2018-2019学年高中数学 第一章 三角函数 1.3 弧度制学案 北师大版必修4
(新)高中数学第一章三角函数1_3弧度制课堂导学案北师大版必修41

1.3 弧度制课堂导学三点剖析1.角度与弧度之间的换算【例1】 化下列角度为弧度制:(1)540°;(2)112°30′;(3)36°.思路分析:根据1°=180πrad 就可将角度化为弧度. 解:(1)∵1°=180π rad, ∴540°=3π rad. (2)∵1°=180π rad, ∴112°30′=180π×112.5 rad=85π rad. (3)∵1°=180π rad, ∴36°=180π×36 rad=5π. 友情提示(1)角度数的单位不能省略、弧度数的单位可以省略.(2)一般情况下没有精确度要求,保留π即可,不必将π化成小数.各个击破类题演练 1把130°,-270°化为弧度为________,____________-.解析:∵1°=180π rad, ∴130°=180π×130 rad×1813π rad -270°=-180π×270 rad=23π- rad. 答案:1813π 23π- 变式提升 1(1)将-225°化为弧度;(2)将125π-rad 化为度. 解:(1)∵1°=180π rad,∴-225°=-180π×225 rad=45π- rad. (2)∵1 rad=(π180)°, ∴125π- rad=-(ππ180125⨯)°=-75°. 2.弧度的综合应用【例2】 集合M={x|x=2πk +4π,k∈Z },N={x|x=4πk +2π,k∈Z },则有( ) A.M=N B.M N C.M N D.M∩N=∅思路分析:本题是考查用弧度制表示角的集合之间的关系.可以用取特殊值法分别找到集合M 、N 所表示的角的终边的位置.解:对集合M 中的整数k 依次取0,1,2,3,得角47,45,43,4ππππ. 于是集合M 中的角与上面4个角的终边相同,如图(1)所示.同理,集合N 中的角与0,4π,2π,43π,π,45π,32π,47π,2π角的终边相同,如图(2)所示.故M N.∴选C.答案:C类题演练 2已知某角是小于2π的非负角且此角的终边与它的5倍角的终边相同,求此角的大小. 解析:设这个角是α,则0≤α<2π.∵5α与α终边相同,∴5α=α+2kπ(k∈Z ),∴α=2πk (k∈Z ). 又∵α∈[0,2π),令k=0,1,2,3.得α=0,2π,π,23π.即为所求值. 变式提升 2(1)分别写出终边落在OA ,OB 位置上的角的集合;(2)写出终边落在阴影部分(包括边界)的角的集合.解析:(1)在0到2π之间,终边落在OA 位置上的角是2π+ 434ππ=,终边落在OB 位置上的角是23π+3π=611π,故终边落在OA上的角的集合为{α|α=2kπ+43π,k∈Z},终边落在OB上的角的集合为{β|β=2kπ+611π,k∈Z}.(2)终边落在阴影部分角的集合为{α|2kπ-6π≤α≤2kπ+π43,k∈Z}.【例3】一条弦的长度等于半径r,求:(1)这条弦所对的劣弧长;(2)这条弦与劣弧所组成的弓形的面积.思路分析:由已知可知圆心角的大小为3π,然后用弧长和扇形面积公式求解即可.注意弓形面积等于扇形面积减去对应的三角形面积.解:(1)如右图,因为半径为r的圆O中弦AB=r,则△OAB为等边三角形,所以∠AOB=3π.则弦AB所对的劣弧长为3πr.(2)∵S△AOB=21OA·OB·sin∠AOB=43r2,S扇形OAB=21|α|r2=21×3π×r2=6πr2,∴S弓形=S扇形OAB-S△AOB=6πr2-43r2=(6π-43)r2.友情提示图形的分解与组合是解决数学问题的基本方法之一,本例是把弓形看成是扇形与三角形的差组成的,即可运用已有知识解决要求解的问题.类题演练 3求解:(1)已知扇形的周长为10 cm,面积为4 cm2,求扇形圆心角的弧度数.(2)已知一扇形的圆心角是72°,半径等于20 cm,求扇形的面积.解析:(1)设扇形圆心角的弧度数为θ(0<θ<2π),弧长为l,半径为r,依题意有⎪⎩⎪⎨⎧==+)2.(421)1(,102lrrl①代入②得r2-5r+4=0,解之得r1=1,r2=4.当r=1时,l=8(cm),此时,θ=8 rad>2π rad舍去.当r=4时,l=2(cm),此时,θ=2142= rad.(2)设扇形弧长为l, ∵72°=72×52180ππ=(rad), ∴l=αR=52π×20=8π(cm). ∴S=21lR=21×8π×20=80π(cm 2). 变式提升 3一扇形圆心角为150°,半径为10,则扇形面积为多少?解析:150°=65π,S=21|α|r 2=21×65π×102=3125π. 3.弧度的意义【例4】 下列各命题中,假命题是 ( )A.“度”与“弧度”是度量角的两种不同的度量单位B.一度的角是周角的3601,一弧度的角是周角的π21 C.根据弧度的定义,180°一定等于π弧度D.不论用角度制还是用弧度制度量角,它们都与圆的半径长短有关思路分析:由角和弧度的定义,可知无论是角度制还是弧度制,角的大小与半径的长短无关,而是与弧长与半径的比值有关.故应选D.答案:D友情提示掌握定义的准确表述,弧度是角的单位,不是弧的单位.类题演练 4下列各命题中,真命题是( )A.一弧度是一度的圆心角所对的弧B.一弧度是长度为半径的弧C.一弧度是一度的弧与一度的角之和D.一弧度是长度等于半径长的弧所对的圆心角,它是角的一种度量单位解析:根据一弧度的定义:把长度等于半径长的弧所对圆心角叫做一弧度的角,由选项知,D 为真命题.答案:D变式提升 4在半径不等的圆中,1弧度的圆心角所对的…( )A.弦长相等B.弧长相等C.弦长等于所在圆的半径D.弧长等于所在圆的半径解析:由弧度的定义可知选D.答案:D。
北师大版高中数学高一1.3 弧度制

1.3 弧度制
学习 目标
1.理解角度制与弧度制的概念,能对弧度和角度进行正确的转换. 2.体会引入弧度制的必要性,建立角的集合与实数集一一对应关系. 3.掌握并能应用弧度制下的弧长公式和扇形面积公式.
栏目 索引
知识梳理 题型探究 当堂检测
自主学习 重点突破 自查自纠
知识梳理
知识点一 弧度制 (1)角度制与弧度制的定义
解析答案
易错易混 角度制与弧度制混用致误 例4 求图中阴影区域所表示的角的集合(含边界).
点评
解析答案
易错易混 弧度制下扇形面积、弧长公式中角度使用角度制致误 例5 已知某扇形的圆心角为120°,半径为3,求扇形弧长及扇形面积.
点评
解析答案
跟踪训练4 与750°角终边相同的角的集合是( C ) A.{α|α=30°+2kπ,k∈Z} B.{α|α=π6+k·360°,k∈Z} C.{α|α=30°+k·360°,k∈Z} D.{α|α=π6+k·π,k∈Z}
A.-6π-π4
B.-6π+74π
C.-8π-π4
D.-8π+74π
解析 -1 125°=-245π=-8π+74π.
解析答案
(2)已知α=1 690°. ①把α写成2kπ+β(k∈Z,β∈[0,2π))的形式;
解 1 690°=1 440°+250° =4×360°+250°=4×2π+1285π.
重点突破
反思与感悟
解析答案
跟踪训练1 将下列各角度与弧度互化. (1)152π; 解 152π=152×180°=75°;
(2)-76π; 解 -76π=-76×180°=-210°; (3)-157°30′. 解 -157°30′=-157.5°=-157.5×1π80=-78π.
