用SOR方法求解线性方程组

合集下载

数值分析6-用SOR方法求解线性方程组

数值分析6-用SOR方法求解线性方程组

程序 clear;clc; A=[4,3,0;3,4,-1;0,-1,4]; b=[24,30,-24]'; N=length(b); %解向量的维数 fprintf('库函数计算结果:'); x=inv(A)*b %库函数计算结果 x=[1;1;1];%迭代初始值 %-----(A=D-E-F)-----D=diag(diag(A)); E=-tril(A,-1);%下三角 F=-triu(A,1);%上三角 w=1.5; %松弛因子,一般 0<w<2 B=inv(D-w*E)*[(1-w)*D+w*F];g=w*inv(D-w*E)*b; eps=1e-8;%相邻解的距离小于该数时,结束迭代 %--------开始迭代------for k=1:100 %最大迭代次数为 100 fprintf('第%d 次迭代:',k); y=B*x+g; if abs(x-y)<eps break; end x=y end x
程序结果
当比较松弛因Biblioteka 取 1.0 时当比较松弛因子取 1.25 时
当比较松弛因子取 1.5 时
作业七:编写用 SOR 方法求解线性方程组 Ax=B 的标准程序,并求下 列方程组的解, 并比较松弛因子取 1.0、 1.25、 1.5 时所需迭代的次数。 可取初始向量 X(0) =(1,1,1)’;迭代终止条件||x(k+1)-x(k)||<=10e-8
4 30 ������1 24 3 4 − 1 x2 = 30 0 − 14 x3 −24

sor迭代法手算例题

sor迭代法手算例题

sor迭代法手算例题SOR迭代法是求解线性方程组的一种经典方式,其基本思想是通过不断迭代来逼近方程组的解。

这种方法在大规模问题上具有很好的效率,因此得到了广泛的应用。

本文将介绍SOR迭代法的基本原理,并以一个手算例题来展示其具体步骤和计算结果。

一、SOR迭代法的基本原理在介绍SOR迭代法的原理之前,我们先来看一下迭代法本身的思想。

假设有一个线性方程组:$$Ax=b$$其中,A是一个$n\times n$的系数矩阵,b是一个$n\times 1$的常数向量,x是一个$n\times 1$的未知向量。

迭代法的基本思想是将方程组表示为:$$x^{(k+1)}=Tx^{(k)}+C$$其中,$x^{(k)}$表示第k次迭代的近似解,$T$是一个$n\times n$的矩阵,$C$是一个$n\times 1$的常数向量。

迭代法的步骤是从一个初始点$x^{(0)}$开始,不断应用上述公式来寻找更好的解$x^{(k+1)}$。

当接近真解时,迭代的过程会不断收敛,即$x^{(k+1)}$会不断逼近真解$x$。

那么,如何确定矩阵$T$和向量$C$呢?最简单的方法是将方程组表示为:$$x^{(k+1)}=(I-\omega A)x^{(k)}+\omega b$$其中,I是$n\times n$的单位矩阵,$\omega$是一个常数,称作松弛因子。

当$\omega=1$时,这就是最基本的迭代法——雅克比迭代法。

但是,雅克比迭代法的收敛速度比较慢,因此需要调整$\omega$的值,从而得到更好的迭代效果。

SOR迭代法就是一种改良的迭代方法,其基本思想是通过加速松弛因子的变化来改善雅克比迭代法的效率。

具体来说,SOR迭代法的公式为:$$x_i^{(k+1)}=(1-\omega)x_i^{(k)}+\frac{\omega}{a_{ii}}\left(b_i-\sum_{j<i}a_{ij}x_j^{(k+1)}-\sum_{j>i}a_{ij}x_j^{(k)}\right)$$其中,$i=1,2,\cdots,n$。

对称超松弛迭代法 -回复

对称超松弛迭代法 -回复

对称超松弛迭代法-回复对称超松弛迭代法(Symmetric Successive Over-Relaxation, SSOR)是一种用于求解线性方程组的迭代解法。

它是对超松弛迭代法(Successive Over-Relaxation, SOR)的改进和扩展,适用于具有对称正定系数矩阵的方程组。

本文将详细介绍SSOR的原理、算法步骤和收敛性分析。

一、SSOR原理:1. 对称正定系数矩阵:对称正定系数矩阵是指一个n阶实对称矩阵A,满足以下两个条件:(1) 矩阵A的所有特征值大于零;(2) 对于任意非零列向量x,都有x^T * A * x > 0,其中x^T表示向量x的转置。

2. SSOR分解:对称正定系数矩阵A可以进行SSOR分解,即将A分解为A = D - L - U,其中D、L、U分别为A的对角线元素、下三角和上三角元素组成的矩阵。

3. 迭代格式:SSOR迭代格式为:x(k+1) = (D - ωL)^(-1) * [ωU * x(k) + (1-ω) * b],其中x(k)表示第k次迭代的解向量,ω为松弛因子,b为常数向量。

