高中数学 圆锥曲线综合题 重难点归纳
高中数学圆锥曲线解题十招全归纳

高中数学圆锥曲线解题十招全归纳
1.熟悉圆锥曲线的基本概念,如焦点、准线、离心率等。
2. 对于椭圆和双曲线,要注意判断其是横向还是纵向,并掌握
其标准方程。
3. 解题时要注意转化,如通过平移、旋转等方式将方程转化为
标准方程。
4. 对于椭圆和双曲线的焦点、准线、离心率等参数要有清晰的
认识,能正确描绘出图形。
5. 注意判断椭圆和双曲线的类型,如是否为实心或空心图形等。
6. 对于椭圆和双曲线的对称性要有充分的认识。
7. 在解题过程中,注意运用对称性和几何意义,如面积公式、
周长公式等。
8. 对于椭圆和双曲线的渐近线,要了解其定义和性质,并掌握
其方程。
9. 在解题过程中,注意运用渐近线的性质,如过定点、过中心、垂直等。
10. 解题时要注意画出图形,有助于更好地理解题目和解题思路。
- 1 -。
高中数学圆锥曲线知识点总结5篇

高中数学圆锥曲线知识点总结5篇高中数学圆锥曲线知识点总结5篇教育的现代化和大众化是推进知识普及和人才培养的重要策略。
科学科研的公正性和透明度是科研活动的重要保障。
下面就让小编给大家带来高中数学圆锥曲线知识点总结,希望大家喜欢!高中数学圆锥曲线知识点总结11、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x ,y+y )。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x ,y ) 则 a-b=(x-x ,y-y ).3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。
当λ 0时,λa与a同方向;当λ 0时,λa与a反方向;当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣ 1时,表示向量a的有向线段在原方向(λ 0)或反方向(λ 0)上伸长为原来的∣λ∣倍;当∣λ∣ 1时,表示向量a的有向线段在原方向(λ 0)或反方向(λ 0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。
② 如果a≠0且λa=μa,那么λ=μ。
4、向量的的数量积定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。
高中数学选修1-1圆锥曲线考试技巧

高中数学选修1-1圆锥曲线考试技巧如下:
1.掌握圆锥曲线的定义和性质,理解各种曲线的几何特征和方程特点。
2.学会利用待定系数法、判别式法、参数法等求解圆锥曲线问题。
3.熟悉曲线的轨迹方程的求法,了解曲线的几何性质在解题中的应用。
4.掌握圆锥曲线中的一些重要结论,如切线长定理、弦长公式等。
5.注意数形结合思想在解题中的应用,能够根据题意画出符合条件的图形或根据图形得出结论。
6.熟悉圆锥曲线与其他知识点的综合问题,如与直线、圆、向量等知识的综合应用。
7.掌握一些常用的数学方法和技巧,如换元法、配方法、消元法等。
8.注意解题的规范性,保证步骤完整、答案准确。
以上技巧仅供参考,具体应用需要根据题目类型和要求进行灵活运用。
建议多做练习题,加深对知识点的理解和掌握,提高解题能力。
圆锥曲线中综合问题(题型归纳)

圆锥曲线中综合问题【考情分析】1.圆锥曲线的综合问题是高考考查的重点内容,常见的热点题型有:范围、最值问题,定点、定值问题,探索型问题等.2.以解答题的压轴题形式出现,难度较大,重在提升逻辑推理、直观想象、数学运算的核心素养.【题型一】圆锥曲线中的最值、范围问题【典例分析】1.(2021·山东滕州一中高三模拟)已知椭圆22:143x y C +=的左顶点为A ,过其右焦点F 作直线交椭圆C 于D ,E (异于左右顶点)两点,直线AD ,AE 与直线:4l x =分别交于M ,N ,线段MN 的中点为H ,连接FH .(1)求证:FH DE ⊥;(2)求DEH △面积的最小值.【解析】(1)由已知得(1,0)F ,设()11,D x y ,()22,E x y ,直线DE 的方程为1x my =+,与椭圆方程联立得()2234690m y my ++-=,122634m y y m +=-+,122934y y m =-+设直线AD 的方程为11(2)2y y x x =++,与直线:4l x =联立得1164,2y M x ⎛⎫⎪+⎝⎭,同理可得2264,2y N x ⎛⎫⎪+⎝⎭,则()()()12121221212123233323339M N H my y y y y y y y y m my my m y y m y y ++⎛⎫+==+==- ⎪+++++⎝⎭,(4,3)H m ∴-,3041FH m k m --==--,当0m =时,显然DE FH ⊥;当0m ≠时,()11DE FH k k m m⨯=⨯-=-时,DE FH ⊥,综上,可得DE FH ⊥.(2)12234y y m -===+()2122121||34m DE y y m +=-=+,H 到直线DE的距离d ==(221811||234DFHm S DE d m +=⨯=+△,设2211t m t =≥⇒=-,()3322()(1)31314t t f t t t t ==≥+-+,()422233'()031t t f t t +=>+()f t ∴在[1,)+∞上单调递增,min 1()(1)4f t f ==,当1t =,即0m =时取得最小值.DEH ∴ 面积的最小值是92.2.(2021·山东省实验中学高三模拟)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,点P 是椭圆C上位于第二象限的任一点,直线l 是12F PF ∠的外角平分线,直线2PF 交椭圆C 于另一点Q ,过左焦点1F 作l 的垂线,垂足为N ,延长1F N 交直线2PF 于点M ,||2ON =(其中O 为坐标原点),椭圆C 的离心率为12.(1)求椭圆C 的标准方程;(2)求1PF Q 的内切圆半径r 的取值范围.【解析】(1)由题意可得1||||F N NM =,且1||||PF PM =,所以1222||||||||||2PF PF PM PF MF a +=+==,因为O ,N 分别为线段12F F ,1F M 的中点,所以ON 为12MF F △的中位线,所以2//ON MF 且21||||22ON MF a ===,由12c a =,222a b c =+得23b =,所以椭圆C 的标准方程为22143x y +=.(2)由(1)知2(1,0)F ,设直线2PF 的方程为1(0)x my m =+≠,由点P 在第二象限求得33m <.设11(,)P x y ,22(,)Q x y ,由221143x my x y =+⎧⎪⎨+=⎪⎩得22(34)690m y my ++-=,由根与系数的关系得122634m y y m +=-+,122934y y m =-+,所以12212121212211121||||2()42234PF Q m S F F y y y y y y m +=⋅⋅-=⨯+-+△,令2231()3t m t =+>,则221m t =-,所以12212121213(1)4313PF Q t t S t t t t===-+++△,因为13y t t=+在233t >时单调递增,所以15332y t t =+>所以11283153PF Q S t t=∈+△,又11111(||||||)4422PF Q S PF PQ QF r a r r =++⋅=⋅⋅=△,所以83045r <<,即305r <<,所以1PF Q 内切圆半径r 的取值范围是23)5.【提分秘籍】求解圆锥曲线中最值、范围问题的主要方法(1)几何法:若题目中的条件和结论能明显体现几何特征和意义,则考虑利用图形性质数形结合求解.