Path Integral for the Dirac Equation
复旦量子力学讲义qmchapter-精品

§4.2 Path integral
➢How to calculate K(b, a)
2020/5/29
§4.2 Path integral
➢Key: the variable in the integration is a function This is a functional integral
Classical limit: S/h >> 1 Quickly oscillate
2020/5/29
§4.1 Classical action and the amplitude in Quantum Mechanics
S depends on xa, xb considerably
2020/5/29
✓ The contribution of the phase from each path is proportional to S/h, where S is the action of the corresponding path
2020/5/29
§4.1 Classical action and the amplitude in Quantum Mechanics
Linear oscillator
2020/5/29
§4.1 Classical action and the amplitude in Quantum Mechanics
2020/5/29
§4.1 Classical action and the amplitude in Quantum Mechanics
2020/5/29
§4.1 Classical action and the amplitude in Quantum Mechanics
解二维LAPLACE方程DIRICHLET问题直接边界积分方程的GALERKIN..

摘要Laplace方程是最典型,最简单但应用广泛的椭圆型偏微分方程。
用边界元法解边值问题,由不同的边界归化方法可以得到不同的边界积分方程,数值求解边界积分方程也有好几种方法。
本文考虑用Green公式和基本解推导得出直接边界积分方程来求解二维Laplace方程的Dirichlet问题,该直接边界积分方程是第一类Fredholm积分方程。
对二维问题,一般的带对数积分核第一类Fredholm积分方程并不总是唯一可解的,特别是对外边值问题,解在无穷远处的形态有很大的影响。
人们在用直接边界元方法进行计算时,并不刻意去考虑积分方程的可解性,但可解性的问题是不能回避的,这涉及到原问题的解与边界积分方程的解的等价性问题。
事实上,对内边值问题,第一类Fredholm直接边界积分方程的可解性条件是自然得到满足的,本文对此做了验证。
对外边值问题,考虑到二维Dirichlet 问题的解应当在无穷远处有界,故解的边界积分表达式要做修正,对积分方程的解要有约束,这样去解边界积分方程得出的解才等同于原问题的解。
一般来说,直接边界积分方程可以很方便的用配点法求解,还未见有实际用Galerkin边界元来解的报道。
本文采用Galerkin边界元方法求解直接边界积分方程,是为了验证这两种方法的效率和精度,且Galerkin法易于进行收敛性分析。
Galerkin 边界元方法是把积分方程转化为等价的边界变分方程,经用边界元离散后,通过求解线性代数方程组和计算解的离散的积分表达式求得原问题的数值解,该方法需要在边界上计算重积分。
本文推出了第一重积分的解析计算公式,对外层积分则采用高斯数值积分。
对外边值问题,第一类Fredholm积分方程的解要附加在边界上积分为零的条件,本文采用Lagrange乘子放松这个约束,求解扩展的变分方程时,可同时得出解在无穷远的值。
本文采用常单元和线性元这两种离散方式,分别用Fortran90编写了计算程序,对误差与边界元的数量的关系做了数值实验。
物理专业英语词汇

物理专业英语词汇摘要:物理学是一门研究自然界最基本的规律和现象的科学,它涉及到许多专业的英语词汇。
本文根据物理学的不同分支,整理了一些常用的物理专业英语词汇,并用表格的形式展示了它们的中英文对照。
本文旨在帮助物理专业的学习者和爱好者掌握一些基本的物理术语,以便于阅读和交流。
1. 基础物理词汇基础物理词汇是指一些在物理学中普遍使用的概念和量,它们是物理学的基本语言。
以下是一些基础物理词汇的中英文对照表:中文英文物理physics物质matter能量energy力force重力gravity摩擦力friction拉力traction质量mass惯性inertia加速度acceleration力矩torque静止at rest相对relative动能kinetic energy势能potential energy功work动量momentum角动量angular momentum能量守恒energy conservation保守力conserved force振动vibration振幅amplitude波wave驻波standing wave震荡oscillation相干波coherent wave干涉interference衍射diffraction轨道orbit速度velocity速率speed大小magnitude方向direction水平horizontal竖直vertical相互垂直perpendicular坐标coordinate直角坐标系Cartesian coordinate system极坐标系polar coordinate system2. 电学和磁学词汇电学和磁学是研究电荷、电流、电场、磁场等现象和规律的物理学分支,它们与光学、热学、原子物理等有着密切的联系。
以下是一些电学和磁学词汇的中英文对照表:中文英文电子electron电荷charge电流current电场electric field电通量electric flux电势electric potential导体conductor电介质dielectric绝缘体insulator电阻resistor电阻率resistivity电容capacitor3. 物理专业英语词汇物理专业英语词汇是指在物理学的学习和研究中经常使用的一些专业术语,它们涵盖了物理学的各个分支和领域,如力学、电磁学、光学、热学、量子力学等。
dirac方程最简

dirac方程最简The Dirac equation, in its simplest form, represents a fundamental equation in physics that describes the behavior of relativistic electrons. Derived by Paul Dirac in 1928, it combines the principles of quantum mechanics and special relativity, offering a unified framework for understanding the dynamics of elementary particles. The equation is formulated in terms of wave functions, mathematical objects that encode the probability distributions of particles' positions and momenta.在最简形式下,狄拉克方程是物理学中的一个基本方程,用于描述相对论电子的行为。
该方程由保罗·狄拉克于1928年推导得出,结合了量子力学和特殊相对论的原理,为理解基本粒子的动力学提供了一个统一的框架。
这个方程是用波函数来表示的,波函数是数学对象,用于编码粒子位置和动量的概率分布。