4. SSOR与SOR:SSOR是对SOR方法的改进和拓展,当松弛因子ω=1时,SSOR退化为SOR方法。

SSOR方法在SOR方法的基础上引入了前向迭代和后向迭代,使得收敛速度更快。

二、SSOR算法步骤:1. 初始化:给出初始近似解向量x(0),选择松弛因子ω的初值。

2. 迭代过程:(1) 前向迭代:根据迭代格式,计算x(k+1/2) = (D - ωL)^(-1) * [ωU * x(k) + (1-ω) * b]。

(2) 后向迭代:继续根据迭代格式,计算x(k+1) = (D - ωU)^(-1) * [ωL * x(k+1/2) + (1-ω) * b]。

(3) 重复步骤(1)和(2),直到满足收敛准则(如迭代次数达到指定值或解的误差小于给定阈值)为止。

3. 输出结果:输出近似解向量x(k+1)。

数值分析实验报告-Sor法分析

数值分析实验报告-Sor法分析

数值分析实验报告一、 实验目的1、会使用Sor 法求解一个线性方程组2、熟悉matlab 语言并结合原理编程求方程组3、改变ω的值观察实验结果4、会分析实验结果 二、实验题目编制Sor 迭代格式程序进行求解一个线性方程组的迭代计算情况,运行中要选用不同的松弛因子ω进行尝试三、 实验原理Jacobi 迭代和seidel 迭代对具体的线性方程组来说,逼近*x 的速度是固定不变的,遇到收敛很慢的情况时就显得很不实用。

Sor 法是一seidel 迭代为基础,并在迭代中引入参数ω以增加迭代选择的灵活性,具体为:!用seidel 迭代算出的,)()1()()1(k k J k k Jx x x x x -=∆++相减得到差向量与再用参数ω乘之再加上)1()()()1()1()()()1(++++-=∆+=k Jk k k k k k x x x x x x x x ωωω,即的下一步迭代作为,由seidel 迭代的公式可以得到Sor 法的迭代格式为n i x a x a b a x x k j n i j ij k j i j ij i ii k i k i ,2,1),()1()(1)1(11)()1( =--+-=∑∑+=+-=+ωω式中ω称为松弛因子。

四、 实验内容用matlab 编程得到Sor 法求线性方程组的算法为:function [x,n]=SOR(A,b,x0,w,eps,M)if nargin==4eps= ;M = 200;elseif nargin<4errorreturn:elseif nargin ==5M = 200;endif(w<=0 || w>=2)error;return;endD=diag(diag(A)); %求A的对角矩阵L=-tril(A,-1); %求A的下三角阵(U=-triu(A,1); %求A的上三角阵B=inv(D-L*w)*((1-w)*D+w*U);f=w*inv((D-L*w))*b;x=B*x0+f;n=1; %迭代次数while norm(x-x0)>=epsx0=x;x =B*x0+f;n=n+1;if(n>=M)(disp('Warning: 迭代次数太多,可能不收敛!'); return;endend输入数据:>> A=[20 1 -3 -1;3 18 0 7;-1 2 40 -2;1 0 -1 5];b=[1;2;10;-1];x0=[0;0;0;0];w=1;eps=1e-4;;M=100;>> [x,n]=SOR(A,b,x0,w,eps,M)x =n =;5error;>> A=[20 1 -3 -1;3 18 0 7;-1 2 40 -2;1 0 -1 5];b=[1;2;10;-1];x0=[0;0;0;0];w=;eps=1e-4;M=100;[x,n]=SOR(A,b,x0,w,eps,M)/x =n =@21>>A=[20 1 -3 -1;3 18 0 7;-1 2 40 -2;1 0 -1 5]; b=[1;2;10;-1];x0=[0;0;0;0];w=;eps=1e-4;M=100;[x,n]=SOR(A,b,x0,w,eps,M)Error using ==> errorNot enough input arguments.,Error in ==> SOR at 13用实验3中的线性方程组作为例子比较得当ω=时,x = 迭代次数为n=21当ω=1时,x = 迭代次数为n=5当ω=时,出现error五、实验分析由定理,Sor法收敛的必要条件是0<ω<2,因此,当ω=和1时,算法收敛,能够求出根,并且迭代次数根据ω的不同而不同,在求方程组的根时,只要选择恰当的ω,收敛是很快的。