(2)代数法:若题目中的条件和结论能体现一种明确的函数关系,或者不等关系,或者已知参数与新参数之间的等量关系等,则利用代数法求参数的范围.【变式演练】1.(2021·辽宁本溪高级中学高三模拟)已知点F 为椭圆2222:1(0)x y C a b a b+=>>的右焦点,椭圆上任意一点到点F 距离的最大值为3,最小值为1.(1)求椭圆C 的标准方程;(2)若M 为椭圆C 上的点,以M 为圆心,MF 长为半径作圆M ,若过点(1,0)E -可作圆M 的两条切线,EA EB (,A B 为切点),求四边形EAMB 面积的最大值.【解析】(1)根据题意椭圆上任意一点到点F 距离的最大值为3,最小值为1.所以31a c a c +=⎧⎨-=⎩,解得2,1a c ==,所以b =因此椭圆C 的标准方程为22143x y +=(2)由(1)知,()1,0E-为椭圆的左焦点,根据椭圆定义知,||||4ME MF +=,设|r MF MB ==|,∵点E 在圆M 外,∴||4ME r r =->,∴12r ≤<所以在直角三角形MEB 中,||EB ==1||||2MEB S EB MB =⋅= ,由圆的性质知,四边形EAMB面积22MEB S S == ,其中12r ≤<.即)12S r =≤<.令()322412y r r r =-+≤<,则2682(34)y r r r r '=-+=--当413r <<时,0y '>,3224y r r =-+单调递增;当423r <<时,0y '<,3224y r r =-+单调递减.所以,在43r =时,y 取极大值,也是最大值此时maxS ==2.在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的两焦点与短轴的一个端点的连线构成等边三角形,直线10x y ++-=与以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆相切.(1)求椭圆C 的方程;(2)BMN △是椭圆C 的内接三角形,若坐标原点O 为BMN △的重心,求点B 到直线MN 距离的取值范围.【解析】(1)设椭圆2222:1x y C a b+=的右焦点()2,0F c ,则以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆:()222x c y a -+=,所以圆心到直线10x y ++=的距离d a ==,又椭圆的两焦点与短轴的一个端点的连线构成等边三角形,所以2,a c b ==,解得:2,1a b c ===,所以椭圆的标准方程为22143x y +=;(2)设(),B m n ,设,M N 的中点为D ,直线OD 与椭圆交于A,B 两点,因为O 为BMN △的重心,则2BO OD OA ==,所以,22m n D ⎛⎫-- ⎪⎝⎭即B 到直线MN 的距离是原点O 到直线MN 距离的3倍.当MN 的斜率不存在时,点D 在x 轴上,所以此时B 在长轴的端点处.由2OB =得:1OD =,则O 到直线MN 距离为1,B 到直线MN 距离为3;当MN 的斜率存在时,设()()1122,,,M x y N x y ,则有:22112222143143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减得:()()()()12121212043x x x x y y y y +-+-+=,因为D 为,M N 的中点,所以1212,x x m y y n +=-+=-,所以121234y y mk x x n-==--,所以直线MN 的方程为3242n m m y x n ⎛⎫+=-+ ⎪⎝⎭,即2268430mx ny n m +++=,所以原点O 到直线MN距离22d =.因为22143m n +=,所以223124m n =-,所以22d ===因为203n <≤,所以3<≤13≤<,所以332d ≤<综上所述,33332d ≤≤.即点B 到直线MN 距离的取值范围33,32⎡⎤⎢⎥⎣⎦.【题型二】圆锥曲线中的定点、定值问题【典例分析】1.(2021浙江镇海中学高三模拟)已知()0,1F 且满足1PF x =+的动点(),P x y 的轨迹为C.(1)求曲线C 的轨迹方程;(2)如图,过点()1,0-T 的斜率大于零的直线与曲线C 交于D ,M 两点,()1,1Q -,直线DQ 交曲线C 于另外一点N ,证明直线MN 过定点.【解析】(1)∵1PF x =+,1x ≥-1x =+,等式两边平方整理得24y x =.(2)证明:设()11,M x y ,()22,N x y ,()33,D x y .由21123344y x y x ⎧=⎨=⎩两式相减得1313134DM y y k x x y y -==-+.所以直线DM 的方程为()11134y y x x y y -=-+,整理得()13134y y y x y y +=+(*).因为点T 在直线上,所以134y y =①,同理直线DN 的方程为()23234y y y x y y +=+,因为点Q 在直线上,所以()23234y y y y -+=+②.由①②两式得2211444y y y y ⎛⎫-+=+⋅ ⎪⎝⎭,整理得()121244y y y y =-+-.由(*)式同理知直线MN 的方程为()12124y y y x y y +=+,所以()()1212124444y y y x y y x y y +=+=-+-,整理得直线MN 的方程为()()()12441y y y x ++=-,所以直线MN 过定点()1,4-.2.(2021·天津八中高三模拟)已知椭圆C :2221(0)6x y b b+=>的左、右焦点分别为()1,0F c -和()2,0F c ,P 为椭圆C 上任意一点,三角形12PF F 面积的最大值是3.(Ⅰ)求椭圆C 的方程;(Ⅱ)若过点()2,0的直线l 交椭圆C 于A ,B 两点,且9,04Q ⎛⎫⎪⎝⎭,证明:QA QB ⋅ 为定值.【解析】(Ⅰ)由题意知226c b =-,当P 点位于椭圆C 短轴端点时,三角形12PF F 的面积S 取最大值,此时max 1232S c b bc =⨯⨯==.所以229b c =,即()2269bb -=,解得23b=.故椭圆C 的方程为22163x y +=.(Ⅱ)(方法1)当直线l 的斜率不为0时,设直线l :2x my =+交椭圆于()()1122,,,A x y B x y .由22226x my x y =+⎧⎨+=⎩消去x 得,()222420m y my ++-=.则12122242, 22m y y y y m m +=-=-++.而112299,,,44QA x y QB x y ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ ,所以()()2121212129911144416QA QB x x y y m y y m y y ⎛⎫⎛⎫⋅=--+=+-++ ⎪⎪⎝⎭⎝⎭()222222141211512421621616m m m m m m m --⎛⎫⎛⎫=+---+=+=- ⎪ ⎪+++⎝⎭⎝⎭.当直线l 的斜率为0时,(A B ,则998115,0,06441616QA QB ⎫⎛⎫⋅=⋅=-+=-⎪ ⎪⎭⎝⎭ .故QA QB ⋅ 为定值,且为1516-.(方法2)当直线l 的斜率存在时,设直线l :()2y k x =-交椭圆于()()1122,,,A x y B x y .由22(2)26y k x x y =-⎧⎨+=⎩消去y 得,()2222218860k x k x k +-+-=.则2122821k x x k +=+,21228621k x x k -=+.而112299,,,44QA x y QB x y ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭.所以()()222121212129998112444416QA QB x x y y k x x k x x k ⎛⎫⎛⎫⎛⎫⋅=--+=+-++++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ ()22222228698811242142116k k k k k k k -⎛⎫=+⋅-+⋅++⎪++⎝⎭22126818115621161616k k --=+=-+=-+.当直线l 的斜率不存在时,可求得()()2,1,2,1A B -,则991152,12,11441616QA QB ⎛⎫⎛⎫⋅=-⋅--=-=- ⎪ ⎪⎝⎭⎝⎭ .故QA QB ⋅ 为定值,且为1516-.【提分秘籍】1.求定值问题的思路方法(1)思路:求解定值问题的基本思路是使用参数表示要解决的问题,然后证明与参数无关,这类问题选择消元的方向是非常关键的.(2)方法:从特殊入手,求出定值,再证明这个值与变量无关;直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.求定点问题的解题方法(1)动直线l 过定点问题:设动直线方程(斜率存在)为y=kx+t,由题设条件将t 用k 表示为t=mk,得y=k(x+m),故动直线过定点(-m,0).(2)动曲线C 过定点问题:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.【变式演练】1.(2021·广东华南师范大学附属中学高三模拟)设A ,B 为双曲线2222:1x y C a b-=(0,0)a b >>的左、右顶点,直线l 过右焦点F 且与双曲线C 的右支交于M ,N 两点,当直线l 垂直于x 轴时,AMN 为等腰直角三角形.(1)求双曲线C 的离心率;(2)已知直线AM ,AN 分别交直线2ax =于,P Q 两点,当直线l 的倾斜角变化时,以PQ 为直径的圆是否过定点,若过定点,求出定点的坐标;若不过定点,请说明理由.【解析】(1)由l x ⊥轴时,AMN 为等腰直角三角形,可得||||||AF NF MF ==,所以2ba c a+=,即2220c ac a --=,故220e e --=,结合1e >,解得2e =.故双曲线C 的离心率为2.(2)因为2c e a ==,所以双曲线:C 222213x y a a-=,显然直线l 的斜率不为0,设直线:2l x my a =+,11(,)M x y ,22(,)N x y ,联立直线l 与双曲线C 的方程得2222213x my a x y a a=+⎧⎪⎨-=⎪⎩,化简得222(31)1290m y amy a -++=,根据根与系数的关系,得2121222129,3131am a y y y y m m +=-⋅=--,①所以121224()431ax x m y y a m -+=++=-,②222221212122342()431a m a x x m y y am y y a m --⋅=⋅+++=-,③设直线:AM 11()y y x a x a =++,直线:AN 22()y y x a x a=++,令2ax =,可得121233(,),(,)22()22()ay ay a a P Q x a x a ++,设()G x y ,是以PQ 为直径的圆上的任意一点,则0PG QG ⋅=,则以PQ 为直径的圆的方程为2121233()[][]022()2()ay ay a x y y x a x a -+--=++,由对称性可得,若存在定点,则一定在x 轴上,令0y =,可得2121233()022()2()ay ay a x x a x a -+⋅=++,即2212212129()024[()]a y y a x x x a x x a -+=+++,将①②③代入,可得22222222229931()034424()3131a a a m x a m a a a a m m ⋅--+=---+⋅+--,即229(24a x a -=,解得x a =-或2x a =,所以以PQ 为直径的圆过定点(,0)a -,(2,0)a .2.(2021·山师大附中高三模拟)已知圆(22:12C x y +=,动圆M过点)D且与圆C 相切.(1)求动圆圆心M 的轨迹E 的方程;(2)假设直线l 与轨迹E 相交于A ,B 两点,且在轨迹E 上存在一点P ,使四边形OAPB 为平行四边形,试问平行四边形OAPB 的面积是否为定值?若是,求出此定值;若不是,请说明理由.【解析】(1)因为CD =<,所以点D 在圆内.又因为圆M 过点D 且与圆C相切,所以MC MD =,所以MC MD CD +=>.即点M 的轨迹是以C ,D 为焦点的椭圆.则2a =,即a =又因为222a b -=,所以21b =.故动圆圆心M 的轨迹E 的方程为:2213x y +=.(2)当直线AB 的斜率不存在时,可得直线AB 的方程为32x =±,此时32A y =,所以四边形OAPB 的面积32S =.当直线AB 的斜率存在时,设直线AB 的方程为y kx m =+,由22,13y kx m x y =+⎧⎪⎨+=⎪⎩整理得,()()222316310k x kmx m +++-=.因为直线l 与轨迹E 相交于A ,B 两点,所以()()()222222361231112310k m k m k m =-+-=-+>△.设()11,A x y ,()22,B x y ,则122631kmx x k +=-+,()21223131m x x k -=+.所以()121222231my y k x x m k +=++=+.设AB 的中点为Q ,则Q 的坐标为223,3311km m k k ++⎛⎫-⎪⎝⎭.因为四边形OAPB 为平行四边形,所以22622,3131km m OP OQ k k ⎛⎫==- ⎪++⎝⎭,所以点P 的坐标为2262,3131km m k k ⎛⎫-⎪++⎝⎭.又因为点Р在椭圆上,所以222262311331km m k k ⎛⎫- ⎪+⎛⎫⎝⎭+= ⎪+⎝⎭.整理得,22431m k =+.又因为12223131AB x k k =-==++,原点О到直线AB的距离为d =所以平行四边形OAPB的面积322AOBS S AB d ==⋅== .综上可知,平行四边形OAPB 的面积为定值32.1.(2021·江苏南京师范大学附属中学高三模拟)已知抛物线2:2(0)C y px p =>,满足下列三个条件中的一个:①抛物线C 上一动点Q 到焦点F 的距离比到直线:1m x =-的距离大1;②点(2,3)A 到焦点F 与到准线:2pl x =-的距离之和等于7;③该抛物线C 被直线:20n x y --=所截得弦长为16.请选择其中一个条件解答下列问题.(1)求抛物线C 的标准方程;(2)O 为坐标原点,直线l 与抛物线C 交于M ,N 两点,直线OM 的斜率为1k ,直线ON 的斜率为2k ,当124k k ⋅=-时,求OMN 的面积的最小值.【解析】(1)若选择①,则抛物线C 上一动点Q 到焦点F 的距与到直线:2m x =-的距离相等,故22p=,故4p =,所以抛物线的方程为28y x =.2=72p +,解得4p =,故抛物线的方程为28y x =.若选择③,则由222y x y px=-⎧⎨=⎩可得2240y py p --=,16=,解得4p =,故抛物线的方程为28y x =.(2)设:MN x my n =+,()11,M x y 、()22,N x y ,因为MN 与抛物线C 相交于M 、N ,所以将:MN x my n =+代28y x =消去x 得:2880y my n --=,则264640m n ∆=+>且128y y m +=,128y y n ⋅=-,由题意可知111y k x =,222y k x =,所以1212122212121264644888y y y y k k y y x x y y n ⋅⋅=⋅====-⋅-⋅,所以2n =,所以OMN的面积1212122S y y y y =⨯⨯-=-=≥,当且仅当0m =时等号成立,所以OMN的面积的最小值为2.