高三数学毕业班第一次联考试题 理
2021年10月浙江省五校(杭州高中杭州二中等)2021届高三毕业班上学期第一次联考数学试题及答案

绝密★启用前浙江省五校联考联盟(杭州高中 杭州二中 学军中学 绍兴一中 效实中学) 2022届高三毕业班上学期第一次联考质量检测数学试题2021年10月考生须知:1.本卷满分150分,考试时间120分钟;2.答题前,在答题卷指定区域填写学校、班级、姓名、试场号、座位号及准考证号;3.所有答案必须写在答题卷上,写在试卷上无效;4.考试结束后,只需上交答题卷。
参考公式:若事件A,B 互斥,则P(A +B)=P(A)+P(B)若事件A,B 相互独立,则P(AB)=P(A)P(B)若事件A 在一次试验中发生的概率是p,则n 次独立重复试验中事件A 恰好发生k 次的概率P n (k)=C n k p k (1-p)n -k (k =0,1,2,…,n)台体的体积公式:V =13(S 1+S 2)h 其中S 1、S 2分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式:V =Sh其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式:V =13Sh 其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式:S =4πR 2球的体积公式:V =43πR 3 共中R 表示球的半径第I 卷(选择题部分,共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x|0<x<2},B ={x|x 2+4x -5>0},则AI(∁R B)等于A.{x|0<x ≤1}B.{x|1≤x<2}C.{x|0<x<2}D.{x|-1≤x<2}2.已知点(1,1)在直线x +2y +b =0的下方,则实数b 的取值范围为A.b>-3B.b<-3C.-3<b<0D.b>0或b<-33.若a>b>0,m<0。
则下列不等式成立的是A.am 2<bm 2B.m b a ->1C.a m a b m b -<-D.22a m b m a b --> 4.已知sin(4π+α)=13,则cos(2π-2α)= A.-79 B.79C.-429D.429 5.函数f(x)=(1-x21e +)cosx(其中e 为自然对数的底数)的图象大致形状是6.有10台不同的电视机,其中甲型3台,乙型3台,丙型4台。
信阳高三毕业班第一次测试理科数学

高三理科数学考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟. 2.请将各题答案填在试卷后面的答题卡上.3.本试卷主要考试内容:必修1及导数的应用、三角函数与解三角形.第Ⅰ卷一、选择题.(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知集合A ={x |12x x +|-|≥0},B ={x |x >a},则下列关系不可能成立的是A .A ⊆B B .B ⊆AC .A ∩B ≠φD .A ⊆C RB2.已知函数f (x )=sin()(0),6(0),2x x f x ππ⎧-⎪⎪⎨⎪-⎪⎩≥)(<则f (-3π)等于A .12 BCD .-12 3.函数y =12x -1的图象关于x 轴对称的图象大致是4.函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是 A .(1,3) B .(1,2) C .(0,3) D .(0,2) 5.定积分ln 2x e dx ⎰的值为A .-1B .1C .2e -1 D .2e6.23sin 702cos 10-︒-︒等于A .12 BC .2D .3 7.若函数y =tan ωx (ω∈N ﹡)的一个对称中心是(6π,0),则ω的最小值为 A .2 B .3 C .6 D .9 8.已知函数f (x )=lnx +tan α(α∈(0,2π))的导函数为()f x ',若使得0()f x '=0()f x 立的0x <1,则实数α的取值范围为 A .(4π,2π) B .(0,3π) C .(6π,4π) D .(0,4π) 9.设函数f (x )是定义在R 上的以7为周期的奇函数,若f (2)>1,f (2014)=33a a +-,则a 的取值范围是 A .(-∞,0) B .(0,3) C .(0,+∞) D .(-∞,0)∪(3,+∞)10.定义在R 上的函数f (x ),当x ≠-2时,恒有(x +2)()f x '<0(其中()f x '是函数f (x )的导数),又a =f (13log 3),b =f[0.11()3],c =f (ln3),则A .a <b <cB .b <c <aC .c <a <bD .c <b <a11.已知函数f (x )=3x -t 2x +3x ,若对于任意的a ,b ∈[1,3]且a <b ,函数f (x )在区间(a ,b )上单调递减,则实数t 的取值范围是 A .(-∞,3] B .(-∞,5] C .[3,+∞) D .[5,+∞)12.已知方程xx|sin |=k 在(0,+∞)上有两个不同的解α,β(α<β),则下面结论正确的是A .sin2α=22cos αα B .cos2α=22sin ααC .sin2β=2β2cos β D .cos2β=2β2sin β第Ⅱ卷二、填空题.(本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.) 13.函数f (x_______________.14.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边过直线x =1与曲线y =2x的交点,则cos2θ=___________.15.已知定义域为R 的函数f (x )在(-5,+∞))上为减函数,且函数y =f (x -5)为偶函数,设a =f (-6),b =f (-3),则a ,b 的大小关系为______________.16.已知函数f (x )=xe ||,对任意的x ∈[1,m](m >1),都有f (x -2)≤ex ,则最大的正整数m 为___________________. 三、解答题.(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.) 17.(本小题满分10分) 已知集合A ={x |2-a ≤x ≤2+a},B ={x |2x -5x +4≥0}. (Ⅰ)当a =3时,求A ∩B ;(Ⅱ)若a >0,且A ∩B =φ,求实数a 的取值范围. 18.(本小题满分12分)已知函数f (x )=Asin (ωx +ϕ)(x ∈R ,A >0,ω>0,|ϕ|<2π)的部分图象如图所示. (Ⅰ)试确定函数f (x )的解析式; (Ⅱ)若f (2απ)=13,求cos (23π-α)的值.19.(本小题满分12分)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边长,已知22223b c a ac --=(Ⅰ)求cosB 及tan2A C+的值; (Ⅱ)若b =ABCsinA +sinC 的值.20.(本小题满分12分)已知二次函数f (x )=a 2x +bx +1(a >0),F (x )=(),0,(),0.f x x f x x ⎧⎨-⎩><若f (-1)=0,且对任意实数x 均有f (x )≥0成立.(Ⅰ)求F (x )的表达式;(Ⅱ)当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求k 的取值范围. 21.(本小题满分12分)如图,一个半圆和长方形组成的铁皮,长方形的边AD 为半 圆的直径,O 为半圆的圆心,AB =1,BC =2,现要将此铁 皮剪出一个等腰三角形PMN ,其底边MN ⊥BC . (Ⅰ)设∠MOD =30°,求三角形铁皮PMN 的面积; (Ⅱ)求剪下的铁皮三角形PMN 的面积的最大值. 22.(本小题满分12分) 已知函数f (x )=-2x +2lnx 与g (x )=x +ax有相同的极值点. (Ⅰ)求实数a 的值; (Ⅱ)若对于1x ∀,2x ∈[1e ,3],不等式12()()1f xg x k --≤1恒成立,求实数k 的取值范 围.信阳市2013—2014学年度高中毕业班第一次调研检测理科数学参考答案7.B 代入验证可知ω的最小值为3.8.A ∵f ′(x )=1x ,f ′(x 0)=f (x 0),∴1x 0=ln x 0+tan α,∴tan α=1x 0-ln x 0,又∵0<x 0<1,∴可得1x 0-ln x 0>1,即tan α>1,∴α∈(π4,π2).9.B ∵f (2014)=f (5)=f (-2)=-f (2)<-1, ∴a +3a -3<-1, 解得0<a <3.12.C ∵|sin x |x =k ⇒|sin x |=kx ,∴要使方程|sin x |x =k (k >0)在(0,+∞)上有两个不同的解,则y =|sin x |的图象与直线y =kx (k >0)在(0,+∞)上有且仅有两个公共点,所以直线y =kx 与y =|sin x |在(π,32π)内相切,且切于点(β,-sin β),∴可得:-cos β=-sin ββ⇒βcos β=sin β,∴sin 2β=2sin βcos β=2βcos 2β.13.{x |1<x ≤2} ∵log 12(x -1)≥0,∴0<x -1≤1,解得1<x ≤2,∴函数f (x )的定义域是{x |1<x ≤2}.17.解:(Ⅰ)∵A ={-1≤x ≤5},B ={x ≤1或x ≥4},∴A ∩B ={-1≤x ≤1或4≤x ≤5}. (5分)(Ⅱ)∵A ∩B =Ø,又∵A={x |2-a ≤x ≤2+a }(a >0),B ={x ≤1或x ≥4},∴⎩⎨⎧2-a >1,2+a <4,∴0<a <1.(10分) 18.解:(Ⅰ)由图象可知A =2,T 4=56-13=12,∴T =2,ω=2πT =π.将点(13,2)代入y =2sin(πx +φ),得sin(π3+φ)=1,又|φ|<π2,所以φ=π6.故所求解析式为f (x )=2sin(πx +π6)(x ∈R ).(6分) (Ⅱ)∵f (α2π)=13,∴2sin(α2+π6)=13,即sin(α2+π6)=16,(7分) ∴cos(2π3-α)=cos[π-2(π6+α2)]=-cos 2(π6+α2)=2sin 2(π6+α2)-1=-1718.(12分)19.解:(Ⅰ)由b 2-c 2=a 2-23ac ,得cos B =a 2+c 2-b 22ac =13.由0<B <π知sin B =1-cos 2B =223. tan A +C 2=tan π-B 2=sin (π2-B 2)cos (π2-B2)=cos B 2sin B 2=2cos 2B22sin B 2cos B 2=1+cos Bsin B = 2. (6分)(Ⅱ)由12ac sin B =2,得ac =3,由b 2-c 2=a 2-23ac ,得(a +c )2=b 2+83ac =16,即a +c =4.由正弦定理得sin A +sin C =a +c b ×sin B =43.(12分)20.解:(Ⅰ)∵f (-1)=0,∴a -b +1=0,∴b =a +1,∴f (x )=ax 2+(a +1)x +1.∵f (x )≥0恒成立, ∴⎩⎨⎧a >0,Δ=(a +1)2-4a ≤0,∴⎩⎨⎧a >0,(a -1)2≤0. ∴a =1,从而b =2,∴f (x )=x 2+2x +1,∴F (x )=⎩⎨⎧x 2+2x +1 (x >0),-x 2-2x -1 (x <0).(6分)(Ⅱ)g (x )=x 2+2x +1-kx =x 2+(2-k )x +1. ∵g (x )在[-2,2]上是单调函数, ∴k -22≤-2或k -22≥2,解得k ≤-2,或k ≥6.∴k 的取值范围为(-∞,-2]∪[6,+∞).(12分)22.解:(Ⅰ)f ′(x )=-2x +2x =-2(x +1)(x -1)x (x >0),由⎩⎨⎧f ′(x )>0,x >0,得0<x <1; 由⎩⎨⎧f ′(x )<0,x >0,得x >1. ∴f (x )在(0,1)上为增函数,在(1,+∞)上为减函数,∴x =1是函数f (x )的极值点. ∵g (x )=x +a x ,∴g ′(x )=1-a x 2,又∵函数f (x )与g (x )=x +ax 有相同极值点,∴x =1是函数g (x )的极值点,∴g ′(1)=1-a =0,解得a =1. 经检验,当a =1时,函数g (x )取到极小值,符合题意.(5分) (Ⅱ)∵f (1e )=-1e 2-2,f (1)=-1,f (3)=-9+2ln 3,∵-9+2ln 3<-1e 2-2<-1,即f (3)<f (1e)<f (1),∴∀x 1∈[1e ,3],f (x 1)min =f (3)=-9+2ln 3,f (x 1)max =f (1)=-1.由Ⅰ知g (x )=x +1x ,∴g ′(x )=1-1x2.故g (x )在[1e,1)时,g ′(x )<0;当x ∈(1,3]时,g ′(x )>0.故g (x )在[1e,1)上为减函数,在(1,3]上为增函数.∵g (1e )=e +1e ,g (1)=2,g (3)=3+13=103,而2<e +1e <103,∴g (1)<g (1e)<g (3).∴∀x 2∈[1e ,3],g (x 2)min =g (1)=2,g (x 2)max =g (3)=103.。
