2018年秋九年级数学上册第22章一元二次方程22.3实践与探索第1课时用一元二次方程解决图形面积问
22.3 实践与探索 课件 2024-2025学年数学华东师大版九年级上册

例如:如图,将一块正方形的铁皮四角各剪去一个边长
为4 cm的小正方形,做成一个无盖的盒子.已知盒子的
容积是400 cm3,求原铁皮的边长.若设原铁皮的边长为 x
cm,则可得方程为 ( x -8)2×4=400 .
知识导航
3. 列一元二次方程解决平均增长率问题,可以运用公式
几个人?
解:(2)根据题意,得1+ x + x (1+ x )=144,
整理,得 x2+2 x -143=0,
解得 x1=11, x2=-13(不合题意,舍去).
答:在每轮传染中,平均一个人传染了11个人.
典例导思
(3)如果按照这样的传染速度,经过三轮传染后,一
共有多少人感染德尔塔病毒?
解:(3)144+11×144=1 728(人).
答:校图书馆能接纳第四个月的进馆人次.
典例导思
[知识总结]增长(降低)率的问题利用公式 a (1± x )2
= b [其中 a 为初始数量, b 为增(或减)后的数量].
典例导思
4. 两年前生产某种药品的成本是65 400元,现在生产该
种药品的成本是55 300元.设该种药品成本的年平均下降
率为 x ,则可列方程为( D )
答:每件衬衫应降价20元.
典例导思
题型二 列一元二次方程解决其他问题
在某篮球邀请赛中,参赛的每两个队之间都要比
赛一场,共比赛36场.设有 x 个队参赛,根据题意,可列
方程为( A )
A. x ( x -1)=36
C. x ( x -1)=36
B. x ( x +1)=36
D. x ( x +1)=36
华师大九上教案第22章22.3 .1 实践与探索(1,2,3-

22.3 .1实践与探索(一)教学目标1、学生在已有的一元二次方程的学习基础上,能够对生活中的实际工资问题进行数学建模解决问题,从而进一步体会方程是刻画现实世界的一个有效数学模型。
2、让学生积极主动参与课堂自主探究和合作交流,并在其中体验发现问题、提出问题及解决问题的全过程,培养学生的数学应用能力。
3、学生感受数学的严谨性,形成实事求是的态度及进行质疑和激发思考的习惯;获得成功的体验和克服困难的经历,增进应用数学的自信心。
重点难点1、重点:利用一元二次方程对实际问题进行数学建模,从而解决实际问题。
2、难点:学生分析方程的解,自主探索得到解决实际问题的最佳方案。
教学过程一、巩固旧知识1、解方程2708250x x -+=,并叙述解一元二次方程的解法。
2、说说你对实践问题的解决时,有何经验,有何体会?二、创设问题情境小明把一张边长为10cm 的正方形硬纸板的四周剪去一个同样大小的正方形,再折合成一个无盖的长方形盒子。
(1)如果要求长方体的底面面积为81cm 2,那么剪去的正方形边长为多少?(2)如果按下表列出的长方体底面面积的数据要求,那么剪去的正方形边长会发生什么样的变化?折合成的长方体的体积又会发生什么样的变化?三、尝试解决问题1、长方形的底面、正方形的边长与正方形硬纸板中的什么量有关系?(长方形的底面正方形的边长与正方形硬纸板的边长有关系)2、长方形的底面正方形的边长与正方形硬纸板的边长存在什么关系?(长方形的底面正方形的边长等于正方形硬纸板的边长减去剪去的小正方形边长的2倍)3、你能否用数量关系表示出这种关系呢?并求出剪去的小正方形的边长。
解:设剪去的正方形边长为xcm ,依题意得:2(10)81x -=109x -=±11x =,29x =因为正方形硬纸板的边长为10cm ,所以剪去的正方形边长为1cm 。
4、请问长方体的高与正方形硬纸板中的什么量有关系?求出此时长方体的体积。