(2021·重庆第一中学高三模拟)已知A ,B 分别为椭圆()2222:10x y C a b a b+=>>的左、右顶点,F 为右焦点,点P 为C 上的一点,PF 恰好垂直平分线段OB (O 为坐标原点),32PF =.(1)求椭圆C 的方程;(2)过F 的直线l 交C 于M ,N 两点,若点Q 满足OQ OM ON =+(Q ,M ,N 三点不共线),求四边形OMQN面积的取值范围.【解析】(1)由题意可知(),0F c ,(),0B a ,∵PF 恰好垂直平分线段OB ,∴2a c =,令x c =,代入22221x y a b +=得:2b y a =±,∴232b a =,∴2222232a cba abc =⎧⎪⎪=⎨⎪=+⎪⎩,解得21a b c =⎧⎪=⎨⎪=⎩,∴椭圆C 的方程为:22143x y +=.(2)由题意可知直线l 的斜率不为0,设直线l 的方程为:1x my =+,设()11,M x y ,()22,N x y ,联立方程221431x y x my ⎧+=⎪⎨⎪=+⎩,消去x 得:()2234690m y my ++-=,∴()223636340m m ∆=++>,∴122634m y y m -+=+,122934y y m -=+,设MN 的中点为E ,则2OQ OM ON OE =+=,∴MN 与OQ 互相平分,四边形OMQN 为平行四边形,∴OMQN S 平行四边形2OMN S =△12122OF y y =⨯⨯⨯-12y y =-==212134m=+,令1t =≥,则()2121211313OMQN t S t t t t==≥++平行四边形,∵11333y t t t t ⎛⎫ ⎪=+=+ ⎪ ⎪ ⎪⎝⎭在[1,)+∞上单调递增,∴134t t+≥,∴(]120,313t t∈+,∴03OMQN S <≤平行四边形.综上所述,四边形OMQN 面积的取值范围为(0,3].3.(2021·浙江杭州高级中学高三模拟)已知抛物线2:2(0)C x py p =>的焦点为F ,点P 为抛物线C 上一点,点P 到F 的距离比点P 到x 轴的距离大1.过点P 作抛物线C 的切线,设其斜率为0k .(1)求抛物线C 的方程;(2)直线:l y kx b =+与抛物线C 相交于不同的两点A ,B (异于点P ),若直线AP 与直线BP 的斜率互为相反数,证明:00k k +=.【解析】(1)解:设点()00,P x y ,由点P 到F 的距离比点P 到x 轴的距离大1,可得01PF y =+,即0012py y +=+,所以2p =,即抛物线C 的方程为24x y =.(2)证明:设()11,A x y ,()22,B x y ,直线AP 的斜率为AP k ,直线BP 的斜率为BP k ,则()101010AP y y k x x x x -=≠-,()202020BP y yk x x x x -=≠-.因为直线AP 与直线BP 的斜率互为相反数,所以AP BP k k =-,即10201020y y y y x x x x --=---,又点()11,A x y ,()22,B x y 均在抛物线上,可得222200211020444x x x x x x x x --=---,化简可得1202x x x +=-,因为2114x y =,2224x y =,所以()2212124x x y y -=-,即1212124y y x x x x -+=-,故012122x y y k x x -==--,因为24x y =,所以214y x =,所以1 2y x '=,则0012k x =,故00k k +=.4.(2021·湖南长沙长郡中学高三模拟)已知椭圆E :()222210x y a b a b+=>>上有一点A ,点A 在x 轴上方,1F ,2F分别为E 的左,右焦点,当△12AF F 121sin 2AF F ∠=.(Ⅰ)求E 的标准方程;(Ⅱ)若直线l 交E 于P ,Q 两点,设PQ 中点为M ,O 为坐标原点,2PQ OM =uu u r uuu r,作ON PQ ⊥,求证:ON为定值.【解析】(Ⅰ)由椭圆的性质知,△12AF F 的面积取最大时,A 为椭圆的上顶点,即(0,)A b ,而12||2F F c =,∴12121||||2AF F S F F OA bc =⋅== 121sin 2b AF F a ∠==,又222a bc =+,∴24a =,21b =,可得E 的标准方程2214x y +=.(Ⅱ)由题意,2PQ OM =uu u r uuu r且PQ 中点为M ,易得90POQ ∠=︒,即OP OQ ⊥,若直线l 斜率不存在时,P ,Q 关于x 轴对称,2PQ OM =uu u r uuu r知:横纵坐标的绝对值相等,不妨假设P 在第一象限,则(,)P m m ,(,)Q m m -在椭圆上,∴255m =,此时,M N 两点重合,即255ON =;若直线l 斜率为0时,同理可得255ON =,若直线l 斜率存在且不为0时,设直线l 为(0)y kx b b =+≠,11(,)P x y ,22(,)Q x y ,则11(,)OP x y = ,22(,)OQ x y =,且12120x x y y +=,联立椭圆与直线得:222(41)84(1)0k x kbx b +++-=且2216(41)0k b ∆=-+>,∴122841kb x x k +=-+,21224(1)41b x x k -=+,即2222222221212122224(1)84()414141k b k b b k y y k x x kb x x b b k k k --=+++=-+=+++,∴222222224(1)45440414141b b k b k k k k ----+==+++,即||b =.∴||5ON==,为定值.5.(2021·天津南开中学高三模拟)已知点A,B分别为椭圆2222:1(0)x yE a ba b+=>>的左顶点和上顶点,且坐标原点O到直线AB 的距离为61313,椭圆E的离心率是方程2650x-+=的一个根.(1)求椭圆E的标准方程;(2)若(3,0)P,过P作斜率存在的两条射线PM,PN,交椭圆E于M,N两点,且PM PN⊥,问:直线MN经过定点吗?若经过,求出这个定点坐标;若不经过,说明理由.【解析】(1)因为椭圆E的离心率是方程2650x-+=的一个根,所以2e=或3e=.因为椭圆E的离心率(0,1)e∈,所以53e=.因为3ca=,所以2295a c=,所以222245b ac c=-=,因为点A,B分别为椭圆E的左顶点和上顶点,所以||AB===.因为坐标原点O到直线AB 的距离为61313,所以11||22ab AB=,=⨯,所以c=,所以29a=,24b=,所以椭圆E的标准方程为22194x y+=.(2)当直线MN的斜率存在时,设MN:y=kx+m,由22194y kx mx y=+⎧⎪⎨+=⎪⎩,消元并化简得222(49)189360k x kmx m+++-=,设1122(,),(,)M x y N x y ,则1221849km x x k +=-+,212293649m x x k-=+,又(3,0)P ,PM PN ⊥,所以1212133y yx x ⋅=---,所以1212123()9()()0x x x x kx m kx m -+++++=,即221212(1)(3)()(9)0k x x km x x m ++-+++=,所以2222293618(1)(3)(9)04949m kmk km m k k--++-++=++,所以2222(1)(936)(3)(18)(9)(49)0k m km km m k +-+--+++=,即224554130k km m ++=,所以30k m +=或15130k m +=,当30k m +=时,(3)y k x =-,此时M ,N ,P 重合,舍去.