The Dirac equation is remarkable for its predictive power. It not only accounts for the energy levels of electrons in atoms, but also predicts the existence of antimatter particles, such as positrons, which are the antiparticles of electrons. This antimatter prediction was a groundbreaking revelation at the time of its discovery, and it has since been experimentally verified.狄拉克方程的预测能力非常显著。
A-Zee量子场论笔记完全版

Prof. Anthony Zee. (recorded by Gao Ping) June 27, 2012
Lecture 1
1.1 Introduction
At first, I will introduce a cube of physics shown below, where the horizontal axis is about the speed of motion in a physical system, leftside for slow and rightside for fast, and where the vertical axis is about the scale of a physcical system, upside for small and downside for big. Considering this property, we can fill the cube with dominant theories in physics, namely left-downside for classical physics, right-downside for special relativity, left-upside for quantum mechanics and finally right-upside for quantum field theory(QFT), a marrigae of special relativity and quantum mechanics. However, with all above, we can just fill up a planar table but not a cube, which must have the other dimension behind. And thus it is gravity theory, such as general relavity. It is challenging to build a quantum theoretical gravity today. Roughly, we can say Einstein has two daughters, special relativity and general relativity, among which one has married with quantum but the other has not. small big Quantum Mechanics Classical Physics slow Quantum Field Theory Special Relativity fast
chapter 4 路径积分

4.4 Feynman路径积分理论(lǐlùn)与 Schrodinger方程的等价性
• Schrodinger波动力学方程,以波函数描述粒子的 量子态,不计及历史
• Feynman路径积分理论引入传播(chuánbō)子,其直接 给予更细致信息
• 两者关系:
第二十七页,共四十三页。
第九页,共四十三页。
传播(chuánbō)子的物理意义
●考察(kǎochá)一个特例
第十页,共四十三页。
传播子的物理(wùlǐ)意义
●在能量 表象中 (néngliàng)
第十一页,共四十三页。
传播 子计算的例子 (chuánbō)
●自由(zìyóu)粒子
第十二页,共四十三页。
传播子计算(jì 的例子 suàn)
衍射
§3.3 路径 积分的计算方 (lùjìng) 法
2009年10月
第二十一页,共四十三页。
第二十二页,共四十三页。
Polygonal paths
第二十三页,共四十三页。
Polygonal paths
第二十四页,共四十三页。
Polygonal paths
第二十五页,共四十三页。
Polygonal paths
p1
B
r
S
p2
第四十页,共四十三页。
磁AB效应(xiàoyìng)
• 如上图,两条路径(p1和p2)同时贡献与r点。 • 同时路径积分中L的ν·A项使得每条路径上的波函数
出现一个额外(é wài)因子。
第四十一页,共四十三页。
分析(fēnxī)
• 矢势A的物理意义? • 磁通Ф满足qФ/hc=n时,干涉(gānshè)与平常
一维奇型Dirac算式自伴域的刻画

一维奇型Dirac算式自伴域的刻画王平心【摘要】Dirac方程是量子力学的基本方程,讨论Dirac算式的自伴域在数学物理中有广泛的应用,文中根据Dirac算式的最大定义域、最小定义域和Dirac算式在区间[0,b]上的自伴域的结果,利用自伴延拓的Calkin描述通过对b取极限的讨论推导出Dirac算式在区间[0,+∞)上的自伴域D(T(L))={f∈D(L)|f1(0)cos α+f2(0)sin α},并证明了当势函数q1(x),q2(x)为区间[0,+∞)上的实值连续函数,则L必是极限点.【期刊名称】《江苏科技大学学报(自然科学版)》【年(卷),期】2009(023)005【总页数】4页(P460-463)【关键词】奇型Dirac算式;自伴延拓;极限点【作者】王平心【作者单位】江苏科技大学,数理学院,江苏,镇江,212003【正文语种】中文【中图分类】O175.3微分算式的自伴域是微分算子研究的主要问题之一,关于正则Dirac算式的自伴域在文献[1-2]中已有了一些结果,在文献[3]中利用辛几何的方法给出正则Dirac算式的自伴域的刻画.本文将讨论区间[0,∞)上奇型Dirac算式的自伴域,对于其他的区间(-∞,b],[a,b),(a,b]情形可类似讨论.1 预备知识记一维Dirac算式为其中,为区间[0,+∞)上的实连续函数,设φ(x,λ),ϑ(x,λ)分别是下列Cauchy问题的解(1)下面说明φ(x,λ),ϑ(x,λ)是线性无关的;事实上,记为Wronskian行列式,则(2)即φ(x,λ),ϑ(x,λ)是线性无关的,故方程Ly=λy的解除φ(x,λ)外都能表达成ϑ(x,λ)+lφ(x,λ)的形式.考虑问题Ly=λy在点b∈[0,+∞)处满足边值y1(b)cosβ+y2(b)sinβ=0 (0≤β<π)的解,即[ϑ1(x,λ)+lφ1(x,λ)]cosβ+[ϑ2(x,λ)+lφ2(x,λ)]sinβ=0则l(λ)满足若λ是l(λ)的极点,则φ(x,λ)满足所以λ是T(L)|[0,b]的自伴延拓的特征值,因此λ是实数,故只要Im λ≠0,l(λ)就有意义,而且由于φ(x,λ),ϑ(x,λ)都是λ的整函数,则l(λ)是λ的亚纯函数,且令A=ϑ1(b,λ),B=ϑ2(b,λ),C=φ1(b,λ),D=φ2(b,λ),则由于{ϑ,φ}=-1,所以是一个分式线性变换,它把z平面和圆变成l平面上的直线和圆.当β从0~π变化时,z=cot β跑变了实轴.定理1 若Imλ≠0,则实轴在分式线性变换下的像l是平面下的圆Cb:1) Cb的方程ϑ2) Cb的圆心3) Cb的半径4) l在Cb内的充要条件是ϑ证明同Sturm-Liouville算子[1].定理2 如果b′>b,则Cb′⊂Cb,所以{Cb|b>0}组成l平面里的圆套.证明若l在Cb上,则有ϑ而b′>b,故ϑ由定理1,l在Cb内.所以Cb′⊂Cb.这样,{Cb|b>0}组成l平面里的圆套,半径rb是严格下降函数,当b→+∞时,半径rb趋于一个非负的极限,这样就产生了2种情形:1) 极限值大于零,圆套收缩成一个圆C∞;2) 极限值等于零,圆套收缩成一个点l∞.