2001年上海市普通高等学校春季招生考试数学试题及答案
2001年高考.全国卷.文科数学试题及答案

2001年普通高等学校招生全国统一考试数 学(文史类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
第I 卷1至2页。
第II 卷3至9页。
共150分。
考试时间120分钟。
第I 卷(选择题 60分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写 在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需 改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。
3.考试结束,监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式()()[]βαβαβα-++=sin sin 21cos sin()()[]βαβαβα--+=sin sin 21sin cos()()[]βαβαβα-++=cos cos 21cos cos()()[]βαβαβα--+-=cos cos 21sin sin正棱台、圆台的侧面积公式()l c c S +'=21台侧其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长 台体的体积公式()h S S S S V +'+'=31台体其中S '、S 分别表示上、下底面积,h 表示高一、 选择题:本大题共12小题;第每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 300tg °405ctg +°的值为 (A )31+ (B ) 31-(C )31-- (D )31+- (2)过点()()1,11,1--B A 、且圆心在直线02=-+y x 上的圆的方程是 (A )()()41322=++-y x (B )()()41322=-++y x(C )()()41122=-+-y x (D )()()41122=+++y x(3)若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积是(A )π3 (B )π33 (C )π6 (D )π9(4)若定义在区间()01,-内的函数()()1log 2+=x x f a 满足0)(>x f ,则a 的取值范围是(A )(0,21) (B )(0,21] (C )(21,+∞) (D )(0,+∞) (5)已知复数i z 62+= ,则z 1arg 是(A )6π (B )611π (C )3π(D )35π(6)函数)0(12>+=-x y x 的反函数是(A ))2,1(,11log 2∈-=x x y (B ))2,1(,11log 2∈--=x x y (C )]2,1(,11log 2∈-=x x y (D )]2,1(,11log 2∈--=x x y(7)若椭圆经过原点,且焦点为)0,3(),0,1(21F F ,则其离心率为 (A )43 (B )32 (C )21 (D )41 (8)若40πβα<<<,a =+ααcos sin ,b =+ββcos sin ,则(A )b a < (B )b a > (C )1<ab (D )2>ab(9)在正三棱柱111C B A ABC -中,若12BB AB =,则1AB 与B C 1所成的角的大小为(A )60° (B )90° (C )105° (D )75° (10)设)()(x g x f 、都是单调函数,有如下四个命题: ○1若)(x f 单调递增,)(x g 单调递增,则)()(x g x f -单调递增; ○2若)(x f 单调递增,)(x g 单调递减,则)()(x g x f -单调递增; ○3若)(x f 单调递减,)(x g 单调递增,则)()(x g x f -单调递减; ○4若)(x f 单调递减,)(x g 单调递减,则)()(x g x f -单调递减; 其中,正确的命题是(A )○1○3 (B )○1○4 (C ) ○2○3 (D )○2○4(11)一间民房的屋顶有如图三种不同的盖法:○1单向倾斜;○2双向倾斜;○3四向倾斜.记三种盖法屋顶面积分别为321P P P 、、.① ② ③若屋顶斜面与水平面所成的角都是α,则(A )123P P P >>(B )123P P P =>(C )123P P P >=(D )123P P P == (12)如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联。
2001年高考数学试题(全国文)及答案1

2001年普通高等学校招生全国统一考试数学(文史财经类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3. 考试结束,监考人将本试卷和答题卡一并收回.参考公式:三角函数的积化和差公式 正棱台、圆台的侧面积公式()()[]βαβαβ-++=sin sin 21cos sin a ()()[]βαβαβ--+=sin sin 21sin cos a()()[]βαβαβ-++=cos cos 21cos cos a()()[]βαβαβ--+-=cos cos 21sin sin aS 台侧l c c )(21+'=其中c ′、c 分别表示上、下底面周长, l 表示斜高或母线长 台体的体积公式 V 台体h S S S S )(31+'+'=其中S ′、S 分别表示上、下底面积,h 表示高一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1) tg300°+ctg405°的值为( )(A) 31+; (B) 31-; (C) 31--; (D) 31+-。
(2) 过点A (1,-1)、B (-1,1)且圆心在直线x +y -2 = 0上的圆的方程是( )(A) (x -3)2+(y +1)2 = 4; (B) (x +3)2+(y -1)2 = 4; (C) (x -1)2+(y -1)2 = 4; (D) (x +1)2+(y +1)2 = 4。
(3) 若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的面积是( )(A) 3π; (B) π33; (C) 6π; (D) 9π(4) 若定义在区间(-1,0)内的函数f (x ) = log 2a (x +1)满足f (x )>0,则a 的取值范围是 ( )(A)(210,); (B) ⎥⎦⎤ ⎝⎛210,; (C) (21,+∞); (D) (0,+∞)。
2001年春季高考数学试题及答案(上海)