(长方体的高与正方形硬纸板式剪去的小正方形的边长一样;体积为381181cm ⨯=)5、完成表格,与你的同伴一起交流,并讨论剪去的正方形边长发生什么样的变化?折合成的长方体的体积又会发生什么样的变化?6、在你观察到的变化中、你感到折合而成的长方体的体积会不会有最大的情况?以剪去的正方形的边长为自变量,折合而成的长方体体积为函数,并在直角坐标系中画出相应的点,看看与你的感觉是否一致。
华师版九年级数学上册作业课件第22章一元二次方程 实践与探索 第1课时 列一元二次方程解应用题(一)

第22章 一元二次方程
22.3 实践与探索
第1课时 列一元二次方程解应用题(一)
1.(4分)某小区在规划设计时,准备在两幢楼房之间,设置一块面积为900 平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可 列方程为( B )
A.x(x-10)=900 B.x(x+10)=900 C.10(x+10)=900 D.2[x+(x+10)]=900
解:设茶园垂直于墙的一边长为x m,则另一边的长度为(69+1-2x)m, 根据题意,得
x(69+1-2x)= 600, 整理,得x2-35x+300=0, 解得x1=15,x2=20. 当x=15时,70-2x=40>35,不符合题意,舍去; 当x=20时,70-2x=30,符合题意. 答:这个茶园的长和宽分别为30 m,20 m
13.(12分)在我市进行“三改一拆”治理违建的过程中,某小区拆除了自 建房,改建绿地.如图,自建房占地是边长是8 m的正方形ABCD,改建的绿 地是矩形AEFG,其中点E在AB上,点G在AD的延长线上,且DG=2BE,如 果设BE的长为x(单位:m).
(1)用含有x的代数式表示绿地AEFG的面积; (2)当x取何值时,绿地AEFG的面积为70 m2? 解:(1)S矩形AEFG=AE·AG=(8-x)(8+2x)=-2x2+8x+64(0<x<8) (2)由题意得-2x2+8x+64=70,解得x=1或x=3,所以当x取1 m或3 m时, 绿地AEFG的面积为70 m2
(2)设甜甜在2020年六一收到微信红包为y元,依题意得2y+34+y=484, 解得y=150,所以484-150=334(元).答:甜甜在2020年六一收到微信红包为 150元,她妹妹收到微信红包为334元
华师版数学九年级上册 22.3实践与探索

问题3:一个两位数,十位数字为 a,个位数字为 b, 则这个两位数是 10a + b .
问题4:一个三位数,百位 x,十位 y,个位 z,表 示为 100x + 10y + z .
华师版数学九年级上册
第22章 一元二次方程
22.3 实践与探索
第 1 课时 利用一元二次方程解决图形、数字问题
观察与思考
问题1 解一元二次方程有哪些方法?
直接开平方法、配方法、公式法、因式分解法. 问题2 解方程:
(80-2x)(60-2x)=1500
(80-2x)(60-2x)=1500 解:(1) 先把方程化为一元二次方程的一般形式
2.地震牵动着全国人民的心,某单位开展了“一 方有难,八方支援”赈灾捐款活动.第一天收到捐款 10 000 元,第三天收到捐款 12 100元.
(1)如果第二天、第三天收到捐款的增长率相同, 求捐款的增长率;
(2)按照(1)中收到捐款的增长速度,第四天该单位 能收到多少捐款?
解:(1)设捐款增长率为 x,则依题意列方程 10 000(1+x)2=12 100,解方程,得 x1=-2.1(不合题意,舍去),x2=0.1=10%. 答:捐款的增长率为 10%; (2)12 100×(1+10%)=13 310(元). 答:按照(1)中收到捐款的增长速度,第四天该单位能收 到捐款 13 310元.
典例精析
例 两个连续奇数的积为 63,求这两个数.