2010年河南省六市高中毕业班第一次联考--数学(理)

2010年河南省六市高中毕业班第一次联考数 学(理科)一、选择题(每小题5分。
共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3412ii-+= A .-1-2i B .2+i C .-1+2i D .-2+i 2.已知集合M ={x ||x |>2},N ={x |x<3},则下列结论正确的是 A .M ∪N =M B .M∩N ={x |2<x<3} C .M ∪N =R D .M∩N ={x |x<-2}3.等差数列{n a }中,n S 是其前n 项和,又20102010S -20082008S =2,则2lim n n Sn →∞等于A .1B .2C .3D .324.正方体ABCD -A 1B 1C 1D 1中,E 是A 1B 1的中点,则异面直线AD 1与CE 所成的角为 A .6π B .4π C .3πD .2π 5.点P (x ,y )满足x 2+y 2-2x -2y -2≤0,点P 到直线3x +4y -22=0的最大距离是 A .5 B .1 C1 D16.若函数f (x )=122,1,x x x x ⎧⎪⎨, ⎪⎩ ≤1,log >则函数y =f (2-x )的图象大致是7.已知向量a 、b 满足|a |=1,|b |=2,|2a +b |=2,则向量b 在a方向上的投影为A .-12B .12 C .-1 D .18.已知两个不重合的平面α、β及三条不重合的直线m 、n 、l .给出下列命题①当m ⊂α,且n ⊄α时,若n ∥α,则m ∥n ;②当α⊥β,α∩β=m ,n β时,若n ⊥m ,则n ⊥α; ③当m ⊂α时,若m ⊥β,则α⊥β; ④当m ⊥α,n ⊥β时,若m ∥n ,则α∥β 则逆命题成立的个数是A .1B .2C .3D .49.函数f (xA .0<a<1B .0<a≤1C .a>1D .a≥110.如图是函数y =Asin (ωx +ϕ)(A>0,ω>0,|ϕ|<2π)在一个周期内的图象,M , N 分别是最大、最小值点,且OM ⊥ON,则A·ω的值为A .6π B.6CD11.已知点P 是双曲线2221x a b2y -=(a>0,b>0)右支上一点,F 1、F 2分别是双曲线的左、右焦点,I 为△PF 1F 2的内心,若S △IPF1=S △IPF2+12S △IF1F2成立,则双曲线的离心率为A .4B .52 C .2 D .5312.已知函数f (x )是定义在R 上的不恒为0的函数,且对于任意实数a 、b 满足f (ab )=af (b )+bf (a ),f (2)=2, n a =()f n n 22(n ∈N ﹡), n b =()f n 2n(n ∈N ﹡).考察下列结论:①f (0)=f (1);②f (x )为奇函数;③数列{n a }为等差数列;④数列{n b }为等比数列.其中正确的个数为A .1B .2C .3D .4 二、填空题(本大题共4小题,每小题5分。
河南省2023届高三上学期第一次考试数学理科试题(解析版)

“顶尖计划”2023届高中毕业班第一次考试理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}223,N ,18400A x x n nB x x x ==+∈=--<∣∣,则A B 中的元素个数为()A.8B.9C.10D.11【答案】B 【解析】【分析】解一元二次不等式化简集合B ,再根据已知列出不等式,求解判断作答.【详解】解不等式218400x x --<得:220x -<<,即{|220}B x x =-<<,而{}23,N A x x n n ==+∈∣,由22320n -<+<解得:51722n -<<,又N n ∈,显然满足51722n -<<的自然数有9个,所以A B 中的元素个数为9.故选:B 2.已知复数33i2i z =+,则z =()A.1B.35C.355D.3【答案】C 【解析】【分析】利用复数的除法化简复数z ,利用复数的模长公式可求得结果.【详解】因为()()()33i 2i 3i 3i 36i 2i 2i 2i 2i 55z +====-++--+,因此,5z ==.故选:C.3.已知非零向量a 、b满足a b =r r ,且()2a b b +⊥ ,则,a b <>= ()A.π6B.π3C.2π3D.5π6【答案】C 【解析】【分析】由已知可得出()20a b b +⋅= ,利用平面向量数量积的运算性质求出cos ,a b <> 的值,结合平面向量夹角的取值范围可求得结果.【详解】因为()2a b b +⊥ ,则()222cos ,0a b b a b a b b +⋅=⋅<>+= ,a b = ,可得1cos ,2a b <>=- ,因为0,πa b ≤<>≤ ,因此,2π,3a b <>= .故选:C.4.某士兵进行射击训练,每次命中目标的概率均为34,且每次命中与否相互独立,则他连续射击3次,至少命中两次的概率为()A.2732B.916C.2764D.932【答案】A 【解析】【分析】根据相互独立事件的概率乘法公式及互斥事件的概率加法公式即可求解.【详解】解:因为每次命中目标的概率均为34,且每次命中与否相互独立,所以连续射击3次,至少命中两次的概率322333327C 144432P ⎛⎫⎛⎫⎛⎫=+-= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,故选:A.5.已知函数()2sin 3cos f x x x =+在x ϕ=处取得最大值,则cos ϕ=()A.13 B.13C.13-D.31313-【答案】A 【解析】【分析】根辅助角公式和正弦函数最值求解即可.【详解】()()2sin 3cos f x x x x θ=+=+,其中θ为锐角,sin 13θ=.因为当x ϕ=处取得最大值,所以22πϕθπ+=+k ,k Z ∈,即22πϕθπ=-+k ,k Z ∈,所以313cos cos 2sin 213πϕθπθ⎛⎫=-+== ⎪⎝⎭k .故选:A6.已知定义域为R 的偶函数()f x 满足()(4)0f x f x +-=,且当[2,2)x ∈-时,2()4f x x =-,则(2021)f =()A.3-B.1- C.1D.3【答案】D 【解析】【分析】根据给定条件,探讨出函数()f x 的周期,再结合已知函数式求解作答.【详解】因R 上的偶函数()f x 满足()(4)0f x f x +-=,即有()()()4f x f x f x -=-=--,则(8)(4)()f x f x f x -=--=-,因此,函数()f x 是周期为8的周期函数,2(2021)(25285)(5)(1)[(1)4]3f f f f =⨯+==--=---=.故选:D7.我国古代经典数学名著《九章算术》中有一段表述:“今有圆堡壔(dăo ),周四丈八尺,高一丈一尺”,意思是有一个圆柱,底面周长为4丈8尺,高为1丈1尺.则该圆柱的外接球的表面积约为()(注:1丈=10尺,π取3)A.1185平方尺B.1131平方尺C.674平方尺D.337平方尺【答案】B 【解析】【分析】根据题意作图,再由底面周长求得底面半径,连接上下底面圆心,取中点为外接圆的圆心,根据勾股定理,可得外接圆半径,可得答案.【详解】由1丈=10尺,则4丈8尺=48尺,1丈1尺=11尺,如下图:则11,2·48BC AB π==,即8AB =,假设点D 为圆柱外接圆的圆心,即AD 为外接圆的半径,且112BD DC ==,在Rt ABD △中,222AB BD AD +=,解得294.25AD =,则外接球的表面积241131S AD π=⋅=,故选:B.8.甲、乙、丙、丁、戊五名志愿者去,,A B C 三个不同的小区参加新冠疫情防控志愿服务,每个小区至少去1人,每人只去1个小区,且甲、乙去同一个小区,则不同的安排方法有()A.28种B.32种C.36种D.42种【答案】C 【解析】【分析】先将甲、乙看成一个元素,然后先分组后排列可得.【详解】将甲、乙看成一个元素A ,然后将A 、丙、丁、戊四个元素分为3组,共有21142122C C C 6A =种,再将3组分到3个不同小区有33A =6种,所以满足条件的安排方法共有66=36⨯种.故选:C9.已知角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点(,4)m -,其中0m <,若7cos 225α=-,则πtan 2m α⎛⎫+= ⎪⎝⎭()A.2B.12-C.43-D.34-【答案】D 【解析】【分析】利用三角函数定义求出tan α,再利用二倍角的余弦公式结合齐次式法求解作答.【详解】依题意,4tan 0mα=->,又22222222cos sin 1tan 7cos 2cos sin cos sin 1tan 25ααααααααα--=-===-++,解得4tan 3α=,从而得3m =-,所以3πsin()π3πcos 132tan(tan()3π22sin tan 4cos(2m ααααααα-+=-===-=---.故选:D10.过抛物线()2:20C y px p =>的焦点F 且斜率为1-的直线交C 于A 、B (其中A 在x轴上方)两点,交C 的准线于点M ,且16AB =,O 为坐标原点,则OM =()A.2B.C.D.【答案】D 【解析】【分析】将直线AB 的方程与抛物线的方程联立,利用韦达定理结合抛物线的焦点弦长公式求出p 的值,可求得点M 的坐标,再利用平面间两点间的距离公式可求得OM 的值.【详解】抛物线C 的焦点为,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,直线AB 的方程为2⎛⎫=--⎪⎝⎭p y x ,设点()11,A x y 、()22,B x y ,联立222p y x y px⎧⎛⎫=--⎪ ⎪⎝⎭⎨⎪=⎩可得22304p x px -+=,2290p p ∆=->,由韦达定理可得123x x p +=,则12416x x p A p B =++==,可得4p =,联立22p x p y x ⎧=-⎪⎪⎨⎛⎫⎪=-- ⎪⎪⎝⎭⎩可得2p x y p ⎧=-⎪⎨⎪=⎩,即点()2,4M -,因此,OM ==.故选:D.11.已知32()2(2)3f x x a x x =+--是奇函数,则过点(1,2)P -向曲线()y f x =可作的切线条数是()A.1B.2C.3D.不确定【答案】C 【解析】【分析】根据给定条件,求出a ,再求出函数()f x 的导数,设出切点坐标,借助导数的几何意义列出方程求解作答.【详解】因函数()f x 是奇函数,则由()()0f x f x -+=得()2220a x -=恒成立,则2a =,即有3()23f x x x =-,2()63'=-f x x ,设过点(1,2)P -向曲线()y f x =所作切线与曲线()y f x =相切的切点为3000(,23)Q x x x -,而点(1,2)P -不在曲线()y f x =上,则320000232631x x x x ---=+,整理得32004610x x +-=,即2000(21)(221)0x x x ++-=,解得012x =-或0132x -±=,即符合条件的切点有3个,所以过点(1,2)P -向曲线()y f x =可作的切线条数是3.故选:C12.设双曲线2222:1(0,0)x y a b a bΓ-=>>的左、右焦点分别为点12(,0),(,0)F c F c -,过点(2,0)P c -且斜率为12的直线与双曲线的左、右两支分别交于,M N 两点,若||3||PN PM =,且直线2F N 的斜率为3,则Γ的离心率为()A.132B.2C.2D.2【答案】B 【解析】【分析】通过题意可以得到直线PN 和直线2NF 的方程,两条方程联立可以得到N 的坐标,代入双曲线即可求出答案【详解】解:由题意可得直线PN 的方程为()122y x c =+,直线2NF 的方程为()3y x c =-,所以()()1223y x c y x c ⎧=+⎪⎨⎪=-⎩,解得8595c x cy ⎧=⎪⎪⎨⎪=⎪⎩,即89,55c c N ⎛⎫ ⎪⎝⎭,将89,55c c N ⎛⎫ ⎪⎝⎭代入双曲线可得2222648112525c c a b-=即()22222648112525c c a c a -=-,所以2264811125251e e -=⎛⎫- ⎪⎝⎭,因为1,e >所以e =故选:B二、填空题:本题共4小题,每小题5分,共20分.13.