绝密★启用前2001年普通高等学校春季招生考试(上海卷)数学考生注意:本试卷共有22道试题,满分150分. 一、填空题(本大题满分48分)本大题共有12题.只要求直接填写结果,每题填对得4分,否则一律是零分. 1.函数)0(1)(2≤+=x xx f 的反函数=-)(1x f______.2.若复数z 满足方程1-=i i z (i 是虚数单位),则z=________.3.函数xx y cos 1sin -=的最小正周期为________. 4.二项式6)1(xx +的展开式中常数项的值为________. 5.若双曲线的一个顶点坐标为(3,0),焦距为10,则它的标准方程为________.6.圆心在直线x y =上且与x 轴相切于点(1,0)的圆的方程为________.7.计算:nn n n )13(lim ++∞→=________. 8.若向量α,β满足||||β-α=β+α,则α与β所成角的大小为________.9.在大小相同的6个球中,2个红球,4个是白球.若从中任意选取3个,则所选的3个球中至少有1个红球的概率是________.(结果用分数表示)10.若记号“*”表示求两个实数a与b的算术平均数的运算,即2baba +=*,则两边均含有运算符号“*”和“+”,且对于任意3个实当选a、b、c都能成立的一个等式可以是_______。
11.关于x的函数)sin()(φ+=xxf有以下命题:(1)对任意的φ,)(x f都是非奇非偶函数;(2)不存在φ,使)(x f既是奇函数,又是偶函数;(3)存在φ,使)(x f是奇函数;(4)对任意的φ,)(x f都不是偶函数。
其中一个假命题的序号是_______。
因为当φ=_______时,该命题的结论不成立。
12.甲、乙两人于同一天分别携款1万元到银行储蓄,甲存五年期定期储蓄,年利率为 2.88%。
乙存一年期定期储蓄,年利率为 2.25%,并在每年到期时将本息续存一年期定期储蓄。
(详细解析)2001年上海高考数学(理科)

2001年上海市高考数学试卷(理科)一、填空题(本大题满分48分)本大题共有12题,只要求直接填写结果,每个空格填对得4分,否则一律得零分.1.已知812,(,1]()log ,(1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩,则满足1()4f x =的x 值为 ___ .【答案】3【解析】1x ≤时,1()24xf x -==,2x =,不合题意,舍去;1x >时,81()log f x x = 14=,14813x ==,综上可得3x =. 【点评】本题考查分段函数求值问题,属基本题.2.设数列{}n a 的通项为27,n a n n N =-∈,则1215a a a ++⋅⋅⋅+= ____ . 【答案】153【解析】由270n a n =-≥,解得72n ≥,所以数列的前3项为负数, 则1215123(531)(13523)9121532a a a +++⋅⋅⋅+=++++++⋅⋅⋅+=+⨯=.【点评】此题考查学生灵活运用等差数列的前n 项和的公式化简求值,是一道基础题.3.设P 为双曲线2214x y -=上一动点,O 为坐标原点,M 为线段OP 的中点,则点M 的 轨迹方程是 _____ . 【答案】2241x y -=【解析】设(,)M x y ,则(2,2)P x y ,代入双曲线方程2214x y -=得2241x y -=,即为所求. 【点评】代入法是圆锥曲线问题的常用方法.4.设集合{}2lg lg(815),,cos 0,2x A x x x x R B x x R ⎧⎫==-∈=>∈⎨⎬⎩⎭||,则A B 的元素 个数为 _____ 个.【解析】由2lg lg(815)x x =-,可得28150x x -+=,∴3x =或5x =,检验知符合题意,∴{}3,5A =,3x =时,cos02x >;5x =时,5cos 02<,∴A B 的元素个数为1个,故答案为1. 【点评】本题考查集合的化简,考查学生的计算能力,属于基础题.5.抛物线2430x y --=的焦点坐标为 ______ . 【答案】1(0,)4【解析】由2430x y --=得,234()4x y =+,表示顶点在3(0,)4-,开口向上的抛物线,2p =,∴故焦点坐标是1(0,)4.【点评】本题考查抛物线的标准方程,以及简单性质的应用,求出抛物线的顶点坐标和p 是解题的关键.6.设数列{}n a 是公比为0q >的等比数列,n S 是它的前n 项和,若lim 7n x S →∞=,则此数列的首项1a 的取值范围为 _____ . 【答案】(0,7)【解析】若该等比数列是一个递增的等比数列,则n S 不会有极限.因此这是一个无穷递缩等比数列.设公比为q ,则01q <<,01q <<.而等比数列前n 项和1(1)1n n a q S q-=-,因此lim 0nx q →∞=,而根据极限的四项运算法则有,1lim 71n x a S q→∞==-,因此17(1)a q =-,解得1(0,7)a ∈. 【点评】本题是中档题,考查等比数列前n 项和的极限问题,注意公比的范围,是解题的关键,考查计算能力.7.某餐厅供应客饭,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上的不同选择,则餐厅至少还需要不同的素菜品种 _____ 种.(结果用数值表示) 【答案】7【解析】设素菜n 种,则225200(1)40n C C n n ≥⇒-≥,所以n 的最小值为7.【点评】正确应用乘法计数原理,组合数以及不等式运算,n 为最小正整数.8.在2521(425)(1)x x x --+的展开式中,常数项为 _____ .【解析】由于25200122455521(425)(1)(425)(x x x x C x C x C x x----+=--⋅+⋅+⋅+ 3648485105555)C x C x C x C x ----⋅+⋅+⋅+⋅,故展开式中,常数项为10554(5)15C C +-=.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题.9.设sin x α=,且5[,]66ππα∈-,则cos arc x 的取值范围是 _____ .【答案】2[0,]3π 【解析】由题意可得112x -≤≤,而cos arc x 表示在区间[0,]π上余弦值等于x 的一个角,∴20cos 3arc x π≤≤,故答案为 2[0,]3π.【点评】本题主要考查正弦函数的定义域和值域,反余弦函数的意义,属于中档题.10.直线122y x =-与曲线sin cos 2x y ϕϕ=⎧⎨=⎩(ϕ为参数)的交点坐标是 _____ . 【答案】11(,)22【解析】∵2cos 212sin ϕϕ=-,∴曲线方程化为212y x =-,与直线122y x =-联立,解得1212x y ⎧=⎪⎪⎨⎪=⎪⎩或3272x y ⎧=-⎪⎪⎨⎪=-⎪⎩,由1sin 1ϕ-≤≤,故3272x y ⎧=-⎪⎪⎨⎪=-⎪⎩不合题意,舍去,则直线与曲线的交点坐标为11(,)22. 【点评】此题考查了参数方程与普通方程的转化,二倍角的余弦函数公式,以及正弦函数的值域..,熟练掌握二倍角的余弦函数公式是解本题的关键11.已知两个圆:221x y +=①;22(3)1x y +-=②,则由①式减去②式可得上述两个圆的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例,推广的命题为 _____ .【答案】设圆方程222()()x a y b r -+-=①,222()()x c y d r -+-=②(a c ≠或b d ≠, 则由①—②,得两圆的对称轴方程.