解:设两个奇数为 x 和 x + 2, x(x + 2) = 63
22.3.1实践与探索

22.3 实践与探究第1课时一元二次方程的应用(图形与数字)典案一:教学设计课题第1课时一元二次方程的应用(图形与数字)授课人教学目标知识技能1.能根据面积问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.2.能根据具体问题的实际意义,检验结果是否合理.数学思考经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述.问题解决通过解决封面设计与草坪规划的实际问题,学会将实际应用问题转化为数学问题,体验解决问题策略的多样性,发展实践应用意识.情感态度通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.教学重点列一元二次方程解有关面积问题的应用题.教学难点发现面积问题中的等量关系.授课类型新授课课时教具多媒体教学活动教学步骤师生活动设计意图回顾提出问题:1.一元二次方程有哪些解法?2.回忆一元二次方程的根的情况.3.在列方程解应用题时,一般步骤有哪些?4.一个两位数,十位上的数字比个位上的数字小1,十位上的数字与个位上的数字的和是这个两位数的0.2倍.求这个两位数.解:设个位上的数字是x,十位上的数字是y.根据题意列出方程组为学生创设一种回忆、思考的情景,为本课的导入及探究活动做好铺垫.⎩⎪⎨⎪⎧x =y +1,x +y =(10y +x )×0.2, 解得x =________,y =________. 检验后知,这个两位数是________.教师板书课题:一元二次方程的应用(图形与数字).活动 一: 创设 情境 导入 新课【课堂引入】要设计一本书的封面,封面长27 cm 、宽21 cm ,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1 cm )?图22-3-8问题:(1)本题中有哪些数量关系?(2)如何理解“正中央是一个与整个封面长宽比例相同的矩形”?(3)如何利用已知的数量关系选取未知数并列出方程? (4)解方程并得出结论,对比几种方法各有什么特点? 利用生活中常见的问题,激发学生的探究欲望,有利于学生主动参与,感受数学来源于生活,并服务于生活.活动 二: 实践 探究 交流新知解答课题:教师提出问题(1),学生分析,请一位同学回答,教师在题目中指出数量关系;教师提出问题(2),学生思考,请一位同学回答,可举简单例子说明,最后引导学生得出正中央矩形的长宽比是9∶7.教师提出问题(3),学生分组讨论,选代表上台演示、回答,每位同学要着重分析对题目中的数量关系的处理方法.其中,设左右边衬和上下边衬为7x 和9x 的方法,教师要配合图形的平移加以电脑演示.教师提出问题(4),学生分组,分别按问题(3)中所列的方程来解答,选代表展示解答过程,并讲解解题过程和应注意的问题.1.重视培养学生读题和审题的能力;2.把实际问题符号化,为应用数学知识解决问题创造条件.3.培养学生树立方程意识,渗透方程思想.在活动中,教师应注意:(1)学生对几何图形的分析能力;(2)学生在未知数的选择上,能否根据情况,灵活处理;(3)在讨论中能否互相合作;(4)解答一元二次方程的能力;(5)学生回答问题时的语言表达是否准确.活动三:开放训练体现应用【应用举例】例1有一块矩形的铁皮,长100 cm,宽50 cm,在它的四周各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖的长方体盒子,如果要制作的无盖长方体盒子的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?师生活动:教师引导学生进行审题,确定好问题类型,然后指导学生按照图形面积公式进行解答.学生自主解设并列方程,进行解答,教师做好点评和纠错.例2两个连续奇数的积等于195,求两个奇数.师生讨论作答,设这两个连续奇数为x,x+2,根据已知,得x(x+2)=195,整理,得x2+2x-195=0,解得x1=13,x2=-15,所以这两个奇数是13,15或-15,-13.应用举例使学生深刻体会数学知识应用的价值,由此提高学生学习数学的兴趣和用数学的意识.【拓展提升】例3如图22-3-9,某中学为方便师生活动,准备在长30 m、宽20 m的矩形草坪上修两横两纵四条小路,横纵路的宽度之比为3∶2,若使余下的草坪面积是原来草坪面积的四分之三,则路宽应为多少?图22-3-9拓展提升环节,学生通过探究与讨论,感受了对题目中的数量关系进行师生活动:教师提出问题:(1)本题中有哪些数量关系?(2)由这些数量关系还能得出什么新的结论?你想如何利用这些数量关系?为什么?如何列方程?(3)有什么方法使本题易于解决?