高中数学 第一章三角函数《弧度制》教案 北师大版必修4

§1.1 弧度制教案一、教学目标1.理解角集与实数集的一一对应,熟练掌握角度制与弧度制间的互相转化.2.能灵活应用弧长公式、扇形面积公式解决问题.二、教学重点:能熟练地进行角度制与弧度制的互化.难点:能灵活应用弧长公式、扇形面积公式解决问题.三、知识链接:1像角的概念推广一样,我们已经把~中角,利用“乘以”这一法则映射到实数集上,那么,~以外的角能否化为弧度制?如果能,如何转化呢?乘数因子是否仍为“”,本节课就来讨论这个问题.2.探索研究(1)正、负角的弧度定义______________________(2)角集合与实数集之间的一一对应(3)有关公式:①弧长②四、例题分析【例1】P10例1、2【例2】下列几个角中哪几个是第二象限角?(1)(2)(3)(4)9 (5)-4 (6)【例3】(1)把化为,,的形式是()A.B.C.D.(2)在半径不等的两个圆内,1弧度的圆心角()A.所对弧长相等B.所对的弦长相等C.所对弧长等于各自半径D.所对的弧长为【例4】填空(1)在内找出与终边相同的角______________.(2)圆的弧长等于该圆内接正三角形的边长,则该弧所对的圆心角的弧度数是________________.(3)在扇形中,,弧长为1,则此扇形内切圆的面积____________.【例5】若弧度为2的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积是()A.B.C.D.【例6】如图,用弧度制表示下列终边落在阴影部分的角的集合(不包括边界).【例7】已知两角的和为1弧度,且两角的差为,求这两个角各是多少弧度.五、课时作业1.若,,,则的终边位置关系是()A.重合B.关于原点对称C.关于轴对称D.关于轴对称2.如果弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是()A.B.C.D.3.的值是().A.B.C.D.4.一条弦长等于半径的,则此弦所对圆心角().A.等于弧度B.等于弧度C.等于弧度D.以上都不对5.把化为的形式是().A.B.C.D.6.扇形的周期是16,圆心角是2弧度,则扇形面积是().A.B.C.16 D.32二、填空题1.度;弧度.2.半径为2的圆中,长为2的弧所对的圆周角的弧度数为__________,度数为____________.3.3弧度的角的终边在第_____________象限,7弧度的角的终边在第_____________象限.4.扇形的圆心角为,半径为,则弧长为____________.5.若的圆心角所对的弧长为,则此圆的半径为______________.6.地球赤道的半径是6370㎞,所以赤道上的弧长是_________(精确到0.01㎞)拓展探究:1、在直径为的滑轮上有一条弦,其长为,且为弦的中点,滑轮以每秒5弧度的角速度旋转,则经过后,点转过的弧长是多少?2、一扇形周长是,扇形的圆心角为多少弧度时,这个扇形的面积最大?最大面积是多少?3、一条铁路在转弯处成圆弧形,圆弧的半径为2㎞,一列火车用每小时30㎞的速度通过,10秒间转过几度?4、纸扇能否按照黄金比例设计?在炎炎夏日,用纸扇驱走闷热,无疑是最环好的方法.扇在美观设计上,可考虑用料、图案和形状.若从数学角度看,我们能否利用黄金比例(0.618)去设计一把富美感的的白纸扇?提示:在设计纸扇张开角()时,可考虑从一圆形(半径为)分割出来的扇形的面积()与剩余面积()的比值.若假设这比值等于黄金比例,便可以找出.(精确至最接近的).除了找市面上的纸扇去量度其张开的角度外,我们更可自制不同形状的纸扇,去测试一下接近的设计是否最美.2、旋转的风车一个大风车的半径为8m,12分钟旋转一周,它的最低点离地面2m(如图所示),求风车翼片的一个端点离地面距离(米)与时间(分钟)之间的函数关系(用弧度制求解).。
高中数学第一章三角函数1.3弧度制学案(无答案)北师大版必修4(2021学年)

陕西省商洛市柞水县高中数学第一章三角函数1.3弧度制学案(无答案)北师大版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(陕西省商洛市柞水县高中数学第一章三角函数 1.3 弧度制学案(无答案)北师大版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为陕西省商洛市柞水县高中数学第一章三角函数 1.3弧度制学案(无答案)北师大版必修4的全部内容。
弧度制班级 姓名 组号【学习目标】1、理解1弧度的定义和弧度制的概念,体会弧度制定义的合理性;2、掌握弧度与角度的互化,理解角的集合与实数集R 间建立的一一对应关系;3、掌握弧度制下的弧长公式与扇形面积公式。
【学习重点】弧度制概念的理解,弧度与角度的互化。
【学习难点】弧度制的建立与应用。
【学习过程】一、预习自学(预习教材p 9—p12)思考1:半径不同的同心圆中,同样的圆心角所对的弧长和半径之比有什么特征?利用什么量表示这一特征?思考2:单位圆中,长度为1的狐与半径的比是多少?如何描述该狐所对圆心角的大小?如果一个半径为r 的圆的圆心角α所对的弧长是l ,那么a 的弧度数是多少?思考3:课本表1-3是怎样得到的?你会转化吗?试举一例说明。
思考4: 利用弧度制证明下列关于扇形的公式:(1)l R α=; (2)212S R α=; (3)12S lR =.(其中R 是半径,l 是弧长,(02)ααπ<<为圆心角,S 是扇形的面积)【知识自测】填写新学案P4—P5“知识梳理"相关内容二、合作探究问题1: 圆O的半径为2,AB 的长等于4,AOC ∠=—90°,AOC ∠和BOC ∠的弧度数.问题2;(弧度与角度之间的互化)(1)18°=_________; (2)6730'︒=_______; (3)310πra d=________; (4)2rad =________。
高中数学第一章三角函数1.3蝗制教案北师大版

1.3 弧度制整体设计教学分析在物理学和日常生活中,一个量常常需要用不同的方法进行度量,不同的度量方法可以满足我们不同的需要.现实生活中有许多计量单位,如度量长度可以用米、厘米、尺、码等不同的单位制,度量重量可以用千克、斤、吨、磅等不同的单位制,度量角的大小可以用度为单位进行度量,并且一度的角等于周角的3601,记作1°. 通过类比引出弧度制,给出1弧度的定义,然后通过探究得到弧度数的绝对值公式,并得出角度和弧度的换算方法.在此基础上,通过具体的例子,巩固所学概念和公式,进一步认识引入弧度制的必要性.这样可以尽量自然地引入弧度制,并让学生在探究过程中,更好地形成弧度的概念,建立角的集合与实数集的一一对应,为学习任意角的三角函数奠定基础.通过探究讨论,关键弄清1弧度角的定义,使学生建立弧度的概念,理解弧度制的定义,达到突破难点之目的.通过电教手段的直观性,使学生进一步理解弧度作为角的度量单位的可靠性、可行性.通过周角的两种单位制的度量,得到角度与弧度的换算公式.使学生认识到角度制、弧度制都是度量角的制度,二者虽单位不同,但却是互相联系、辩证统一的.进一步加强对辩证统一思想的理解,渗透数学中普遍存在、相互联系、相互转化的观点. 三维目标1.通过类比长度、重量的不同度量制,使学生体会一个量可以用不同的单位制来度量,从而引出弧度制.2.通过探究使学生认识到角度制和弧度制都是度量角的制度,通过总结引入弧度制的好处,学会归纳整理并认识到任何新知识的学习,都会为解决实际问题带来方便,从而激发学生的学习兴趣. 重点难点教学重点:理解弧度制的意义,并能进行角度和弧度的换算. 教学难点:弧度的概念及其与角度的关系. 课时安排 1课时教学过程导入新课思路1.(类比导入)测量人的身高常用米、厘米为单位进行度量,这两种度量单位是怎样换算的?家庭购买水果常用千克、斤为单位进行度量,这两种度量单位又是怎样换算的?度量角的大小除了以度为单位度量外,还可采用哪种度量角的单位制?它们是怎样换算的?思路 2.(情境导入)利用古代度量时间的一种仪器——日晷,或者利用普遍使用的钟表.实际上我们使用的钟表是用时针、分针和秒针角度的变化来确定时间的.无论采用哪一种方法,度量一个确定的量所得到的量数必须是唯一确定的.在初中,已学过利用角度来度量角的大小,现在来学习角的另一种度量方法——弧度制. 推进新课 新知探究 提出问题问题①:在初中几何里,我们学习过角的度量,1°的角是怎样定义的呢?问题②:我们从度量长度和重量上知道,不同的单位制能给我们解决问题带来方便.那么角的度量是否也能用不同单位制呢?活动:教师先让学生思考或讨论问题,并让学生回忆初中有关角度的知识,为更好地理解角度弧度的关系奠定基础.