Experimental Study on Bending - Mechanics Characteristics and Its Application

合集下载

聚乙烯醇对型煤热解的影响研究

聚乙烯醇对型煤热解的影响研究

聚乙烯醇对型煤热解的影响研究崔帅;吕武华【摘要】以聚乙烯醇(PVA)为粘结剂与粉煤混合制成型煤,在热重分析仪上进行热解.实验数据表明:随着PVA含量的增加,反应活性指数R增大,反应速率加快,且低位发热量增大.通过FTIR光谱、BET、工业分析等方法分析说明,PVA的加入,增加了型煤的微孔结构,提高了燃料层间的传热和传质;型煤中羟基含量增多,促进了热解过程中苯酚的生成,使气态产物CO含量增多.%The influence of Polyvinyl Alcohol (PVA) on the pyrolysis was studied from macro and micro angles.The briquette pyrolysis was operated with thermal analyzer.The experimental data showed that with the increase of PVA content,the reaction rate (R value),the reaction rate and the low calorific value increase.The FTIR spectrum,BET,industrial analysis and quantum chemical analysis were described that the addition of PVA is advantage to briquette pyrolysis.The number of micropores is increased and the heat and mass transferations were improved among the fuel layer with the addition of PVA.【期刊名称】《四川大学学报(自然科学版)》【年(卷),期】2017(054)006【总页数】6页(P1269-1274)【关键词】型煤;热解;聚乙烯醇【作者】崔帅;吕武华【作者单位】广安职业技术学院,广安 638000;广安职业技术学院,广安 638000【正文语种】中文【中图分类】TQ54随着人们对提高能源效率及环境保护的关注,煤炭的高效洁净转化和利用越来越受到重视.型煤技术是重要的洁净煤技术之一,国家把型煤视为节能减排的有效途径予以推广[1-4].现阶段褐煤制型煤技术主要采用粘结剂冷压成型技术.聚乙烯醇(PVA)常作为一种粘结助剂被添加到型煤粘结剂中,用来提高型煤的机械强度.PVA 分子中含有大量的醇羟基,可促进型煤的热解反应过程中苯酚的生成,提高煤气中CO的含量[5],且PVA作为一种聚合物受热易发生断链反应,生成小分子化合物.其首先与煤中大分子结构作用,使热解反应速率加快.型煤的热加工是当前型煤加工的最主要工艺之一,型煤热解化学过程的研究与型煤的热加工技术关系极为密切,对型煤进行热解研究取得的研究成果,将对型煤的热加工有直接的指导作用,是型煤气化、焦化及燃烧应用的基础.氧在煤中主要以水分、无机含氧官能团形式存在.煤中氧的这三种存在形态中,对煤的性质影响最大的是以含氧官能团形式存在的氧,在煤的热解过程中呈现出较高的化学性质[6].煤中的含氧官能团主要以羧基、羟基、羰基、醚键等形式存在,随着煤阶的升高其含量逐渐减少.煤热解由煤大分子结构内的弱键断裂所引发[7],热解产生的自由基如果从供氢溶剂、外加氢气或自身内在的氢获取足够的氢原子,则被氢饱和而稳定下来生成挥发分.但是如果这些自由基得不到足够的氢,则自由基间发生交联聚合形成半焦或焦[8,9].因此,对于煤热解机理的研究其实就是对煤大分子结构中的各种结构单元的化学反应类型及其过程进行实验与理论研究[10].本文将采用粘结剂冷压成型工艺,以PVA为粘结剂,将云南褐煤制成型煤后,探究PVA对型煤热解的影响.并通过热重分析、红外分析、孔隙分析说明PVA对型煤热解反应特征影响.本研究选取云南褐煤为原煤样,采用国标GB/T 212-2008的方法测试其工业分析,分析结果见表1.从表中看出云南弥勒褐煤的挥发分、水分含量很高,固定碳含量很低,为劣质煤.将聚乙烯醇作为粘结剂,按比例称取一定量的煤样、PVA在搅拌机中充分混合后,使用自制模具,在压力为10 MPa时制成直径为35 mm,高为25 mm的圆柱体型煤,型煤的质量约30 g.将此型煤放在充满氦气的密封容器中,防止其与空气中的氧化物发生反应.原煤和型煤的灰分和发热量是通过国家标准检测GB/T 212-2008和GB/T 213-2008方法进行检测的.型煤的热解使用过程中要就型煤要具有一定的低位发热量.故在型煤的制作过程中,选取粘结剂时同样要考虑,所添加的粘结剂是否可以提高型煤的低位发热量.PVA作为一种有机聚合物,添加到型煤中后,增加了型煤中的挥发分含量,理论上可提高型煤的低位发热量.为验证此猜测,将原煤和型煤按照国家标准进行挥发分和发热量检测,结果见表2.从表中可以看出,PVA的加入增加了型煤中的挥发分,提高了型煤的低位发热量.为了探究型煤的热解特性,实验在德国耐驰公司生产的STA449F3型同步热分析仪上进行.将大约10 mg的样品煤放在敞开的氧化铝坩埚中,以氩气作为保护气,在氮气的气氛下,以10 K/min的升温速率对样品进行热解,热解终温为973.15 K.