教师引导学生进行交流、讨论,确定出解决问题的方法,并适时点拨、提示,指导学生进行解答.适当的转变对解题的影响,活跃了解题思路.活动四:课堂总结反思【达标测评】1.用一条长为40 cm的绳子围成一个面积为a cm2的长方形,a的值不可能是()A.20B.40C.100D.1202.如图22-3-10,在宽为20米、长为30米的矩形地面四周修建同样宽的道路,余下部分作为耕地.若耕地面积需要551平方米,则修建的路宽应为()A.0.5米B.1米C.1.5米D.2米图22-3-10图22-3-113.如图22-3-11是长方形鸡场平面示意图,一边靠墙(墙长18 m),另外三面用竹篱笆围成,若竹篱笆总长为35 m,所围的面积为150 m2,则此长方形鸡场的长、宽分别为多少?4.一块长28 cm、宽20 cm的长方形纸片,要在它的四角截去四个相等的小正方形,然后折成一个无盖的长方体盒子,使它的底面积为180 cm2,求截去的小正方形的边长.5.已知一个数和它的一半的平方和等于5,求这个数.学生进行当堂检测,完成后,教师进行批阅、点评、讲解.通过设置达标测评,进一步巩固所学新知,同时检测学习效果,做到“堂堂清”.1.课堂总结:(1)本节课主要学习了哪些知识?学习了哪些数学思想和方法?(2)说一说本节课你还有哪些疑惑.教师总结:面积应用题的解答主要是利用面积公式列方程.2.布置作业:课本第40页练习第1题.指导学生养成系统整理知识的好习惯,加强教学反思,进一步提高教学效果.【知识网络】提纲挈领,重点突出.【教学反思】①[授课流程反思]在探究新知环节中,由于问题设置较为复杂,所以教师做好必要的引导是关键,帮助学生分析图形之间的比例关系,使学生清晰认识问题.在课堂训练环节中,学生能够顺利地解答,实现了高效课堂.②[讲授效果反思]引导学生注意以下几点:(1)面积问题考虑面积公式;(2)复杂图形的面积要进行分割或填充;(3)考虑结果的正确性.③[师生互动反思]师生交流过程中,学生对于面积问题有较深的理解,基础好,列方程解答较为简便,教师对于过程中的个别问题可交给学生讨论、解答.④[习题反思]好题题号______________________________________错题题号______________________________________反思,更进一步提升.典案二:导学设计学习目标:1.使学生掌握列方程解应用题中写“关系式”及找相等关系列方程方法;2.使学生理解列方程实质在于会用含未知数的代数式表示题目里的关系式;3.采用对面积的割补、移动的方法,培养学生灵活运用的能力.重点和难点:认真审题,分析题中数量关系,适当设未知数,寻找等量关系,列方程是重点也是难点.学习过程:一、创设情境1.写出本节课的课题:一元二次方程的应用.2.请同学们回忆并回答解一元一次方程应用题的一般步骤:3.解一元二次方程的应用题的步骤与解一元一次方程应用题的步骤一样.我们先来解决§22.1的问题1,然后总结一些规律或应注意事项.二、探究归纳例1 绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,则绿地的长和宽各为多少?分析我们已经知道可以运用方程解决实际问题.现设长方形绿地宽为x米,不难列出方程:三、实践应用例2如图1,在宽为20米、长为32米的矩形地面上,修筑同样宽的两条互相垂直的道路,余下部分作为耕地,要使耕地面积为 540米2,道路的宽应为多少?分析此题的相等关系是矩形面积减去道路面积等于540米2.解法1如图2,设道路的宽为x米,则横向的路面面积为______.纵向的路面面积为______.所列的方程是不是32×20-(32x+20x)=540?启发学生思考,务必把这一点弄明白!解法2 利用“图形平行移动”的道理,把纵、横两条路移动一下,使列方程容易些,(目的是求出路面的宽,至于实际施工,仍可按原图的位置修路)如图3,设路宽为x米,耕地矩形的长(横向)为______.耕地矩形的宽(纵向)为______.例3 如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方米.求截去正方形的边长.分析 设截去正方形的边长为x 厘米后,关键在于列出底面(图示虚线部分)长和宽的代数式.结合图示和原有长方形的长和宽,不难得出这一代数式.解 设截去正方形的边长为x 厘米,根据题意,得练习:1.学生会准备举办一次摄影展览,在每张长和宽分别为18厘米和12厘米的长方形相片周围镶上一圈等宽的彩纸.经试验,彩纸面积为相片面积的三分之二时较美观,求镶上彩纸条的宽(精确到0.1厘米).2.竖直上抛物体的高度h 和时间t 符合关系式2021gt t v h -=,其中重力加速度g 以10米/秒2计算.爆竹点燃后以初速度v 0=20米/秒上升,问经过多少时间爆竹离地15米?四、归纳小结 1.列方程解应用题的步骤是:2.