我们知道,半径不同时,同样的圆心角所对的弧长是不相等的,但通过度量和计算发现,当半径不同时,同样的圆心角所对的弧长与半径之比是常数,这个常数我们称为该角的弧度数.讨论后教师提问学生,并对回答好的学生及时表扬,对回答不准确的学生提示引导考虑问题的关键.教师引导学生进一步探究,对任意一个0°—360°的角,我们以它的顶点为圆心,画单位圆就能得到它的弧度数.不难看出,不同的角,其弧度数一定不相同,而且角越大,它的弧度数越大.因此,我们可以用角的弧度数来度量角的大小.我们规定长度等于半径长的圆弧所对的圆心角叫作1弧度的角.以弧度为单位来度量角的制度叫作弧度制;在弧度制下弧度记作1 rad.如图1中,的长等于半径r,所对的圆心角∠AOB就是1弧度的角,即rl=1.图1讨论结果:①1°的角可以理解为将圆周角分成360等份,每一等份的弧所对的圆心角就是1°.它是一个定值,与所取圆的半径大小无关. ②能,用弧度制. 提出问题问题①:作半径不等的甲、乙两圆,在每个圆上作出等于其半径的弧长,连接圆心与弧的两个端点,得到两个角,将乙图移到甲图上,两个角有什么样的关系?问题②:如果一个半径为r 的圆的圆心角α所对的弧长是l,那么α的弧度数是多少?既然角度制、弧度制都是角的度量制,那么它们之间如何换算?活动:教师引导学生学会总结和归纳角度制和弧度制的关系,提问学生归纳的情况,让学生找出区别和联系.教师给予补充和提示,对表现好的学生进行表扬,对回答不准确的学生提示和鼓励.引入弧度之后,应与角度进行对比,使学生明确:第一,弧度制是以“弧度”为单位来度量角的单位制,角度制是以“度”为单位来度量角的单位制;第二,1弧度是等于半径长的弧所对的圆心角(或这条弧)的大小,而1°的角是周角的3601;第三,无论是以“弧度”还是以“度”为单位,角的大小都是一个与半径大小无关的定值.教师要强调为了让学生习惯使用弧度制,本教科书在后续的内容中尽量采用弧度制. 讨论结果:①完全重合,因为都是1弧度的角. ②α=r 1;将角度化为弧度:360°=2πrad,1°=180πrad≈0.01745rad,将弧度化为角度:2πrad=360°,1rad=(π180)°≈57.30°=57°18′.弧度制与角度制的换算公式:设一个角的弧度数为αrad=(π180)°,n°=n 180π(rad).提出问题问题①:引入弧度之后,在平面直角坐标系中,终边相同的角应该怎么用弧度来表示?扇形的面积与弧长公式用弧度怎么表示?的长 活动:教师先点明教科书上为什么设置这个“探究”?其意图是先根据所给图像对一些特殊角填表,然后概括出一般情况.通过学生合作交流,讨论并总结出规律,提问学生的总结情况,让学生板书.教师对做正确的学生给予表扬,对没有总结完全的学生进行必要的提示.由上表可知,如果一个半径为r 的圆的圆心角α所对的弧长是l,那么α的弧度数的绝对值是rl这里,应当注意从数学思想的高度引导学生认识“换算”问题,即角度制、弧度制都是角的度量制,那么它们一定可以换算.推而广之,同一个数学对象用不同方式表示时,它们之间一定有内在联系,认识这种联系性也是数学研究的重要内容之一.教师点拨:角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.值得注意的是:今后在表示与角α终边相同的角时,有弧度制与角度制两种单位制,要根据角α的单位来决定另一项的单位,即两项所用的单位制必须一致,绝对不能出现k·360°+3或者2k π+60°一类的写法.在弧度制中,与角α终边相同的角,连同角α在内,可以写成β=α+2k π (k∈Z )的形式.如图2为角的集合与实数集R 之间的一一对应关系.图2讨论结果:①与角α终边相同的角,连同角α在内,可以写成β=α+2k π (k∈Z )的形式.弧度制下关于扇形的公式为l=αR,S=21αR 2,S=l 21R. ②的长应用示例思路1例1 下列各命题中,是真命题的是( ) A.一弧度是一度的圆心角所对的弧 B.一弧度是长度为半径的弧C.一弧度是一度的弧与一度的角之和D.一弧度是长度等于半径长的弧所对的圆心角,它是角的一种度量单位活动:本例目的是让学生在教师的指导下理解弧度制与角度制的联系与区别,以达到熟练掌握定义.从实际教学上看,弧度制不难理解,学生结合角度制很容易记住.根据弧度制的定义:我们把长度等于半径长的弧所对的圆心角叫作一弧度的角.对照各项,可知D 为真命题. 答案:D点评:本题考查弧度制下角的度量单位:1弧度的概念. 变式训练下列四个命题中,不正确的一个是( ) A.半圆所对的圆心角是πrad B.周角的大小是2πC.1弧度的圆心角所对的弧长等于该圆的半径D.长度等于半径的弦所对的圆心角的大小是1弧度 答案:D例2 把45°化成弧度.解:45°=180π×45rad=4πrad. 例3 把53πrad 化成度.解:53πrad=53×180°=108°.例4 将下列用弧度制表示的角化为2k π+α〔k∈Z ,α∈[0,2π)〕的形式,并指出它们所在的象限:①-415π;②332π;③-20;④-23. 活动:本题的目的是让学生理解什么是终边相同的角,教师给予指导并讨论归纳出一般规律.即终边在x 轴、y 轴上的角的集合分别是:{β|β=k π,k∈Z },{β|β=2π+k π,k∈Z 第一、二、三、四象限角的集合分别为: {β|2k π<β<2k π+2π,k∈Z }, {β|2k π+2π<β<2k π+π,k∈Z }, {β|2k π+π<β<2k π+,k∈Z },{β|2k π+23π<β<2k π+2π,k∈Z }. 解:①-415π=-4π+4π,是第一象限角. ②332π=10π+32π,是第二象限角. ③-20=-3×6.28-1.16,是第四象限角. ④-23≈-3.464,是第二象限角.点评:在这类题中对于含有π的弧度数表示的角,我们先将它化为2k π+α〔k∈Z ,α∈[0,2π)〕的形式,再根据α角终边所在的位置进行判断,对于不含有π的弧度数表示的角,取π=3.14,化为k×6.28+α,k∈Z ,|α|∈[0,6.28)的形式,通过α与2π,π,23π比较大小,估计出角所在的象限. 变式训练(1)把-1 480°写成2k π+α(k∈Z ,α∈[0,2π))的形式; (2)若β∈[-4π,0),且β与(1)中α终边相同,求β. 解:(1)∵-1 480°=-974π=-10π+916π,0≤916π<2π, ∴-1 480°=2(-5)π+916π. (2)∵β与α终边相同,∴β=2k π+916π,k∈Z. 又∵β∈[-4π,0),∴β1=-92π,β2=-920π.思路21.已知0<θ<2π,且θ与7θ终边相同,求θ.活动:本例目的是让学生在教师的指导下会用弧度制求终边相同的角,并通过独立完成课后练习真正领悟弧度制的要领,最终达到熟练掌握.从实际教学来看,用弧度制解决角的问题很容易却难掌握,很有可能记错或者混淆或者化简错误,学生需多做些这方面的题来练基本功.可先让学生多做相应的随堂练习,在黑板上当场演练,教师给予批改指导,对易出错的地方特别强调.对学生出现的种种失误,教师不要着急,在学生的练习操作中一一纠正,这对以后学习大有好处.解:由已知,得7θ=2k π+θ,k∈Z ,即6θ=2k π.∴θ=3πk . 又∵0<θ<2π,∴0<3πk <2π. ∵k∈Z ,当k=1、2、3、4、5时,θ=3π、32π、π、34π、35π点评:本题是在一定的约束条件下,求与角α终边相同的角,一般地,首先将这样的角表示为2k π+α〔k∈Z ,α∈[0,2π)〕的形式,然后在约束条件下确定k 的值,进而求适合条件的角. 例2 已知一个扇形的周长为a,求当扇形的圆心角多大时,扇形的面积最大,并求这个最大值.活动:这是一道应用题,并且考查了函数思想,教师提示学生回顾一下用函数法求最值的思路与步骤,教师提问学生对已学知识的掌握和巩固,并对回答好的学生进行表扬,对回答不全面的学生给予一定的提示和鼓励.教师补充.函数法求最值所包括的五个基本环节:(1)选取自变量;(2)建立目标函数;(3)指出函数的定义域;(4)求函数的最值;(5)作出相应结论.其中自变量的选取不唯一,建立目标函数结合有关公式进行,函数定义域要根据题意确定,有些函数是结构确定求最值的方法,并确保在定义域内能取到最值.解:设扇形的弧长为l,半径为r,圆心角为α,面积为S.由已知,2r+l=a,即l=a-2r. ∴S=21l·r=21 (a-2r)·r=-r 2+2ar=-(r-4a )2+162a .∵r>0,l=a-2r >0,∴0<r <2a.∴当r=4a 时,max S =162a 此时,l=a-2·4a =2a ,∴α=r1=2.