在情形1) 中,即所以故φ∈L2[0,+∞).如果取是C∞上的一个点,则对任意的b>0,由在Cb内,因而ϑ(x,λ)+,故ϑ(x,λ)+φ(x,λ)∈L2[0,+∞),这样Ly=λy的一切解均平方可积.在情形2)中,则+∞,即φ∉L2[0,+∞),由于l∞属于所有的圆C∞,则ϑ(x,λ)+l∞φ(x,λ)∈L2[0,+∞),于是Ly=λy的两个线性无关解中有一个属于L2[0,+∞),而另一个不属于L2[0,+∞).定理3 如果对某个λ0,方程对Ly=λ0y的一切解属于L2[0,+∞),则对于任何λ∈C,Ly=λy的一切解均平方可积.定义1 若对某个λ0,方程对Ly=λ0y的一切解属于L2[0,+∞),则称L在∞是极限圆的,否则称L在∞是极限点的.2 主要结果下面考虑奇型Dirac算子的自伴域,设上的实连续函数,设D(T1(L)),D(T0(L))分别是Dirac算式的最大定义域和最小定义域,其定义见文献[2],定义算子T(L)T(L)f=Lf, f∈D(T(L)),显然T0(L)⊂⊂T1(L),因而T*(L)⊂T0(L)*=T1(L).定理4 D(T*(L))={f∈D(T1(L))|f1(0)cos α+f2(0)sin α=0}证明由共轭算子的定义,要使z(x)∈D(T*(L)),则存在z*(x)∈L2[0,+∞),使得对任意的y(x)∈D(T(L))都有(Ly,z)=(y,z*)成立,此时T*(L)(z(x))=z*(x),由于T*(L)⊂T1(L),则D(T*(L))⊂D(T1(L))且T*(L)f=T1(L)f,f∈D(T*(L)),因而(Ly,z)=(y,z*)可写成上式左端分部积分将上式变为因而要使上式对任意的y(x)∈D(T(L))成立,则只需且仅需即可,由于y(x)∈D(T(L))有紧支集,故故只需z(x)满足由y(x)∈D(T(L))满足y1(0)cosα+y2(0)sinα=0,故z(x)只需满足因而D(T*(L))={f∈D(T1(L))|f1(0)cosα+f2(0)sinα=0}定理是自伴算子.证明通过简单的验证可得T(L)是对称的,因而⊂下证⊂为此只需证是对称的,任取则因而存在{an}⊂[0,+∞),且an→∞(n→∞),使得因而有故(y,T*(L)z)=(T*(L)y,z),即是自伴算子.定理6 设其中为区间[0,+∞)上的实值连续函数,则L必是极限点的.证明任取α∈R,定义T(L)T(L)f=Lf f∈D(T(L))由的自伴性可知在L2[0,+∞)中无解.故L必是极限点的.定理7 T是T0(L)的自伴延拓的充要条件是存在实数α∈R使得D(T(L))={f∈D(T1(L))|f1(0)cosα+f2(0)sinα=0}证明充分性显然,下证必要性.设T是T0(L)的自伴延拓,由于L是极限点的,则T0(L)的亏指数是1,由自伴延拓的Calkin描述可知D(T)={f∈D(T1(L))|<f,fj>=0,j=1,2}其中fj是D(T1(L))中模D(T0(L))线性无关且<f,fj>=0的函数,若取a>0,h1,h2为实无穷次可微的向量函数Supp hi⊂[0,a]且满足则h1,h2模D(T0(L))线性无关.令f1=ωh1+δh2,只要ω,δ不全为零,f1便是模D(T0(L))线性无关的函数,由于<f1,f1>=所以,当取ω,δ满足时,f1满足<f1,f1>=0,如果令ω=a+ib,δ=c+id,其中a,b,c,d为实数,则所以存在c∈R,使得ω=cδ,从而存在α∈R,使得ωcosα+δsinα=0,而<f,f1>=这样条件<f,f1>=0就变为f1(0)cosα+f2(0)sinα=0故D(T(L))={f∈D(T1(L))|f1(0)cosα+f2(0)sinα=0}.参考文献[1] Levtian B M,Sargsjan I S. Sturm-liouville and Dirac operators[M].Soviet Union:Kluwer Academic Publishers,1991.[2] 王平心,黄振友.一维正则Dirac算子自伴域的古典刻划[J].周口师范学院学报,2006,23(2):22-24.Wang Pingxin, Huang Zhenyou.Self-adjoint domain of Dirac operator with classical method [J]. Journal of Zhoukou Normal University, 2006,23(2):22-24.(in Chinese)[3] 王平心,黄振友. Dirac算子自伴域的刻划[J].江苏科技大学学报:自然科学版,2006,20(2):37-41.Wang Pingxin, Huang Zhenyou.Self-adjoint domain of Dirac operator with symplectic geometry method [J]. Journal of Jiangsu University of Science and Technology:Natural Sciences Edition, 2006,20(2):37-41.(in Chinese) [4] Goldberg S. Unbound linear operators theory and applications [M].New York:McGraw-Hill,1966.[5] Reed M, Simon B. Methods of modern mathematical physics[M]. New York:Academic Press,1975.[6] Weidmann J. Linear operators in hilbert space[M].Berlin:Springer-Verlag,1980.[7] 胡晓燕.Dirac算子特征值的迹公式[J].郑州大学学报:理学版, 2003,35(1):16-19. Hu Xiaoyan.Dirac operator eigenvalues trace identity[J]. Journal of Zhengzhou University: Natural Science Edition, 2003,35(1):16-19.(in Chinese)[8] 朱俊逸.常型Dirac算子的谱分解[J],郑州大学学报: 理学版,2003,35(1):11-15. Zhu Junyi.The spectral resolution of constant Dirac opeator[J]. Journal of Zhengzhou University: Natural Science Edition, 2003,35(1):11-15.(in Chinese)。
物理专业英语词汇F汇总

物理专业英语词汇(F) f band f 带f center f 心f center laser f 心激光器f center maser f心微波激射器f layer f 层f value振子强度f/d ratio f/d 比face centered crystal 面心晶体face centered cubic lattice 面心立方晶格face centered cubic structure 面心立方结构face centered lattice 面心点阵factor因子factor group 剩余群facula光斑faddeev equation法捷耶夫方程faddeev popov ghost法捷耶夫波波夫鬼态fading衰退;褪色fahrenheit scale 华氏温标fahrenheit temperature scale 华氏温标fahrenheit thermometer 华氏温度计fall降低fall of potential 电压降fall time下降时间falling sphere viscometer 落球粘度计fallout放射性沉降物false image 鬼象family 族family of