面积问题常要用到割、补、运动等技法.例2中,纵、横两条路有一块重叠的面积最容易忽略,解法2采用了运动的办法,是一种灵活解题的能力.总之:在应用一元二次方程解实际问题时,也像以前学习一元一次方程一样,要注意分析题意,抓住主要的数量关系,列出方程的解之后,要注意检验是否符合题意,然后得到原问题的解答.五、作业1.学校课外生物小组的试验园地是一块长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为600平方米,求小道的宽(精确到0.1米).2.学校准备在图书馆后面的场地边建一个面积为50平方米的长方形自行车棚.一边利用图书馆的后墙,并利用已有总长为25米的铁围栏.请你设计,如何搭建较适合?3.要在某正方形广场靠墙的一边开辟一条宽4米的绿化带,使余下部分面积为100平方米,求原正方形广场的边长(精确到0.1米).4.村里要修一条灌溉渠,其横截面是面积为1.6平方米的等腰梯形,它的上底比渠深多2米,下底比渠深多0.4米,求灌溉渠横截面的上下底长和灌溉渠的深度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22.3第1课时用一元二次方程解决图形面积问题
知识点1一般图形的面积问题
1.用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x 米,则根据题意可列出关于x的方程为()
A.x(5+x)=6 B.x(5-x)=6
C.x(10-x)=6 D.x(10-2x)=6
2.今年某市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60 m,若将短
边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原
来增加1600 m2.设扩大后的正方形绿地的边长为x m,下面所列方程正确的是() A.x(x-60)=1600 B.x(x+60)=1600
C.60(x+60)=1600 D.60(x-60)=1600
3.从一块正方形木板上锯掉一个2 m宽的长方形木条,剩下部分的面积是48 m2,则原来这块木板的面积是()
A.100 m2 B.64 m2 C.121 m2 D.144 m2
4.如图22-3-1,矩形ABCD是由三个矩形拼接而成的.如果AB=8,阴影部分的面积是24,另外两个小矩形全等,那么小矩形的长为________.
图22-3-1
5.如图22-3-2,利用一面墙(墙的长度不限),另三边用58m长的篱笆围成一个面积为200 m2的矩形场地,求矩形的长和宽.
图22-3-2
6.取一块长80厘米、宽60厘米的矩形白铁片,在它的四个角上截去四个大小相同的正
方形后,把四边折起来,做成一个无盖的长方体盒子.如果要做成底面积为1500平方厘米的
长方体盒子,那么截下的正方形的边长是多少?
知识点2边框与甬道问题
7.如图22-3-3,某小区计划在一个长30 m、宽20 m的长方形ABCD土地上修建三条同样宽的甬道,使其中两条与AB平行,另一条与AD平行,其余部分种植花草.要使每一块花草
的面积都为78 m2,那么甬道的宽应设计成多少米?若设甬道的宽为x m,将6块草地平移拼成
一个长方形,其长为________m,宽为________m,根据长方形的面积公式可列方程
________________,化成一般形式为________________,解得x1=________,x2=________(不
合题意,舍去).
图22-3-3
8. 如图22-3-4,在一块矩形地毯的四周镶有宽度相同的花边,地毯中央的矩形图案长
6米、宽3米,整个地毯的面积是40平方米.求花边的宽.
图22-3-4
9.如图22-3-5,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2 m,
另一边减少了3 m,剩余一块面积为20 m2的矩形空地,则原正方形空地的边长是() A.7 m B.8 m C.9 m D.10 m
图22-3-5
10.如图22-3-6,将边长为2 cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD 方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为1 c m2,则它移动的距离AA′等
于()
A.0.5 cm B.1 cm C.1.5 cm D.2 cm
图22-3-6
11.[教材“问题1”变式]某学校为美化校园,准备在长35米、宽20米的长方形场地
上修建若干条宽度相同的道路,余下部分做草坪,并请全校学生参与方案设计,现有3名学生的设计方案分别如图22-3-7①②③所示(阴影部分为草坪).