故当扇形的圆心角为2rad 时,扇形的面积取最大值162a点评:这是一个最大值问题,可用函数法求解,即将扇形的面积S 表示成某个变量的函数,然后求这个函数的最大值及相应的圆心角. 变式训练已知一个扇形的周长为98π+4,圆心角为80°,求这个扇形的面积. 解:设扇形的半径为r,面积为S,由已知知道,扇形的圆心角为80×180π=94π, ∴扇形的弧长为94πr,由已知,94πr+2r=98π+4,∴r=2,∴S=21,94πr 2=98π 故扇形的面积为点评:求解扇形问题的关键是求得扇形的圆心角、半径、弧长三个量中的任意两个量.相反,也可由扇形的面积结合其他条件,求扇形的圆心角、半径、弧长.解题时要注意公式的灵活变形及方程思想的运用. 知能训练习题1—3 1、2、3、4、5. 课堂小结由学生总结弧度制的定义,角度与弧度的换算公式与方法.教师强调角度制与弧度制是度量角的两种不同的单位制,它们是互相联系,辩证统一的;角度与弧度的换算,关键要理解并牢记180°=πrad 这一关系式,由此可以很方便地进行角度与弧度的换算;三个注意的问题,同学们要切记;特殊角的弧度数,同学们要熟记.重要的一点是,同学们自己找到了角的集合与实数集R 的一一对应关系,对弧度制下的弧长公式、扇形面积公式有了深刻的理解,要把这两个公式记下来,并在解决实际问题中灵活运用,表扬学生能总结出引入弧度制的好处,这种不断总结,不断归纳,梳理知识,编织知识的网络,特别是同学们善于联想、积极探索的学习品质,会使我们终生受用,这样持之以恒地坚持下去,你会发现数学王国的许多宝藏,以服务于社会,造福于人类. 作业习题1—3 6、8.设计感想本节课的设计思想是:在学生的探究活动中通过类比引入弧度制这个概念并突破这个难点.因此一开始要让学生从图形、代数两方面深入探究,不要让开始的探究成为一种摆设.如果学生一开始没有很好的理解,那么以后有些题怎么做就怎么难受.通过探究让学生明确知识依附于问题而存在,方法为解决问题的需要而产生.将弧度制的概念的形成过程自然地贯彻到教学活动中去,由此把学生的思维推到更宽的广度. 本节设计的特点是由特殊到一般、由易到难,这符合学生的认知规律;让学生在探究中积累知识,发展能力,对形成科学的探究未知世界的严谨作风有着良好的启迪.但由于学生知识水平的限制,本节不能扩展太多,建议让学有余力的学生继续总结归纳用弧度来计量角的好处并为后续三角函数的学习奠定基础.根据本节特点可考虑分层推进、照顾全体.对优等生,重在引导他们变式思维的训练,培养他们求同思维、求异思维的能力,以及思维的灵活性、深刻性与创造性.鼓励他们独立思考,勇于探索,敢于创新,对正确的要予以肯定,对暴露出来的问题要及时引导、剖析纠正,使课堂学习成为再发现再创造的过程.备课资料一、密位制度量角度量角的单位制,除了角度制、弧度制外,军事上还常用密位制.密位制的单位是“密位”.1密位就是圆的60001所对的圆心角(或这条弧)的大小.因为360°=6 000密位,所以1°=3606000密位≈16.7密位, 1密位=6000360︒=0.06°=3.6′≈216″. 密位的写法是在百位上的数与十位上的数之间画一条短线,例如7密位写成0—07,读作“零,零七”,478密位写成4—78,读作“四,七八”. 二、备用习题1.一条弦的长度等于圆的半径,则这条弦所对的圆心角的弧度数是( )A.3π B.6πC.1D.π 2.圆的半径变为原来的2倍,而弧长也增大到原来的2倍,则( ) A.扇形的面积不变 B.扇形的圆心角不变C.扇形的面积增大到原来的2倍D.扇形的圆心角增大到原来的2倍 3.下列表示的为终边相同的角的是( )A.k π+4π与2k π+4π(k∈Z )B.2πk 与k π+2π(k∈Z )C.k π-32π与k π+3π(k∈Z ) D.(2k+1)π与3k π(k∈Z ) 4.已知扇形的周长为6cm,面积为2cm 2,求扇形的中心角的弧度数.5.若α∈(-2π,0),β∈(0,2π),求α+β,α-β的范围,并指出它们各自所在的象限.6.用弧度表示顶点在原点,始边重合于x 轴的非负半轴,终边落在阴影部分内的角的集合(不包括边界,如图3所示).图37.(1)角α,β的终边关于直线y=x 对称,写出α与β的关系式; (2)角α,β的终边关于直线y=-x 对称,写出α与β的关系式. 参考答案:1.A 2.B 3.C4.解:设扇形所在圆的半径为R,扇形的中心角为α,依题意有αR+2R=6,且21αR 2=2, ∴R=1,α=4或R=2,α=1. ∴α=4或1.5.解:-2π<α+β<2π, ∴α+β在第一象限或第四象限,或α+β的终边在x 轴的非负半轴上.-π<α-β<0, ∴α-β在第三象限或第四象限,或α-β的终边在y 轴的非正半轴上.6.解:(1){θ|2k π-6π<θ<2k π+125π,k∈Z };(2){θ|2k π-43π<θ<2k π+43π,k∈Z }; (3){θ|2k π+6π<θ<2k π+2π,k∈Z }∪{θ|2k π+67π<θ<2k π+23π,k∈Z }={θ|n π+6π<θ<π+2π,n∈Z }.7.解:(1)β=2π-α+2k π,k∈Z ;(2)β=2π+α+2k π,k∈Z.三、钟表的分针与时针的重合问题 弧度制、角度制以及有关弧度的概念,在日常生活中有着广泛的应用,我们平时所见到的时钟上的时针、分针的转动,其实质都反映了角的变化.时间的度量单位时、分、秒分别与角2π (rad),30π(rad),1800π(rad)相对应,只是出于方便的原因,才用时、分、秒.时钟上的数学问题比较丰富,下面我们就时针与分针重合的问题加以研讨.例题 在一般的时钟上,自零时开始到分针与时针再一次重合,分针所转过的角的弧度数是多少(在不考虑角度方向的情况下)?甲生:自零时(此时时针与分针重合,均指向12)开始到分针与时针再一次重合,设时针转过了x 弧度,则分针转过了2π+x 弧度,而时针走1弧度相当于经过π6h=π360min,分针走1弧度相当于经过π30min,故有π360x=π30(2π+x),得x=112π,∴到分针与时针再一次重合时,分针转过的弧度数是112π+π2+2π=1124π(rad). 乙生:设再一次重合时,分针转过弧度数为α,则α=12(α-2π)(因为再一次重合时,时针比分针少转了一周,且分针的旋转速度是时针的12倍),得α=1124π, ∴到分针与时针再一次重合时,分针转过的弧度数是1124π(rad). 点评:两名同学得出的结果相同,其解答过程都是正确的,只不过解题的角度不同而已.甲同学是从时针与分针所走的时间相等方面列出方程求解,而乙同学则从时针与分针所转过的弧度数入手,当分针与时针再次重合时,分针所转过的弧度数α-2π与时针所转过的弧度数相等,利用弧度数之间的关系列出方程求解.。
高中数学第一章三角函数1.3弧度制课堂导学案北师大版必修4

1.3 弧度制课堂导学三点剖析1.角度与弧度之间的换算【例1】化下列角度为弧度制:(1)540°;(2)112°30′;(3)36°.思路分析:根据1°=rad就可将角度化为弧度.解:(1)∵1°= rad,∴540°=3π rad.(2)∵1°= rad,∴112°30′=×112.5 rad= rad.(3)∵1°= rad,∴36°=×36 rad=.友情提示(1)角度数的单位不能省略、弧度数的单位可以省略.(2)一般情况下没有精确度要求,保留π即可,不必将π化成小数.各个击破类题演练 1把130°,-270°化为弧度为________,____________-.解析:∵1°= rad,∴130°=×130 rad×π rad-270°=-×270 rad= rad.答案:π变式提升 1(1)将-225°化为弧度;(2)将 rad化为度.解:(1)∵1°=rad,∴-225°=-×225 rad= rad.(2)∵1 rad=()°,∴ rad=-()°=-75°.2.弧度的综合应用【例2】集合M={x|x=+,k∈Z},N={x|x=+,k∈Z},则有()A.M=NB.M NC.M ND.M∩N=思路分析:本题是考查用弧度制表示角的集合之间的关系.可以用取特殊值法分别找到集合M、N所表示的角的终边的位置.解:对集合M中的整数k依次取0,1,2,3,得角.于是集合M中的角与上面4个角的终边相同,如图(1)所示.同理,集合N中的角与0,,,,π,π,3,,2π角的终边相同,如图(2)所示.故M N.∴选C.答案:C类题演练 2已知某角是小于2π的非负角且此角的终边与它的5倍角的终边相同,求此角的大小.解析:设这个角是α,则0≤α<2π.∵5α与α终边相同,∴5α=α+2kπ(k∈Z),∴α=(k∈Z).又∵α∈[0,2π),令k=0,1,2,3.得α=0,,π,π.即为所求值.变式提升 2(1)分别写出终边落在OA,OB位置上的角的集合;(2)写出终边落在阴影部分(包括边界)的角的集合.