【解析】将上述命题在曲线仍为圆的情况下加以推广:设圆方程222()()x a y b r -+-=①,222()()x c y d r -+-=②(a c ≠或b d ≠),由①—②,得两圆的对称轴方程.【点评】本题考查的知识点是类比推理....,类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).在解决类似题目时,一定要注意观察原题特点,找到其特征,再类比写结论.12.据报道,我国目前已成为世界上受荒漠化危害最严重的国家之一.左下图表示我国土地沙化总面积在20世纪五六十年代、七八十年代、九十年代的变化情况,由图中的相关信息,可将上述有关年代中,我国年平均土地沙化面积在右下图中图示为_______ .【答案】【解析】1950﹣1970:土地沙化面积增加了3.2(万平方公里), 平均沙化面积为:0.32(万平方千米)16=(百平方公里)1970﹣1990:平均沙化面积为:0.21(万平方千米)21=(百平方公里); 1990﹣2000:平均沙化面积为:0.25(万平方千米)25=(百平方公里).如上图.【点评】本题主要考查了函数的图象与图想的变化,考查了变量的变化与平均变化的基本概念,考查了识图、作图的能力.二、选择题(本大题满分16分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分.13.3a =是直线230ax y a ++=和直线3(1)7x a y a +-=-平行且不重合的 A .充分非必要条件 B .必要非充分条件C .充要条件D .既非充分也非必要条件 【答案】C【解析】当3a =时,两直线分别为3290,3240x y x y ++=++=,∴两直线斜率相等,则平行且不重合;若两直线平行且不重合,则23317a aa a=≠---,∴3a =综上所述,3a =是两直线平行且不重合的充要条件.故选C .【点评】本题以直线为载体,考查四种条件.判定两条直线位置关系的时候,注意到直线一般式系数满足的关系式.14.如图,在平行六面体1111ABCD A B C D -中,M 为AC 与BD 的交点,若11A B a =,111,A D b A A c ==.则下列向量中与1B M 相等的向量是A .1122a b c -++B .1122a b c ++ C .1122a b c -+ D .1122a b c --+【答案】A【解析】由题意可得11112B M B B BM A A BD =+=+111111111111()()22222A AB D c A D A B c b a a b c =+=+-=+-=-++.【点评】本题主要考查两个向量的加减法的法则,以及其几何意义,属于基础题.15.已知,a b 为两条不同的直线,,αβ为两个不同的平面,且,a b αβ⊥⊥,则下列命题中的假命题是 A .若//a b ,则//αβ B .若αβ⊥,则a b ⊥ C .若,a b 相交,则,αβ相交 D .若,αβ相交,则,a b 相交 【答案】D 【解析】略.16.用计算器验算函数lg (1)xy x x=>的若干个值,可以猜想下列命题中的真命题只能是 A .lg x y x =在(1,)+∞上是单调减函数 B .lg ,(1,)x y x x =∈+∞的值域为lg3(0,]3 C .lg ,(1,)x y x x =∈+∞有最小值 D .lg lim 0,n nn N n→∞=∈ 【答案】D【解析】∵lg (1)x y x x =>的导数lg (1)x y x x =>,221lg lg lg ln10x xe xx y x x ⋅--'==,∴当(1,)x e ∈时,0y '>;当(,)x e ∈+∞时,0y '<. 可得函数在(1,)e 上为增函数,在(,)e +∞为减函数,最大值lg e y e =,值域为lg (0,]ee,由此可得A 、B 、C 三项都不正确.由极限的运算法则,可得1lg 1ln10lim lim lim 01ln10n n n n n n n →∞→∞→∞===,D 项正确.【点评】本题给出关于函数lg (1)xy x x=>的几个结论,要我们找出其中的正确结论,着重考查了利用导数研究函数的单调性、函数的值域求法和极限的运算法则等知识,属于中档题.三.解答题(本大题满分86分)本大题共有6题,解答下列各题必须写出必要的步骤. 17.(本题满分12分)已知,,a b c 是ABC ∆中,,A B C ∠∠∠的对边,S 是ABC ∆的面积,若4,5,a b S ===c 的长度.【解】∵1sin 2S ab C =,∴sin 2C =, ......(4分) 于是60C ∠=︒,或120C ∠=︒, ......(6分) 又2222cos c a b ab C =+- ......(8分) 当60C ∠=︒时,222c a b ab =+-,c = ...... (10分) 当120C ∠=︒时,222c a b ab =++,c = ...... (12分)故c【点评】本题主要考查了三角形面积公式,余弦定理等知识解三角形,属于基础试题.18.(本题满分12分)设12,F F 为椭圆22194x y +=的两个焦点,P 为椭圆上的一点,已知12,,P F F 是一个直角三角形的三个顶点,且12PF PF >,求12PF PF 的值. 【解】解法一:由已知得12126,PF PF F F +==......(4分) 根据直角的不同位置,分两种情况:若21PF F ∠为直角,则2221212PF PF F F =+,即2211(6)20PF PF =-+,得12144,33PF PF ==,故1272PF PF =; ......(9分) 若12F PF ∠为直角,则2221212F F PF PF =+,即221120(6)PF PF =+-,得124,2PF PF ==,故122PF PF =.. .....(12分) 解法二:由椭圆的对称性不妨设(,)(0,0)P x y x y >>,则由已知可得12(5,0),(5,0)F F -. ......(4分) 根据直角的不同位置,分两种情况:若21PF F ∠为直角,则4(5,)3P ,于是12144,33PF PF ==,故1272PF PF =;...(9分) 若12F PF ∠为直角,则22194155x y x x ⎧+=⎪⎪⎨⎪⋅=-⎪+-⎩,解得3545,x y ==,即3545(,)P , 于是124,2PF PF ==,故122PF PF =.. .....(12分) (说明:两种情况,缺少一种扣3分).【点评】本题考查椭圆的定义和标准方程,以及椭圆的简单性质的应用,体现了分类讨论的数学思想,注意考虑2PF x ⊥轴时的情况.19.(本题满分14分)本题有2个小题,第1小题满分6分,第2小题满分8分.在棱长为a 的正方体OABC O A B C ''''-中,,E F 分别是棱,AB BC 上的动点,且AE BF =. (Ⅰ)求证:A F C E ''⊥;(Ⅱ)当三棱锥B BEF '-的体积取得最大值时,求二面角B EF B '--的大小.(结果用反三角函数表示) 【解】(I )证明:如图,以O 为原点建立空间直角坐标系. 设AE BF x ==,则(,0,),(,,0),(0,,)A a a F a x a C a a ''-,(,,0)E a x .