asteroids 小行星族family of comets 彗星族fano factor 法诺因子far field pattern 远场图样far infrared远红外区far infrared laser远红外激光器far infrared radiation 远红外卜辐射far infrared rays 远红外卜线far point 远点far ultraviolet 远紫外区far ultraviolet laser 远紫外激光器far ultraviolet radiation 紫外线辐射far ultraviolet rays 远紫夕卜线farad 法faraday法拉第faraday cage法拉第笼faraday cell 法拉第盒faraday constant 法拉第常数faraday cup法拉第笼faraday dark space 法拉第暗区faraday effect 磁致旋光faraday rotation 磁致旋光faraday tube法拉第管faraday,s law法拉第定律farvitron线振质谱仪fast迅速的fast breeder reactor 快增殖堆fast fission快中子裂变fast fission effect快中子裂变效应fast fourier transform快速傅里叶变换fast neutron 快中子fast neutron reactor 快中子堆fast nova快新星fast reactor 快中子堆fatigue 疲劳fatigue limit疲劳极限fatigue strength 疲劳强度fcc structure面心立方结构feedback 反馈feedback amplifier 反馈放大器feedback circuit 反馈电路feedback control 反馈控制feedback factor 反馈系数feedback ratio 反馈比feeder馈电线femto 飞femtometer 费密femtosecond 飞秒femtosecond region 飞秒区域fermat,s principle 费马原理fermi费密fermi acceleration 费密加速fermi age费密年龄fermi dirac statistics 费密统计法fermi distribution 费密分布fermi energy 费密能fermi gas费密气体fermi glass费密玻璃fermi hole费密空穴fermi interaction 费密相互酌fermi level费密能级fermi liquid费密液体fermi particle 费密子fermi pasta ulam problem费密巴斯德乌拉姆问题fermi resonance 费密共振fermi selection rule 费密选择定则fermi statistics费密统计法fermi surface 费密面fermi temperature 费密温度fermi transition 费密跃迁fermi's golden rule费密黄金定律fermiology费密面学fermion费密子fermionic dark matter 费密子暗物质fermium 镄ferrielectricity 亚电性ferrimagnetic resonance 亚铁磁共振ferrimagnetism铁氧体磁性ferrite铁氧体ferrite magnetostrictive vibrator 铁氧体磁致伸缩振子ferro resonance 铁磁共振ferroelastic phase transition 铁弹性相变ferroelasticity 铁弹性ferroelectric 铁电的ferroelectric domain 铁电畴ferroelectric mode 铁电模ferroelectric phase transition 铁电相变ferroelectric semiconductor 铁电半导体ferroelectric substance 铁电性材料ferroelectricity 铁电性ferrofluid 铁磁铃ferromagnet 铁磁体ferromagnetic 铁磁的ferromagnetic dielectrics 铁磁电介质ferromagnetic fluid 铁磁铃ferromagnetic material 铁磁性材料ferromagnetic resonance 铁磁共振ferromagnetic substance 铁磁性材料ferromagnetic superconductor 铁磁超导体ferromagnetic thin film 铁磁薄膜ferromagnetism 铁磁性feynman diagram 费因曼图feynman path integral费因曼的路径积分feynman spectrum 费因曼谱ffag synchrotron固定场交变梯度回旋加速器fiber纤维fiber bundle 纤维丛fiber electrometer 悬丝静电计fiber laser纤维激光器fiber optics纤维光学fiber structure 纤维结构fibonacci semiconductor superlattice 菲博纳奇半导体超晶格fibril小纤维fibril structure 纤维结构fick,s law斐克定律fictitious spin quantum number 假想自旋量子数fictitious year 假年field场;体field adsorption 场吸附field current 励磁电流field density 场密度field desorption 场致退吸field distortion 场畸变field distribution 场的分布field effect transistor 场效应晶体管field electron emission 场致电子发射field emission 场致发射field emission microscope场致发射显微镜;自动电子显微镜field emitted electron 场致发射电子field equation 场方程field intensity 场强field ion microscope场致离子显微镜field lens 场镜field magnet 场磁铁field of forces 力场field of gravity 重力场field of view 视场field of vision 视场field operator 场算符field particle 场粒子field quantum 场量子field stop 场栏field strength 场强field structure 场结构field theory 场论fifth force第五种力fifth fundamental force 第五种基本力figure图形figure of merit 优值figure of noise 噪声指数file文件filled band 满带filled level满带能级filled shell 满壳层film软片film badge胶片剂量计film boiling膜态沸腾film dosimeter胶片剂量计film type condensation 膜状凝结filter滤器滤光器滤波器filtration 过滤final product最终产物final state interaction 终态相互酌final vacuum极限真空finder取景器finding telescope 寻星镜fine particle 微粒子fine structure 精细结构fine structure constant 精细结构常数fine structure splitting 精细结构劈裂finesse 锐度finite difference method 差分法finite element method 有限元法finite group 