解析:(1)在0到2π之间,终边落在OA位置上的角是+,终边落在OB位置上的角是+=,故终边落在OA上的角的集合为{α|α=2kπ+,k∈Z},终边落在OB上的角的集合为{β|β=2kπ+,k∈Z}.(2)终边落在阴影部分角的集合为{α|2kπ-≤α≤2kπ+,k∈Z}.【例3】一条弦的长度等于半径r,求:(1)这条弦所对的劣弧长;(2)这条弦与劣弧所组成的弓形的面积.思路分析:由已知可知圆心角的大小为,然后用弧长和扇形面积公式求解即可.注意弓形面积等于扇形面积减去对应的三角形面积.解:(1)如右图,因为半径为r的圆O中弦AB=r,则△OAB为等边三角形,所以∠AOB=.则弦AB所对的劣弧长为r.(2)∵S△AOB=OA·OB·sin∠AOB=r2,S扇形OAB=|α|r2=××r2=r2,∴S弓形=S扇形OAB-S△AOB=r2-r2=(-)r2.友情提示图形的分解与组合是解决数学问题的基本方法之一,本例是把弓形看成是扇形与三角形的差组成的,即可运用已有知识解决要求解的问题.类题演练 3求解:(1)已知扇形的周长为10 cm,面积为4 cm2,求扇形圆心角的弧度数.(2)已知一扇形的圆心角是72°,半径等于20 cm,求扇形的面积.解析:(1)设扇形圆心角的弧度数为θ(0<θ<2π),弧长为l,半径为r,依题意有①代入②得r2-5r+4=0,解之得r1=1,r2=4.当r=1时,l=8(cm),此时,θ=8 rad>2π rad舍去.当r=4时,l=2(cm),此时,θ= rad.(2)设扇形弧长为l,∵72°=72×(rad),∴l=αR=×20=8π(cm).∴S=lR=×8π×20=80π(cm2).变式提升 3一扇形圆心角为150°,半径为10,则扇形面积为多少?解析:150°=,S=|α|r2=××102=π.3.弧度的意义【例4】下列各命题中,假命题是()A.“度”与“弧度”是度量角的两种不同的度量单位B.一度的角是周角的,一弧度的角是周角的C.根据弧度的定义,180°一定等于π弧度D.不论用角度制还是用弧度制度量角,它们都与圆的半径长短有关思路分析:由角和弧度的定义,可知无论是角度制还是弧度制,角的大小与半径的长短无关,而是与弧长与半径的比值有关.故应选D.答案:D友情提示掌握定义的准确表述,弧度是角的单位,不是弧的单位.类题演练 4下列各命题中,真命题是()A.一弧度是一度的圆心角所对的弧B.一弧度是长度为半径的弧C.一弧度是一度的弧与一度的角之和D.一弧度是长度等于半径长的弧所对的圆心角,它是角的一种度量单位解析:根据一弧度的定义:把长度等于半径长的弧所对圆心角叫做一弧度的角,由选项知,D为真命题.答案:D变式提升 4在半径不等的圆中,1弧度的圆心角所对的…()A.弦长相等B.弧长相等C.弦长等于所在圆的半径D.弧长等于所在圆的半径解析:由弧度的定义可知选D.答案:D。
2018_2019学年高中数学第一章三角函数章末复习课学案北师大版必修

第一章三角函数章末复习课网络构建核心归纳1.三角函数的概念:重点掌握以下两方面内容:(1)理解任意角的概念和弧度的意义,能正确迅速地进行弧度与角度的换算.(2)掌握任意的角α的正弦、余弦和正切的定义,能正确快速利用三角函数值在各个象限的符号解题,能求三角函数的定义域和一些简单三角函数的值域.2.诱导公式:能用诱导公式将任意角的三角函数化为锐角三角函数,利用“奇变偶不变,符号看象限”牢记所有诱导公式.善于将同角三角函数的基本关系式和诱导公式结合起来使用,通过这些公式进行化简、求值,达到培养推理运算能力和逻辑思维能力提高的目的.3.三角函数的图像与性质(1)重点掌握“五点法”,会进行三角函数图像的变换,能从图像中获取尽可能多的信息,如周期、半个周期、四分之一个周期等,如轴对称、中心对称等,如最高点、最低点与对称中心之间位置关系等.能从三角函数的图像归纳出函数的性质.(2)牢固掌握三角函数的定义域、值域、周期性、单调性、奇偶性和对称性.在运用三角函数性质解题时,要善于运用数形结合思想、分类讨论思想、化归转化思想将综合性较强的试题完整准确地进行解答.要点一 任意角的三角函数的定义 有关三角函数的概念主要有以下两个方面:(1)任意角和弧度制,理解任意角的概念,弧度制的意义,能正确地进行弧度与角度的换算. (2)任意角的三角函数,掌握任意角的正弦、余弦、正切的定义及三角函数线,能够利用三角函数线判断三角函数的符号,借助三角函数线求三角函数的定义域. 【例1】 已知cos θ=m ,|m |≤1,求sin θ,tan θ的值. 解 (1)当m =0时,θ=2k π±π2,k ∈Z ;当θ=2k π+π2时,sin θ=1,tan θ不存在;当θ=2k π-π2时,sin θ=-1,tan θ不存在.(2)当m =1时,θ=2k π,k ∈Z ,sin θ=tan θ=0. 当m =-1时,θ=2k π+π,k ∈Z ,sin θ=tan θ=0. (3)当θ在第一、二象限时, sin θ=1-m 2,tan θ=1-m2m.(4)当θ在第三、四象限时, sin θ=-1-m 2,tan θ=-1-m2m.【训练1】 已知角θ的终边经过点P (-3,m ) (m ≠0)且sin θ=24m ,试判断角θ所在的象限,并求cos θ和tan θ的值. 解 由题意,得r =3+m 2, 所以sin θ=m3+m2=24m . 因为m ≠0,所以m =±5,故角θ是第二或第三象限角.当m =5时,r =22,点P 的坐标为(-3,5),角θ是第二象限角,所以cos θ=x r =-322=-64,tan θ=y x =5-3=-153;当m =-5时,r =22,点P 的坐标为(-3,-5),角θ是第三象限角,所以cos θ=x r =-322=-64, tan θ=y x =-5-3=153.要点二 诱导公式的应用(1)对于π±α,-α,2π±α记忆为“函数名不变,符号看象限”. (2)对于π2±α记忆为“函数名改变,符号看象限”.注意:①名改变指正弦变余弦或余弦变正弦,正切与余切之间变化. ②“符号看象限”是指把α看作锐角时原函数值的符号.③其作用是“负角变正角,大角变小角,小角变锐角”.【例2】 (1)若θ∈⎝ ⎛⎭⎪⎫π2,π(注:对任意角α有sin 2α+cos 2α=1成立),则1-π+θ⎝ ⎛⎭⎪⎫3π2-θ=( ) A .sin θ-cos θ B .cos θ-sin θ C .±(sin θ-cos θ)D .sin θ+cos θ(2)已知f (x )=a sin(πx +α)+b cos(πx -β),其中α,β, a ,b 均为非零实数,若f (2 016)=-1,则f (2 017)等于________.解析 (1)1-π+θ⎝ ⎛⎭⎪⎫3π2-θ=1-2sin θcos θ=|sin θ-cos θ|,又θ∈⎝ ⎛⎭⎪⎫π2,π,∴sin θ-cos θ>0, 故原式=sin θ-cos θ.(2)由诱导公式知f (2 016)=a sin α+b cos β=-1, ∴f (2 017)=a sin(π+α)+b cos(π-β) =-(a sin α+b cos β)=1. 答案 (1)A (2)1【训练2】 已知角α的终边经过点P ⎝ ⎛⎭⎪⎫45,-35.(1)求sin α的值;(2)求sin ⎝ ⎛⎭⎪⎫π2-αα+π·α-ππ-α的值.解 (1)∵|OP |=1, ∴点P 在单位圆上.由正弦函数的定义得sin α=-35.(2)原式=cos α-sin α·tan α-cos α=sin αsin α·cos α=1cos α,由余弦函数的定义得cos α=45.故所求式子的值为54.要点三 三角函数的图像及变换1.用“五点法”作y =A sin(ωx +φ)的图像时,确定五个关键点的方法是分别令ωx +φ=0,π2,π,32π,2π.2.对于y =A sin(ωx +φ)+h ,应明确A 、ω决定“变形”,φ、h 决定“位变”,A 影响值域,ω影响周期,A 、ω、φ影响单调性.针对x 的变换,即变换多少个单位,向左或向右很容易出错,应注意先“平移”后“伸缩”与先“伸缩”后“平移”的区别. 【例3】 函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫A >0,ω>0,|φ|<π2的一段图像如图.(1)求f (x )的解析式;(2)把f (x )的图像向左至少平移多少个单位,才能使得到的图像对应的函数为偶函数? 解 (1)A =3,2πω=43⎝ ⎛⎭⎪⎫4π-π4=5π,故ω=25.由f (x )=3sin ⎝ ⎛⎭⎪⎫25x +φ过⎝ ⎛⎭⎪⎫π4,0得sin ⎝ ⎛⎭⎪⎫π10+φ=0. 