当15130k m +=时,15(13y k x =-,恒过点15(,0)13.当直线MN 的斜率不存在时,MN ⊥x 轴,设(),3M t t -,则()223194t t -+=,解得1513t =,所以此时直线MN 也过点15(,0)13.所以直线MN 恒过定点15(,0)13.6.(2021·湖南长郡中学高三模拟)已知抛物线2:4C x y =的焦点为F ,准线为l .设过点F 且不与x 轴平行的直线m 与抛物线C 交于A ,B 两点,线段AB 的中点为M ,过M 作直线垂直于l ,垂足为N ,直线MN 与抛物线C 交于点P .(1)求证:点P 是线段MN 的中点.(2)若抛物线C 在点P 处的切线与y 轴交于点Q ,问是否存在直线m ,使得四边形MPQF 是有一个内角为60︒的菱形?若存在,请求出直线m 的方程;若不存在,请说明理由.【解析】(1)证明:由题意知直线m 的斜率存在且不为0,故设直线m 的方程为1(0)y kx k =+≠,代入24x y =,并整理得2440x kx --=.所以216160k ∆=+>,设()11,A x y ,()22,B x y ,则124x x k +=,124x x =-.设()00,M x y ,则12022x x x k +==,200121y kx k =+=+,即()22,21M k k +.由MN l ⊥,得(2,1)N k -,所以MN 中点的坐标为()22,k k.将2x k =代入24x y =,解得2y k =,则()22,P k k ,所以点P 是MN 的中点.(2)由24x y =,得24x y =,则'2x y =,所以抛物线C 在点()22,P k k的切线PQ 的斜率为k ,又由直线m 的斜率为k ,可得m PQ ∥;又M N y ∥轴,所以四边形MPQF 为平行四边形.而||MF ==()222||211MP k k k =+-=+,由||||MF MP =,得21k =+,解得3k =±,即当3k =±时,四边形MPQF 为菱形,且此时2||1||||PF k MP MF ==+==,所以60PMF ∠=︒,直线m 的方程为13y x =±+,2即0x +=或0x +=,所以存在直线m ,使得四边形MPQF 是有一个内角为60︒的菱形.。
圆锥曲线是高中数学必考考点,13种常见大题题型及解题模板总结

圆锥曲线是高中数学必考考点,13种常见大题题型及解题模板
总结
圆锥曲线历来都是高中数学必考的大考点!大部分要冲刺高分的学生都会再圆锥曲线丢分!其实圆锥曲线再怎么变形题目,都少不了基础的巩固和突破!
其中最需要巩固就算基础性质的总结!能够吃透好课本上每一个圆锥曲线的基础知识点,能灵活运用起来就能够很快掌握相关题型的考点考法,从而进行轻松解题!
而题型的总结是圆锥曲线最快的提升的方法,特别是这13种典型的圆锥曲线常见大题考法的题型!对其中的大题的考题的得分规律和解题的思维一定要多吃透一下,能够举一反三下来,就基本上突破好圆锥曲线了!
下面是洪老师高考必备资料库,高中数学圆锥曲线13种常见大题题型及解题模板总结!
完整版的圆锥曲线113种常见大题题型及解题模板总结,可关注一下后呢,然后嗯看下到下私信,那里回下:013。
(完整版)高三圆锥曲线知识点总结

第八章 《圆锥曲线》专题复习一、椭圆方程.1. 椭圆的第一定义:为端点的线段以无轨迹方程为椭圆21212121212121,2,2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+2.椭圆的方程形式: ①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12222 b a by ax =+. ii. 中心在原点,焦点在y 轴上:)0(12222 b a bx ay =+.②一般方程:)0,0(122B A By Ax =+.③椭圆的参数方程:2222+b y a x ⎩⎨⎧==θθsin cos b y a x (一象限θ应是属于20πθ ). 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. 3.椭圆的性质: ①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2.③焦点:)0,)(0,(c c -或),0)(,0(c c -.④焦距:2221,2b a c c F F -==.⑤准线:ca x 2±=或c a y 2±=.⑥离心率:)10( e ace =.⑦焦半径: i. 设),(00y x P 为椭圆)0(12222 b a by ax =+上的一点,21,F F 为左、右焦点,则:证明:由椭圆第二定义可知:)0()(),0()(0002200201 x a ex x ca e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”.ii.设),(00y x P 为椭圆)0(12222 b a ay bx =+上的一点,21,F F 为上、下焦点,则:⑧通径:垂直于x 轴且过焦点的弦叫做通径: 222b d a=;坐标:22(,),(,)b b c c a a -4.共离心率的椭圆系的方程:椭圆)0(12222 b a b y a x =+的离心率是)(22b a c ace -==,方程t t b y a x (2222=+是大于0的参数,)0 b a 的离心率也是ace =我们称此方程为共离心率的椭圆系方程. 5.若P 是椭圆:12222=+b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ∆的面积为2tan2θb (用余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2cot2θ⋅b .1020,PF a ex PF a ex=+=-1020,PF a ey PF a ey =+=-asin α,)α)二、双曲线方程.1. 双曲线的第一定义:的一个端点的一条射线以无轨迹方程为双曲线21212121212121,222F F F F a PF PF F F a PF PF F F a PF PF ==-=-=-2.双曲线的方程:①双曲线标准方程:)0,(1),0,(122222222 b a b x a y b a b y a x =-=-. 一般方程:)0(122 AC Cy Ax =+.3.双曲线的性质:①i. 焦点在x 轴上: 顶点:)0,(),0,(a a - 焦点:)0,(),0,(c c - 准线方程ca x 2±= 渐近线方程:0=±b ya x 或02222=-b y a x ii. 焦点在y 轴上:顶点:),0(),,0(a a -. 焦点:),0(),,0(c c -. 准线方程:c a y 2±=. 渐近线方程:0=±b x a y 或02222=-b x a y ,参数方程:⎩⎨⎧==θθtan sec b y a x 或⎩⎨⎧==θθsec tan a y b x . ②轴y x ,为对称轴,实轴长为2a , 虚轴长为2b ,焦距2c. ③离心率a ce =. ④准线距c a 22(两准线的距离);通径a b 22. ⑤参数关系ace b a c =+=,222. ⑥焦半径公式:对于双曲线方程12222=-b y a x (21,F F 分别为双曲线的左、右焦点或分别为双曲线的上下焦点)“长加短减”原则:aex MF a ex MF -=+=0201 构成满足a MF MF 221=-aex F M a ex F M +-='--='0201(与椭圆焦半径不同,椭圆焦半aey F M a ey F M a ey MF a ey MF -'-='+'-='+=-=020102014. 等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=e . 