已知函数2()log (1)f x x a =-+在区间(2,3)上有且仅有一个零点,则实数a 的取值范围为_____.【答案】(1,0)-【解析】【分析】结合函数的单调性和零点的存在定理,即可求解【详解】解:由对数函数的性质,可得()f x 为单调递增函数,且函数()f x 在(2,3)上有且仅有一个零点,所以()()230f f ⋅<,即(1)0a a ⋅+<,解得10a -<<,所以实数a 的取值范围是(1,0)-,故答案为:(1,0)-14.写出一个同时具有下列性质①②③的函数:()f x =_____.①()()()1212f x x f x f x =+;②当,()0x ∈+∞时,()f x 单调递减;③()f x 为偶函数.【答案】12log x (不唯一)【解析】【分析】根据对数函数性质即可做出判断.【详解】性质①显然是和对数有关,性质②只需令对数的底01a <<即可,性质③只需将自变量x 加绝对值即变成偶函数.故答案为:12log x (不唯一)15.已知平面上的动点P 到点(0,0)O 和(2,0)A 的距离之比为32,则点P 到x 轴的距离最大值为_____.【答案】【解析】【分析】设(,)P x y ,然后根据题意列方程化简可得点P 的轨迹是以(6,0)-为圆心,为半径的圆,从而可求得答案.【详解】设(,)P x y ,因为动点P 到点(0,0)O 和(2,0)A 的距离之比为32,2=,22223(2)4x y x y +=-+,2222443(44)3x y x x y +=-++,221212x y x ++=22(6)48x y ++=,所以点P 的轨迹是以(6,0)-为圆心,所以点P 到x 轴的距离最大值为故答案为:16.微型航空遥感技术以无人机为空中遥感平台,为城市经济和文化建设提供了有效的技术服务手段.如图所示,有一架无人机在空中P 处进行航拍,水平地面上甲、乙两人分别在,A B 处观察该无人机(两人的身高忽略不计),C 为无人机在水平地面上的正投影.已知甲乙两人相距100m ,甲观察无人机的仰角为45︒,若再测量两个角的大小就可以确定无人机的飞行高度PC ,则这两个角可以是_____.(写出所有符合要求的编号)①BAC ∠和ABC ∠;②BAC ∠和PAB ∠;③PAB ∠和PBA ∠;④PAB ∠和ABC ∠.【答案】①③④【解析】【分析】①:根据已知先解ABC 得AC ,然后可得;②:根据已知直接判断可知;③:先解PAB △得PA ,然后可得;④:先由最小角定理的BAC ∠,解ABC 可得AC ,然后可得.【详解】①:当已知BAC ∠和ABC ∠时,在ABC 利用内角和定理和正弦定理可得AC ,然后在Rt PAC △中,由三角函数定义可得PC ,故①正确;②:当已知BAC ∠和PAB ∠时,在ABC 已知一角一边,在PAB △中已知一角一边,显然无法求解,故②错误;③:当已知PAB ∠和PBA ∠时,在PAB △中已知两角一边,可解出PA ,然后在Rt PAC △中,由三角函数定义可得PC ,故③正确;④:当已知PAB ∠和ABC ∠时,可先由最小角定理求得BAC ∠,然后解ABC 可得AC ,最后在Rt PAC △中,由三角函数定义可得PC ,故④正确.故答案为:①③④三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设等差数列{}n a 的前n 项和为n S ,已知251,15a S ==.(1)求数列{}n a 的通项公式;(2)若23log 2n n n b a a +=,求数列{}n b 的前n 项和n T .【答案】(1)23n a n =-(2)1(25)210n n T n +=-⨯+【解析】【分析】(1)根据等差数列的通项公式和前n 项和公式列方程组直接求解可得;(2)由错位相减法可得.【小问1详解】设数列{}n a 的公差为d ,由题设可得111,51015a d a d +=⎧⎨+=⎩解得112,a d =-⎧⎨=⎩所以1(1)223n a n n =-+-⨯=-.【小问2详解】由(1)知2log 23n b n n =-,所以223nn bn =-可得(23)2nn b n =-⨯,所以231121232(25)2(23)2n n n T n n -=-⨯+⨯+⨯++-⨯+-⨯ ①23412121232(25)2(23)2n n n T n n +=-⨯+⨯+⨯++-⨯+-⨯ ②②减①可得:341112222(23)2n n n T n ++=⨯----+-⨯ 118(12)(23)2212n n n -+⨯-=-⨯+--1(25)210n n +=-⨯+18.某工厂共有甲、乙两个车间,为了比较两个车间的生产水平,分别从两个车间生产的同一种零件中各随机抽取了100件,它们的质量指标值m 统计如下:质量指标值m [)0,20[)20,40[)40,60[)60,80[]80,100甲车间(件)152025319乙车间(件)510153931(1)估计该工厂生产这种零件的质量指标值m 的平均数;(同一组中的数据用该组区间的中点值作代表)(2)根据所给数据,完成下面的22⨯列联表(表中数据单位:件),并判断是否有99%的把握认为甲、乙两个车间的生产水平有差异.60m <60m ≥合计甲车间乙车间合计附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()2P K k≥0.050.010.001k3.8416.63510.828【答案】(1)58;(2)列联表见解析,有99%把握认为甲乙两个车间的生产水平有差异.【解析】【分析】(1)根据给定的数表,求出各组数据的频率,再列式计算作答.(2)完善22⨯列联表,计算2K 的观测值,再与临界值比对作答.【小问1详解】由所给数据,各组的频率分别为0.1,0.15,0.2,0.35,0.2,所以该工厂生产这种零件的质量指标值m 的平均数的估计值为:100.1300.15500.2700.35900.258⨯+⨯+⨯+⨯+⨯=.【小问2详解】22⨯列联表如下:60m <60m ≥合计甲车间6040100乙车间3070100合计90110200所以22200(60704030)18.18210010090110K ⨯⨯-⨯=≈⨯⨯⨯因为18.182大于6.635,所以有99%把握认为甲乙两个车间的生产水平有差异.19.如图,在直三棱柱111ABC A B C -中,190,24,ACB AA AC BC M ︒∠====为棱1AA 上靠近1A 的三等分点,N 为棱AC 的中点,点P 在棱BC 上,且直线PN ∥平面1BMC .(1)求PC 的长;(2)求二面角1P BM C --的余弦值.【答案】(1)23PC =(2)22110【解析】【分析】(1)在1CC 上取一点Q ,使得CP CQ =,根据面面平行判定定理证明平面PQN平面1BMC ,再根据面面平行性质定理确定CQ 的长即可,(2)建立空间直角坐标系,求出平面PBM ,平面1BC M 的法向量,根据二面角向量公式求二面角1P BM C --的余弦值.【小问1详解】在1CC 上取一点Q ,使得CP CQ =,连接,PQ NQ .由已知得11CC AA CB ==,所以1CQ CPCC CB=所以1PQ BC ∥.因为PQ ⊄平面1BMC ,1BC ⊂平面1BMC ,所以PQ ∥平面1BMC .又因为PN ∥平面1,BMC PN PQ P ⋂=,,PN NQ ⊂平面PQN ,所以平面PQN 平面1BMC .平面11ACC A 平面PQN QN =,平面11ACC A 平面11BC M MC =,根据面面平行的性质可知1//MC QN .在矩形11ACC A 中,可得11CQN A MC ∽,所以11123A M CQ CN A C ==,所以2233PC CQ CN ===.【小问2详解】以C 为坐标原点,分别以1,,CA CB CC 所在直线为,,x y z 轴建立空间直角坐标系.则182(0,0,0),(0,0,4),(0,4,0),2,0,,0,,033C C B M P ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.114(0,4,4),2,0,3C B C M ⎛⎫=-=- ⎪⎝⎭ ,8102,4,,0,,033BM BP ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ ,设平面1C MB 的法向量为()111,,m x y z =r,则110,0,C B m C M m ⎧⋅=⎪⎨⋅=⎪⎩ ,所以1111440,420,3y z x z -=⎧⎪⎨-=⎪⎩,取13z =得()2,3,3.m = 设平面PMB 的法向量为()222,,n x y z =r ,则0,0,BM n BP n ⎧⋅=⎨⋅=⎩ 所以22228240,3100,3x y z y ⎧-+=⎪⎪⎨⎪-=⎪⎩取23z =-,得()4,0,3.n =- 所以22cos ,110m n m n m n ⨯++⨯-⋅===-⋅结合图可知二面角1PBM C --的余弦值为110.20.过椭圆22:143x y C +=上任意一点P 作直线:l y kx p=+(1)证明:2234p k + ;(2)若0,p O ≠为坐标原点,线段OP 的中点为M ,过M 作l 的平行线,l l ''与C 交于,A B 两点,求ABP △面积的最大值.【答案】(1)证明见解析(2)32.【解析】【分析】(1)联立椭圆方程与直线方程,消元整理一元二次方程,由题意,该方程有解,则判别式大于等于零,可得答案.(2)设出题目中的两点,根据平行,设出另一条直线,根据中点,找出两直线的截距之间的关系,联立椭圆方程与直线方程,消元整理一元二次方程,写出韦达定理,根据三角形的等积变换,利用分割法,整理函数,根据(1),可得答案.【小问1详解】联立221,43,x y y kx p ⎧+=⎪⎨⎪=+⎩,消去y 整理得:()2223484120k x kpx p +++-=,因为点P 在C 上,所以()()2222644412340,k p p k ∆=--+ 化简得2234p k + .【小问2详解】设:l y kx m '=+,点()00,P x y ,则00,22x y M ⎛⎫⎪⎝⎭.由已知得00y kx p =+,所以00222y x p k =⋅+,即点00,22x y M ⎛⎫⎪⎝⎭满足方程2p y kx =+,所以2p m =.由221,43,x y y kx m ⎧+=⎪⎨⎪=+⎩得()2223484120k x kmx m +++-=,设()()1122,,,A x y B x y ,则21212228412,3434km m x x x x k k-+=-=++.所以122.34x x k-==+∣所以121||2ABPABOSS m x x ==-==令2234m t k =+,因为2223444p k m += ,所以10,4t ⎛⎤∈ ⎥⎝⎦.所以32ABPS ==所以ABP △面积的最大值为32.21.设函数()()e xf x mx m m =--∈R .(1)讨论()f x 的单调性;(2)若()f x 有两个零点1x 和2x ,设1202x x x +=,证明:()00f x '>(()f x '为()f x 的导函数).【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)分0m ≤、0m >两种情况讨论,分析导数的符号变化,由此可得出函数()f x 的增区间和减区间;(2)由函数零点的定义可得出1212e 0e 0x x mx m mx m ⎧--=⎨--=⎩,可得出1212e e x x m x x -=-,将所证不等式等价变形为12212212eex x x x x x --->-,令1202x x t -=>,即证e e 2t t t -->,构造函数()e e 2t t g t t -=--,其中0t >,利用导数分析函数()g t 的单调性,即可证得结论成立.【小问1详解】解:因为()e x f x mx m =--,则()e xf x m '=-,若0m ≤,对任意的x ∈R ,则()0f x '<,函数()f x 的单调递减区间为(),-∞+∞;若0m >,令()e 0xf x m '=-=,得ln x m =,当ln x m <时,()0f x '>,当ln x m >时,()0f x '<.