的稳定性;故答案为三角形的稳定性.【点睛】本题主要考查三角形稳定性,熟练掌握三角形的稳定性是解题的关键.【分析】根据三角形的性质进行解答即可.【详解】解:斜钉一根木条的四边形木架的形状不会改变,能解释这一实际应用的数学知识是三角形具有稳定性,故答案为:稳定性.【点睛】本题考查的是三角形的稳定性,三角形的稳定性和四边形的不稳定性在实际生活中的应用问题,比较简单.33.2.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【详解】如图,再钉上两根木条,就可以使五边形分成三个三角形.故至少要再钉两根木条,故答案为:2.【点睛】本题考查了三角形的稳定性,解题的关键是熟知要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形.34.5【分析】根据多边形的内角和与外角和即可求出答案.【详解】解:设该多边形的边数为n,由题意可知:(n-2)•180°=1.5×360°,解得:n=5,故答案为:5.【点睛】本题考查多边形的内角和与外角和,解题的关键是熟练运用多边形的性质,本题属于基础题型.35.540 360【分析】根据多边形的内角和公式(n-2)•180°和多边形的外角和定理进行解答.【详解】解:(5-2)•180°=540°,所以五边形的内角和为540度,外角和为360度.故答案为:540,360.【点睛】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.36.120°【分析】利用内角与外角的关系可得∠AED=120°,然后再利用多边形内角和定理进行计算即可.【详解】解:∠∠DEF=60°,∠∠AED=120°,∠∠A=∠C=80°,∠B=140°,∠∠D=180°×(5﹣2)﹣80°﹣80°﹣140°﹣120°=120°,故答案为:120°.【点睛】此题主要考查了多边形内角与外角,关键是掌握多边形内角和定理:(n-2)•180° (n≥3且n为整数).37.6、5、4【分析】根据一个n边形对角线条数公式()32n n-共有n条对角线,列等式,求出边数,再利用分类将五边形截去一个角的情形求解即可.【详解】解:由这个n边形共有n条对角线,可得()32n nn-=,解得n=5或0(不合题意,舍去),所以这个多边形是五边形,将一个五边形截去一个角,根据截法不同可以有三种情况如图,其结果分别是6、5、4条边,故答案为:6、5、4.【点睛】本题考查由对角线条数与边关,分类思想,数形结合思想截取一个角实质看边是否减少是解题关键.38.5【分析】根据对角线的意义求解.【详解】解:根据对角线的意义可知:一个八边形过一个顶点有8-2-1=5条对角线,故答案为:5.【点睛】本题考查多边形的对角线,熟练掌握多边形对角线的意义是解题关键.39.4【分析】根据题意和多边形内角和公式求出多边形的边数,根据多边形的对角线的条数的计算公式计算即可.【详解】设这个多边形的边数为n,则(n-2)×180°=900°,解得,n=7,从七边形的其中一个顶点出发引的对角线的条数:7-3=4,故答案为:4.【点睛】本题考查的是多边形的内角和外角、多边形的对角线,掌握n边形的内角和等于(n-2)×180°、从n边形的其中一个顶点出发引的对角线的条数是n-3是解题的关键.40.2【解析】试题分析:一个多边形能不能进行平面镶嵌,关键看同一个顶点处无缝且能组成一个周角,因为任意三角形的内角和是180°,所以放在同一顶点处6个即可;因为任意四边形的内角和是360°,所以放在同一顶点处4个即可;因为任意五边形的内角和是540°,不能整除360°,所以不能密铺;因为边长相等的六边形的内角和是720°,虽然能整除360°,但不一定能密铺;因为任意七边形的内角和是900°,不能整除360°,所以不能密铺.因此能进行平面镶嵌的几何图形有三角形和四边形2种.考点:平面镶嵌.41.∠【分析】分别求出正三角形,各个正多边形的每个内角的度数,结合镶嵌的条件即可作出判断.【详解】解:∠正三角形的每个内角是60°,放在同一顶点处6个即能密铺;∠正方形的每个内角是90°,4个能密铺;∠正六边形每个内角是120°,能整除360°,故能密铺;∠正八边形每个内角是135°,不能整除360°,不能密铺.故答案为:∠【点睛】本题考查一种多边形的镶嵌问题,考查的知识点是:一种正多边形的镶嵌应符合一个内角度数能整除360°.镶嵌定义是解答此题的重要依据.42.∠∠∠【分析】根据正多边形的内角特点即可依次判断.【详解】解:∠正三角形的每个内角是60,能整除360,能镶嵌平面;∠正方形的每个内角是90,4个能镶嵌平面;-÷=,不能整除360,不能镶嵌平面;∠正五边形每个内角是:1803605108。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题
1.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE 的中点,且S△ABC=4cm2,则阴影面积等于( )