∴(,,),(,,)A F x a a C E a x a a ''=--=--.......(4分)∵2()0A F C E xa a x a a ''⋅=-+-+=,∴A F C E ''⊥. ......(6分) (II )记,BF x BE y ==,则x y a +=, 三棱锥B BEF '-的体积2311()66224a x y V xya a +=≤=, 当且仅当2ax y ==时,等号成立. 因此,三棱锥B BEF '-的体积取得最大值时,2aBF BE ==.......(10分) 过B 作BD EF ⊥交EF 于D ,连B D ',可知B D EF '⊥. ∴B DB '∠是二面角B EF B '--的平面角. 在直角三角形BEF 中,直角边2aBE BF ==,BD 是斜边上的高,∴,tan 4B B BD a B DB BD''=∠==, 故二面角B EF B '--的大小为tan arc ......(14分)【点评】本题考查线线垂直,考查面面角,考查向量知识的运用,考查三棱锥的体积,考查基本不等式的运用,属于中档题. 20.(本题满分14分)本题有2个小题,第1小题满分10分,第2小题满分4分.对任意一个非零复数z ,定义集合{}21,n z M w w z n N -==∈|. (Ⅰ)设α是方程1x x+=的一个根.试用列举法表示集合M α,若在M α中任取两个数,求其和为零的概率P ;(Ⅱ)设复数z M ω∈,求证:z M M ω⊆.【解】(Ⅰ)∵α是方程210x +=的根,∴1)i α=+或2)i α=-. ......(2分)当1)i α=+时,∵222111111(),n n n i i ααααα-===,∴1111111,,,(1),(1),(1),)2222i i M i i i i ααααα⎫⎧⎫--⎪==+---+-⎨⎬⎬⎪⎪⎩⎭⎩⎭.当2)2i α=-时,∵22i α=-,∴21222211,,,ii M M αααααα⎧⎫--==⎨⎬⎩⎭.因此,不论α取哪一个值,集合M α是不变的,即),(1),),(1)2222M i i i i α⎫⎪=+---+-⎬⎪⎪⎩⎭. ......(8分)于是,24213P C ==. ......(10分) (Ⅱ)证明:∵z M ω∈,∴存在m N ∈,使得2(1)m z ω-=.......(12分)于是对任意2(1)(21)(21),n m n n N z ω---∈=,由于(21)(21)m n --是正奇数,21n z M ω-∈,所以z M M ω⊆.......(14分)【点评】本题主要考查两个复数代数形式的混合运算,等可能事件的概率求法,体现了分类讨论的数学思想,属于中档题. 21.(本题满分16分)本题有3个小题,第1小题满分2分,第2小题满分6分,第3小题满分8分.用水清洗一堆蔬菜上残留的农药,对用一定量的水清洗一次....的效果作如下假定:用1个单位量的水可洗掉蔬菜上残留农药量的12,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上.设用x 单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数()f x .(Ⅰ)试规定(0)f 的值,并解释其实际意义;(Ⅱ)试根据假定写出函数()f x 应该满足的条件和具有的性质; (Ⅲ)设21()1f x x=+.现有(0)a a >单位量的水,可以清洗一次,也可以把水平均分成2份后清洗两次,试问用哪种方案清洗后蔬菜上残留的农药量比较省?说明理由.【解】(Ⅰ)(0)1f =,表示没有用水洗时,蔬菜上的农药量将保持原样.......(2分) (Ⅱ)函数()f x 应该满足的条件和具有的性质是:1(0)1,(1)2f f ==, 在[0,)+∞上()f x 单调递减,且0()1f x <≤. ......(8分)(Ⅲ)设仅清洗一次,残留在农药量为1211f a =+, 清洗两次后,残留的农药量为22222116[](4)1()2f a a ==++, ......(12分)则2212222222116(8)1(4)(1)(4)a a f f a a a a --=-=++++. 于是,当22a >时,12f f >;当22a =时,12f f =;当022a <<时,12f f <. 因此,当22a >时,清洗两次后残留在农药量较少; 当22a =时,两种清洗方法具有相同的效果;当022a <<时,一次清洗残留的农药量较少. ......(16分)【点评】本小题主要考查函数模型的选择与应用、不等式的解示及比较法比较大小等,属于基础题.考查根据实际问题建立数学模型,以及运用函数的知识解决实际问题的能力. 22.(本题满分18分)本题有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.对任意函数(),f x x D ∈,可按图示构造一个数列发生器,其工作原理如下: ①输入数据0x D ∈,经数列发生器输出10()x f x =;②若1x D ∉,则数列发生器结束工作;若1x D ∈,则将1x 反馈回输入端,再输出21()x f x =,并依此规律继续下去,现定义42()1x f x x -=+. (Ⅰ)若输入04965x =,则由数列发生器产生数列{}n x .请写出数列{}n x 的所有项;数据0x 的(Ⅱ)若要数列发生器产生一个无穷的常数数列,试求输入的初始值;(Ⅲ)若输入0x 时,产生的无穷数列{}n x 满足;对任意正整数n ,均有1n n x x +<,求0x 的取值范围.【解】(Ⅰ)∵()f x 的定义域(,1)(1,)D =-∞--+∞,∴数列{}n x 只有三项:123111,,1195x x x ===-. ......(3分) (Ⅱ)∵42()1x f x x x -==+,即2320x x -+=,∴1x =,或2x =. 即当01x =或2时,1421n n n n x x x x +-==+.故当01x =时,1n x =;word 格式-可编辑-感谢下载支持当02x =时,2()n x n N =∈. ......(9分) (Ⅲ)解不等式421x x x -<+,得1x <-或12x <<. 要使12x x <,则11x <-或112x <<. ......(12分) 对于函数426()411x f x x x -==-++, 若11x <-,则21322()4,()x f x x f x x =>=<. ......(15分) 当112x <<时,21()x f x x =>,且212x <<, 依此类推,可得数列{}n x 的所有项均满足1()n n x x n N +>∈. 综上所述,1(1,2)x ∈.由10()x f x =,得0(1,2)x ∈.. .....(18分)【点评】本题考查数列与函数的综合,考查新定义,考查学生的计算能力,属于中档题.。
普通高等学校春季招生考试数学试题