采用文献[1]中的装样方法来消除内、外扩散对煤样热解反应的影响.图1示出了煤样在不同PVA含量下进行热解试验后得到的DTG曲线.从图中得到,原煤热解峰值对应的温度最高,而加入PVA煤样的热解曲线向低温区移动.最大失重温度代表了整个煤大分子结构的平均稳定程度,失重温度越高,表明体系结构越紧密,在热解过程中越不易破坏整个网络结构[11,12].PVA的加入使最大失重速率及其对应的温度均降低,促进了低温区挥发物的析出.因此,PVA的加入在一定程度上提高了型煤的热解反应速率和热解反应活性.具体的反应流程图见图2.反应活性指数R通常来描述型煤气化反应活性的大小对ln和1/T的直线进行拟合,得到热解动力学参数,如图3、表3所示.由热解动力学参数,求得型煤热解反应的反应活性指数,如表4所示.型煤的热解过程是一个复杂的化学反应过程,在反应的过程中,型煤中的有机质随温度的提高而发生一系列变化,其结果为煤中的挥发分逸出,并残留半焦或焦炭.大量关于煤炭热解的研究[12-14]均显示型煤热解的主要影响因素是煤的自身的反应活性及型煤的孔隙结构.反应活性强的煤,在热解过程中反应速率快、效率高.反应活性直接影响到产气率、煤气成分、灰渣或飞灰的含碳量及热效率等.本研究通过假定分解速率等于挥发物的析出速率,根据C.Y.W[15]提出的煤热解分解速率方程,计算出型煤热解的动力学参数:A和E,进而得到型煤的反应活性指数,如表3、表4所示.由表可以看出,随着PVA含量的增加,型煤的热解反应活性指数增大,说明PVA的加入提高了反应活性指数.原因可能是PVA这种聚合物在加热条件下容易断链而生成小分子,增加了型煤内部的小分子结构,使煤中大分子首先与PVA断链小分子发生反应,从而使热解反应速率加快.Li等人[16-19]通过对煤镜质组(结构类似于褐煤,含有大量的腐植酸和沥青质)热解过程机构特征的研究,得出脂肪族碳的数目随着芳香族H取代基热解速率的增加而逐渐减少,且CCH3的热解速率远小于C(CH2)C的热解速率.说明脂肪族碳链首先进行反应.在PVA中存在大量的C(CH2)C的结构,在型煤热解过程中,PVA使型煤中的芳香环之间的短烷键、醚键和硫键等弱键发生断裂,促使煤种大分子结构变成小分子结构,增加型煤的热解反应速率.PVA的加入增加了型煤的反应活性指数有可能与型煤的表面活性有关.因此,将PVA及原煤、型煤进行FTIR测试,测定其含有的含氧官能团组成.原煤和型煤的化学特性可通过德国BRUKER光谱仪器公司的TENSOR 37 型傅里叶变换红外光谱仪(FTIR)检测出来.通过比较原煤和型煤红外光谱图的差异,分析型煤中是否生成新官能团.测定结果如图4所示.从测试结果看,PVA中含有大量的羟基(3 400 cm-1),原煤和型煤相比较并没有增加其他官能团结构,说明PVA的加入没有改变煤炭的含氧官能团种类,只是增加了煤炭中羟基的数量.原煤和型煤的介孔和大孔的形态分析是在低温条件下,以N2为吸附和脱附剂,在美国Micromeritics公司研发的2020系统下进行的.实验前期,将煤样在323.15 K下真空脱气12 h,以便彻底的脱出煤样中的气体和水分.在77 K下得到N2的吸附和脱附等温线,根据等温线可计算出孔隙的结构参数.对型煤微孔形态的分析也使用了2020系统.微孔的比表面积和孔径是由D-R模型来检测的.孔径的分布可根据非局部密度泛函理论计算得出[12].在型煤的热解过程中,型煤的孔隙结构也是重要的影响因素之一.为了进一步探究PVA对型煤热解的影响,将原煤和型煤进行介孔、大孔和微孔形态分析.通过对煤样的气体吸附实验结果进行分析得到原煤及型煤的基本性质,测定结果如表5、6所示.型煤和原煤相比,型煤的总孔容和平均孔宽都减小,比表面积增大而孔容和平均孔径都有所减小,微孔结构增多,特别在30~ 50 nm之间的微孔明显增加.丰富的微孔结构,有利于热解温度的均匀分布,改善燃料层中的传热和传质条件,提高型煤热解挥发分的逸出速率,进而提高热解反应速率.煤层的传热结构图如图6所示.主要由于PVA进入煤粒较大的孔隙和裂缝中,加强了煤与PVA之间的作用力,使得煤的孔隙结构变得紧密,微孔含量明显增加,比表面积增加.在研究型煤热解的过程中,发现加入PVA后,热解气体中CO、H2的含量明显增加.故在以后的工作中将探究PVA对热解气体组分组成的影响,来判断是否能将PVA作为一种催化剂或催化活性因子来调节型煤热解气中CO及H2的比值,以满足其他生产工艺条件原料气的需求.此外,聚合物经常作为毒性气体的吸附剂,将聚合物添加到型煤中,是否可作为煤炭的一种固硫剂、固砷剂等还需考察研究[14].因此,聚合物在煤炭高清洁、高效率利用中起到重要作用,且此作用还需要进行深入探究.在型煤气化的工艺过程中,随着PVA含量的增加,反应活性指数增大,反应速率加快,且低位发热量增大.通过FTIR光谱、BET、工业分析等方法分析说明,PVA 的加入,增加了型煤的微孔结构,提高了燃料层间的传热和传质;型煤中羟基含量增多,促进了热解过程中苯酚的生成,使气态产物CO含量增多.【相关文献】[1] Li N.Experimental study on agglomerating moulding of Huolinhe lignite[D].Liaoning:Liaoning Technical University,2011.[2] Wang S J.Application and development of lignite drying for co-production in engineering practice [J].Chem Ind Eng Prog,2010,29:1379.