5.共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.λ=-2222b y a x 与λ-=-2222by a x 互为共轭双曲线,它们具有共同的渐近线:02222=-by ax .6.共渐近线的双曲线系方程:)0(2222≠=-λλb y a x 的渐近线方程为02222=-b y a x 如果双曲线的渐近线为0=±b ya x 时,它的双曲线方程可设为)0(2222≠=-λλby a x .例如:若双曲线一条渐近线为x y 21=且过)21,3(-p ,求双曲线的方程? 解:令双曲线的方程为:)0(422≠=-λλy x ,代入)21,3(-得12822=-y x . 7.直线与双曲线的位置关系:区域①:无切线,2条与渐近线平行的直线,合计2条;区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计区域③:2条切线,2条与渐近线平行的直线,合计4条;区域④:即定点在渐近线上且非原点,1条切线,1区域⑤:即过原点,无切线,无与渐近线平行的直线.注意:⑴过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.⑵若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入”“∆法与渐近线求交和两根之和与两根之积同号.⑶若P 在双曲线12222=-b y a x ,则常用结论1:P 到焦点的距离为m 与n ,则P 到两准线的距离比为m ︰n. 简证:ePF e PF d d 2121= =nm. ⑷:从双曲线一个焦点到另一条渐近线的距离等于b.三、抛物线方程.设0 p ,抛物线的标准方程、类型及其几何性质:注意:⑴x c by ay =++2顶点)244(2aba b ac --.⑵)0(22≠=p px y 则焦点半径2P x PF +=;)0(22≠=p py x 则焦点半径为2P y PF +=.⑶通径为2p ,这是过焦点的所有弦中最短的.⑷px y 22=(或py x 22=)的参数方程为⎩⎨⎧==pt y pt x 222(或⎩⎨⎧==222pty ptx )(t 为参数). ⑸关于抛物线焦点弦的几个结论:设AB 为过抛物线 y 2=2px (p>0 )焦点的弦,A(x 1 ,y 1)、B (x 2 ,y 2 ) ,直线AB 的倾斜角为θ,则:① x 1x 2=24p , y 1y 2=-p 2; ② |AB|=22sin p θ;③以AB 为直径的圆与准线相切;④焦点F 对A 、B 在准线上射影的张角为900;⑤112||||FA FB P+=. 四、圆锥曲线的统一定义.1. 圆锥曲线的统一定义:平面内到定点F 和定直线l 的距离之比为常数e 的点的轨迹. 当10 e 时,轨迹为椭圆; 当1=e 时,轨迹为抛物线; 当1 e 时,轨迹为双曲线; 当0=e 时,轨迹为圆(ace =,当b a c ==,0时). 2. 圆锥曲线方程具有对称性. 例如:椭圆的标准方程对原点的一条直线与双曲线的交点是关于原点对称的.因为具有对称性,所以欲证AB=CD, 即证AD 与BC 的中点重合即可.3. 当椭圆的焦点位置不明确,而无法确定其标准方程时,可设方程为22x y m n+ =1(m>0,n>0且m ≠n ),这样可以避免讨论和繁杂的运算,椭圆与双曲线的标准方程均可用简单形式 mx 2+ny 2=1(mn ≠0)来表示,所不同的是:若方程表示椭圆,则要求m>0,n>0且m ≠n ; 若方程表示双曲线,则要求mn<0,利用待定系数法求标准方程时,应注意此方法的合理使用,以避免讨论。
高考数学必考难点:圆锥曲线的知识点梳理(共10页)

高考数学必考难点:圆锥曲线知识点梳理一、方程的曲线:在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线。
点与曲线的关系:若曲线C 的方程是f(x,y)=0,则点P 0(x 0,y 0)在曲线C 上⇔f(x 0,y)=0;点P 0(x 0,y 0)不在曲线C 上⇔f(x 0,y 0)≠0。
两条曲线的交点:若曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则点P 0(x 0,y 0)是C 1,C 2的交点⇔{),(0),(002001==y x f y x f 方程组有n 个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没有交点。
二、圆:1、定义:点集{M ||OM |=r },其中定点O 为圆心,定长r 为半径.2、方程:(1)标准方程:圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2 圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2(2)一般方程:①当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为)2,2(E D--半径是2422FE D -+。
配方,将方程x 2+y 2+Dx+Ey+F=0化为(x+2D )2+(y+2E)2=44F -E D 22+ ②当D 2+E 2-4F=0时,方程表示一个点(-2D ,-2E ); ③当D 2+E 2-4F <0时,方程不表示任何图形.(3)点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则|MC |<r ⇔点M 在圆C 内,|MC |=r ⇔点M 在圆C 上,|MC |>r ⇔点M 在圆C 内,其中|MC |=2020b)-(y a)-(x +。
2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)

题型一:弦的垂直平分线问题题型二:动弦过定点的问题题型三:过已知曲线上定点的弦的问题题型四:向量问题题型五:面积问题题型六:弦或弦长为定值、最值问题题型七:直线问题圆锥曲线九大题型归纳题型八:对称问题题型九:存在性问题:(存在点,存在直线y =kx +m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)题型一:弦的垂直平分线问题1过点T (-1,0)作直线l 与曲线N :y 2=x 交于A 、B 两点,在x 轴上是否存在一点E (x 0,0),使得ΔABE 是等边三角形,若存在,求出x 0;若不存在,请说明理由。
2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。
有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。
2例题分析1:已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等于题型二:动弦过定点的问题1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。