又|φ|<π2,故φ=-π10,故f (x )=3sin ⎝ ⎛⎭⎪⎫25x -π10.(2)由f (x +m )=3sin ⎣⎢⎡⎦⎥⎤25x +m -π10=3sin ⎝ ⎛⎭⎪⎫25x +25m -π10为偶函数(m >0),知2m 5-π10=k π+π2(k ∈Z ),即m =52k π+3π2(k ∈Z ). ∵m >0,∴m min =3π2.故至少把f (x )的图像向左平移3π2个单位长度,才能使得到的图像对应的函数是偶函数.【训练3】 已知函数f (x )的部分图像如图所示,则f (x )的解析式可能为( )A .f (x )=2sin ⎝ ⎛⎭⎪⎫x 2-π6 B .f (x )=2cos ⎝⎛⎭⎪⎫4x +π4 C .f (x )=2cos ⎝ ⎛⎭⎪⎫x 2-π3D .f (x )=2sin ⎝⎛⎭⎪⎫4x +π6 解析 由图像知周期T =4π,则ω=12,排除B 、D ;由f (0)=1,可排除A.答案 C要点四 三角函数的性质三角函数的性质,重点应掌握y =sin x ,y =cos x ,y =tan x 的定义域、值域、单调性、奇偶性、对称性等有关性质,在此基础上掌握函数y =A sin(ωx +φ),y =A cos(ωx +φ)及y =A tan(ωx +φ)的相关性质.在研究其相关性质时,将ωx +φ看成一个整体,利用整体代换思想解题是常见的技巧.【例4】f (x )是定义在R 上的偶函数,对任意实数x 满足f (x +2)=f (x ),且f (x )在 [-3,-2]上单调递减,而α,β是锐角三角形的两个内角,求证:f (sin α)>f (cos β). 证明 ∵f (x +2)=f (x ), ∴y =f (x )的周期为2.∴f (x )在[-1,0]与[-3,-2]上的单调性相同. ∴f (x )在[-1,0]上单调递减. ∵f (x )是偶函数,∴f (x )在[0,1]上的单调性与[-1,0]上的单调性相反. ∴f (x )在[0,1]上单调递增.① ∵α,β是锐角三角形的两个内角, ∴α+β>π2,∴α>π2-β,且α∈⎝ ⎛⎭⎪⎫0,π2,π2-β∈⎝⎛⎭⎪⎫0,π2.又∵y =sin x 在⎝⎛⎭⎪⎫0,π2上单调递增, ∴sin α>sin ⎝ ⎛⎭⎪⎫π2-β=cos β,即sin α>cos β.②由①②,得f (sin α)>f (cos β).【训练4】 已知a >0,函数f (x )=-2a sin(2x +π6)+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1. (1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎪⎫x +π2且lg g (x )>0,求g (x )的单调区间.解 (1)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6. ∴sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1, ∴-2a sin ⎝ ⎛⎭⎪⎫2x +π6∈[-2a ,a ].∴f (x )∈[b,3a +b ], 又∵-5≤f (x )≤1, ∴b =-5,3a +b =1, 因此a =2,b =-5. (2)由(1)得a =2,b =-5, ∴f (x )=-4sin ⎝⎛⎭⎪⎫2x +π6-1,g (x )=f ⎝ ⎛⎭⎪⎫x +π2=-4sin ⎝⎛⎭⎪⎫2x +7π6-1=4sin ⎝ ⎛⎭⎪⎫2x +π6-1, 又由lg g (x )>0得g (x )>1, ∴4sin ⎝ ⎛⎭⎪⎫2x +π6-1>1, ∴sin ⎝⎛⎭⎪⎫2x +π6>12, ∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝⎛⎭⎪⎫k π,k π+π6,k ∈Z .又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z .∴g (x )的单调减区间为⎝⎛⎭⎪⎫k π+π6,k π+π3,k ∈Z .要点五 三角函数的综合应用(1)求解复合函数的有关性质问题时,应同时考虑到内层函数与外层函数的各自特征及它们的相互制约关系,准确地进行等价转化;(2)在求三角函数的定义域时,不仅要考虑函数式有意义,而且要注意三角函数各自的定义域的要求.一般是归结为解三角函数不等式(组),可用图像法或单位圆法; (3)求复合函数的单调区间应按照复合函数单调性的规则进行;(4)用周期函数的定义求函数的周期是求周期的根本方法,在证明有关函数的周期性问题时,也常用周期函数的定义来处理.【例5】 已知函数f (x )=log 12⎣⎢⎡⎦⎥⎤2sin ⎝ ⎛⎭⎪⎫x -π4.(1)求它的定义域和值域、单调区间;(2)判断它的奇偶性、周期性,如果是周期函数,求出它的最小正周期.解 令u (x )=2sin ⎝⎛⎭⎪⎫x -π4.f (x )=log 12⎣⎢⎡⎦⎥⎤2sin ⎝⎛⎭⎪⎫x -π4=-12+log 12sin ⎝ ⎛⎭⎪⎫x -π4.(1)要使f (x )有意义,则sin ⎝⎛⎭⎪⎫x -π4>0,所以2k π<x -π4<(2k +1)π(k ∈Z ),即x ∈⎝⎛⎭⎪⎫2k π+π4,2k π+5π4(k ∈Z ).因为0<sin ⎝ ⎛⎭⎪⎫x -π4≤1,所以0<2sin ⎝⎛⎭⎪⎫x -π4≤2,所以f (x )=log 12u (x )≥-12.所以f (x )的值域为⎣⎢⎡⎭⎪⎫-12,+∞. x -π4∈⎝⎛⎭⎪⎫2k π,2k π+π2时,u (x )是增函数,所以f (x )=log 12u (x )是减函数.所以x ∈⎝⎛⎭⎪⎫2k π+π4,2k π+3π4时,函数是减函数. 同理可求得x ∈⎣⎢⎡⎭⎪⎫2k π+3π4,2k π+5π4(k ∈Z )时,函数是增函数.(2)因为f (x )的定义域不关于原点对称,所以f (x )是非奇非偶函数. 又f (x +2π)=-12+log 12sin ⎝ ⎛⎭⎪⎫x +2π-π4=-12+log 12sin ⎝ ⎛⎭⎪⎫x -π4=f (x ),其中x ∈⎝ ⎛⎭⎪⎫2k π+π4,2k π+5π4(k ∈Z ),所以f (x )是周期函数,且最小正周期是2π. 【训练5】 函数f (x )=cos x +2|cos x |在[0,2π]上与直线y =m 有且仅有2个交点,求m 的取值范围.解 f (x )=⎩⎪⎨⎪⎧3cos x ,x ∈⎣⎢⎡⎦⎥⎤0,π2∪⎣⎢⎡⎦⎥⎤32π,2π,-cos x ,x ∈⎝ ⎛⎭⎪⎫π2,32π,如图:由图可知:当m =0或1<m ≤3时,直线y =m 与f (x )的图像有且仅有2个交点.基础过关1.sin(-60°)的值是( ) A .-12B.12 C .-32D.32解析 sin(-60°)=-sin 60°=-32. 答案 C2.已知角α是第二象限角,角α的终边经过点P (x,4),且cos α=x5,则tan α=( )A.43B.34 C .-34D .-43解析 ∵α是第二象限角,且终边经过点P (x,4). ∴x <0. cos α=x x 2+42=x5,x =-3.则P (-3,4).∴tan α=4-3=-43. 答案 D3.已知2sin ⎝ ⎛⎭⎪⎫α+π2=1,则cos(α+π)=( )A.12 B .-12C.32D .-32解析 ∵2sin ⎝⎛⎭⎪⎫α+π2=2cos α=1, ∴cos α=12,cos(α+π)=-cos α=-12,故选B.答案 B4.已知扇形AOB 的周长是6,圆心角是1弧度,则该扇形的面积为________. 解析 由2R +l =6,l R=1,得R =l =2, ∴S =12×2×2=2.答案 25.函数y =3sin ⎝ ⎛⎭⎪⎫2x -π3在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值是________,此时自变量x =________. 解析 ∵x ∈⎝ ⎛⎭⎪⎫0,π2,∴-π3≤2x -π3≤2π3.令u =2x -π3,又函数y =sin u 在⎣⎢⎡⎦⎥⎤-π3,2π3上的最大值为1,∴函数y =3sin ⎝ ⎛⎭⎪⎫2x -π3在区间⎝⎛⎭⎪⎫0,π2上的最大值是3×1=3,此时自变量2x -π3=π2,即x =5π12. 答案 1 5π12 6.计算3-tan11π3-cos 585°·tan ⎝ ⎛⎭⎪⎫-37π4.解 原式=-3sin120°tan2π3+cos 225°tan π4=-3cos π6·⎝⎛⎭⎪⎪⎫1-tan π3+(-cos 45°)·tan π4=-3×32×⎝ ⎛⎭⎪⎫-33+⎝ ⎛⎭⎪⎫-22×1=32-22=3-22. 