[3] Chen W,Ye Z L,Shen Q H,et al.Unfuel application of lignite in Yunnan province-study on forming process of lignite semi-coke used in ferroalloy planty [J].EngSci,2005,7(Supp.):354.[4] Ji D F,Wang Z N,Zhang L J,et al.The examination study of the size-composition of the fine-coal briquetting [J].J China Coal Soc,2005,30:100.[5] Zhang C,Zhu S H,Bai Y H,et al.Effect of CO2 on phenolic compounds distribution during Yining coal pyrolysis [J].Coal Convers,2015,38:17.[6] Dai Z X,Zheng Y H,Ma L H.Structural change of low rank coal by deoxyen under pyrolysis at low temperature [J].J Fuel Chem Technol,1999,27:256.[7] Xie K C.Coal structure and its reactivity [M].Beijing:Science Press,2002.[8] Liu S Y.Fundamental study on pyrolysis of Chinese steam coals and model compounds containing oxygen [D].Shanxi:Taiyuan University of Technology,2002.[9] Ling L X,Zhao L J,Zhang R G,et al.Pyrolysis mechanims of benzoic acid and benzaldehyde based on quantum chemistry [J].J Chem Ind Eng Soc China,2009,60:1224.[10] Jia J B,Zeng F G,Li M F,et al.Mechanism of methane foring during toluene pyrolysis using DFT calculation [J].J Chem Ind Eng Soc China,2010,61:3235.[11] 刘世锋,汤慧萍,刘波,等.钛纤维多孔材料孔径分布与吸声性能研究[J].四川大学学报:自然科学版,2014,51:160.[12] Xiong J,Zhou Z J,Xu Z Q,et al.Effect of alkali metal on rate of coal pyrolysis and gasification [J].J Chem Ind Eng Soc China,2011,62:192.[13] Takagi H,Isoda T,Kusakabe A K,et al.Relationship between pyrolysis reactivity andaromatic structure of coal [J].Energ Fule,2000,14:646.[14] Oeztas N A,Yueruem Y.Effect of catalysts on the pyrolysis of Turkish Zongguldak bituminous coal [J].Energ Fule,2000,14:820.[15] Xu S S,Zhang D L,Ren Y rge-scale coal gasification technology[M].Beijing:Chemical Industry Press,2005.[16] Li W,Zhu Y.Structural characteristics of coal vitrinite during pyrolysis [J].EnergFuel,2014,28:3645.[17] Kelemen S R,Afeworki M,Gorbaty M L,et al.Direct characterization of kerogen by X-ray and solid-state 13C nuclear magnetic resonance methods [J].Energ Fuel,2007,21:1548. [18] Wei Z,Gao X,Zhang D,et al.Assessment of thermal evolution of kerogen geopolymers with their structural parameters measured by solid-state 13C NMR spectroscopy [J].Energ Fuel,2004,19:240.[19] Tang H Y,Zhao M S,Feng L,et al.Theoretical studies on the taking off of oxygen-containing functional groups in lignite model compounds [J].Chem J ChinUniv,2014,35:2370.。