所以()f x 的增区间为(),ln m -∞,减区间为()ln ,m +∞.综上所述,当0m ≤时,函数()f x 的单调递减区间为(),-∞+∞;当0m >时,函数()f x 的增区间为(),ln m -∞,减区间为()ln ,m +∞.【小问2详解】证明:不妨令12x x >,由题设可得1212e 0e 0x x mx m mx m ⎧--=⎨--=⎩,两式相减整理可得1212e e x x m x x -=-.所以()1212121222012e e ee 2x x x x x x x xf x f m x x ++''+-⎛⎫==-=- ⎪-⎝⎭,要证()00f x '>,即证1212212e e e 0x x x x x x +-->-,即证12212212eex x x x x x --->-,令1202x x t -=>,即证e e 2t t t -->,其中0t >,构造函数()e e 2ttg t t -=--,其中0t >,则()e e 220t t g t -'=+->=,所以,函数()g t 在()0,∞+上单调递增,所以,当0t >时,()()00g t g >=,即e e 2t t t -->,故原不等式得证.【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.(二)选考题:共10分.请考生在22,23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线C 的参数方程为2(cos sin )(,0),(cos sin )x m m y m ϕϕϕϕϕ=-⎧≠⎨=+⎩为参数以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 504πθ⎛⎫+-= ⎪⎝⎭.(1)写出l 的直角坐标方程;(2)若l 与C 只有一个公共点,求m 的值.【答案】(1)50x y +-=(2)102=±m 【解析】【分析】(1)利用和差化积的正弦公式把直线l 的极坐标方程展开,再利用极坐标与直角坐标的互化公式即可求解.(2)先得出曲线C 的普通方程,再联立方程,利用判别式等于0即可求解.【小问1详解】由l 的极坐标方程可得sin cos 50ρθρθ+-=,由cos sin x y ρθρθ=⎧⎨=⎩可知,直角坐标方程为:50x y +-=.【小问2详解】由C 的参数方程可得2222x y m m ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,即C 的普通方程为222480x y m +-=.联立方程22250480x y x y m +-=⎧⎨+-=⎩得:2254010080x x m -+-=,因为直线l 与曲线C 只有一个公共点,所以()222404510081604000m m∆=-⨯⨯-=-=,解得:2=±m .[选修4-5:不等式选讲]23.已知,,a b c 均为正实数,且1abc =.(1)求124a b c++的最小值;(2)证明:222++≥+++++bc ac ab b c a c a b.【答案】(1)6(2)证明见解析【解析】【分析】(1)利用三元基本不等式求解即可.(2)利用基本不等式证明即可得到答案.【小问1详解】由基本不等式可知1246++≥==a b c ,当且仅当124a b c ==,即1,1,22a b c ===时等号成立,所以124a b c++的最小值为6.【小问2详解】因为1abc =,所以111bc ac ab a b c++=++.11242+≥=≥=++a b a b a b .同理可得114b c b c+≥+,114a c a c+≥+所以4111442⎛⎫++≥++⎪+++⎝⎭a b c b c a c a b,当且仅当a b c==时等号成立.所以111222++≥+++++a b c b c a c a b,即222. ++≥+++++ bc ac abb c a c a b。
安徽省黄山市2013届高三第一次联考(数学理)'

黄山市2013届高中毕业班第一次质量检测数学(理科)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟. 参考公式:如果事件A B 、互斥,那么()()()P A B P A P B +=+.第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有 一项是符合题目要求的.3. m 、n 是不同的直线,α、β、γ是不同的平面,有以下四命题: ① 若γαβα//,//,则γβ//; ②若αβα//,m ⊥,则β⊥m ; ③ 若βα//,m m ⊥,则βα⊥; ④若α⊂n n m ,//,则α//m .其中真命题的序号是 ( )A .①③B .①④C .②③D .②④4.设函数()cos(2)sin(2)(||)2f x x x πϕϕϕ=+++<,且其 图象关于直线x =对称,则( )A.()y f x =的最小正周期为π,且在(0,)2π上为增函数 B.()y f x =的最小正周期为π,且在(0,)2π上为减函数 C.()y f x =的最小正周期为2π,且在(0,)4π上为增函数 D.()y f x =的最小正周期为2π,且在(0,)4π上为减函数 5.如右图,若程序框图输出的S 是126,则判断框①中应为 ( ) A .?5≤nB .?6≤nC .?7≤nD .?8≤n6.若定义在R 上的偶函数()f x 满足(2)()f x f x +=,且当[0,1]x ∈时,(),f x x =则方程3()log ||f x x =的解个数是 ( )A .0个B .2个C .4个D .6个7.若{}n a 是等差数列,首项公差0d <,10a >,且201320122013()0a a a +>,则使数列{}n a 的前n 项和0n S >成立的最大自然数n 是( )A .4027B .4026C .4025D .40248.已知00(,)M x y 为圆222(0)x y a a +=>内异于圆心的一点,则直线200x x y y a +=与 该圆的位置关系是 ( ) A 、相切 B 、相交 C 、相离 D 、相切或相交9.已知n 为正偶数,用数学归纳法证明11111111...2(...)2341242n n n n -+-++=++++++ 时,若已假设2(≥=k k n 为偶数)时命题为真,则还需要用归纳假设再证n =( )时等式成立 ( )A .1n k =+B .2n k =+C .22n k =+D .2(2)n k =+10. 已知向量α 、β 、γ满足||1α= ,||||αββ-= ,()()0αγβγ-⋅-= .若对每一确定的β ,||γ 的最大值和最小值分别为m 、n ,则对任意β,m n -的最小值是 ( )主视图俯视图侧视图A .12 B .1 C .2D第Ⅱ卷(共100分)二、填空题:本大题共共5小题,每小题5分,共25分11.为了了解“预防禽流感疫苗”的使用情况,某市卫生部门对本地区9月份至11月份注射 疫苗的所有养鸡场进行了调查,根据下图表提供的信息,可以得出这三个月本地区每月注射 了疫苗的鸡的数量平均为 万只.12.二项式1022⎪⎪⎭⎫ ⎝⎛+x x 展开式中的第________项是常数项. 13.一个几何体的三视图如右图所示,主视图与俯视图都是一边长为3cm 的矩形,左视图是一个边长为2cm 的等边三角形,则这个几何体的体积为________.14.已知z=2x +y ,x ,y 满足,2,,y x x y x a ≥⎧⎪+≤⎨⎪≥⎩且z 的最大值是最小值的4倍,则a 的值是 . 15.给出如下四个结论:① 若“p 且q ”为假命题,则p 、q 均为假命题;② 命题“若a b >,则221a b >-”的否命题为“若a b ≤,则221a b≤-”;③ 若随机变量~(3,4)N ζ,且(23)(2)P a P a ζζ<-=>+,则3a =; ④ 过点A (1,4),且横纵截距的绝对值相等的直线共有2条. 其中正确结论的序号是______________________________.三、解答题:本大题共共6小题,共75分,解答应写出必要的文字说明、证明过程或演算步骤16. (本小题满分12分)已知函数()2cos cos f x x x x m =-+()R m ∈的图象过点π(,0)12M .(Ⅰ)求m 的值;(Ⅱ)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .若cos +cos =2cos c B b C a B ,求()f A 的取值范围.17.(本小题满分12分)已知函数()e xf x tx =+(e 为自然对数的底数).(Ⅰ)当e t =-时,求函数()f x 的单调区间;(Ⅱ)若对于任意(0,2]x ∈,不等式()0f x >恒成立,求实数t 的取值范围.18.(本小题满分12分)如图,已知多面体ABCDE 中,AB ⊥平面ACD ,DE ⊥平面ACD ,AC=AD=CD=DE=2,AB=1,F 为CD 的中点.(Ⅰ)求证:AF ⊥平面CDE ;(Ⅱ)求面ACD 和面BCE 所成锐二面角的大小.19.(本小题满分12分)某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作。
高三数学第一次联考试卷

一、选择题(本大题共10小题,每小题5分,共50分)1. 下列各数中,属于有理数的是()A. √2B. πC. 0.1010010001...D. -1/32. 函数f(x) = 2x - 3的图象是()A. 斜率为正的直线B. 斜率为负的直线C. 平行于x轴的直线D. 平行于y轴的直线3. 已知等差数列{an}的首项a1 = 2,公差d = 3,则第10项an = ()A. 25B. 28C. 31D. 344. 在△ABC中,角A、B、C的对边分别为a、b、c,若a=5,b=7,c=8,则角C的余弦值cosC = ()A. 1/2B. 1/3C. 2/3D. 3/45. 已知函数f(x) = x^2 - 4x + 4,其图象的对称轴方程是()A. x = 1B. x = 2C. y = 1D. y = 46. 已知数列{an}的通项公式an = 3n - 2,则数列的前10项和S10 = ()A. 154B. 160C. 162D. 1667. 若等比数列{an}的首项a1 = 1,公比q = 2,则第5项an = ()A. 16B. 32C. 64D. 1288. 在直角坐标系中,点P(2, -3)关于y轴的对称点为()A. (2, 3)B. (-2, -3)C. (-2, 3)D. (2, -3)9. 若log2(x + 3) = 3,则x = ()A. 1B. 2C. 3D. 410. 已知函数f(x) = (x - 1)^2 + 1,则函数的值域为()A. [0, +∞)B. (0, +∞)C. [1, +∞)D. (1, +∞)二、填空题(本大题共10小题,每小题5分,共50分)11. 函数y = 2x + 1在x=1时的函数值为__________。
12. 已知等差数列{an}的首项a1 = 3,公差d = 2,则第5项an =__________。
13. 若log3(2x - 1) = 2,则x =__________。
河南省许昌市、洛阳市2024届普通高三毕业班第一次质量检查试卷数学试题