图22-3-7
请你解决每种方案中的道路宽度问题(只列方程不求解):
(1)甲同学的设计方案为图①,设计草坪的总面积为600平方米;
(2)乙同学的设计方案为图②,设计草坪的总面积为600平方米;
(3)丙同学的设计方案为图③,设计草坪的总面积为540平方米.
12.[2017·深圳]一个矩形的周长为56厘米.
(1)当矩形的面积为180平方厘米时,它的长、宽分别为多少?
(2)能围成面积为200平方厘米的矩形吗?请说明理由.
13.[2016·赤峰]如图22-3-8,一块长5米、宽4米的地毯,为了美观设计了两横、
17 两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.
80
(1)求配色条纹的宽度;
(2)如果地毯配色条纹部分每平方米的造价为200元,其余部分每平方米的造价为100元,求地毯的总造价.
图22-3-8
教师详答
1.B[解析] 一边长为x米,则另外一边长为(5-x)米,由题意得x(5-x)=6.故选B.
2.A[解析]设扩大后的正方形绿地边长为x m,则扩大部分长方形的宽为(x-60)m,根据题意得x(x-60)=1600.故选A.
3.B[解析] 设原来正方形木板的边长为x m,则x(x-2)=48,解得x1=8,x2=-6(不合题意,舍去),所以x=8,所以8×8=64(m2).
4.6
5.解:设垂直于墙的一边长为x m,得
x(58-2x)=200,
解得x1=25,x2=4,
∴平行于墙的一边长为8 m或50 m.
答:矩形的长为25 m,宽为8 m或矩形的长为50 m,宽为4 m.
6.解:设截下的正方形的边长为x厘米,由题意,得(80-2x)(60-2x)=1500,解得x1=15,x2 =55.当x=55时,80-2x=-30,不符合题意,
所以x=15.
答:截下的正方形的边长是15厘米.
7.(30-2x)(20-x)(30-2x)(20-x)=78×6x2-35x+66=0233
8.解:设花边的宽为x米.
根据题意得(2x+6)(2x+3)=40,
11
解得x1=1,x2=-(不合题意,舍去).
2
答:花边的宽为1米.
9.[A[解析] 设原正方形空地的边长为x m,依题意有(x-3)(x-2)=20,
解得x1=7,x2=-2(不合题意,舍去).
即原正方形空地的边长为7 m.
10.[全品导学号:15572085]B[解析] 设AC交A′B′于点H,
∵∠A=45°,∠AA′H=90°,
∴△A′HA是等腰直角三角形.
设AA′=x cm,则阴影部分的底为x cm,高A′D=(2-x)cm,∴x·(2-x)=1,
解得x1=x2=1,即AA′=1 cm.
故选B.
11.解:(1)设道路的宽为x米.
依题意得(35-2x)(20-2x)=600.
(2)设道路的宽为x米.依题意得
(35-x)(20-x)=600. (3)设道路的
宽为x米.依题意得(35-2x)(20
-x)=540.
12.[解析] (1)设出矩形的一边长,用周长公式表示出另一边长,根据面积列出相应方程求解即可;
(2)同样列出方程,若方程有解,则可以,否则就不可以.
解:(1)设矩形的一边长为x厘米,则另一边长为(28-x)厘米,依题意有
x(28-x)=180,
解得x1=10(舍去),x2=18.
当x=10时,28-x=18;
当 x =18时,28-x =10.
故矩形的长为 18厘米,宽为 10厘米.
(2)不能.理由:设矩形的一边长为 x 厘米,则另一边长为(28-x )厘米,依题意有 x (28-x )=200,
即 x 2-28x +200=0.
因为 Δ=282-4×200=784-800<0,
所以原方程无解.
故不能围成面积为 200平方厘米的矩形.
13.解:(1)设配色条纹的宽度为 x 米.依题意得
17
2x ×5+2x ×4-4x 2= ×5×4,
80 17 1
解得 x 1= (不符合题意,舍去),x 2= . 4 4
1 答:配色条纹的宽度为 米.
4
17 (2)条纹部分造价为 ×5×4×200=850(元), 80
17
其余部分造价为(1-80)×4×5×100=1575(元),
∴总造价为 850+1575=2425(元).
答:地毯的总造价是 2425元.。