岩石蠕变的应力_应变比分析

岩石蠕变的应力_应变比分析

3 收稿日期 : 2006 - 08 - 23;收到修改稿日期 : 2006 - 10 - 23. 第一作者简介 :孙强 (1981 - ) ,男 ,硕士 ,主要从事岩土工程 ,工程地质方面的研究工作. Email: sunqiang04@126. com
15 (1) 孙强等 :岩石蠕变的应力 - 应变比分析
E ( ti ) ,然后由求得所对应得时间 。 这种分析方法需要较多的试验次数和试验试
样 ,针对在试验时间和试验设备上的困难 ,可以通过 分级荷载试验的方法实现 。
由图 9可以看出随着时间的延续等时模量值在 降低 ,图像呈双曲线形 ,与理论预测一致 。在隧道开 挖支护中 ,往往存在允许形变值 ,在这种情况下 ,就 可以根据图 9查出不同时刻的等时模量 ,由此便可 得到不同时刻下由蠕变造而作用在衬砌支护上的 力。
) )
τ( = τ(
t1 t2
) )
=C
(4)
Et ( t1 ) Et ( t2 )
=
ω′(ε)τ( ω′(ε)τ(
t1 t2
) )
=
τ( τ(
t1 t2
) )
=C
(5)
式中 , Es 为割线模量 , Et 为切线模量 ,ω′是 ω对 ε的
导数 。选择等时杨氏模量 E ( t1 ) ,则可使得应力无量
70
Jou rna l of Eng ineering Geology 工程地质学报 2007
在应力 - 应变比曲线分析法中把应力 σ表示为 应变ε和时间 t的函数 ,借助于相似法把所得结果推 广到试验所涉及的整个时间范围内 。在这种情况下 所求解的可靠性和准确度取决于被选用的参考应力 水平所包含的近似性 。借助模型有助于对岩石蠕变 本质的研究 ,但岩石性质的复杂性以及所复杂的赋 存环境使得蠕变模型的适用范围十分有限 。岩石蠕 变现象的本构描述十分复杂 、至今没有成熟的理论 。 这种情况下用应力 - 应变比曲线来解决岩石蠕变的 问题就具有现实意义 。

英语作文万能模板科学实验

英语作文万能模板科学实验

英语作文万能模板科学实验Science Experiment。

Science experiments are an essential part of the learning process for students of all ages. They allow students to apply the knowledge they have gained in the classroom to real-life situations, and help to foster a deeper understanding of scientific concepts. In this article, we will explore the importance of science experiments, and discuss some popular types of experiments that students can try at home or in the classroom.Importance of Science Experiments。

Science experiments are important for several reasons. First and foremost, they provide students with hands-on experience that helps to reinforce the concepts they have learned in the classroom. This practical application of knowledge can help students to better understand scientific principles, and can also help to improve their problem-solving skills.Additionally, science experiments can help to foster a love of learning in students. By allowing students to explore and discover new things through experimentation, they can develop a sense of curiosity and wonder about the world around them. This can help to inspire a lifelong interest in science and learning.Finally, science experiments can help to develop important skills such as critical thinking, observation, and data analysis. These skills are essential for success in science and in many other areas of life, and can be honed through the process of designing and conducting experiments.Types of Science Experiments。

机械强度

机械强度


qh3 12
σy
=
− qh3
6
τxy
=
− qx h2
4
左表面:即当 x=0 时,载荷分布为:
σx
=
− 2qy3
3
σy
=
2qy3 3
Hale Waihona Puke −qy h2 4−
qh3 12
τxy = 0
右表面:即当 x=l 时,载荷分布为:
σx
=
ql2y