有限群finite universe 有限宇宙fireball 火球fireball model 火球模型first harmonics 基波first integral 初积分first law of thermodynamics 热力学第一定律first order phase transition 一级相转变first point of aries 春分点first quarter 上弦first resonance 一次共振first sound第一次声波fish finder鱼群探测器fissible可裂变的fissile可裂变的fissile nucleus可分裂的核fissility可分变性fission 分裂fission chain reaction 裂变链式反应fission chamber 裂变室fission counter 裂变计数器fission energy 裂变能量fission event裂变事件fission fragment 裂变碎片fission neutron 裂变中子fission yield裂变产额fissionable可裂变的fissionable nucleus 可裂变核 fissioning isomer 裂变同质异能素 fit适合five minute oscillations 五分钟振动 fixation 定影fixed capacitor固定电容器fixed point 定点fixed resistor固定电阻器fixed star 恒星fixing定影fixing solution 定影液fizeau fringe 菲佐条纹fizeau interferometer 菲佐干涉仪flame火焰flame photometer 火焰光度计flame photometry火焰光度法flame spectrum 火焰光谱flare太阳耀斑flare star 耀星flash闪光flash of light 闪光flash photolysis 闪烁光解flash spectrum 闪光光谱flat surface 平面flatness problem平坦性问题flattening 扁率flavor 味flexibility 挠性flexible polymer挠性聚合体flexural rigidity 弯曲刚度flexural strength 抗挠强度flexure 挠曲flexure vibration 弯曲振动flicker 闪烁flicker effect 闪烁效应flicker noise闪变噪声flicker photometer 闪烁光度计flight path飞越距离flight time飞越时间flint glass火石玻璃flip flop触发器flip flop circuit双稳态触发电路floating body 浮体floating point representation 浮点表示floating zone melting method 浮区熔炼法flocculation 凝聚flood and ebb 潮汐flooding 溢流floppy disk 软磁盘flow 流flow birefringence 怜双折射flow counter柳式计数管flow dichroism 怜二色性flow equation 怜方程flow parameter 怜参数flow pattern 镣flow proportional counter 怜正比计数器flow rate 量flow visualization 辽视化flowmeter 量计fluctuating force 涨落力fluctuation 起伏fluctuation dissipation theorem 涨落耗散定理fluctuon起伏量子fluent变数fluid 铃fluid dynamics 铃动力学fluid elasticity 水弹性fluid model 铃模型fluidal 铃的fluidic 铃的fluidity 怜性fluorescence 荧光fluorescence center 荧光中心fluorescence dosimeter 荧光剂量计fluorescence spectrophotometer 荧光分光光度计fluorescence spectrum 荧光光谱fluorescence yield 荧光产额fluorescent 萤光的fluorescent indicator tube 荧光指示管fluorescent lamp 荧光灯fluorescent material 萤光材料fluorescent radiation 特狰射fluorescent scattering 荧光散射fluorescent screen 荧光屏fluorescent x rays 荧光 x 射线fluorimeter 荧光计fluorine 氟fluorite structure 萤石型结构fluorography荧光照相法fluorometer 荧光计fluorometric analysis 荧光分析fluoroscope 荧光镜fluoroscopy荧光检查法fluorspar structure 萤石型结构flux通量flux creep磁通量蠕变flux density通量密度flux flow磁通量流flux jump磁通量跃变flux method 熔剂法flux motion 磁通量运动flux of energy 能通量flux of light 光通量flux of radiation 辐射通量flux pinning 通量锁住flux pump 通量泵flux quantization 磁通量量子化flux quantum磁通量子fluxmeter磁通计fluxoid磁通量子fluxon磁通量子fly苍蝇座flying spot electron microscope 扫描电子显微镜fm receiver档接受器focal distance 焦星巨focal length 焦星巨focal line 焦线focal plane 焦面focal point 焦点focal power 光焦度focal surface 焦曲面fock representation 福克表示fock space福克空间focometer焦距计focon聚焦锥focus焦点focused ion beam聚焦离子束focusing 倒focusing camera 倒照相机focusing coil聚焦线圈focusing cone 聚焦锥focusing lens 聚焦透镜focusing quadrupole magnet 聚焦四极磁铁focuson聚焦子foil 箔fokker planck equation 福克普朗克方程follow up control 随动控制foot pound second system 英尺磅秒单位制forbidden禁戒的forbidden band 禁带forbidden decay 禁戒衰变forbidden line 禁线forbidden lines in astrophysics 天体物理学中的禁线forbidden reflection 禁戒反射forbidden transition 禁戒跃迁forbiddenness 禁戒force 力force function 力函数force of attraction 弓|力force of gravity 重力force of inertia 惯性力force of repulsion 斥力force of rolling friction 滚动摩擦力force of sliding friction 滑动摩擦力force polygon力的多边形force triangle力的三角形forced circulation 强制循环forced convection 强制对流forced emission 强迫发射forced oscillations 受迫振荡forced vibration 受迫振荡forced vortex 