A.2cm2
B.1cm2
C.cm2
D.cm2
2.如图,已知∠1=∠2,∠3=∠4,∠A=1000,则的值=( ).
A.130°
B.135°
C.140°
D.150°
3.如图,AB=CD,AD=BC,AC和BD交于点M,那么图中全等三角形有( )
A.2对
B.3对
C.4对
D.5对
4.下列命题正确的是( )
A.三个角对应相等的两个三角形全等
B.面积相等的两个三角形全等
C.三边对应相等的两个三角形全等
D.周长相等的两个三角形全等
5.已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°∠A;
(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=∠A;
(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°-∠A.
上述说法下确的个数是( )
A.0个
B.1个
C.2个
D.3个
6.(2010 重庆江津)已知:△ABC中,AB=AC=,BC=6,则腰长的取值范围是()
A. B.
C. D.
7.(2010湖北武汉)如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是()
A.100°
B.80°
C.70°
D.50°
8.在一个三角形中有两个内角相等,这个三角形还有一个外角为110°,则两个相等的内角的度数为( ).
A.40°
B.55°
C.70°或55°
D.70°
二、填空题
9.以等腰三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,……,如此作下去,若OA=OB=1,则第n个等腰直角三角形的面积S n=________.
10.在方格纸上,每个小格的顶点叫格点,以格点为顶点的三角形叫格点三角形.如图,在4×4的方格纸上,以AB为边的格点三角形ABC的面积为2个平方单位,则符合条件的C点共有_________个.
11.如图,P是正三角形ABC 内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB ,则点P与点P′之间的距离为_________,∠APB=_________.
12.如图,D、E为AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=500,则∠BDF=____.
13.如图,已知正方形ABCD的边长为2,△BPC是等边三角形,则△CDP的面积是_________;△BPD 的面积是_________.
三、解答题
14.(2010湖北襄樊)如图14,点E、C在BF上,BF=FC,∠ABC=∠DEF=45°,∠A=∠D=90°.
(1)求证:AB=DE;
(2)若AC交DE于M,且AB=,ME=,将线段CE绕点C顺时针旋转,使点E旋转到AB 上的G处,求旋转角∠ECG的度数.
第14图
15.将两块全等的含30°角的三角尺如图(1)摆放在一起,它们的较短直角边长为3.
(1) 将△ECD沿直线l向左平移到图(2)的位置,使E点落在AB上,则CC′=______;
(2) 将△ECD绕点C逆时针旋转到图(3)的位置,使点E落在AB上,则△ECD绕点C旋转的度数=______;
(3) 将△ECD沿直线AC翻折到图(4)的位置,ED′与AB相交于点F,求证AF=FD′.
综合探究
1.如图1,的边在直线上,,且;的边也在直线上,
边与边重合,且.
(1)图1中,请你通过观察、测量,猜想并写出与所满足的数量关系和位置关系;
(2)将沿直线向左平移到图2的位置时,交于点,连结,.猜想并写出
与所满足的数量关系和位置关系,请证明你的猜想;
(3)将沿直线向左平移到图3的位置时,的延长线交的延长线于点,连结,
.你认为(2)中所猜想的与的数量关系和位置关系还成立吗?若成立,给出证明;若不

立,请说明理由.
2.(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC.求∠AEB的大小;
(2)如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕着点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.
3.(2010 内蒙古包头)如图,已知中,厘米,厘米,点为的
中点.
(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说
明理
由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与
全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿

边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?。

相关文档
最新文档