2qy3 3
σy
=
2qy3 3

qy h2 4

qh3 12
τxy
=
−qly2
Equation
physics equation: ε =(σx-μσy)/E , εy=(σy-μσx)/E , γxy=τ xy/G
x
x

u x
Geometric equation:
y

v y
(2 3)
xy

v x

u y
Solutions: displacement method(位秱法),force method (力法),hybrid method(混 合法)。
解:1km 处静水压力为:p = ρhA = 10 × 103 × 1 × 103 = 1 × 107Pa
叏向里为负,主应力为:σxx =σyy =σzz= − p = −1 × 107Pa 第一应力丌发量:I1=σxx +σyy + σzz = − 3p = −3 × 107Pa
根据各项同性条件下的广义胡克定律得体积应发:
1 − 2μ 1 − 2 × 0.3 e = E I1 = 210 × 106 ×

高模量高强度PP_PA6复合材料的制备与研究(1)

高模量高强度PP_PA6复合材料的制备与研究(1)
基体树脂对复合材料的综合性能起关键作用, 基 体树脂可以是一元也可以是多元的组合物。理想的基
第 37卷第 10期
李国林等: 高模量高强度 PP /PA 6复合材料的制备与研究
27
体树脂应具有良好的流动性, 较好的力学性能均衡性 和适当的摩尔质量及摩尔质量分布, 以满足制品对树 脂加工性能的要求。本文选择共 聚聚丙烯 ( PPC )、 均聚聚丙烯 ( PPH ) 组成的共混物作为基体树脂, 两 种基础树脂 PPC 与 PPH 的性能指标如表 2, 不同比 例 PPC /PPH 体系流动性能及力学性能情况见表 3。
K eyw ord s: P olypropylene; Polyam ide 6; Strengthen ing; T oughening
高聚物的增韧及增强改性始终是高分子材料科学 的重要课题, 增强的目的在于提高模量, 增韧的目的 在于提高冲击强度, 但两者往往是互相矛盾的, 使材 料同时具备高模量和高冲击强度是一个具有重要科学 技术意义和应用 价值的课题。聚丙烯 ( PP ) 是综合 性能优良的通用塑料, 具有优良的耐腐蚀性、耐折叠 性, 来源丰富成型加工容易。近年来, 汽车行业的快 速发展及物流行业中可折叠包装箱及周转箱的大量使 用对改性 PP 的性能提出了更高的要求; 开发具有高 弯曲模量、高拉伸强度、高冲击强度的 PP 复合材料 具有广大的市场需求 [ 1] 。
综合力学性能, 并考察了不同相 容剂 PP g M AH 和 PE g GM A 对 PP /PA6 体系的 影响, 以玻 璃纤维 作为增 强组分, 并
引入 BaSO4, 制得了高模量高强度的复合材料。结果表明, 有机刚 性粒子 PA 6的引入 提高了 PP 的弯曲 模量与 拉伸强 度, 冲击强度有所下降; PP g M AH 在综合力学性能改 善上优于 PE g GMA; 当 BaSO4用量为 15份 时, 复合体 系在保 持一定冲击强度的基础 上, 较大 地提升了弯曲模量和拉伸强度, 表现出良好的综合力学性能。

有趣的杠杆实验英语作文

有趣的杠杆实验英语作文

有趣的杠杆实验英语作文An Intriguing Lever Experiment.In the realm of physics, the concept of leverage has held a profound significance for centuries. This principle, which allows the application of a small force to manipulate a larger force, has revolutionized various fields, from construction to machinery. To delve deeper into the intricacies of leverage, an engaging experiment was conducted, providing invaluable insights into its practical applications and underlying principles.Materials:Wooden plank (approximately 1 meter in length)。