普通高等学校春季招生测试数学试题本试卷分第一卷〔选择题〕和第二卷〔非选择题〕两局部.第一卷1至2页.第二卷3至8页.共150分.测试时间120分钟.第一卷〔选择题 共60分〕考前须知:1.答第一卷前,考生务必将自己的姓名、准考证号、测试科目用铅笔涂写在做题卡上.2.每题选出答案后,用铅笔把做题卡上对应题目的答案标号涂黑,如需改动,用像皮擦干净后,再选涂其它答案,不能答在试题卷上.3.测试结束,监考人将本试卷和做题卡一并收回.参考公式: 正棱台、圆台的侧面积公式 三角函数的积化和差公式)]sin()[sin(21cos sin βαβαβα-++= l c c S )'(21+=台侧)]sin()[sin(21sin cos βαβαβα--+= 其中'c 、c 分别表示上、下底面周长,l 表示斜高或母线长)]cos()[cos(21cos cos βαβαβα-++= 球体的体积公式 334R V π=球)]cos()[cos(21sin sin β-α-β+α-=βα 其中R 表示球的半径一、选择题:本大题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.〔1〕集体{}5,4,3,2,1=M 的子集个数是 〔A 〕32〔B 〕31 〔C 〕16 〔D 〕15〔2〕函数)10()(≠>=a a a x f x且对于任意的实数y x ,都有 〔A 〕)()()(y f x f xy f = 〔B 〕)()()(y f x f xy f +=〔C 〕)()()(y f x f y x f =+〔D 〕)()()(y f x f y x f +=+〔3〕=++∞→1222lim n n n n n C C〔A 〕0 〔B 〕2 〔C 〕21 〔D 〕41 〔4〕函数)1(1≤--=x x y 的反函数是 〔A 〕)01(12≤≤--=x x y 〔B 〕)10(12≤≤-=x x y〔C 〕)0(12≤-=x x y〔D 〕)10(12≤≤-=x x y〔5〕1F 、2F 是椭圆191622=+y x 的两焦点,过点2F 的直线交椭圆于点A 、B ,假设5||=AB ,那么=+||||11BF AF〔A 〕11〔B 〕10〔C 〕9〔D 〕16〔6〕设动点P 在直线1=x 上,O 为坐标原点.以OP 为直角边、点O 为直角顶点作等腰OPQ Rt ∆,那么动点Q 的轨迹是〔A 〕圆〔B 〕两条平行直线 〔C 〕抛物线 〔D 〕双曲线〔7〕x x f 26log )(=,那么)8(f 等于〔A 〕34 〔B 〕8 〔C 〕18 〔D 〕21 〔8〕假设A 、B 是锐角ABC ∆的两个内角,那么点)cos sin ,sin (cos A B A B P --在〔A 〕第一象限〔B 〕第二象限〔C 〕第三象限〔D 〕第四象限〔9〕如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角〔圆锥轴截面中两条母线的夹角〕是〔A 〕︒30〔B 〕︒45〔C 〕︒60〔D 〕︒90〔10〕假设b a ,为实数,且2=+b a ,那么ba33+的最小值是〔A 〕18〔B 〕6〔C 〕32〔D 〕432〔11〕右图是正方体的平面展开图.在这个正方体...中, ①ED BM 与平行 ②CN 与BE 是异面直线③CN 与BM 成︒60角④DM 与BN 垂直以上四个命题中,正确命题的序号是 〔A 〕①②③ 〔B 〕②④〔C 〕③④〔D 〕②③④〔12〕根据市场调查结果,预测某种家用商品从年初开始的n 个月内累积的需求量n S 〔万件〕近似地满足)12,,2,1)(521(902 =--=n n n nS n 按此预测,在本年度内,需求量超过1.5万件的月份是〔A 〕5月、6月〔B 〕6月、7月〔C 〕7月、8月〔D 〕8月、9月第二卷〔非选择题共90分〕考前须知: 1.第二卷共6页,用钢笔或圆珠笔直接答在试题卷中. 2.答卷前将密封线内的工程填写清楚.二、填空题:本大题共4小题,每题4分,共16分.把答案填在题中横线上. 〔13〕球内接正方体的外表积为S ,那么球体积等于_______________.〔14〕椭圆4422=+y x 长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是_______________.〔15〕αγβα(1sin sin sin 222=++、β、γ均为锐角〕,那么γβαcos cos cos 的最大值等于____________________.〔16〕m 、n 是直线, α、β、γ是平面,给出以下命题:① 假设m n m ⊥=⋂⊥,,βαβα,那么βα⊥⊥n n 或; ②假设α∥β,γβγα⋂=⋂,m ,那么m ∥n ;③假设m 不垂直于α,那么m 不可能垂直于α内的无数条直线; ④假设m =⋂βα,n ∥m ,且βα⊄⊄n n ,,那么n ∥n 且α∥β.其中正确的命题的序号是_______________〔注:把你认为正确的命题的序号都.填上〕 三、解做题:本大题共6小题,共74分.解容许写出文字说明,证实过程或演算步骤. 〔17〕方程022=++n mx x 有实根,且2、m 、n 为等差数列的前三项.求该等差数列公差d 的取值范围.〔18〕设函数)0()(>>++=b a bx ax x f ,求)(x f 的单调区间,并证实)(x f 在其单调区间上的单调性.〔19〕)1(17≠∈=z C z z 且.〔Ⅰ〕证实0165432=++++++z z z z z z ; 〔Ⅱ〕设z 的辐角为α,求ααα4cos 2cos cos ++的值.〔20〕VC 是ABC ∆所在平面的一条斜线,点N 是V 在平面ABC 上的射影,且N 位于ABC ∆的高CD 上.AB VC a AB 与,=之间的距离为VC M h ∈,. 〔Ⅰ〕证实∠MDC 是二面角M –AB –C 的平面角; 〔Ⅱ〕当∠MDC =∠CVN 时,证实VC AMB 平面⊥; 〔Ⅲ〕假设∠MDC =∠CVN =)20(πθθ<<,求四面体MABC 的体积.〔21〕某摩托车生产企业,上年度生产摩托车的投入本钱为1万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,方案提升产品档次,适度增加投入本钱.假设每辆车投入本钱增加的比例为)10(<<x x ,那么出厂价相应提升的比例为0.75x ,同时预计年销售量增加的比例为0.6x .年利润=〔出厂价–投入本钱〕⨯年销售量. 〔Ⅰ〕写出本年度预计的年利润y 与投入本钱增加的比例x 的关系式;〔Ⅱ〕为使本年度的年利润比上年有所增加,问投入本钱增加的比例x 应在什么范围内?〔22〕抛物线)0(22>=p px y .过动点M 〔a ,0〕且斜率为1的直线l 与该抛物线交于不同的两点A 、B .〔Ⅰ〕假设a p AB 求,2||≤的取值范围;〔Ⅱ〕假设线段AB 的垂直平分线交AB 于点Q ,交x 轴于点N ,试求MNQ Rt ∆的面积.普通高等学校春季招生测试数学试题参考解答及评分标准说明:一、本解答指出了每题要考查的主要知识和水平,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细那么.二、对计算题,当考生的解答在某一步出现错误时,如果后继局部的解答未改变该题的内容和难度,可视影响的程度决定后继局部的给分,但不得超过该局部正确解容许得分数的一半;如果后继局部的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.选择题和填空题不给中间分.一、选择题:此题考查根本知识和根本运算.每题5分,总分值60分. 