(I )求椭圆的方程;(II )若直线l :x =t (t >2)与x 轴交于点T ,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论题型三:过已知曲线上定点的弦的问题1已知点A 、B 、C 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且AC ∙BC =0,BC =2AC ,如图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线综合题高考要求圆锥曲线的综合问题包括 解析法的应用,与圆锥曲线有关的定值问题、最值问题、参数问题、应用题和探索性问题,圆锥曲线知识的纵向联系,圆锥曲线知识和三角、复数等代数知识的横向联系,解答这部分试题,需要较强的代数运算能力和图形认识能力,要能准确地进行数与形的语言转换和运算,推理转换,并在运算过程中注意思维的严密性,以保证结果的完整 重难点归纳解决圆锥曲线综合题,关键是熟练掌握每一种圆锥曲线的定义、标准方程、图形与几何性质,注意挖掘知识的内在联系及其规律,通过对知识的重新组合,以达到巩固知识、提高能力的目的(1)对于求曲线方程中参数的取值范围问题,需构造参数满足的不等式,通过求不等式(组)求得参数的取值范围;或建立关于参数的目标函数,转化为函数的值域(2)对于圆锥曲线的最值问题,解法常有两种 当题目的条件和结论能明显体现几何特征及意义,可考虑利用数形结合法解;当题目的条件和结论能体现一种明确的函数关系,则可先建立目标函数,再求这个函数的最值 典型题例示范讲解例1已知圆k 过定点A (a ,0)(a >0),圆心k 在抛物线C y 2=2ax 上运动,MN 为圆k 在y 轴上截得的弦(1)试问MN 的长是否随圆心k 的运动而变化?(2)当|OA |是|OM |与|ON |的等差中项时,抛物线C 的准线与圆k 有怎样的位置关系? 命题意图本题考查圆锥曲线科内综合的知识及学生综合、灵活处理问题的能力 知识依托弦长公式,韦达定理,等差中项,绝对值不等式,一元二次不等式等知识 错解分析在判断d 与R 的关系时,x 0的范围是学生容易忽略的技巧与方法 对第(2)问,需将目标转化为判断d =x 0+2a 与R =a x +20的大小 解 (1)设圆心k (x 0,y 0),且y 02=2ax 0,圆k 的半径R =|AK |=2202020)(a x y a x +=+-∴|MN |=2202202022x a x x R -+=-=2a (定值)∴弦MN 的长不随圆心k 的运动而变化(2)设M (0,y 1)、N (0,y 2)在圆k (x -x 0)2+(y -y 0)2=x 02+a 2中, 令x =0,得y 2-2y 0y +y 02-a 2=0,∴y 1y 2=y 02-a 2 ∵|OA |是|OM |与|ON |的等差中项 ∴|OM |+|ON |=|y 1|+|y 2|=2|OA |=2a又|MN |=|y 1-y 2|=2a , ∴|y 1|+|y 2|=|y 1-y 2|∴y 1y 2≤0,因此y 02-a 2≤0,即2ax 0-a 2≤0 ∴0≤x 02a 圆心k 到抛物线准线距离d =x 0+2a ≤a ,而圆k 半径R =220a x +≥a 且上两式不能同时取等号,故圆k 必与准线相交例2如图,已知椭圆122-+m y m x =1(2≤m ≤5),过其左焦点且斜率为1的直线与椭圆及其准线的交点从左到右的顺序为A 、B 、C 、D ,设f (m )=||AB |-|CD ||(1)求f (m )的解析式; (2)求f (m )的最值 命题意图 本题主要考查利用解析几何的知识建立函数关系式,并求其最值,体现了圆锥曲线与代数间的科间综合知识依托 直线与圆锥曲线的交点,韦达定理,根的判别式,利用单调性求函数的最值错解分析在第(1)问中,要注意验证当2≤m ≤5时,直线与椭圆恒有交点 技巧与方法 第(1)问中,若注意到x A ,x D 为一对相反数,则可迅速将||AB |-|CD ||化简 第(2)问,利用函数的单调性求最值是常用方法解 (1)设椭圆的半长轴、半短轴及半焦距依次为a 、b 、c ,则a 2=m ,b 2=m -1,c 2=a 2-b 2=1 ∴椭圆的焦点为F 1(-1,0),F 2(1,0)故直线的方程为y =x +1,又椭圆的准线方程为x =±ca 2,即x =±m∴A (-m ,-m +1),D (m ,m +1)考虑方程组⎪⎩⎪⎨⎧=-++=11122m y m x x y ,消去y 得 (m -1)x 2+m (x +1)2=m (m -1) 整理得 (2m -1)x 2+2mx +2m -m 2=0 Δ=4m 2-4(2m -1)(2m -m 2)=8m (m -1)2∵2≤m ≤5,∴Δ>0恒成立,x B +x C 122--m m又∵A 、B 、C 、D 都在直线y =x +1上∴|AB |=|x B -x A |=2=(x B -x A )·2,|CD |=2(x D -x C ) ∴||AB |-|CD ||=2|x B -x A +x D -x C |=2|(x B +x C )-(x A +x D )| 又∵x A =-m ,x D =m ,∴x A +x D =0 ∴||AB |-|CD ||=|x B +x C |·2=|mm212--|·2=m m 222 (2≤m ≤5)故f (m )=mm222,m ∈[2,5] (2)由f (m )=mm 222,可知f (m )=m1222-又2-21≤2-m1≤2-51,∴f (m )∈[324,9210] 故f (m )的最大值为324,此时m =2;f (m )的最小值为9210,此时m =5例3舰A 在舰B 的正东6千米处,舰C 在舰B 的北偏西30°且与B 相距4千米,它们准备捕海洋动物,某时刻A 发现动物信号,4秒后B 、C 同时发现这种信号,A 发射麻醉炮弹 设舰与动物均为静止的,动物信号的传播速度为1千米/秒,炮弹的速度是3320g千米/秒,其中g 为重力加速度,若不计空气阻力与舰高,问舰A 发射炮弹的方位角和仰角应是多少?命题意图考查圆锥曲线在实际问题中的应用,及将实际问题转化成数学问题的能力 知识依托 线段垂直平分线的性质,双曲线的定义,两点间的距离公式,斜抛运动的曲线方程错解分析答好本题,除要准确地把握好点P 的位置(既在线段BC 的垂直平分线上,又在以A 、B 为焦点的抛物线上),还应对方位角的概念掌握清楚技巧与方法 通过建立恰当的直角坐标系,将实际问题转化成解析几何问题来求解对空间物体的定位,一般可利用声音传播的时间差来建立方程解 取AB 所在直线为x 轴,以AB 的中点为原点,建立如图所示的直角坐标系 由题意可知,A 、B 、C 舰的坐标为(3,0)、(-3,0)、(-5,23)由于B 、C 同时发现动物信号,记动物所在位置为P ,则|PB |=|| 于是P 在线段BC 的中垂线上,易求得其方程为3x -3y +73=0又由A 、B 两舰发现动物信号的时间差为4秒,知|PB |-|P A |=4,故知P 在双曲线5422y x -=1的右支上 直线与双曲线的交点为(8,53),此即为动物P 的位置,利用两点间距离公式,可得|P A |=10据已知两点的斜率公式,得k P A =3,所以直线P A 的倾斜角为60°,于是舰A 发射炮弹的方位角应是北偏东30°设发射炮弹的仰角是θ,初速度v 0=3320g,则θθcos 10sin 200⋅=⋅v g v , ∴sin2θ=23102=v g ,∴仰角θ=30° 例4若椭圆2222by a x +=1(a >b >0)与直线l x +y =1在第一象限内有两个不同的交点,求a 、b 所满足的条件,并画出点P (a ,b )的存在区域解 由方程组⎪⎩⎪⎨⎧=+=+112222b y ax y x 消去y ,整理得(a 2+b 2)x 2-2a 2x +a 2(1-b 2)=0 ①则椭圆与直线l 在第一象限内有两个不同的交点的充要条件是方程①在区间(0,1)内有两相异实根,令f (x )=(a 2+b 2)x 2-2a 2x +a 2(1-b 2),则有⎪⎪⎩⎪⎪⎨⎧>><<<<>+⇒⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>><+<>-+-=>-=>-+-=∆010101 0100)1()1(0)1()0(0)1)((442222222222222222b a a b b a b a b a a b a a b f b a f b b a a a 同时满足上述四个条件的点P (a ,b )的存在区域为如图所示的阴影部分 学生巩固练习1 已知A 、B 、C 三点在曲线y =x 上,其横坐标依次为1,m ,4(1<m <4),当△ABC的面积最大时,m 等于( )A 3B49 C25 D 23 2 设u ,v ∈R ,且|u |≤2,v >0,则(u -v )2+(vu 922--)2的最小值为( )A 4B 2C 8D 223 A 是椭圆长轴的一个端点,O 是椭圆的中心,若椭圆上存在一点P ,使∠OP A =2π,则椭圆离心率的范围是_________4 一辆卡车高3米,宽1 6米,欲通过抛物线形隧道,拱口宽恰好是抛物线的通径长,若拱口宽为a 米,则能使卡车通过的a 的最小整数值是____5 已知抛物线y =x 2-1上一定点B (-1,0)和两个动点P 、Q ,当P 在抛物线上运动时,BP ⊥PQ ,则Q 点的横坐标的取值范围是_________6 已知直线y =kx -1与双曲线x 2-y 2=1的左支交于A 、B 两点,若另一条直线l 经过点P (-2,0)及线段AB 的中点Q ,求直线l 在y 轴上的截距b 的取值范围7 已知抛物线C y 2=4x(1)若椭圆左焦点及相应的准线与抛物线C 的焦点F 及准线l 分别重合,试求椭圆短轴端点B 与焦点F 连线中点P 的轨迹方程;(2)若M (m ,0)是x 轴上的一定点,Q 是(1)所求轨迹上任一点,试问|MQ |有无最小值?若有,求出其值;若没有,说明理由8 如图,ADB 为半圆,AB 为半圆直径,O 为半圆圆心,且OD ⊥AB ,Q 为线段OD的中点,已知|AB |=4,曲线C 过Q 点,动点P 在曲线C 上运动且保持|P A |+|PB |的值不变(1)建立适当的平面直角坐标系,求曲线C 的方程; (2)过D 点的直线l 与曲线C 相交于不同的两点M 、N ,且M 在D 、N 之间,设DNDM=λ,求λ的取值范围 参考答案:1 解析 由题意知A (1,1),B (m ,m ),C (4,2)直线AC 所在方程为x -3y +2=0, 点B 到该直线的距离为d|41)23(|21|23|2110|23|1021||212--=+-=+-⨯⨯=⋅=∆m m m m m d AB S ABC ∵m ∈(1,4),∴当23=m 时,S △ABC 有最大值,此时m 49答案 B2 解析 考虑式子的几何意义,转化为求圆x 2+y 2=2上的点与双曲线xy =9上的点的距离的最小值 答案 C3 解析 设椭圆方程为2222by a x +=1(a >b >0),以OA 为直径的圆 x 2-ax +y 2=0,两式联立消y 得222ab a -x 2-ax +b 2=0 即e 2x 2-ax +b 2=0,该方程有一解x 2,一解为a ,由韦达定理x 2=2e a -a ,0<x 2<a ,即0<2e a -a <a 22⇒<e <1答案22<e <1 4 解析 由题意可设抛物线方程为x 2=-ay ,当x =2a 时,y =-4a ;当x =0 8时,y =a64.0 由题意知aa 64.04-≥3,即a 2-12a -2 56≥0 解得a 的最小整数为13答案135 解析 设P (t ,t 2-1),Q (s ,s 2-1)∵BP ⊥PQ ,∴ts t s t t ----⋅+-)1()1(11222=-1, 即t 2+(s -1)t -s +1=0∵t ∈R ,∴必须有Δ=(s -1)2+4(s -1)≥0 即s 2+2s -3≥0, 解得s ≤-3或s ≥1答案(-∞,-3]∪[1,+∞)6 解 设A (x 1,y 1),B (x 2,y 2)由⎩⎨⎧=--=1122y x kx y ,得(1-k 2)x 2+2kx -2=0,又∵直线AB 与双曲线左支交于A 、B 两点,故有⎪⎪⎪⎩⎪⎪⎪⎨⎧>--=<--=+>-+=∆≠-0120120)1(8)2(01221221222k x x k k x x k k k解得-2<k <-1.222),22,1(22)1,2(,222,0).2(221221211120111,12),,(22222200200221000-<+>--∈-+∴--∈-+==+-+=∴-+=+--=+--=-=+-=+=b b k k k k k b x x k k y l k k k k k x y l k kx y k k x x x y x Q 或即又则令的方程为的斜率为则设7 解 由抛物线y 2=4x ,得焦点F (1,0),准线l x =-1(1)设P (x ,y ),则B (2x -1,2y ),椭圆中心O ′,则|FO ′|∶|BF |=e ,又设点B 到l 的距离为d ,则|BF |∶d =e ,∴|FO ′|∶|BF |=|BF |∶d ,即(2x -2)2+(2y )2=2x (2x -2),化简得P 点轨迹方程为y 2=x -1(x >1)(2)设Q (x ,y ),则|MQ |=22)(y m x +-)1(45)]21([1)(22>-+---+-=x m m x x mx(ⅰ)当m -21≤1,即m ≤23时,函数t =[x -(m -21)2]+m -45在(1,+∞)上递增,故t 无最小值,亦即|MQ |无最小值(ⅱ)当m -21>1,即m >23时,函数t =[x 2-(m -21)2]+m -45在x =m -21处有最小值m -45,∴|MQ |min =45-m8 解 (1)以AB 、OD 所在直线分别为x 轴、y 轴,O∵|P A |+|PB |=|QA |+|QB |=2521222=+>|AB |=4∴曲线C 为以原点为中心,A 、B 为焦点的椭圆设其长半轴为a ,短半轴为b ,半焦距为c ,则2a =25,∴a =5,c =2,b =1∴曲线C 的方程为52x +y 2=1(2)设直线l 的方程为y =kx +2,代入52x +y 2=1,得(1+5k 2)x 2+20kx +15=0Δ=(20k )2-4×15(1+5k 2)>0,得k 253由图可知21x x DN DM ==λ 由韦达定理得⎪⎪⎩⎪⎪⎨⎧+=⋅+-=+22122151155120k x x k k x x将x 1=λx 2代入得 ⎪⎪⎩⎪⎪⎨⎧+=λ+=λ+2222222225115)51(400)1(k x k k x 两式相除得)15(380)51(15400)1(2222k k k +=+=λλ+ 316)51(3804,320515,3510,532222<+<<+<∴<<∴>kk k k 即 331,0,316)1(42<λ<∴>=λ<λλ+<∴解得DN DM① ,21DNDM x x ==λ M 在D 、N 中间,∴λ<1②又∵当k 不存在时,显然λ=31=DN DM (此时直线l 与y 轴重合) 课前后备注学法指导 怎样学好圆锥曲线圆锥曲线将几何与代数进行了完美结合 借助纯代数的解决手段研究曲线的概念和性质及直线与圆锥曲线的位置关系,从数学家笛卡尔开创了坐标系那天就已经开始高考中它依然是重点,主客观题必不可少,易、中、难题皆有为此需要我们做到1重点掌握椭圆、双曲线、抛物线的定义和性质这些都是圆锥曲线的基石,高考中的题目都涉及到这些内容2重视求曲线的方程或曲线的轨迹,此处作为高考解答题的命题对象难度较大所以要掌握住一般方法定义法、直接法、待定系数法、相关点法、参数法等3加强直线与圆锥曲线的位置关系问题的复习此处一直为高考的热点这类问题常涉及到圆锥曲线的性质和直线的基本知识点、线段的中点、弦长、垂直问题,因此分析问题时利用数形结合思想和设而不求法与弦长公式及韦达定理联系去解决这样加强了对数学各种能力的考查4重视对数学思想、方法进行归纳提炼,达到优化解题思维、简化解题过程(1)方程思想解析几何的题目大部分都以方程形式给定直线和圆锥曲线,因此把直线与圆锥曲线相交的弦长问题利用韦达定理进行整体处理,就简化解题运算量(2)用好函数思想方法对于圆锥曲线上的一些动点,在变化过程中会引入一些相互联系、相互制约的量,从而使一些线的长度及a,b,c,e之间构成函数关系,函数思想在处理这类问题时就很有效(3)掌握坐标法坐标法是解决有关圆锥曲线问题的基本方法近几年都考查了坐标法,因此要加强坐标法的训练。