Fulcrum (a fixed support, such as a table or a wooden block)。

Weight (a heavy object, such as a dumbbell or a pileof books)。

Measuring tape or ruler.Procedure:1. Positioning the Fulcrum: Place the wooden plank horizontally on the fulcrum, ensuring that it is balanced and can pivot freely. The fulcrum should be positioned closer to one end of the plank, creating two unequal arms.2. Applying the Weight: Attach the weight to one end of the plank, close to the fulcrum. This will create a downward force on that side of the plank.3. Adjusting the Effort Arm: Using the measuring tape, determine the distance between the point where the weightis attached and the fulcrum. This distance represents the effort arm.4. Balancing the Lever: Gradually move the weight along the effort arm until the plank is balanced again. The plankshould remain horizontal, indicating that the downward force created by the weight is equal to the upward force exerted on the other side of the fulcrum.5. Calculating the Mechanical Advantage: Measure the distance between the point where the upward force is applied (the resistance arm) and the fulcrum. The mechanical advantage of the lever is calculated by dividing the resistance arm by the effort arm.6. Observing the Effect of Fulcrum Position: Repeat the experiment with different positions of the fulcrum, varying the distance between the fulcrum and both the effort and resistance arms. Note the changes in mechanical advantage and the ease or difficulty of lifting the weight.Results:The mechanical advantage of the lever increased as the fulcrum was placed closer to the effort arm.For a given weight, the effort required to lift itdecreased as the mechanical advantage increased.The position of the fulcrum played a crucial role in determining the force amplification achieved by the lever.Analysis:The results of the experiment align with the fundamental principles of leverage. According to the formula for mechanical advantage (MA = Resistance Arm / Effort Arm), the closer the fulcrum is to the effort arm, the greater the mechanical advantage. This means that a smaller force can be used to lift a larger weight.Furthermore, the experiment demonstrates the inverse relationship between mechanical advantage and the effort required to lift the weight. As the mechanical advantage increases, the effort required decreases. This is because the lever acts as a force multiplier, amplifying the applied force.The significance of fulcrum position lies in itsinfluence on the relative lengths of the effort and resistance arms. By positioning the fulcrum closer to the effort arm, the effort arm becomes shorter, while the resistance arm becomes longer. This results in a higher mechanical advantage and a reduction in the effort required to lift the weight.Applications:The principles of leverage have far-reaching applications in various fields, including:Construction: Levers are used in tools such as crowbars, pry bars, and wheelbarrows to amplify force and move heavy objects.Machinery: Levers are essential components in machines such as levers, pulleys, and gears, allowing for the transmission and transformation of force.Everyday life: Levers are present in everyday tools and devices, such as scissors, pliers, and wrenches, makingtasks easier and more efficient.Conclusion:The lever experiment provided a captivating demonstration of the principles and practical applications of leverage. By manipulating the position of the fulcrum and the length of the effort and resistance arms, the mechanical advantage of the lever can be adjusted to achieve the desired force amplification. This experiment underscores the enduring relevance of leverage in the fields of physics, engineering, and everyday life.。

动静压气体轴承的结构参数设计

动静压气体轴承的结构参数设计
2019年第6期
液压与'动
29
doi : 10.11832/j. issn. 1000-4858.2019. 06.006
动静压气体轴承的结构参数设计
王东强,于贺春,王广洲,李智浩,赵则祥
(中原工学院机电学院,河南 郑州450007)
摘要:针对人字槽狭缝节流动静压气体轴承的结构参数对轴承静态特性的影响,采用四因素三水平
引言 动静压轴承是高档精密机床及测量仪器的主要部
件,具有稳定性好、精度高,抗干扰能力强等优点[1"4]o 目前,动静压轴承润滑方式有水润滑、油润滑、气体润 滑等[5-6]o其中,以空气作为润滑介质的动静压轴承 受到越来越多的科研人员的重视,在高精度磨床,圆柱 度仪、三坐标测量机等精密设备上得到广泛应用。
专家学者对气体动静压轴承的各方面特性进行了 大量研究。王云飞等[7]在《气体润滑理论与气体轴承
设计》一书中详细介绍了动静压混合润滑气体轴承的 稳态设计和动态设计,为孔式、缝式、孔-腔型的气动静 压轴承提供了理论指导。孟曙光、郭胜安等[8-9]分别 采用CFD软件仿真和数值计算的方法对小孔节流深
收稿日期:2018-08-31 基金项目:国家自然科学基金(51405523,51475485) 作者简介:于贺春(1982*),男,河南驻马店人,副教授,博 士,主要研究方向为气体润滑技术、精密机床。
0.53
0.49
7
3
1 3 3 3 0.43
0.71
0.40
0.42
0.41
8
5
2 2 3 1 0. 33
0.44
0.39
9
6
2 3 1 2 1.00
0. 33
0.67
4