强迫涡流fore vacuum 前级真空forecast 预报forecast of solar activity 太阳活动预告foreign atom 杂质原子forepump预备真空泵fork mounting 叉式装置form drag 型阻form factor形状因子formant共振峰formation of order 秩序形成formula 公式formulation 公式化fornax天炉座fortran程序语言forward scattering 前方散射foucault currents 涡电流foucault knife edge test 傅科刀口检验foucault's pendulum 傅科摆fountain effect 喷水效应four current 四维电流four dimensional space 四维空间four dimensional structure of the universe 宇宙四维结构four dimensionality 四维性four factor formula 四因子公式four force四维力four momentum 四维动量four potential 四维势four terminal network 四端网络four vector 四维矢four velocity四维速度four wave mixing 四波混合fourier component 谐波分量fourier integral傅里叶积分fourier number 傅里叶数fourier series傅里叶级数fourier spectroscopy 傅里叶光谱学fourier transform hologram傅里叶变换全息图fourier transform spectrometer 傅里叶光谱仪fourier transformation 傅里叶变换fourth sound第四次声波fractal 分形fractal dimension 分形维数fractional charge 分数电荷fractional crystallization 分级结晶fractional quantum hall effect 分数量子霍尔效应fracton分形子fracture 破裂fracture mechanics 断裂力学fragility 脆性frame antenna环形天线frame of reference 参考系francium 钫franck condon principle 富兰克康登原理franck hertz,s experiment 富兰克赫兹实验 frank read source弗朗克里德源franklin富兰克林fraunhofer diffraction 夫琅和费衍射fraunhofer hologram夫琅和费全息图fraunhofer line夫琅和费谱线fre量子free自由的free charge自由电荷free convection自由对流自然对流free electron自由电子free electron laser自由电子激光器free energy 自由能free energy of activation 激活的自由能free field自由场free free transition 自由自由跃迁free group自由群free gyroscope自由陀螺仪free motion自由运动free neutron自由中子free oscillation 自由振动free path自由程free pendulum 自由摆free rotation自由旋转free space自由空间free state自由态free surface 自由面free system 自由系free vibration 自由振动free volume自由体积free volume theory自由体积理论freedom 自由freezing 凝固freezing mixture 冷冻剂freezing point 凝固点frenkel defect夫伦克尔缺陷frenkel exciton 夫伦克尔激子frequency 频率frequency analysis 频率分析frequency band 频带frequency characteristic 频率特性frequency converter 变频器frequency converter tube 变频管frequency counter 频率计数器frequency divider 分频器frequency domain 频域frequency factor 频率因子frequency meter 频率计frequency modulation 档frequency multiplier倍频器频率倍增器frequency range 频率范围frequency response 频率响应frequency response method 频率特性法frequency shift 移频frequency spectrum 频谱frequency stability 频率稳定度frequency stabilized laser 稳频激光器frequency transfer function 频率传递函数fresnel diffraction 菲涅耳衍射fresnel half period zones 菲涅耳半周期带fresnel hologram菲涅耳全息图fresnel lens菲涅耳透镜fresnel prism 菲涅耳棱镜fresnel rhomb菲涅耳斜方系fresnel zone 菲涅耳带fresnel,s biprism菲涅耳双棱镜fresnel's dragging coefficient 菲涅耳曳引系数fresnel,s zone plate 菲涅耳波带片friction 摩擦friction coefficient 摩擦系数friction cone 摩擦锥friction layer 摩擦层friction loss摩擦损失friction of fluid lubrication 液体润滑摩擦frictional drag 摩擦阻力frictional electricity 摩擦电frictional force 摩擦力frictional oscillation 摩擦振动frictional resistance 摩擦阻力 friedel sum rule弗里德尔的求和定则 friedmann equation 弗里德曼方程friedmann universe弗里德曼宇宙frigorimeter 深冷温度计fringes with white light 白光干涉条纹froude number 弗劳德数frozen in magnetic field 冻结磁场frustrated total internal reflection 衰减全内反射frustration 抑止ft value ft 值fuel assembly燃料组件fuel cell燃料电池fuel cycle燃料循环fuel regeneration 燃料再生fuel reprocessing 燃料再生fuel rod燃料元件棒fugacity挥发性fulcrum 支点full load 满载full moon 望月full wave rectification 全波整流full width at half maximum 半宽度fullerene球壳状碳分子function 函数functional 泛函functional analysis 泛函分析functional ceramics 机能陶瓷functional derivative 泛函微分fundamental absorption 基本吸收fundamental catalog 基本星表fundamental constants 基本常数fundamental doublet 基本双重线fundamental frequency 基频率fundamental interaction 基本相互酌fundamental