7.已知函数f (x )=3sin ⎝ ⎛⎭⎪⎫12x +π4-1,x ∈R ,求:(1)函数f (x )的最小值及此时自变量x 的取值集合;(2)函数y =sin x 的图像经过怎样的变换得到函数f (x )=3sin ⎝ ⎛⎭⎪⎫12x +π4-1的图像.解 (1)函数f (x )的最小值是3×(-1)-1=-4, 此时有12x +π4=2k π-π2,解得x =4k π-3π2(k ∈Z ),即函数f (x )的最小值是-4,此时自变量x 的取值集合是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =4k π-3π2,k ∈Z. (2)步骤是:①将函数y =sin x 的图像向左平移π4个单位长度,得到函数y =sin ⎝⎛⎭⎪⎫x +π4的图像;②将函数y =sin ⎝⎛⎭⎪⎫x +π4的图像上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y =sin ⎝ ⎛⎭⎪⎫12x +π4的图像;③将函数y =sin ⎝ ⎛⎭⎪⎫12x +π4的图像上所有点的纵坐标伸长为原来的3倍(横坐标不变),得到函数y =3sin ⎝ ⎛⎭⎪⎫12x +π4的图像;④将函数y =3sin ⎝ ⎛⎭⎪⎫12x +π4的图像向下平移1个单位长度,得函数y =3sin ⎝ ⎛⎭⎪⎫12x +π4-1的图像.能力提升8.若直线x =k π2(-1≤k ≤1)与函数y =tan ⎝⎛⎭⎪⎫2x +π4的图像不相交,则k =( )A.14 B .-34C.14或-34D.14或34解析 由2x +π4=π2+n π.n ∈Z ,得x =π8+n π2.由题意得k π2=π8+n π2,k =1+4n 4, 又-1≤k ≤1. ∴k =14或k =-34.答案 C9.设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π,则( ) A .ω=23,φ=π12B .ω=23,φ=-11π12C .ω=13,φ=-11π24D .ω=13,φ=7π24解析 由题意⎩⎪⎨⎪⎧5ωπ8+φ=2k 1π+π2,11ωπ8+φ=k 2π,其中k 1,k 2∈Z ,所以ω=43(k 2-2k 1)-23,又T =2πω>2π, 所以0<ω<1,所以ω=23,φ=2k 1π+112π,由|φ|<π得φ=π12,故选A.答案 A10.已知tan θ=2,则sin ⎝ ⎛⎭⎪⎫π2+θ-π-θsin ⎝ ⎛⎭⎪⎫π2-θ-π-θ=________.解析 原式=cos θ+cos θcos θ-sin θ=2cos θcos θ-sin θ=21-tan θ=-2.答案 -211.对于函数f (x )=⎩⎪⎨⎪⎧sin x ,sin x ≤cos x ,cos x ,sin x >cos x ,给出下列四个命题:①该函数是以π为最小正周期的周期函数;②当且仅当x =π+k π(k ∈Z )时,该函数取得最小值-1; ③该函数的图像关于x =5π4+2k π(k ∈Z )对称;④当且仅当2k π<x <π2+2k π(k ∈Z )时,0<f (x )≤22.其中正确命题的序号是________(请将所有正确命题的序号都填上). 解析 画出f (x )在一个周期[0,2π]上的图像.由图像知,函数f (x )的最小正周期为2π,在x =π+2k π(k ∈Z )和x =3π2+2k π(k ∈Z )时,该函数都取得最小值-1,故①②错误,由图像知,函数图像关于直线x =5π4+2k π(k ∈Z )对称,在2k π<x <π2+2k π(k ∈Z )时,0<f (x )≤22.故③④正确.答案 ③④12.已知函数y =sin ⎝ ⎛⎭⎪⎫π3-2x ,求: (1)函数的周期;(2)求函数在[-π,0]上的单调递减区间. 解 由y =sin ⎝ ⎛⎭⎪⎫π3-2x 可化为y =-sin ⎝ ⎛⎭⎪⎫2x -π3.(1)周期T =2πω=2π2=π.(2)令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤ x ≤k π+5π12,k ∈Z .所以x ∈R 时,y =sin ⎝⎛⎭⎪⎫π3-2x 的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .从而x ∈[-π,0]时,y =sin ⎝ ⎛⎭⎪⎫π3-2x 的单调递减区间为⎣⎢⎡⎦⎥⎤-π,-7π12,⎣⎢⎡⎦⎥⎤-π12,0.13.(选做题)已知函数f (x )=A sin(ωx +φ)在一个周期内的图像如图所示.(1)求f (x )的解析式;(2)求f ⎝ ⎛⎭⎪⎫π4+f ⎝ ⎛⎭⎪⎫2π4+f ⎝ ⎛⎭⎪⎫3π4+…+f ⎝ ⎛⎭⎪⎫2 015π4的值.解 (1)由图像可知A =2, 周期T =2⎝⎛⎭⎪⎫7π12-π12=π,所以ω=2πT =2ππ=2,则f (x )=2sin(2x +φ), 由图像过点⎝⎛⎭⎪⎫π12,2,得2sin ⎝ ⎛⎭⎪⎫2×π12+φ=2, 即sin ⎝⎛⎭⎪⎫π6+φ=1,取π6+φ=π2得φ=π3, 故f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3.(2)由(1)可知f (x )的周期为π,因为f ⎝ ⎛⎭⎪⎫π4+f ⎝ ⎛⎭⎪⎫2π4+f ⎝ ⎛⎭⎪⎫3π4+f ⎝ ⎛⎭⎪⎫4π4=1-3-1+3=0,所以f ⎝ ⎛⎭⎪⎫π4+f ⎝ ⎛⎭⎪⎫2π4+f ⎝ ⎛⎭⎪⎫3π4+…+f ⎝ ⎛⎭⎪⎫2 015π4 =0×503+f ⎝⎛⎭⎪⎫2 013π4+f ⎝ ⎛⎭⎪⎫2 014π4+f ⎝ ⎛⎭⎪⎫2 015π4=f ⎝ ⎛⎭⎪⎫π4+f ⎝ ⎛⎭⎪⎫2π4+f ⎝ ⎛⎭⎪⎫3π4=1-3-1 =- 3.。
高中数学 第一章 三角函数 1.3 弧度制学案 北师大版必修4(2021年整理)

高中数学第一章三角函数1.3 弧度制学案北师大版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章三角函数1.3 弧度制学案北师大版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章三角函数1.3 弧度制学案北师大版必修4的全部内容。
1。
3 弧度制知识梳理1。
弧度制(1)定义:以弧度为单位度量角大小的制度叫弧度制.(2)度量方法:长度等于半径长的圆弧所对的圆心角的大小叫做1弧度的角。
(3)记法:弧度单位用符号“rad”表示,或用弧度两个字表示。
在用弧度制表示角的大小时,通常单位省略不写.2。
弧度制与角度制的换算(1)换算公式:1 rad=(π180)°,1°=180πrad 。
(2)特殊角的弧度数 角度 0° 15° 30° 45° 60° 75° 90° 120° 135° 150°弧度0 12π 6π 4π 3π 125π 2π 32π 43π 65π 角度 180° 210° 225° 240° 270° 300° 315° 330° 360°弧度 π 67π 45π 34π 23π 35π 47π 611π 2π3.弧度制下的公式如图1—3-1所示,l 、r 、α分别是弧长、半径、弧所对的圆心角的弧度数.图1—3-1(1)弧度数公式:|α|=r1; (2)弧长公式:l=|α|r ;(3)扇形面积公式:S=21lr=21|α|r 2.知识导学学习过程中一定要努力突破单一按角度制思考问题的习惯,力求能通过弧度来认识任意角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3 弧度制学习目标 1.理解弧度的意义,能正确地进行弧度与角度的换算,熟记特殊角的弧度数(重点).2.掌握弧度制下的弧长公式,会用弧度解决一些实际问题(难点).知识点1 弧度制 (1)角度制与弧度制的定义(2)如果半径为r 的圆的圆心角α所对弧的长为l ,那么角α的弧度数的绝对值是|α|=l r. 【预习评价】(正确的打“√”,错误的打“×”)(1)“度”与“弧度”是度量角的两种不同的度量单位(√) (2)1°的角是周角的1360,1 rad 的角是周角的12π(√)(3)1°的角比1 rad 的角要大(×)(4)1 rad 的角的大小和所在圆的半径的大小有关(×) 知识点2 角度制与弧度制的换算 常见角度与弧度互化公式如下:请填充完整下表,一些特殊角的角度数与弧度数的对应关系有:设扇形的半径为R ,弧长为l ,α(0<α<2π)为其圆心角,则1.