〔1〕A 〔2〕C 〔3〕D 〔4〕C 〔5〕A 〔6〕B 〔7〕D〔8〕B〔9〕C〔10〕B〔11〕C〔12〕C二、填空题:此题考查根本知识和根本运算.每题4分,总分值16分. 〔13〕π242SS 〔14〕2516 〔15〕692〔16〕②④三、解做题〔17〕本小题主要考查等差数列,一元二次方程与不等式的根本知识.考查综合运用数学根底知识的水平.总分值12分. 解:依题意,有d n d m 22,2+=+=, ……2分由方程有实根,得0242≥⨯-n m ,即 0)22(8)2(2≥+-+d d , ……6分整理,得012122≥--d d ,……8分解得 346346+≥-≤d d 或,∴ ),346[]346,(+∞+⋃--∞∈d .……12分〔18〕本小题主要考查函数的根本性质,考查推理水平.总分值12分. 解:函数bx ax x f ++=)(的定义域为),(),(+∞-⋃--∞b b . ),()(b x f --∞在内是减函数),()(+∞-b x f 在内也是减函数.……4分证实),()(+∞-b x f 在内是减函数. 取21,x x ),(+∞-∈b ,且21x x <,那么 b x ax b x a x x f x f ++-++=-221121)()())(())((2112b x b x x x b a ++--=,……6分∵ 0))((,0,02112>++>->-b x b x x x b a , ∴ 0)()(21>-x f x f , 即),()(+∞-b x f 在内是减函数.……9分 同理可证),()(b x f --∞在内是减函数.……12分〔19〕本小题考查复数的根本概念和运算.总分值12分. 解:〔Ⅰ〕由 )1(65432z z z z z z z ++++++ 765432z z z z z z z ++++++=654321z z z z z z ++++++=,得0)1)(1(65432=++++++-z z z z z z z . ……4分由于 1≠z ,所以 0165432=++++++z z z z z z . ……6分〔Ⅱ〕由于1||,17==z z 可知,所以 1=⋅z z ,而17=z ,所以16=⋅z z ,z z =6,同理3452,z z z z ==, 65342z z z z z z ++=++.由〔Ⅰ〕知 165342-=+++++z z z z z z , 即 14242-=+++++z z z z z z , 所以 42z z z ++的实部为21-, ……8分而z 的辐角为α时,复数42z z z ++的实部为 ααα4cos 2cos cos ++, 所以 214cos 2cos cos -=++ααα ……12分〔20〕本小题考查运用直线与直线、直线与平面的根本性质证实线面关系的水平.总分值12分. 〔Ⅰ〕证实:由,ABC AB CD N ABC VN AB CD 平面平面⊂∈⊥⊥,,,, ∴AB VN ⊥.∴VNC AB 平面⊥.……2分又V 、M 、N 、D 都在VNC 所在平面内,所以,DM 与VN 必相交,且CD AB DM AB ⊥⊥,, ∴∠MDC 为二面角C AB M --的平面角.……4分〔Ⅱ〕证实:由,∠MDC =∠CVN ,在DMC VNC ∆∆与中, ∠NCV =∠MCD , 又∵∠VNC =︒90, ∴∠DMC =∠VNC =︒90. 故有VC AB VC DM ⊥⊥又,, ……6分 ∴AMB VC 平面⊥.……8分〔Ⅲ〕解:由〔Ⅰ〕、〔Ⅱ〕,VC M AB D VC MD AB MD ∈∈⊥⊥,,,且,∴h MD =. 又∵∠θ=MDC . 在MDC Rt ∆中,θtg h CM ⋅=.……10分ABM C MABC V V -=三棱锥四面体ah tg h S CM ABM 213131⋅⋅=⋅=∆θθtg ah 261=. ……12分〔21〕本小题主要考查建立函数关系、运用不等式的性质和解法等数学知识解决实际问题的水平.总分值12分.解:〔Ⅰ〕由题意得)10)(6.01(1000)]1(1)75.01(2.1[<<+⨯+⨯-+⨯=x x x x y ,……4分 整理得 )10(20020602<<++-=x x x y .……6分〔Ⅱ〕要保证本年度的利润比上年度有所增加,必须⎩⎨⎧<<>⨯--.10,01000)12.1(x y即 ⎩⎨⎧<<>+-.10,020602x x x……9分解不等式得 310<<x . 答:为保证本年度的年利润比上年度有所增加,投入本钱增加的比例x 应满足33.00<<x .……12分〔22〕本小题考查直线与抛物线的根本概念及位置关系,考查运用解析几何的方法解决数学问题的水平.总分值14分. 解:〔Ⅰ〕直线l 的方程为:a x y -=,将 px y a x y 22=-=代入, 得 0)(222=++-a x p a x .……2分设直线l 与抛物线两个不同交点的坐标为),(11y x A 、),(22y x B ,那么 ⎪⎩⎪⎨⎧=+=+>-+.),(2,04)(42212122a x x p a x x a p a (4)分又a x y a x y -=-=2211,, ∴ 221221)()(||y y x x AB -+-= ]4)[(221221x x x x -+=)2(8a p p +=.……6分∵ 0)2(8,2||0>+≤<a p p p AB , ∴ p a p p 2)2(80≤+<. 解得 42pa p -≤<-. ……8分〔Ⅱ〕设),(33y x Q ,由中点坐标公式,得p a x x x +=+=2213,p a x a x y y y =-+-=+=2)()(221213. ……10分∴ 22222)0()(||p p a p a QM =-+-+=. 又 MNQ ∆为等腰直角三角形, ∴ 22||21p QM S MNQ ==∆. ……14分。
上海春考卷

2001年上海春考卷2001年普通高等学校招生全国统一考试(上海春考卷)数学考生注意:1.答卷前~考生务必在答题纸上将姓名、高考准考证号填写清楚~并在规定的区域内贴上条形码.2.本试卷共有道试题~满分分~考试时间分钟.一、填空题(本大题满分分)本大题共有题,只要求直接填写结果,每个空格填对得分,否则一律得零分) 124482,1,,,xx111、函数的反函数. ,,,,fx,x,1x,0,,fx,,,2、若复数满足(是虚数单位),则的值为. zi,i,11,iizzsinx3、函数的最小正周期为. y,2,1,cosx61,,4、二项式的展开式中常数项的值为. 20x,,,x,,22xy5、若双曲线的一个顶点坐标为,焦距为,则它的标准方程为,,1. 10,,3,091622xy,,,,1116、圆心在直线上且与轴相切于点的圆的方程为. y,x,,1,0x,,,,nn3,,,2elim7、计算: ,,,n,,n1,,,,,,,,,,,,,,,,,,8、若非零向量满足,则与所成角的大小为. ,90:,,,,9、在大小相同的个球中,2个是红球,4个是白球,若从中任意取出个,则所选的个球中至少有1个红球的 3364概率是.(结果用分数表示) 5a,b10、若记号“*”表示求两个实数与的算术平均数的运算,即*=,则两边均含有运算符号“*” bbaa2abcbac,,,,,和“”,且对任意个实数、、均成立的一个等式可以是.(本题解答不唯一) 3b,ac,,,,11、关于函数有以下命题: ,,,,fx,sinx,,x对任意的,,都是非奇非偶函数; ,,fx不存在,,使既是奇函数又是偶函数; ,,fx存在,使是奇函数; ,,,fx对任意的,都不是偶函数; ,,,fxkkZ,, 其中一个假命题的序号是,因为当时,该命题的结论不成立. ,,,,%12、甲、乙两人于同一天分别携款万元到银行储蓄.甲存五年期定期储蓄,年利率为,乙存一年期定期储蓄,年利率为%,并在每年到期时将本息和续存一年期定期储蓄.按规定每次记息时,储户须交纳利息的20%1作为利息税,则甲与乙所得的本息之和的差为元.(假定利率五年内保持不变。