河南省许昌市、洛阳市2024届普通高三毕业班第一次质量检查试卷数学试题 注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在101()2x x -的展开式中,4x 的系数为( ) A .-120 B .120 C .-15 D .152.我国宋代数学家秦九韶(1202-1261)在《数书九章》(1247)一书中提出“三斜求积术”,即:以少广求之,以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂减上,余四约之,为实;一为从隅,开平方得积. 其实质是根据三角形的三边长a ,b ,c 求三角形面积S ,即S =若ABC ∆的面积2S =,a =2b =,则sin A 等于( )A B .6 C 或6 D .1120或11363.已知12,F F 是双曲线22221(0,0)x y a b a b-=>>的左右焦点,过1F 的直线与双曲线的两支分别交于,A B 两点(A 在右支,B 在左支)若2ABF ∆为等边三角形,则双曲线的离心率为( )A B C D 4.已知F 为抛物线24y x =的焦点,点A 在抛物线上,且5AF =,过点F 的动直线l 与抛物线,B C 交于两点,O 为坐标原点,抛物线的准线与x 轴的交点为M .给出下列四个命题:①在抛物线上满足条件的点A 仅有一个;②若P 是抛物线准线上一动点,则PA PO +的最小值为③无论过点F 的直线l 在什么位置,总有OMB OMC ∠=∠;④若点C 在抛物线准线上的射影为D ,则三点B O D 、、在同一条直线上.其中所有正确命题的个数为( )A .1B .2C .3D .45.已知等差数列{}n a 的前n 项和为n S ,且282,10a a =-=,则9S =( )A .45B .42C .25D .366.设ln 2m =,lg 2n =,则( )A .m n mn m n ->>+B .m n m n mn ->+>C .m n mn m n +>>-D .m n m n mn +>-> 7.双曲线的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r 等于( ) A .B .2C .3D .68.若双曲线22214x y a -=3,则双曲线的焦距为( ) A .26B .25C .6 D .89.,,a b αβαβ//////,则a 与b 位置关系是 ( )A .平行B .异面C .相交D .平行或异面或相交10.已知等比数列{}n a 的前n 项和为n S ,且满足122n n S λ+=+,则λ的值是( )A .4B .2C .2-D .4-11.已知函数()222,02,0x x x f x x x x ⎧-+≥⎪=⎨-<⎪⎩,若关于x 的不等式()()20f x af x +<⎡⎤⎣⎦恰有1个整数解,则实数a 的最大值为( )A .2B .3C .5D .812.已知奇函数()f x 是R 上的减函数,若,m n 满足不等式组()(2)0(1)0()0f m f n f m n f m +-≥⎧⎪--≥⎨⎪≤⎩,则2m n -的最小值为( )A .-4B .-2C .0D .4二、填空题:本题共4小题,每小题5分,共20分。
广东省2025届高三上学期毕业班调研考试(一) 数学试卷(含解析)

2025届广东省高三毕业班调研考试(一)数学试卷及答案一、单选题(本大题共8小题)1.已知集合2{|8150},{|5}A x x x B x x =∈-+≤=<Z ,则A B ⋂=()A.{}3B.{}3,4C.{}4,5D.{}3,4,52.已知1z ,2z 是两个虚数,则“1z ,2z 均为纯虚数”是“12z z 为实数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知a和b 的夹角为150︒,且2,a b == ()2a b b +⋅= ()A.9-B.3-C.3D.94.已知π2sin sin 33αα⎛⎫+-= ⎪⎝⎭,则πcos 23α⎛⎫+= ⎪⎝⎭()A.59-B.19-C.19D.595.已知等比数列{}n a 为递增数列,n nnb a=.记,n n S T 分别为数列{}{},n n a b 的前n 项和,若2133312a a a S T =+=,,则n S =()A.141n --B.()11414n --C.()14112n-D.24n -6.已知体积为的球O 与正四棱锥的底面和4个侧面均相切,已知正四棱锥的底面边长为则该正四棱锥体积值是()A.B.C.D.7.斐波那契数列因数学家斐波那契以兔子繁殖为例而引入,又称“兔子数列”.这一数列如下定义:设{}n a 为斐波那契数列,()*12121,1,3,N n n n a a a a a n n --===+≥∈,其通项公式为n n n a ⎡⎤⎛=-⎥ ⎥⎝⎭⎝⎭⎦,设n是2log 1(14(x x x ⎡⎤⎣⎦+-<+的正整数解,则n 的最大值为()A.5B.6C.7D.88.函数()ln f x x =与函数()212g x mx =+有两个不同的交点,则m 的取值范围是()A.21,e ⎛⎫-∞ ⎪⎝⎭B.21,2e ⎛⎫-∞ ⎪⎝⎭C.210,e ⎛⎫⎪⎝⎭D.210,2e ⎛⎫ ⎪⎝⎭二、多选题(本大题共3小题)9.现有十个点的坐标为()()()121000,x x x ,,,,,,它们分别与()()()1210101010y y y ,,,,,,关于点(3,5)对称已知1210,,,x x x 的平均数为a ,中位数为b ,方差为c ,极差为d ,则1210,,,y y y 这组数满足()A.平均数为6a -B.中位数为6b -C.方差为cD.极差为d10.设123,,z z z 是非零复数,则下列选项正确的是()A. 2211z z =B.1212z z z z +=+C.若122i 2z --=,则116i z +-的最小值为3D.若22i i 4z z ++-=,则2z的最小值为11.已知定义在R 上的函数()f x 的图象连续不间断,当()()0e e e 0x f x f x ≥+--=,,且当>0时,()()e e 0f x f x ''++->,则下列说法正确的是()A.()e 0f =B.()f x 在(),e -∞上单调递增,在()e,+∞上单调递减C.若()()1212,x x f x f x <>,则212ex x +<D.若12,x x 是()()()2e 2g xf x x =+--在()0,2e 内的两个零点,且12x x <,则()()211ef x f x <<三、填空题(本大题共3小题)12.已知等差数列{}n a 的首项12a =,公差3d =,求第10项10a 的值为.13.若()554325432102x a x a x a x a x a x a +=+++++,则531420a a a a a a ++=++.14.如图,在矩形ABCD 中,8,6,,,,,AB BC E F G H ==分别是矩形四条边的中点,点Q 在直线HF 上,点N 在直线BC 上,,,OQ kOH CN kCF k ==∈R,直线EQ 与直线GN 相交于点R ,则点R 的轨迹方程为.四、解答题(本大题共5小题)15.在ABC 中,角A B C ,,的对边分别为a b c ,,,已知2cos2cos22sin 2sin sin B A C B C-=-(1)求A ;(2)若23b c P Q ==,,,分别为边a b ,上的中点,G 为ABC 的重心,求PGQ ∠的余弦值.16.设A B ,两点的坐标分别为())3,0,3,0.直线AH BH ,相交于点H ,且它们的斜率之积是13-.设点H 的轨迹方程为C .(1)求C ;(2)不经过点A 的直线l 与曲线C 相交于E 、F 两点,且直线AE 与直线AF 的斜率之积是13-,求证:直线l 恒过定点.17.如图所示,四边形ABCD 是圆柱底面的内接四边形,AC 是圆柱的底面直径,PC 是圆柱的母线,E 是AC 与B 的交点,608AB AD BAD AC ∠=== ,,.(1)记圆柱的体积为1V ,四棱锥P ABCD -的体积为2V ,求12V V ;(2)设点F 在线段AP 上,且存在一个正整数k ,使得PA kPF PC kCE ==,,若已知平面FCD 与平面PCD 的夹角的正弦值为1313,求k 的值.18.已知函数()()1ln f x x x =-,(1)已知函数()()1ln f x x x =-的图象与函数()g x 的图象关于直线=−1对称,试求()g x ;(2)证明()0f x ≥;(3)设0x 是()1f x x =+的根,则证明:曲线ln y x =在点()00,ln A x x 处的切线也是曲线e x y =的切线.19.如果函数()F x 的导数为()()F x f x '=,可记为()()d f x x F x =⎰,若()0f x ≥,则()()()baf x dx F b F a =-⎰表示曲线()y f x =,直线x a x b ==,()a b <以及x 轴围成的“曲边梯形”的面积.如:22d x x x C =+⎰,其中C 为常数;()()222204xdx C C =+-+=⎰,则表0,1,2x x y x C ===+及x 轴围成图形面积为4.(1)若()()()e1d 02xf x x f =+=⎰,,求()f x 的表达式;(2)求曲线2y x =与直线6y x =-+所围成图形的面积;(3)若()[)e 120,x f x mx x =--∈+∞,,其中m ∈R ,对[)0,a b ∀∈+∞,,若a b >,都满足()()0d d a b f x x f x x >⎰⎰,求m 的取值范围.参考答案1.【答案】B【分析】先解不等式求得集合A ,进而求得A B ⋂.【详解】集合()(){}2{|8150}{|350}3,4,5A x x x x x x =∈-+≤=∈--≤=Z Z .而{|5}B x x =<,故{}3,4A B ⋂=.故选B.2.【答案】A【分析】设12i,i(,R z b z c b c ==∈且,0)b c ≠,可得12z z ∈R ,如121i 12+2i 2z z +==,可得结论.【详解】若12,z z 均为纯虚数,设12i,i(,z b z c b c ==∈R 且,0)b c ≠,则12i i z b b z c c ==∈R ,所以“12,z z 均为纯虚数”是12zz 是实数的充分条件,当121i,22i z z =+=+,121i 12+2i 2z z +==,所以“12,z z 均为纯虚数”是12z z 是实数的不必要条件,综上所述:“12,z z 均为纯虚数”是12z z 是实数的充分不必要条件.故选A.3.【答案】C【分析】根据向量数量积运算求得正确答案.【详解】()222a b b a b b+⋅=⋅+ 2cos1502a b b=⋅⋅︒+2223⎛=+⋅= ⎝⎭.故选C.4.【答案】B【分析】利用两角和差公式以及倍角公式化简求值可得答案.【详解】由题干得2π1sin sin sin cos sin 332ααααα⎛⎫=+-=- ⎪⎝⎭1πsin cos 26ααα⎛⎫-=+ ⎪⎝⎭所以22ππ21cos 22cos 1213639αα⎛⎫⎛⎫⎛⎫+=+-=⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选B.5.【答案】C【分析】利用等比数列的通项公式及前n 项和公式求解q 的值,再由数列的单调性进一步判断即可.【详解】2131133141122312a a a a q a S T q q q=⇒=⇒=+=⇒++=,则()()2121294214042q q q q q q -+=--=⇒==,.由于{}n a 为递增数列,则1144q a ==,,所以{}n a 的通项公式为24n n a -=所以()()11414411412nn n S -==--.故选C.6.【答案】A【分析】设正四棱锥P ABCD -的内切球的半径为R ,H 为底面中心,取CD 的中点F ,设O 点在侧面PCD 上的投影为Q 点,则Q 点在PF 上,利用∽ POQ PFH 求出球心到四棱锥顶点的距离h ,再由棱锥的体积公式计算可得答案.【详解】设正四棱锥P ABCD -的内切球的半径为R ,H 为底面中心,由体积为34π3R得R =,连接PH ,PH ⊥平面ABCD ,球心O 在PH 上,OH R =,取CD 的中点F ,连接,HF PF ,设O 点在侧面PCD 上的投影为Q 点,则Q 点在PF 上,且OQ PF ⊥,∽ POQ PFH ,球心到四棱锥顶点的距离为h ,所以=PQ PH OQ FH,h ,所以1181283333==ABCD V S PH .故选A.7.【答案】A【分析】利用给定条件结合对数的性质构造42n a <,两侧同时平方求最值即可.【详解】由题知n是2log 1(14(xx x ⎡⎤⎣⎦-<+的正整数解,故2log (1(14n nn ⎡⎤⎣⎦-<+,取指数得((4112n n n +--<,同除2n得,42n n -<⎝⎭⎝⎭,故42n n ⎡⎤⎫-⨯⎥⎪⎪⎥⎝⎭⎝⎭⎦,即42n a <,根据{}n a 是递增数列可以得到{}2n a 也是递增数列,于是原不等式转化为2812525n a <⨯<.而565,8a a ==可以得到满足要求的n 的最大值为5,故A 正确.故选A.8.【答案】D【分析】利用参变分离将函数图象有两个交点问题转化为y m =和()21ln 2x h x x -=的图象有两个交点,由导数求得ℎ的单调性并求得最大值即可得出结论.【详解】由()21ln 02mx x x +=>得22ln 1m x x -=,则问题转化为y m =和()21ln 2x h x x-=的图象有两个交点,而()()()2232112ln 21ln 2x x x x x h x x x ⎛⎫⋅-- ⎪-'⎝⎭==,令ℎ'>0,解得0e x <<,令ℎ'<0,解得e x >,故ℎ在()0,e 上单调递增,在()e,+∞单调递减,则()()2max 1e 2e h x h ==,ℎ大致图象如下所示:结合图象可知,m 的取值范围是210,2e ⎛⎫ ⎪⎝⎭故选D.9.【答案】ABCD【分析】根据对称知识可得()6110i i y x i i =-∈≤≤Z ,,结合平均数、中位数、方差、极差的性质,即可判断出答案.