An experimental study on the examin

An experimental study on the examin
No gap between the punch and the sheet metal The punch contacted with the sheet metal completely
Force parameters
1500N for 0.5 mm 3300N for 0.75mm 5900N for 1mm
Principles
2. Chemical composition
Principles
Method 1
Gap between the punch and the die
Equal to the thickness of sheet metal The punch has no complete touch with the die at the corner
[7] F. Pourpoghrat, E. Chu, Prediction of springback and side-wall curl in 2D draw bending, J. Mater. Process. Technol. 50 (1–4) (1995) 361–374.
[8] J. Shu, C. Hung, Finite element analysis and optimisation of springback reduction: the double-bent technique, Int. J. Mach. Tools Manuf. 36 (4) (1996) 423–434.
[16] P.S. Dunston, S. Ranjithan, L.E. Bernold, Neural network model for the automated control of springback in rebars, IEEE Expert 11 (4) (1996) 45– 49.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Experimental Study on Bending - Mechanics Characteristicsof 22MnB5 and Its ApplicationRunqing Guo1,a, Liang Ying1,b and Ping Hu1,c1School of Automotive Engineering, Faculty of Vehicle Engineering and Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment,Dalian University of Technology, Dalian, China 116024a guorunqingdalian@,b yingliang_dlut@,c pinghu@ Keywords: V-shaped Heat Bending, 22MnB5, Optimal Bending Temperature, Pure Bending. Abstract. Special V-shaped heat bending test was designed for 22MnB5 high strength steel of different thickness; sheets, after staying 5 min in the furnace at around 1000℃ to austenize fully, were bended at different temperatures, the spring-back amount was investigated and microstructures of heat bending specimens are analyzed, through which the optimal temperature, 600℃-650℃, for bending forming is obtained; On the basis of research above, a real anti-collision beam was produced by hot stamping and pure bending was conducted on it, which showed qualified mechanics of the hot forming auto component.IntroductionFor growing energy shortage nowadays, it is an inevitable trend of developing fuel-efficient vehicles and eco-car. Studies have shown that lightweight is the most effective measure to achieve the goal and reducing vehicle mass by 10% can save fuel by 3%~7%[1]. Also it’s shown that steel is still the main material for vehicles, but transforming from the traditional mild steel to the ultra-high strength steel (UHSS)[2]. UHSS is the optimal path to make vehicle lightweight and meanwhile improve passive safety, because UHSS has high tensile strength, yield strength, bending strength, fatigue strength and impact energy absorption capacity. With increasing use of UHSS, the new process, hot stamping technology, is developed, through which stamping forming and quenching are achieved simultaneously. UHSS are applied comprehensively in the project of Ultra-light Steel Auto Body-Advanced Vehicle Technology Program (ULSAB-AVC) of International Iron and Steel Institute (IISI). The Body in white of the project is lightweight by 30% for using hot forming parts[2,3]. Nowadays, A pillar, B pillar, C pillar, door and roof reinforcements, bumpers and etc, are typical vehicle components formed by hot stamping[4,5]. In hot stamping process, complicated thermal- mechanical- transformation coupled relations and multi-scale problems are involved besides nonlinear friction problems of thermal boundary. And there are lots of thermal parameters affecting mechanical properties of the hot forming components.Substantially, the hot stamping process is a process of metal sheet bending so that bending properties of metal sheet influence its hot forming formability directly. For that reason, in this paper, Special V-Shaped heat bending test is designed, bending formability at different temperatures is investigated, and optimal bending forming temperature is achieved, which presents guidance function on actual hot stamping process. On the basis of above tests, a real anti-collision beam is stamped by hot forming process and its martensite content, hardness, and tensile strength are analyzed. In the end, pure bending test is conducted on the anti-collision beam, which shows its high bending strength and impact resistance.Base Material Characteristics of 22MnB5In the paper, the hot forming high strength steel investigated is a type of boron alloy steel called 22MnB5. Its composition is as shown in Table1. A small amount of boron added enhances the quenching hardenability of C-Mn steel and its strength.Table1 Composition of Boron Steel (Mass%)22MnB5 C Mn B P Cr Si Al SMax 0.240 1.290 0.0037 0.016 0.210 0.240 0.050 0.006Quenching 1000-1030 1548-1554 0.65 0.07 0.11 Special V-Shaped Heat BendingIt’s known that there is of much need to introduce hot forming process to stamp 22MnB5 HSS and quench it at the same time for ultra-high strength parts. The optimal stamping temperature (OST), a key parameter of hot stamping, affects blank formability and mechanical properties of hot forming parts directly. To get the OST, special V-shaped heat bending is designed imitating the real hot stamping, see Fig.1(a).