2001年春招高考数学试题及解答

2001年春招高考数学试题及解答
佚名
【期刊名称】《中学数学教学》
【年(卷),期】2001(000)002
【摘要】@@ 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
【总页数】5页(P20-24)
【正文语种】中文
【相关文献】
1.春招生,一路走来不平坦--春招生及春招制度相关问题调查报告 [J], 孙大胜;毛素梅;朱仁健;解石雯
2.2001年高考春招语文试题(京、皖、内蒙卷) [J],
3.2001年春、夏高考数学试题评析与透视 [J], 邹明;张忠尧
4.2001年春、夏高考数学试题评析与透视 [J], 邹明;郭忠涛
5.1998高考数学试题部分选择题、填空题解答及部分解答题不同于标准答案的解法 [J], 童诗翁
因版权原因,仅展示原文概要,查看原文内容请购买。
2001年普通高校招生全国统一考试数学试题及解答

2001年普通高校招生全国统一考试数学试题及解答
佚名
【期刊名称】《中学数学月刊》
【年(卷),期】2001(000)008
【摘要】@@ 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
【总页数】2页(P47-封底)
【正文语种】中文
【中图分类】G633.6
【相关文献】
1.2002年普通高校招生全国统一考试数学试题及解答 [J],
2.2000年普通高校招生全国统一考试数学试题及解答 [J],
3.1998年普通高校招生全国统一考试数学试题及解答(理工农医类) [J],
4.1999年普通高校招生全国统一考试数学试题及解答 [J],
5.1997年普通高校招生全国统一考试数学试题及解答(理工农医类) [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2001年上海市普通高等学校春季招生考试数学试卷考生注意:本试卷共有22道试题,满分150分.一、填空题(本大题满分48分)本大题共有12题,只要求直接填写结果,每题填对得4分,否则一律得零分.1.函数x x x f (1)(2+=≤)0的反函数=-)(1x f.2.若复数z 满足方程1-=i i z (i 是虚数单位),则z = .3.函数x xy cos 1sin -=的最小正周期为4.二项式6)1(xx +的展开式中常数项的值为5.若双曲线的一个顶点坐标为(3,0),焦距为10,则它的标准方程为 6.圆心在直线y=x 上且与x 轴相切于点(1,0)的圆的方程为7.计算:⎪⎭⎫ ⎝⎛++∞→nn n n 13lim8.若非零向量→α、→β满足|→→+βα|=|→→-βα|,则→α与→β所成角的大小为9.在大小相同的6个球中,2个是红球,4个是白球,若从中任意选取3个,则所选的3个球中至少有一个红球的概率是 (结果用分数表示)10.若记号“*” 表示求两个实数a 与b 的算术平均数的运算,即a *b 2ba +=,则两边均含有运算符号“*”和“+”,且对于任意3个实数a 、b 、c 都能成立的一个等式可以是11.关于x 的函数)sin()(φ+=x x f 有以下命题: (1)对任意的)(,x f φ都是非奇非偶函数; (2)不存在,φ使)(x f 既是奇函数,又是偶函数; (3)存在,φ使)(x f 是奇函数; (4)对任意的,φ)(x f 都不是偶函数.其中一个假命题的序号是 .因为当φ= 时,该命题的结论不成立.12.甲、乙两人于同一天分别携款1万元到银行储蓄.甲存五年期定期储蓄,年利率为2.88%.乙存一年期定期储蓄,年利率为2.25%,并在每年到期时将本息续存一年期定期储蓄.按规定每次计息时,储户须交纳利息的20%作为利息税.若存满五年后两人同时从银行取出存款,则甲与乙所得本息之和的差为 元.(假定利率五年内保持不变.结果精确到1分)二、选择题(本大题满分16分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分.13.若a 、b 为实数,则a >b >0是22b a >的 ( )(A) 充分不必要条件 (C) 必要不充分条件(B) 充要条件(D) 既非充分条件也非必要条件14.若直线x =1的倾斜角为α,则α ( )(A) 等于0(B) 等于4π(C) 等于2π (D) 不存在15.若有平面α与β,且l P P l ∉∈⊥=,,,αβαβα ,则下列命题中的假命题( )(A) 过点P 且垂直于α的直线平行于β (B) 过点P 且垂直于l 的平面垂直于β (C) 过点P 且垂直于β的直线在α内 (D) 过点P 且垂直于l 的直线在α内16.若数列{}n a 前8项的值各异,且n n a a =+8对任意的N ∈n 都成立,则下列数列中可取遍{}n a 前8项值的数列为( )(A) {}12+k a (B) {}13+k a(C) {}14+k a(D) {}16+k a三、解答题(本大题满分86分)本大题共有6题,解答下列各题必须写出必要的步骤.17.(本题满分12分)已知R 为全集,A =)3(log |{21x x -≥}2-,B =25|{+x x ≥}1,求B A . 18.(本题满分12分)已知)24(tan 12sin sin 22παπααα<<=++k ,试用k 表示ααcos sin -的值. 19.(本题满分14分)本题共有2个小题,第1小题满分5分,第2小题满分9分. 用一块钢锭浇铸一个厚度均匀,且全面积为2平方米的正四棱锥形有盖容器(如图),设容器的高为h 米,盖子边长为a 米.(1)求a 关于h 的函数解析式;(2)设容器的容积为V 立方米,则当h 为何值时,V 最大?求出V 的最大值. (求解本题时,不计容器的厚度)20.(本题满分14分)本题共有2个小题,第1小题满分5分,第2小题满分9分. 在长方体ABCD -A1B1C1D1中,点E 、F 分别在B B1、DD1上,且AE ⊥A1B ,AF ⊥A1D . (1)求证:A1C ⊥平面AEF ;(2)若规定两个平面所成的角是这两个平面所成的二面角中的锐角(或直角),则在空间中有定理:若两条直线分别垂直于两个平面,则这两条直线所成的角与这两个平面所成的角相等.试根据上述定理,在AB =4,AD =3,AA 1=5时,求平面AEF 与平面D1B1BD 所成角的大小.(用反三角函数值表示)21.(本题满分16分)本题共有2个小题,第1小题满分9分,第2小题满分7分.已知椭圆C 的方程为1222=+y x ,点),(b a P 的坐标满足222b a +≤1.过点P 的直线l 与椭圆交于A 、B 两点,点Q 为线段AB 的中点.求:(1)点Q 的轨迹方程;(2)点Q 的轨迹与坐标轴的交点的个数.22.