【详解】由于()()()121,0,,0,,,0x x x ,它们分别与()()()1210,10,,10,,,10y y y 关于点(3,5)对称,则有()6110i i x y i i +=∈≤≤Z ,,即有()6110i i y x i i =-∈≤≤Z ,.则由平均数的性质可得1210,,,y y y 这组数的平均数为6a -,结合中位数性质可知中位数为6b -,结合方差性质可得方差为c ,极差非负,所以极差为d .故选ABCD.10.【答案】CD【分析】利用共轭复数的概念和加减运算性质判断A,举反例判断B,利用复数模的性质得到轨迹方程,结合圆的性质判断C,利用复数模的性质得到轨迹方程,结合椭圆的性质判断D 即可.【详解】对于A.,设1i z a b =+,则1i z a b =-,所以22221(i)2i z a b a b ab =+=-+,2221(i)2i z a b a b ab =-=--,当,a b 有1个为0或全为0时, 2211z z =,当,a b 均不为0时,2211,z z 无法比较大小,故A 错误,对于B,当1i z =,2i z =-时,120z z +=,此时120z z +=,122z z +=,故1212z z z z +=+不成立,故B 错误,对于C,设1i z a b =+,因为122i 2z --=,所以i 22i 2a b +--=,故有2(2)i 2a b -+-=,可得22(2)(2)4a b -+-=,所以1z 的轨迹是以()2,2为圆心,2为半径的圆,而116i i 16i 1(6)i z a b a b +-=++-=++-=,故116i z +-表示点(),a b 到定点()1,6-的距离,由圆的性质可知,1min 16i 23z +-==,故C 正确,对于D,设2z a bi =+,所以2i i i (1)i z a b a b +=++=++=,2i i i (1)i z a b a b -=+-=+-=,而22i i 4z z ++-=,故4,所以得到点(),a b 到两定点()0,1-,()0,1的距离之和为4,故2z 的轨迹是以()0,1-,()0,1为焦点的椭圆,故轨迹方程为22143y x +=,而2z 表示(),a b 到原点的距离,由椭圆的几何性质可得当点B 在椭圆的左右顶点时,2z 取得最小值,此时2z =2min z =D 正确.故选CD .11.【答案】ACD【分析】A 选项,令=0,可求()e f ;B 选项,对()()e e e 0f x f x +--=两边求导,结合()()e e 0f x f x ''++->得()e 0f x '-<,()e 0f x '+>,可判断()f x 单调性;C 选项,12e x x ,,的大小关系进行分类讨论,利用函数单调性,证明不等式;D 选项,证明212e x x +<,利用函数单调性,证明()()12f x f x <且()()21e f x f x <,可得结论.【详解】A 选项,令=0,则有()()()()e e e 1e e 0f f f -=-=,所以()e 0f =,故A 正确.B 选项,对()()e e e 0f x f x +--=两边求导,得()()e e e 0f x f x '++-=',所以()()e e e f x f x +=-'-',代入()()e e 0f x f x ''++->,得当>0时,()()1e e 0f x '-->,所以()e 0f x '-<.又因为()()e e 0f x f x ''++->,所以,()e 0f x '+>.因此,当e x <时,()0f x '<,()f x 在(),e -∞上单调递减;当e x >时,()0f x '>,()f x 在()e,+∞上单调递增.故B 错误.C 选项,对12e x x ,,的大小关系进行分类讨论:①当12e x x <≤时,()f x 在(),e -∞上单调递减,所以()()12f x f x >,显然有212e x x +<;②当12e x x ≤<时,()f x 在()e,+∞上单调递增,不符合题意;③当12e x x <<时,当0x ≥时,()()e e e f x f x +=-.令()()()()()()122e e,e 2e e 2e t x f t f t f x f x f x ∞=+∈+=->=-,,,又因为()()e 0f x f ≥=,所以()22e 0f x ->,因此()()()()1222e 2e 2e f x f x f x f x >=->-.因为12e 2e e x x <-<,,由()f x 的单调性得,212e x x +<.故C 正确.D 选项,因为()()()()()()2200e 202e 2e e 20e e 220g f g f g f =+->=+->=-=-<,,,所以120e 2e x x <<<<.先证212e x x +<,即证122e x x ->,即()12e 0g x ->,只需证()2112e (2e e)20f x x -+--->,即证()211e (e )20f x x +-->.事实上,()()()()()2211111e e 2e 20f x x f x x g x +-->+--==,因此212e x x +<得证.此时有1210e 2e 2e x x x <<<<-<.因为()()()()()22211122e 22e e 2e 2f x x x x f x =--+=---+<--+=,又()10f x ≠,所以()()211f x f x <,因为()()()2112e e f x f x f x <-=,又()10f x ≠,所以()()21e f x f x <.综上,()()211e f x f x <<,故D 正确.故选ACD.【方法总结】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.证明不等式,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.12.【答案】29【分析】根据等差数列的通项公式求得正确答案.【详解】依题意101922729a a d =+=+=.故答案为:29.13.【答案】121122【分析】利用赋值法令1x =,1x =-,联立方程组求解即可.【详解】令1x =,得()554321012243a a a a a a +==+++++,令1x =-,得()5543210121a a a a a a -+==-+-+-+,则()()543210543210531243112122a a a a a a a a a a a a a a a +++++--+-+-+-++===,且()()543210543210420243112222a a a a a a a a a a a a a a a ++++++-+-+-++++===,故531420121122a a a a a a ++=++.故答案为:121122.14.【答案】()221,3916y x y -=≠-【分析】以HF 所在直线为x 轴,GE 所在直线为y 轴建立平面直角坐标系,求出直线EQ 的方程与直线GN 的方程,联立求解即可.【详解】以HF 所在直线为x 轴,GE 所在直线为y 轴建立平面直角坐标系.因为8,6AB BC ==,所以()()()()()()0,0,4,0,4,0,0,3,0,3,4,3O H F E G C --,所以()4,0OH =- ()()0,3,4,3CF OC =-= ,又因为,OQ kOH CN kCF == ,所以()()4,0,0,3OQ k CN k =-=-,所以()()4,0,4,33Q k N k --.因为()()0,3,4,0E Q k --,所以直线EQ 的方程为334y x k=--①,因为()()0,3,4,33G N k -,所以直线GN 的方程为334ky x =-+②.由①可得()()3043xk x y =-≠+,代入②化简可得()2210916y x x -=≠,,结合图象易知点R 可到达()0,3G ,但不可到达()0,3E -,所以点R 的轨迹方程为()221,3916y x y -=≠-,故答案为:()221,3916y x y -=≠-.15.【答案】(1)π3;(2)133266-.【分析】(1)根据二倍角公式将已知条件变形转化,再根据正弦定理边角互化,带入到余弦定理即可求得;(2)根据已知设AB c AC b ==,,表达出AP BQ ,,再根据余弦定理可求得结果.【详解】(1)因为2cos2cos22sin 2sin sin B A C B C -=-,所以()()22212sin 12sin 2sin 2sin sin B A C B C ---=-,即222sin sin sin sin sin A B C B C =+-,由正弦定理得222a c b bc =+-,由余弦定理得1cos 2A =,因为()π0π3A A ∈=,,;(2)设AB c AC b== ,,1cos 2332b c b c A ⋅=⋅=⨯⨯= ,依题意可得()1122AP b c BC b c BQ b c =+=-=- ,,,所以AP===,BQ===()221111143917224424424AP BQ b c b c b b c c⎛⎫⋅=+-=-⋅-=--=-⎪⎝⎭,所以cosAP BQPGQAP BQ⋅∠==-⋅.16.【答案】(1)(2213x y x+=≠;(2)证明见解析.【分析】(1)设点H的坐标为(),x y,然后表示出直线,AH BH的斜率,再由它们的斜率之积是13-,列方程化简可得点H的轨迹方程;(2)设()()1122,,,E x yF x y,当直线l斜率不存在时,求得直线l为x=0,当直线l 斜率存在时,设直线:l y kx b=+,由13AE AFk k⋅=-得2213=-,将直线方程代入椭圆方程化简利用根与系数的关系,代入上式化简可得20b=,从而可求得直线恒过的定点.【详解】(1)设点H的坐标为(),x y,因为点A的坐标是(),所以直线AH的斜率AHk x=≠,同理,直线BH的斜率BHk x=,由已知,有(13x-≠±,化简,得点H的轨迹方程为(2213x y x+=≠,即点H的轨迹是除去()),两点的椭圆.(2)证明:设()()1122,,,E x yF x y①当直线l斜率不存在时,可知1221,x x y y==-,且有22111313AE AFx yk k⎧+=⎪⎪⎨⎪⋅=-⎪⎩,解得1101x y==±,,此时直线l为x=0,②当直线l斜率存在时,设直线:l y kxb=+,则此时有:2213AE AFk k+++++⋅==-联立直线方程与椭圆方程2213y kx b x y =+⎧⎪⎨+=⎪⎩,消去y 可得:()222316310kx kbx b +++-=,根据韦达定理可得:122631kb x x k -+=+,21223331b x x k -=+,所以2222222233613131336333131b kbk kb b k k b kb k k --⋅+⋅+++=---++++,所以222222(33)63113k b k b b k --++=-,所以221=-所以20b =,则0b =或b=,当b=时,则直线(:l y k x =+恒过A 点与题意不符,舍去,故0b =,直线l 恒过原点()0,0,结合①,②可知,直线l 恒过原点()0,0,原命题得证.【关键点拨】此题考查椭圆的轨迹方程,考查直线与椭圆的位置关系,考查椭圆中直线过定点问题,解题的关键是设出直线方程代入椭圆方程化简,利用根与系数的关系结合已知条件求解,考查计算能力.17;(2)4k =.【分析】(1)利用圆柱以及棱锥的体积公式,即可求得答案.(2)建立空间直角坐标系,求出相关点坐标,利用空间角的向量求法,结合平面FCD 与平面PCD 的夹角的正弦值,即可求得答案.【详解】(1)在底面ABCD 中,因为AC 是底面直径,所以90ABC ADC ∠=∠=,又AB AD =,故ACB ≌ACD,所以13042BAC DAC BAD BC CD AB AD ∠∠∠=======,,因为PC 是圆柱的母线,所以PC ⊥面ABCD ,所以211π()16π2V AC PC PC ==⨯,211112243232V AB BC PC PC=⨯⨯⨯⋅⋅=⨯⨯⨯⨯=,因此12VV=;(2)以C为坐标原点,以,CA CP为,x z轴正方向,在底面ABCD内过点C作平面PAC的垂直线为y轴,建立如图所示的空间直角坐标系.