(a) (b)Fig.1 (a) Special V-shaped Bending (b) Different stamping-temperatures-time curve In the test, the thermocouple, connected to the MX100 Data Acquisition Unit, is placed in the sheet middle. The sheet is transformed to V-shaped die quickly, after staying 5 min in the furnace at around 1000℃ to austenize fully. When the sheet temperature reaches the set temperature such as 500℃、600℃、700℃ and 800℃, the universal tensile testing machine is started to stamp at 500 mm/min speed and heat bending parts are formed. Also samples of 1.2mm, 1.6mm and 2.0mm are involved. The Temperature-Time curve of 1.6mm sheet is as shown in Fig.1(b). In Fig.1.(b), cooling rate reaches 508℃/s when stamping at 800℃and it decreases to 336℃/s at 500℃bending temperature, which will affect martensite forming and mechanical attributes obviously. Spring-back angles of specimens, including samples bended at room temperature, are also measured, which is as shown in Fig.2(e). It shows that the spring-back angle is smaller when bending at around 600℃-650℃, which explains that 22MnB5 has better plasticity and formability from one aspect. This conclusion agrees with Ma’s standpoint, which is “22MnB5 has better stamping formability at 650℃to 750℃ ” in [6]. For further research, microstructures of heat bending specimens are analyzed. As found in Fig.2, strip-shaped martensite is hard to find when bending at 500℃; strip-shaped martensite is the main microstructure of sheets stamped at 600℃ and 700℃ and martensite texture is more fine than that of sheets stamped at 800℃, although whose main microstructure is also martensite. From the microstructure, it’s also verified that 22MnB5 has better plasticity and formability when stamping at 600℃-650℃.Fig.2 Microstructure of sheets bended at (a)500℃ (b)600℃ (c)700℃ (d)800℃(e) Bending-temperature - spring-back angle curveThe Hot Forming Anti-Collision BeamOn the basis of above work, a real anti-collision beam is hot stamped at around 600℃-650℃, using 22MnB5 blank of 1.6mm, see Fig.3(a). Tensile strength of the beam reaches as high as 1500 Mpa; Average hardness of the six points of Fig.3(a) is 46 HRC; the main microstructure of the anti-collision beam is analyzed, as shown in Fig.3(b). It’s clear that most microstructure of the beam by hot forming is strip-shaped martensite, whose content is over 95%, and there are no cracks and other stress defects. So the hot forming process for the anti-collision beam is qualified.(a) (b)Fig.3 (a) Hot stamping for the beam (b) the main microstructure of the beam Then pure bending test is conducted on the hot stamping beam including shotpeening ones, compared with the cold stamping one, see Fig.4(a). In Fig.4(b) , the bending strength of cold stamping beams, 44 Mpa, is only one third of hot stamping ones’, 115 Mpa. The maximum bending load of hot forming specimens is as high as 11000 N, but that of cold stamping ones is only 5000 N. It reveals that hot stamping significantly enhances bending strength, energy absorption capability andpassive safety of auto parts. The test also shows that shotpeening process has little effect on mechanical properties of hot forming parts.(a) (b)Fig.4 (a) Pure bending test of the beam (b) The deformation-load curve of pure bending ConclusionsV-shaped heat bending test shows around 600 ℃ -650℃is optimal for bending forming, according to which a real anti-collision beam is hot stamped. The beam is of 1500 Mpa tensile strength, 115 Mpa bending strength, 46 HRC hardness and 95% martensite content, which is satisfying with the expected level and engineering application. Besides, the pure bending test shows shotpeening process has little effect on mechanical properties of hot forming parts.AcknowledgmentThis work was funded by the Key Project of the National Natural Science Foundation of China (No. 10932003), “863” Project of China (N o . 2009AA04Z101), and “973” National Basic Research Project of China (No. 2010CB832700).References[1] Senuma T: ISIJ International Vol. 41(6) (2001), p.520.[2] Li Wang, Xiongfei Yang, Jiangxin Lu: Iron and Steel Vol. 41(9)(2006),p.1, In Chinese[3] Hongtu Sun, Ping Hu, Ning Ma, Guozhe Shen, Bo Liu and Dinglu Zhou: Chinese Journal ofMechanical Engineering Vol. 23(2)(2010),p.252[4] Weili Xu, Shurong Guan, Jian Ai and Aihui Luo: World Iron & Steel Vol. 9(2) ( 2009),p.33, InChinese[5] Ning Ma, Ping Hu and Wei Guo: Transactions of Materials and Heat Treatment Vol. 31(11)(2010), p.33, In Chinese[6] Ping Hu, Ning Ma, Wei Guo, Guozhe Shen and Wenhua Wu. “Researching Progress of hotStamping Technique for Auto Body Load-carrying Parts with Extra-High Strength,” in Mechanics and Engineering Application Conference Proceedings, Shanghai, 2010, In Chinese。

相关文档
最新文档