一个扇形的半径为2 cm ,圆心角为π6,则该扇形所对的弧长l =________cm.答案π32.一个扇形的半径为2 cm ,其对应的弧长为2.则该扇形的面积为________cm 2. 答案 2知识点4 利用弧度制表示终边相同的角在弧度制下,与α终边相同的角连同α在内可以表示为2k π+α(k ∈Z ),其中α的单位必须是弧度. 【预习评价】1.与30°终边相同的角为( ) A .2k π+π3(k ∈Z )B .2k π+π6(k ∈Z )C .360°k +π3(k ∈Z )D .2k π+30°(k ∈Z )答案 B2.终边在x 轴上的角的集合用弧度制表示为________. 答案 {α|α=k π,k ∈Z }题型一 角度与弧度的互化【例1】 将下列角度与弧度进行互化: (1)20°;(2)-15°;(3)7π12;(4)-115π.解 (1)20°=20×π180 rad =π9 rad.(2)-15°=-15×π180 rad =-π12 rad.(3)712π rad =712×180°=105°.(4)-115π rad =-115×180°=-396°.规律方法 角度制与弧度制互化的原则、方法以及注意点(1)原则:牢记180°=π rad ,充分利用1°=π180rad 和1 rad =⎝ ⎛⎭⎪⎫180π°进行换算.(2)方法:设一个角的弧度数为α,角度数为n ,则α rad =α·180°;n °=n ·π180rad.(3)注意点:①用“弧度”为单位度量角时,“弧度”二字或“rad”可以省略不写;②用“弧度”为单位度量角时,“常常把弧度数写成多少π的形式,如无特别要求,不必把π写成小数;③度化弧度时,应先将分、秒化成度,再化成弧度. 【训练1】 将下列各角度与弧度互化: (1)512π;(2)-76π;(3)-157°30′. 解 (1)512π=512×180°=75°;(2)-76π=-76×180°=-210°;(3)-157°30′=-157.5°=-157.5×π180 rad=-78π rad.题型二 用弧度制表示终边相同的角【例2】 (1)把-1 480°写成α+2k π(k ∈Z )的形式,其中0≤α<2π; (2)若β∈[-4π,0),且β与(1)中α终边相同,求β. 解 (1)∵-1 480°=-74π9=-10π+16π9,0≤16π9<2π,∴-1 480°=16π9-2×5π=16π9+2×(-5)π.(2)∵β与α终边相同,∴β=2k π+16π9,k ∈Z .又∵β∈[-4π,0),∴β1=-2π9,β2=-209π.【训练2】 用弧度制表示终边在图中阴影区域内角的集合(包括边界)并判断 2 015°是不是这个集合的元素.解 因为150°=5π6.所以终边在阴影区域内角的集合为S =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫β⎪⎪⎪5π6+2k π≤β≤3π2+2k π,k ∈Z . 因为2 015°=215°+5×360°=43π36+10π,又5π6<43π36<3π2.所以2 015°=43π36∈S ,即2 015°是这个集合的元素.方向1 求弧长【例3-1】 已知扇形OAB 的圆心角α为120°,半径长为6.求的长;解 ∵α=120°=23π,r =6,∴的长l =23π×6=4π.方向2 求圆心角【例3-2】 已知扇形周长为10,面积是4,求扇形的圆心角. 解 设圆心角是θ,半径是r , 则⎩⎪⎨⎪⎧2r +r θ=10,12θ·r 2=4⇒⎩⎪⎨⎪⎧r =4,θ=12或⎩⎪⎨⎪⎧r =1,θ=8(舍).故扇形圆心角为12.方向3 求面积的最值【例3-3】 已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?解 设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S , 则l +2r =40,∴l =40-2r . ∴S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100.∴当半径r =10 cm 时,扇形的面积最大,最大值为100 cm 2,此时θ=l r =40-2×1010rad =2 rad.∴当扇形的圆心角为2 rad ,半径为10 cm 时,扇形的面积最大为100 cm 2.规律方法 灵活运用扇形弧长公式、面积公式列方程组求解是解决此类问题的关键,有时运用函数思想、转化思想解决扇形中的有关最值问题,将扇形面积表示为半径的函数,转化为r 的二次函数的最值问题.课堂达标1.与120°角终边相同的角为( ) A .2k π-2π3(k ∈Z )B.11π3C .2k π-10π3(k ∈Z )D .(2k +1)π+2π3(k ∈Z )解析 120°=2π3且2k π-10π3=(2k -4)π+2π3(k ∈Z ),∴120°与2k π-10π3(k ∈Z ),终边相同.答案 C2.-23π12化为角度应为( )A .-345°B .-15°C .-315°D .-375°解析 -23π12=-2312×180°=-345°.答案 A3.已知扇形的半径为12,弧长为18,则扇形圆心角为________.解析 由弧长公式l =αR 得α=l R =1812=32.答案 324.下列结论不正确的是________(只填序号).①π3 rad =60°;②10°=π18 rad ;③36°=π5 rad ;④5π8 rad =115°. 解析5π8 rad =58×180°=112.5°,∴④错.答案 ④5.一个扇形的面积为1,周长为4,求圆心角的弧度数. 解 设扇形的半径为R ,弧长为l ,则2R +l =4, ∴l =4-2R ,根据扇形面积公式S =12lR ,得1=12(4-2R )·R ,∴R =1,∴l =2,∴α=l R =21=2,即扇形的圆心角为2 rad.课堂小结1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad”这一关系式. 3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,具体应用时,要注意角的单位取弧度.基础过关1.在半径为10的圆中,240°的圆心角所对弧长为( ) A.403π B.203π C.2003π D.4003π 解析 240°=240×π180 rad =43π rad ,∴弧长l =|α|·r =43π×10=403π,故选A.答案 A2.下列与9π4的终边相同的角的表达式中,正确的是( )A .2k π+45°(k ∈Z )B .k ·360°+9π4(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )答案 C3.若α=-3,则角α的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限解析 ∵-π<-3<-π2,∴-3是第三象限角.答案 C4.若三角形三内角之比为4∶5∶6,则最大内角的弧度数是____________. 答案 25π5.如果一扇形的弧长变为原来的32倍,半径变为原来的一半,则该扇形的面积为原扇形面积的________.解析 由于S =12lR ,若l ′=32l ,R ′=12R ,则S ′=12l ′R ′=12×32l ×12R =34S .答案 346.把下列各角化为2k π+α(0≤α<2π,k ∈Z ) 的形式且指出它是第几象限角,并写出与它终边相同的角的集合.(1)-46π3;(2)-1 485°;(3)-20.解 (1)-46π3=-8×2π+2π3,它是第二象限角,终边相同的角的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫β⎪⎪⎪β=2k π+2π3,k ∈Z. (2)-1 485°=-5×360°+315°=-5×2π+7π4,它是第四象限角.终边相同的角的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫β⎪⎪⎪β=2k π+7π4,k ∈Z . (3)-20=-4×2π+(8π-20),而3π2<8π-20<2π.∴-20是第四象限角,终边相同的角的集合为{α|α=2k π+(8π-20),k ∈Z }.7.直径为20 cm 的圆中,求下列两个圆心角所对的弧长及扇形面积. (1)4π3;(2)165°.解 (1)l =|α|·r =43π×10=403π(cm),S =12|α|·r 2=12×43π×102=2003π(cm 2).。