因为30BAC DAC AB AD∠∠===,,所以ABE≌ADEV,故90AEB AED∠∠== ,所以1622BE DE AB AE CE AC AE=====-=,,2PC kCE k==,因此()()()()()() 0,0,0,8,0,0,2,,0,0,2,2,,0,0,2C AD P k CD CP k==,()8,0,2PA k=-,因为PA kPF=,所以18,0,2PF PAk k⎛⎫==-⎪⎝⎭,则88,0,22,,0,22F k CF kk k⎛⎫⎛⎫-=-⎪ ⎪⎝⎭⎝⎭设平面FCD和平面PCD的法向量分别为()()111222,,,,,n x y z m x y z==,则有:()1111822020n CF x k zkn CD x⎧⋅=+-=⎪⎨⎪⋅=+=⎩,2222020m CP kzm CD x⎧⋅==⎪⎨⋅=+=⎪⎩,取())()221,,1,3,4n k k k k m⎛⎫=----=-⎪⎪⎝⎭,设平面FCD与平面PCD的夹角为θ,则sinθ=所以有:2cos cos,13m nθ==,整理得2120k k--=,2120k k-+=(无解,舍),由于k为正整数,解得4k=.18.【答案】(1)()()()3ln2,(2)g x x x x=----<-;(2)证明见解析;(3)证明见解析.【分析】(1)由()()11f x g x --=-+,得()()()12ln 1g x x x -+=----,再利用换元法求()g x ;(2)分区间讨论各因式的符号或利用导数证明;(3)取曲线e x y =上的一点()11e ,xB x ,设()ln g x x =在A 处的切线即是()ex h x =在B 处的切线,证明直线AB 的斜率等于()ln g x x =在A 处的切线斜率和()e xh x =在B 处的切线斜率即可.【详解】(1)因为()f x 的图象与()g x 的图象关于直线=−1对称,所以()()11f x g x --=-+.又因为()()()()()111ln 12ln 1f x x x x x ⎡⎤--=-----=----⎣⎦,所以()()()12ln 1g x x x -+=----,令1t x =-+,则1x t =+,所以()()][()()()21ln 113ln 2g t t t t t ⎡⎤=--+--+=----⎣⎦,因此()()()3ln 2,(2)g x x x x =----<-.(2)证明:解法1:当1x ≥时,10x -≥且ln 0x ≥,此时()()1ln 0f x x x =-≥;当01x <<时,10x -<且ln 0x <,此时()()1ln 0f x x x =->,故综上()0f x ≥.解法2:()1ln 1f x x x +'=-,令()1ln 1x x xϕ=+-,()2110x x x ϕ'=+>在()0,+∞上恒成立,故()x ϕ在()0,+∞上单调递增,即()f x '在()0,+∞上单调递增,因此当01x <<时,()()10f x f ''<=;当()()110x f x f ''≥≥=,;因此()f x 在()0,1上单调递减,在[)1,+∞上单调递增,故()()10f x f ≥=.(3)证明:不妨取曲线e x y =上的一点()11e ,xB x ,设()ln g x x =在A 处的切线即是()e xh x =在B 处的切线,则()()10101e x g x h x x ''===,得101ln x x =,则B 的坐标0011ln x x ⎛⎫ ⎪⎝⎭,,由于()0001ln 1x x x -=+,所以0001ln 1x xx +=-,则有()()2000000000002000000000011111ln ln 111111ln ln 11ABx x x x x x x x x x k g x x x x x x x x x x x ++-----======++--'++-,综上可知,直线AB 的斜率等于()ln g x x =在A 处的切线斜率和()e xh x =在B 处的切线斜率,所以直线AB 既是曲线ln y x =在点()00n ,l A x x 处的切线也是曲线e x y =的切线.19.【答案】(1)()e 1xf x x =++;(2)1256;(3)12m ≤.【分析】(1)根据新定义及()02f =计算得解;(2)根据新定义,构造函数()26g x x x =-+-即可得出面积;(3)根据所给条件可得()()d F x f x x =⎰在[)0,+∞上单调递增,转化为()0f x ≥在[)0,+∞恒成立,分离参数后利用导数求出函数最值即可得解.【详解】(1)()()e 1d e x xf x x x C =+=++⎰,其中C 为常数.而()02f =,即102C ++=,所以1=C ,所以()e 1xf x x =++.(2)联立26y x y x ⎧=⎨=-+⎩,解得123,2x x =-=,当32x -<<时,26x x -+>,令()26,g x x x =-+-()()2311d 623F x g x x x x x C ==-+-+⎰,则围成的面积()()()2389125d 23212189326S g x x F F -⎛⎫⎛⎫==--=-+----+= ⎪⎪⎝⎭⎝⎭⎰.(3)令()()d F x f x x =⎰,由题意可知,[)0,a b a b ∀∈+∞>,,,满足()()()()00F a F F b F ->-,即()()F a F b >,即()()d F x f x x =⎰在[)0,+∞上单调递增,进而()0f x ≥在[)0,+∞恒成立,e 120x mx --≥在()0,+∞恒成立.由于>0,即e 12x m x -≥,令()e 12x g x x-=,则()22e 2e 24x x x g x x -+'=,令()()2e 2e 22e 0x x xh x x h x x '=-+=≥,,所以ℎ在[)0,+∞上单调递增,所以()()00h x h ≥=,即()0g x '≥,进而()g x 在()0,+∞单调递增,而()000e 1e 1lim lim lim 222x x x x x g x x →+→+→+-===,所以()12g x ≥,所以12m ≤.【关键点拨】本题第三步关键在于利用a b >,都满足()()0d d abf x x f x x >⎰⎰,得出函数()()d F x f x x =⎰在[)0,+∞上单调递增,再转化为()0f x ≥在[)0,+∞恒成立,分离参数求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津市十二区县重点学校高三毕业班联考(一)数 学(理)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.第Ⅰ卷 选择题 (共40分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目填涂在答题卡规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑; 参考公式:·如果事件A 、B 互斥,那么()()()P A B P A P B =+•柱体的体积公式Sh V =. 其中S 表示柱体的底面积,h 表示柱体的高.一、选择题:本大题共8小题,每小题5分,满分40分.1. 已知全集{}0,1,2,3,4,5U =,集合{}{}1,2,3,5,2,4A B ==,则为A .B .C .D .2. 设变量 满足约束条件,则目标函数2z x y =+的最大值为A .0B .3C .6D .12 3. 如图所示的程序框图输出的所有点都在函数 A .y =x +1的图象上 B .y =2x 的图象上 C .y =2x的图象上 D .y =2x -1的图象上4. 下列说法正确的是A .命题“若x 2=1,则x =1”的否命题为“若x 2=1,则x ≠1” B .若 a b ∈R ,,则“0ab ≠”是“0a ≠”的充分不必要条件C .命题“∃x 0∈R ,x 20+x 0+1<0”的否定是“∀x ∈R ,x 2+x +1>0” D .若“q p 且”为假,则p ,q 全是假命题5. 已知双曲线C :的离心率5e =,点是抛物线24y x =上的一动点,P 到双曲线C 的上焦点的距离与到直线1x =-的距离之和的最小值为6,则该双曲线的方程为A .B .C .D . 6. 在ABC ∆中,内角C B A ,,的对边分别为c b a ,,,若ABC ∆的面积为S ,且226c b a S -+=)(,则C tan 等于()U C A B {}0,2,4{}4{}1,2,4{}0,2,3,4,x y 2030230x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩22221(0,0)y x a b a b-=>>P 1(0,)F c 22123y x -=2214y x -=2214x y -=22132y x -=A .125 B .125- C .125 D .125-7. 如图,PT 切O 于点T ,PA 交O 于,A B 两点,且与直径CT 交于点D ,3,CD =4,AD = 6BD =,则PB =A .6B .8C .10D .148.已知()f x 为偶函数,当0x ≥时,()(24),(0)f x m x x m =-+->,若函数[]()4y f f x m =-恰有4个零点,则实数m 的取值范围A .10,6⎛⎫ ⎪⎝⎭B .1550,,662⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭C .1550,,442⎛⎫⎛⎫⋃ ⎪⎪⎝⎭⎝⎭ D .10,4⎛⎫ ⎪⎝⎭第Ⅱ卷 非选择题 (共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡中的相应横线上. 9. i 是虚数单位,复数21ii+=- . 10. 在53⎪⎪⎭⎫ ⎝⎛-x x 的二项展开式中,2x 的系数为 . 11. 已知曲线1-=x y 与直线1,3,x x x ==轴围成的封闭区域为A ,直线1,3,0,1x x y y ====围成的封闭区域为B ,在区域B 内任取一点P ,该点P 落在区域A的概率为 .12. 一个机器零件的三视图如图所示,其中俯视图是一个半圆内 切于边长为3的正方形,则该机器零件的体积为 .13.直线l :12x at y t=⎧⎨=-⎩(t 为参数),圆C :22cos()4πρθ=+(极轴与x 轴的非负半轴重合,且单位长度相同),若圆C 上至少有三个点到直线l 的距离恰为22,则实数a 的取值范围为 .14. 如图,在直角梯形ABCD 中,AB //CD ,2,AB =1,AD DC ==P 是线段BC 上一动点,Q 是线段DC 上一动点,,DQ DC λ=(1),CP CB λ=-若集合BD OA}|{x x M ⋅==,221,,13()a b N x x a b ab a b ⎧⎫++⎪⎪==>=⎨⎬-⎪⎪⎩⎭.则M N ⋂= .三、解答题:本大题6小题,共80分.解答应写出必要的文字说明,证明过程或演算步骤. 15.(本小题满分13分) 已知函数)6(cos cos )(22π-+=x x x f ,(Ⅰ)求最小正周期; (Ⅱ)求在区间]4,3[ππ-上的最大值和最小值.16.(本小题满分13分)某大学自主招生考试面试环节中,共设置两类考题,A 类题有4个不同的小题,B 类题有6个不同的小题, 某考生从中任抽取四道题解答. (Ⅰ)求该考生至少抽取到2道B 类题的概率;(Ⅱ)设所抽取的四道题中B 类题的个数为X,求随机变量X 的分布列与期望. 17.(本小题满分13分)如图,在四棱锥中,为等边三角形,平面AEF ⊥平面,//EF BC ,4BC =,2EF a =,,为EF 的中点.(Ⅰ) 求证:AO BE ⊥;(Ⅱ) 求二面角F AE B --的余弦值;(Ⅲ) 若直线CA 与平面BEA 所成的角的正弦值为562,求实数的值. 18.(本小题满分13分)设椭圆E 的方程为()222210x y a b a b+=>>,点O 为坐标原点,点A 的坐标为()0a ,,点B 的坐标为()0b ,,点M 在线段AB 上,满足2BM MA =,直线OM 的斜率为41.(Ⅰ)求椭圆E 的离心率e ;R x ∈()f x ()f x A EFCB -AEF △EFCB 60EBC FCB ∠=∠=︒O a B(Ⅱ)PQ 是圆C :215)1()2(22=-++y x 的一条直径,若椭圆E 经过P ,Q 两点,求椭圆E 的方程. 19.(本小题满分14分)已知非单调数列{}n a 是公比为q 的等比数列,且114a =-,2416a a =,记5.1n n na b a =- (Ⅰ)求{}n a 的通项公式;(Ⅱ)若对任意正整数n ,|1|3n m b -≥都成立,求实数m 的取值范围;(Ⅲ)设数列2{}n b ,21{}n b -的前n 项和分别为,n n S T ,证明:对任意的正整数n ,都有 223n n S T <+.20.(本小题满分14分)已知函数1()ln f x x x=-,()g x ax b =+. (Ⅰ)若函数()()()h x f x g x =-在(0,)+∞上单调递增,求实数a 的取值范围; (Ⅱ)若直线()g x ax b =+是函数1()ln f x x x=-图象的切线,求a b +的最小值; (Ⅲ)当0b =时,若()f x 与()g x 的图象有两个交点1122(,),(,)A x y B x y ,试比较12x x 与22e 的大小.(取e 为2.8,取ln 2为0.71.4)2016年天津市十二区县重点学校高三毕业班联考(一)数学理科参考答案二、填空题: 每小题5分,共30分. 9.1322i +; 10.90; 11.ln 32; 12.9278π+; 13.2,27⎡⎤⎢⎥⎣⎦; 14.23⎡⎤⎢⎥⎣⎦三、解答题:本大题6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分) 已知函数)6(cos cos )(22π-+=x x x f ,(I)求最小正周期;(II)求在区间]4,3[ππ-上的最大值和最小值.解:22()cos cos ()6f x x x π=+-1cos(2)1cos 2322x x π+-+=+ ……2分 32cos 2144x x =++ ……3分 )13x π=++ ……5分 1) 函数()f x 的最小正周期22T ππ== ……6分 2) 函数()f x 在,312ππ⎡⎤-⎢⎥⎣⎦单调递增,在,124ππ⎡⎤⎢⎥⎣⎦单调递减。