law 基本定律fundamental magnitude 基本量fundamental mode 关Bfundamental particle 基础粒子fundamental research 基础研究fundamental series 伯格曼系fundamental star 基本星fundamental theorem 基本定理fundamental tone 基音fundamental unit 基本单位furnace 炉furry,s theorem 弗里定理fuse熔断器保险丝fused quartz 熔融石英fusible alloy易熔合金fusing point 熔点fusion熔化fusion fission hybrid reactor核聚变裂变混合反应堆fusion point 熔点fusion reaction 聚变反应fusion reactor 热核堆fusion temperature 聚变温度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a rXiv:h ep-th/989115v116Se p1998PATH INTEGRAL FOR THE DIRAC EQUATION J.POLONYI Laboratory of Theoretical Physics,Louis Pasteur University 3rue de l’Universit´e 67087Strasbourg,Cedex,France and Department of Atomic Physics,L.E¨o tv¨o s University Puskin u.5-71088Budapest,Hungary E-mail:polonyi@fresnel.u-strasbg.fr A path integral representation is given for the solutions of the 3+1dimensional Dirac equation.The regularity of the trajectories,the non-relativistic limit and the semiclassical approximation are briefly mentioned.There are different integral or sum representations for the solution of the Dirac equation.The summation over trajectories on 1+1dimensional lattice 1can be generalized by the help of the Grassman variables 2for 3+1dimensions 3.The method presented here 4has the advantage that the integration is over the real trajectories in the continuous three-space,just as in the case of the non-relativistic Schr¨o dinger equation.The disadvantage is that the spin and the chirality flips are still described by spinors so the integrand of the path integral consists of the product of 4×4matrices.But this complication can be avoided and the c-number integration recovered by means of additional compact variables 5.We start with massless chiral fermions whose equation of motion is (∂0+c∂·σ)φ=0.The ¯h -independence reflects that the causality is maintained even on the level of the quantum fluctuations.We introduce the infinitesimal time propagator G (x,y ;∆τ)=e i A (x,y ;∆τ)defined by φ(x,τ+∆τ)= dyG (x,y ;∆τ)φ(y,τ),(1)where τ=tc .The choice of the action A (x,y ;∆τ)can be motivated in the following manner:(i)We expect a self reproducible propagator,e i A (x,y ;τ1+τ2)= dze i A (x,z ;τ1)e i A (z,y ;τ2),(2)what suggests a quadratic dependence of A in the coordinates.(ii)Transla-tional invariance further restricts the propagator toA (x,y ;∆τ)=1(iii)Rotational symmetry imposes A jk=Aδj,k and that the vector B j should be parallel to the spin,B j≈σj.(iv)We want to keep the massless propagator ¯h-independent so the only choice is A=a/∆τ2and B j=bσj/∆τ,where a and b are dimensionless constants.The substitution of this propagator into (1)shows that the desired equation of motion is recovered in the continuum limit,∆τ→0for a=b.The chiral amplitudeφ(x)is thus evolved by the path integralG(x,y;τ)= j N−1 dx j e iκ 1∆τ)2−x−y∆τ dτ 1dτ)2−dx(∆τ1¯h p·σ),2∆τe−iτG(x,y;τ)=N−1e iκτ2(x−y∆τ·σ .(5) The correct spectrum E(p)=±|p|is recovered in the continuum limit accord-ing to˜G(p,τ).G(x,y;τ)shows that whenever the particle wanders offthe light cone the diverging phase of the exponent cancels the non-causal amplitude.The equation of motion for massive fermions in the presence of an external potential Aµ(x),i∂τψ=[α·(−i∂+e/c¯h A)+β/λ−e/c¯h A0]ψwhereλ=¯h/mc, is generated by the path integralG(x,y;τ)= D[x(t)]T e iκ2(dx dτ·α e i dτ[eU(p)e i¯hβtmc2 mc)2U†(p),(7)(2π¯h)3where U(p)describes a basis transformation,so it reproduces the usual rela-tivistic