(本题满分18分)本题共有2个小题,第1小题满分5分,第2小题满分13分. 已知{}n a 是首项为2,公比为21的等比数列,n S 为它的前n 项和. (1)用n S 表示1+n S ;(2)是否存在自然数c 和k ,使得21>--+cS cS k k 成立.2001年上海市普通高等学校春季招生考试数学试题参考解答一、填空题1.x x (1--≥)1. 2.1-i 3.2π. 4.20. 5.116922=-y x . 6.1)1()1(22=-+-y x . 7.2e . 8.︒90. 9.54. 10.),(*)()(c a b a bc a ++=+),*()*()*(c b c a c b a +=+,*)(*)(*)()(*b c a a c b c b a c b a +=+=+=+ c a b c b a +=+)*()*(等.≤411.(1),)(Z ∈k k π;(1),)(2Z ∈+k k ππ;(4),)(2Z ∈+k k ππ等.(两个空格全填对时才能得分.其中k 也可以写成任何整数)12.219.01.二、选择题13.A . 14.C . 15.D . 16.B .三、解答题17.[解]由已知)3(log 21x -≥4log 21.由⎩⎨⎧>--,033x x 解得-1≤x <3.所以1|{-=x A ≤}3<x .由25+x ≥1,解得-2<x ≤3.所以2|{-=x B <x ≤}3. 于是 x x x A 或1|{-<=≥}3,故}312|{=-<<-=x x x B A 或 .18.[解]因为αααααcos sin 2tan 12sin sin 22=++,所以ααcos sin 2=k . 因而k -=-=-1cos sin 21)cos (sin 2αααα. 又24παπ<<,于是0cos sin >-αα.因此k -=-1cos sin αα.19.[解](1)设'h 为正四棱锥的斜高.由已知⎪⎪⎩⎪⎪⎨⎧=+=⋅+,'41,2'2142222h a h a h a解得 )0(112>+=h h a .(2))0()1(33122>+==h h hha V .易得⎪⎭⎫ ⎝⎛+=h h V 131.因为h h 1+≥212=⋅hh ,所以V ≤61.等式当且仅当h h 1=,即1=h 时取得. 故当1=h 米时,V 有最大值,V 的最大值为61立方米. 20.[证](1)因为B A CB 1平面⊥,所以C A 1在平面B A 1上的射影为B A 1. 由B A 1AE ⊥,B A AE 1平面⊂,得C A 1AE ⊥. 同理可证C A 1AF ⊥.因为C A 1AF ⊥,C A 1AE ⊥, 所以C A 1AEF 平面⊥.[解](2)过A 作BD 的垂线交G CD 于.因为AG D D ⊥1,所以BD B D AG 11平面⊥. 设C A AG 1与所成的角为α,则α即为平面AEF 与平面BD B D 11所成的角. 由已知,计算得49=DG . 如图建立直角坐标系,则得点),0,3,4(),5,0,0(),0,3,49(),0,0,0(1C A G A}5,3,4{},0,3,49{-==.因为与A 1所成的角为α, 所以25212||||cos 11=⋅=C A AG α, 25212arccos=α. 由定理知,平面AEF 与平面BD B D 11所成角的大小为25212arccos. 21.[解](1)设点A 、B 的坐标分别为),(11y x A 、),(22y x B ,点Q 的坐标为),(y x Q . 当21x x ≠时,设直线l 的斜率为k ,则l 的方程为b a x k y +-=)(.由已知12,1222222121=+=+y x y x , ①b a x k y b a x k y +-=+-=)(,)(2211, ②由①得0))((21))((21212121=-++-+y y y y x x x x , ③ 由②得b ak x x k y y 22)(2121+-+=+, ④ 由③、④及21212121,2,2x x y y k y y y x x x --=+=+=,得点Q 的坐标满足方程 02222=--+by ax y x . ⑤当21x x =时,k 不存在,此时l 平行于y 轴,因此AB 的中点Q 一定落在x 轴上,即Q 的坐标为(0,a ).显然点Q 的坐标满足方程⑤.综上所述,Q 的坐标满足方程 02222=--+by ax y x . 设方程⑤所表示的曲线为L ,则由⎪⎩⎪⎨⎧=+=--+,12,0222222y x by ax y x 得 024)2(2222=-+-+b ax x b a . 因为)12(8222-+=∆b a b ,由已知222b a +≤1,所以当222b a +=1时,0=∆,曲线L 与椭圆C 有且只有一个交点),(b a P .当222b a +<1时,0<∆,曲线L 与椭圆C 没有交点.因为(0,0)在椭圆C 内,又在曲线L 上,所以曲线L 在椭圆C 内.故点Q 的轨迹方程为02222=--+by ax y x .(2)由⎩⎨⎧==--+,0,02222x by ax y x 解得曲线L 与y 轴交于点)0,0(、),0(b .由⎩⎨⎧==--+,0,02222y by ax y x 解得曲线L 与x 轴交于点)0,0(、)0,(a .当0,0==b a ,即点),(b a P 为原点时,)0,(a 、),0(b 与)0,0(重合,曲线L 与坐标轴只有一个交点)0,0(.当0=a ,且||0b <≤2,即点),(b a P 不在椭圆C 外且在除去原点的y 轴上时,点)0,(a 与)0,0(重合,曲线L 与坐标轴有两个交点),0(b 与)0,0(.同理,当0=b ,且||0a <≤1,即点),(b a P 不在椭圆C 外且在除去原点的x 轴上时,曲线L 与坐标轴有两个交点)0,(a 与)0,0(.当||0a <<1,且||0b <)1(22a -<,即点),(b a P 在椭圆C 内且不在坐标轴上,曲线L与坐标轴有三个交点)0,(a 、),0(b 与)0,0(.22.[解](1)由)211(4n n S -=,得∈+=-=++n S S n n n (221)211(411N ). (2)要使21>--+c S c S K K ,只要K K S c S c ---)223(<0.因为)211(4k k S -=<4,所以)(0212)223(N ∈>-=--k S S S k k k ,故只要 )(223N ∈<<-k S c S k k .①因为k k S S >+1(N ∈k ),所以 223-k S ≥12231=-S ,又4<k S ,故要使①成立,c 只能取2或3.当2=c 时,因为S1=2,所以当k =1时,k S c <不成立,从而①不成立.因为2232-S c >=25,由N)∈<+k s s k k (1,得 2232231-<-+k k S S , 所以当k ≥2时,223-k S c >,从而①不成立.当3=c 时,因为21=S ,32=S ,所以当2,1=k 时,k S c <不成立,从而①不成立.因为2233-S c >=413,又 2232231-<-+k k S S , 所以当k ≥3时,2233-S c >,从而①不成立.故不存在自然数c 、k ,使21>--+cS cS K K 成立.。