第一次迭代解法之SOR

第一次迭代解法之SOR

种相容范数都有 ρ(A)≤||A||
(6.2)
2021/6/17
13
另一个更深刻的结果,对于任意的ε>0,必存在一种相
容的矩阵范数,使
|| A ||≤ ρ(A) +ε
(6.3)
式(6.2)和(6.3)表明,矩阵A的谱半径是它所有相 容范数的下确界。
定义6.4 设有n×n矩阵序列 A(k) (ai(jk) ), k 1, 2, 方阵A=(aij), 如果
多大算病态没有标准。如果主元很小或者元素数量级相差大,可能是病态
cond ( A) A A1 AA1 1
2021/6/17
18
§2 迭代解法与收敛性
一、迭代解法
设有线性方程组
Ax=b
(1)
A∈Rn×n, b∈Rn .
对A 进行分裂, A=A1+A2 , 其中 A1 可逆,
则 (A1+A2)x=b A1x = - A2x+b x = - A1-1 A2 x + A1-1 b
再由 Ax =b,得到 || b||= || Ax || ≤||A || ||x||
2021/6/17
16
于是,由 || △x ||≤||A-1 || ||△b||
及 ||b || ≤||A || ||x|| 1 A
x
b
得到解的相对误差为
x A
A1
b
x
b
令 Cond(A)=||A || ||A-1 || ,并称其为矩阵A的条件数。
14 20
则它的特征方程为:
I AT A 10 14
2 30 4 0
14
20
2021/6/17
10
此方程的根为矩阵ATA的特征值,解得

sor迭代法

sor迭代法

SOR迭代法的Matlab程序function [x]=SOR_iterative(A,b)% 用SOR迭代求解线性方程组,矩阵A是方阵x0=zeros(1,length(b)); % 赋初值tol=10^(-2); % 给定误差界N=1000; % 给定最大迭代次数[n,n]=size(A); % 确定矩阵A的阶w=1; % 给定松弛因子k=1;% 迭代过程while k<=Nx(1)=(b(1)-A(1,2:n)*x0(2:n)')/A(1,1);for i=2:nx(i)=(1-w)*x0(i)+w*(b(i)-A(i,1:i-1)*x(1:i-1)'-A(i,i+1:n)*x0(i+1:n)')/A(i,i);endif max(abs(x-x0))<=tolfid = fopen('SOR_iter_result.txt', 'wt');fprintf(fid,'\n********用SOR迭代求解线性方程组的输出结果********\n\n');fprintf(fid,'迭代次数: %d次\n\n',k);fprintf(fid,'x的值\n\n');fprintf(fid, '%12.8f \n', x);break;endk=k+1;x0=x;endif k==N+1fid = fopen('SOR_iter_result.txt', 'wt');fprintf(fid,'\n********用SOR迭代求解线性方程组的输出结果********\n\n');fprintf(fid,'迭代次数: %d次\n\n',k);fprintf(fid,'超过最大迭代次数,求解失败!');fclose(fid);end常微分方程的数值解法实验目的:熟悉在Matlab平台上直接求解常微分方程初值问题试验方法1、利用改进欧拉法解方程:程序内容为:fun=@(x,y)x^(-2)-y/x;h=0.05;X=1:h:2;Y(1)=1;for i=2:21Y(i)=Y(i-1)+h/2*(fun(X(i-1),Y(i-1))+fun(X(i),Y(i-1))+h*fun(X(i-1),Y(i-1))); end;Y运行结果为:Y =Columns 1 through 91.0000 0.9989 0.9957 0.9909 0.9848 0.9778 0.9701 0.9618 0.9530Columns 10 through 180.9440 0.9348 0.9254 0.9160 0.9065 0.8971 0.8876 0.8783 0.8690Columns 19 through 210.8598 0.8508 0.8418真实解的求法为:x=1:0.05:2;y=1./x.*(log(x)+1)y =Columns 1 through 81.0000 0.9988 0.9957 0.9911 0.9853 0.9785 0.9710 0.9630Columns 9 through 160.9546 0.9459 0.9370 0.9279 0.9188 0.9096 0.9004 0.8912Columns 17 through 210.8821 0.8731 0.8641 0.8553 0.8466用四阶R-K算法解常微分方程的程序为:fun=@(x,y)x^(-2)-y/x;h=0.1;X=1:h:2;Y(1)=1;for n=2:11k1=fun(x(n-1),Y(n-1));k2=fun(x(n-1)+h/2,Y(n-1)+h/2*k1);k3=fun(x(n-1)+h/2,Y(n-1)+h/2*k2);k4=fun(x(n-1)+h,Y(n-1)+h*k3);Y(n)=Y(n-1)+h/6*(k1+2*k2+2*k3+k4)end;Y运行后了结果为:Y =Columns 1 through 91.0000 0.9957 0.9853 0.9710 0.9546 0.9370 0.9188 0.9004 0.8821Columns 10 through 110.8641 0.8466真实解的求法为:x=1:0.1:2;y=1./x.*(log(x)+1)y =Columns 1 through 91.0000 0.9957 0.9853 0.9710 0.9546 0.9370 0.9188 0.9004 0.8821Columns 10 through 110.8641 0.8466可见其精确度至少已达到0.0012、MATLAB中数值解法“ode45”为:[x1,y1] = ode45(@(x,y)x^(-2)-y/x,[1,2],y0);符号解法“dsolve”求解为:dsolve('Dy=x^(-2)-y/x','y(1) = 1','x')ans =(log(x)+1)/x画出两种算法的图形位:[x1,y1] = ode45(@(x,y)x^(-2)-y/x,[1,2],1);fplot('(log(x)+1)/x',[1,2]);hold on, plot(x1,y1,'ro');数值算法同解析算法几乎完全吻合。