spectrum.The non-relativistic limit appears as a crossover between the scaling laws< ∆xat∆τ≈λ.This result can be made more plausible my noting that that the only dimensional parameter for the average velocity in the relativistic region where mass is negligible is c.Thus the trajectories of our path integral become smoother then their non-relativistic counterpart,suggesting that the fractal-like propagation of thefirst quantized non-relativistic quantum mechanics can be embedded into a smoother,more”classical”relativistic quantum dynamics.In order to obtain the saddle point approximation consider the amplitudeD[x(t)]η†f T e iκ2(dx dτ·α e i dτ[eδx(τ−∆τ)=0(10) what can be written asx(τ)+x(τ−2∆τ)−2x(τ−∆τ)η†f G0(x,y;τ)ηi,(11)whereF(τ)=12∂γ0A/+S(τ)T(τ)·αU(τ)(12)−e i∆τ(γ0A/−β/λ) L(τ−∆τ)·α−∆τ∆τ,L jk(τ)=˙x j(τ)˙x k(τ)κ|˙x(τ)|(14)and G0is the integrand of(9)evaluated at the saddle point.Wefind that the saddle point trajectory depends on the initial andfinal spinors.Furthermore, the presence of the term O(˙x2)in the action is needed for the recovery of the usual saddle point structure.In fact,the action O(˙x)would yield one saddle3point trajectory for each initial coordinate in contrast to the non-relativistic limit where the initial coordinate and velocity are needed to specify the saddle point.For a given initial coordinate x(τ)and velocity˙x(τ+∆τ)one can solve (11)for x(τ+2∆τ).The repetition of this procedure yields the saddle point trajectory corresponding to a given initial coordinate and velocity.Since the integration over real trajectories with a c-number integrand treats fermions in the same footing as bosons one canfinally develop the same non-perturbative methods for both cases.This is the point where we canfix the parameterκwhich does not influence the expectation values in the continuum limit.It is easy to see that the straight line trajectory satisfies(11)for A=0whenκ=nπτ/|x−y|.Since the average velocity at the cutoffscale is c for∆τ→0the choiceκ=πgives the renormalized path integral which is dominated by as smooth trajectories as possible.Finally we mention that the term O(˙x2)in the action is reminiscent of the Wilson term for lattice fermions because it suppresses the unwanted lattice-copies.But it is given in thefirst quantized formalism and retains chiral invariance.Actually there is no problem of giving a space-time lattice regulated form of our path integral which avoids the Nielsen-Ninomiya no-go theorem6. The passage over the second quantized stage is quite a challenge.According to the spin-statistics theorem the phase factors corresponding to the rotation by2πand the exchange of two equivalent particles are the same.Since the former is built in our path integral formalism one expects to achieve the correct Green functions for fermions without the use of Grassman variables.Another interesting feature is that the term O(˙x2)in the action should generate a chiral invariant Wilson term.References1.R.P.Feynman,A.R.Hibbs,Quantum Mechanics and Path Integrals,(McGraw-Hill,N.Y.),1965;T.Jacobson,L.S.Schulman,J.of Phys.A 17,375(1984);B.Gaveau,T.Jacobson,M.Kac,L.S.Schulman,Phys.Rev.Lett.53,419(1984).2.B.Gaveau,L.S.Schulman,Phys.Rev.D36,1135(1987);T.Miura,Progr.of Th.Phys.61,1521(1979);D.M.Gitman,S.I.Zlatev,Phys.Rev.D55,7701(1997).3.See L.Schulman’s contribution to this Proceedings.4.P.Gosselin,J.Polonyi,Ann.Phys.267,(1998).5.Work in progress.6.H.B.Nielsen,M.Ninomiya,Nucl.Phys.185,20(1981).4。