……8分 1(),()1,()134124f f f πππ-==+=+ ……11分min max 1(),() 1.4f x f x ∴==+ ……13分16.(本小题满分13分)某大学自主招生考试面试环节中,共设置两类考题,A 类题有4个不同的小题,B 类题有6个不同的小题, 某考生从中任取四道题解答. (Ⅰ)求该考生至少取到2道B 类题的概率;(Ⅱ)设所取四道题中B 类题的个数为X,求随机变量X 的分布列与期望.R x ∈()f x ()f x解:(Ⅰ)设事件A: ” 该考生至少取到2道B 类题”.()P A =43144641037142C C C C +-= ……4分 (2)随机变量X 的取值分别为0,1,2,3,4, ……5分()4441010210C P X C ∴=== ()3146410241210C C P X C ===()2246410902210C C P X C ===, ()1346410803210C C P X C ===()46410154210C P X C === ……10分 ∴随机变量X 的分布列为: ……11分∴随机变量X 的期望为:12490801512012342102102102102105EX =⨯+⨯+⨯+⨯+⨯=……13分17.(本小题满分13分)如图,在四棱锥中,为等边三角形,平面平面,,,,,为的中点. (Ⅰ) 求证:;(Ⅱ) 求二面角的余弦值; (Ⅲ) 若直线CA 与平面BEA 所成的角的正弦值为562,求实数的值. 解: (Ⅰ)由于平面平面,为等边三角形,为的中点,则,A EFCB -AEF △AEF ⊥EFCB EF BC ∥4BC =2EF a =60EBC FCB ∠=∠=︒O EF AO BE ⊥F AE B --a AEF ⊥EFCB AEF △O EF AO EF ⊥X 0 1 2 3 4 P12102421090210 80210 15210FBCzEF EFCB AEF =⋂平面平面,根据面面垂直性质定理,所以平面EFCB ,又平面,则.…3分(Ⅱ)取CB 的中点D ,连接OD,则EF OD ⊥以O 为原点,分别以OD OA OE 、、为轴建立空间直角坐标系, …4分)0,0,0(O ,)0,0,(a E ,)0,0,(a F -,)0,3,0(a A ,))2(3,0,2(a B -,))2(3,0,2(a C --, ))2(3,0,2(--=a a BE设平面的法向量),.(z y x m =⎪⎩⎪⎨⎧=⋅=⋅00AE m 即⎪⎩⎪⎨⎧=-+-=-0)2(3)2(03z a x a ay ax 令1,3,1-===z x y)1,1,3(-=∴m ……6分平面的法向量为)1,0,0(=n , ……7分二面角的余弦值55,cos -=<n m , ……8分 由二面角为钝二面角,所以二面角的余弦值为. ……9分 (Ⅲ) ))2(3,3,2(-=a a CA ……10分设直线CA 与平面BEA 所成角为θ,mCA m CA ⋅=θsin 562)2(33453422=-++=a a 10161262=+-∴a a ……12分 )2,0(1∈=∴a 满足题意 1=∴a ……13分18.(本小题满分13分)设椭圆E 的方程为()222210x y a b a b+=>>,点O 为坐标原点,点A 的坐标为()0a ,,点B的坐标为()0b ,,点M 在线段AB 上,满足2BM MA =,直线OM 的斜率为41. (Ⅰ)求椭圆E 的离心率e ;AO ⊥BE ⊂EFCB AO BE ⊥、、x y z AEB AEF F AE B --F AE B --F AE B --5-(Ⅱ)PQ 是圆C :215)1()2(22=-++y x 的一条直径,若椭圆E 经过P ,Q 两点,求椭圆E 的方程. (I ) A ()0a ,B ()0b ,点M 在线段AB 上,满足2BM MA =∴M)3,32(b a ……1分412==a b k OM21=∴a b ……2分 23)(12=-=∴a b a c ∴椭圆E 的离心率e 为23 ……4分(II)解法一:由(I )知,椭圆E 的方程为22244x y b . (1) ……5分依题意,圆心)1,2(-C 是线段PQ 的中点,且30=PQ . ……6分 易知,PQ 不与x 轴垂直,设其直线方程为(2)1y k x , ……7分代入(1)得2222(14)8(21)4(21)40k xk k x k b ……8分设),(,),(2211y x Q y x P 则22141)12(8k k k x x ++-=+, 22221414)12(4k b k x x +-+=……9分由124x x ,得28(21)4,14k k k 解得12k. ……10分 从而21282x x b .于是4254)(25)21(1221221212-=-+=-+=b x x x x x x PQ ……11分 由30=PQ ,得304252=-b ,6422=-b 解得52=b . ……12分故椭圆E 的方程为152022=+y x . ……13分 解法二:由(I )知,椭圆E 的方程为22244xy b .(1) ……5分依题意点Q P 、关于圆)1,2(-C 对称且30=PQ ……6分),(,),(2211y x Q y x P 则⎪⎩⎪⎨⎧=+=+22222221214444by x by x ……7分两式相减得0)(8)(42121=-+--y y x x易知PQ 不与x 轴垂直,则21x x ≠ ,212121=--x x y y ……8分∴PQ 的斜率为21,设其直线方程为2211)2(21+=++=x x y ,代入(1)得 028422=-++b x x ∴124x x21282x x b . ……10分于是4254)(25)21(1221221212-=-+=-+=b x x x x x x PQ……11分 由30=PQ ,得304252=-b ,6422=-b 解得52=b . ……12分故椭圆E 的方程为152022=+y x . ……13分 19.(本小题满分14分)已知非单调数列{}n a 是公比为q 的等比数列,且1241,164a a a =-=,记5;1n n na b a =- (Ⅰ)求{}n a 的通项公式;(Ⅱ)若对任意正整数n ,|1|3n m b -≥都成立,求实数m 的取值范围;(Ⅲ)设数列221{},{}n n b b -的前n 项和分别为,n n S T ,证明:对任意的正整数n ,都有223n n S T <+.解:2124111),16,416a a a q =-=∴={}n a 为非单调数列14q ∴=- 1,.4nn a n N *⎛⎫∴=-∈ ⎪⎝⎭……3分2) 555,11(4)11n n nnna b n N a a *∴===∈---- ……4分 当n 奇数, 5,0.41n n n b b =∴<-- ……5分当n 偶数,5,0.41n n n b b =∴>-且{}n b 为递减数列 ……6分()2max 13n b b ∴==,11,2m m ∴-≥∴≥或0m ≤ ……8分3)212221*********(44)4141(41)(41)n n n n n n n n b b ----+-=+=-+-+ ……9分212412215(44)4441n n n n n ---+=+--<212415(44)4n n n --+2254n ==2516n = ……11分 2143221()()...()n n n n S T b b b b b b -∴-=-+-++- ……12分2355111()25(...)155161616n <+++++ 451(1)34816n =+-45348<+=693482<.223n n S T ∴-<223n n S T ∴<+……14分20.(本小题满分14分)已知函数1()ln f x x x=-,()g x ax b =+. (Ⅰ)若函数()()()h x f x g x =-在(0,)+∞上单调递增,求实数a 的取值范围;(Ⅱ) 若直线()g x ax b =+是函数1()ln f x x x=-图象的切线,求a b +的最小值;(Ⅲ)当0b =时,若()f x 与()g x 的图象有两个交点1122(,),(,)A x y B x y ,试比较12x x 与22e的大小.(取e 为2.8,取ln 2为0.71.4) 解:(Ⅰ) ()()()h x f x g x =- 1ln ,x ax b x =---,则211()h x a x x'=+-, ……1分 ∵()()()h x f x g x =-在(0,)+∞上单调递增,∴对0x ∀>,都有211()0h x a x x'=+-≥,……2分 即对0x ∀>,都有211a x x ≤+,∵2110x x+>,∴0a ≤, 故实数a 的取值范围是(,0]-∞. ……4分(Ⅱ) 设切点0001(,ln )x x x -,则切线方程为002000111(ln )()()y x x x x x x --=+-,即00220000011111()()(ln )y x x x x x x x x =+-++-,亦即02000112()(ln 1)y x x x x x =++--, ……5分令010t x =>,由题意得202000112,ln 1ln 21a t t b x t t x x x =+=+=--=---, …6分 令2()ln 1a b t t t t ϕ+==-+--,则1(21)(1)()21t t t t t tϕ+-'=-+-=, ……7分当(0,1)t ∈时 ,()0t ϕ'<,()t ϕ在(0,1)上单调递减; 当(1,)t ∈+∞时,()0t ϕ'>,()t ϕ在(1,)+∞上单调递增,∴()(1)1a b t ϕϕ+=≥=-,故a b +的最小值为1-. ……9分(Ⅲ)由题意知1111ln x ax x -=,2221ln x ax x -=, 两式相加得12121212ln ()x x x x a x x x x +-=+,两式相减得第11页 共11页 21221112ln ()x x x a x x x x x --=-, ……10分 即212112ln1x x a x x x x +=-,∴21211212122112ln 1ln ()()x x x x x x x x x x x x x x +-=++-, 即1212212122112()ln ln x x x x x x x x x x x x ++-=-, ……11分 不妨令120x x <<,记211x t x =>,令2(1)()ln (1)1t F t t t t -=->+,则2(1)()0(1)t F t t t -'=>+, ……12分 ∴2(1)()ln 1t F t t t -=-+在(1,)+∞上单调递增,则2(1)()ln (1)01t F t t F t -=->=+, ∴2(1)ln 1t t t ->+,则2211122()ln x x x x x x ->+,∴1212212122112()ln ln 2x x x x x x x x x x x x ++-=>-,又1212121212122()ln ln ln x x x x x x x x x x +-<==∴2>,即1>, ……13分 令2()ln G x x x =-,则0x >时,212()0G x x x'=+>,∴()G x 在(0,)+∞上单调递增,又1ln 210.8512e =+-≈<,∴1G =>>>,即2122x x e >. ……14分。