超松弛迭代法公式与jacobi的关系

超松弛迭代法公式与jacobi的关系

超松弛迭代法公式与jacobi的关系超松弛迭代法(SOR)和Jacobi迭代法是常用的求解线性方程组的迭代方法。

它们都是通过迭代逼近线性方程组的解,但是在具体的迭代过程和收敛性上有所不同。

首先来看一下Jacobi迭代法。

给定线性方程组Ax=b,其中A是一个n×n的方阵,b是一个n维向量,x是我们要求解的未知向量。

Jacobi迭代法的思想是将线性方程组的每个方程分别写成一个未知量的函数,并通过迭代的方式逐步求解。

具体来说,Jacobi迭代法的迭代公式如下:$$x^{(k+1)}=D^{-1}(b-Rx^{(k)})$$其中,$x^{(k+1)}$表示第k+1次迭代得到的近似解,$x^{(k)}$表示第k次迭代得到的近似解,D是A的对角线元素组成的对角矩阵,R是A的非对角线元素组成的矩阵。

这个公式的意义是,我们通过用上一次迭代得到的近似解$x^{(k)}$来逼近线性方程组的解,每次迭代都只使用上一次迭代得到的近似解。

接下来我们来看看超松弛迭代法。

超松弛迭代法是对Jacobi迭代法的改进,通过引入一个松弛因子ω来加速迭代过程。

其迭代公式如下:$$x^{(k+1)}=(D-ωL)^{-1}[(1-ω)D+ωU]x^{(k)}+(D-ωL)^{-1}b$$其中,L是A的下三角部分,U是A的上三角部分。

超松弛迭代法在每次迭代中使用了上一次迭代和当前迭代的信息,通过调节松弛因子ω的取值,可以加速收敛过程。

从迭代公式可以看出,Jacobi迭代法和超松弛迭代法的主要区别在于超松弛迭代法引入了松弛因子ω,并且在每次迭代中使用了上一次迭代的信息。

这使得超松弛迭代法在一定条件下可以比Jacobi迭代法更快地收敛到线性方程组的解。

在实际应用中,选择合适的松弛因子ω对超松弛迭代法的收敛性和稳定性至关重要。

通常情况下,选择ω的取值范围为(0,2),对于某些特定的线性方程组,可以通过一些经验规则或者数值试验来确定最佳的ω值。

SOR迭代法

SOR迭代法

ω
0.6 0.8 1 1.1 1.15 1.25 1.3 1.5 1.8
迭代次数 16 10 8 7 8 11 15 15 15
近似解与 5 5 5 5 5 5 5 4 1 准确解重 复合位数
使 SOR 法收敛最快的松弛因子通常称为最 优 松
弛因子。目前,只有少数特殊类型的矩阵,才有确定 的最优松弛因子的理论公式,但实际使用时也有一定 困难。通常的办法,是选不同的 进行试算,以确定
SOR迭代法常以这种形式进行计算。
格式(3.4)的矩阵形式为
X (k1) (1 ) X k D1 b LX k UX (k) ,
3.5
其中
a11
D
a22
O
0
0
,
ann
0 a12 L
U
0O
O
0
a1n
an1,n
0
显然,A D L U.
0
0
L
a21
O
OO
aij x(jk )
3.1
若记
i1
n
r(k)
i
(bi
a x(k 1) ij j
aij
x
(k j
)
),
j 1
j i
i 1,2,L ,n
则 3.1 式可写为
x( k 1) i
x(k) i
1 aii
r(k)
i
3.2
由此可以看出, Gauss Seidel 迭代法的第 k 1
步 ,相当于在第 k 步的基础上每一个分量增加
上述定理说明,对于任何系数矩阵 A,若要 SOR
法收敛,必须选取松弛因子 0,2 , 然而,当松
弛因子满足条件 0 2 时,并不是对所有系数矩 阵 A 来说,SOR 法都是收敛的。但是,对一些特殊矩 阵来说,这一条件是充分的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档