线性方程组的求解

合集下载

线性方程组的解法

线性方程组的解法

线性方程组的解法线性方程组是数学中常见的问题,它可以用于描述多个未知数之间的关系。

解决线性方程组的问题是求解未知数的具体取值,从而得到方程组的解。

本文将介绍几种常见的解线性方程组的方法。

一、高斯消元法高斯消元法是解决线性方程组的经典方法之一。

它通过矩阵变换的方式,将线性方程组转化为一个三角矩阵,从而简化求解过程。

以下是高斯消元法的步骤:1. 将线性方程组写成增广矩阵的形式,其中最后一列为常数项。

2. 选取一个非零元素作为主元,在当前列中将主元素所在的行作为第一行,然后通过初等行变换将其他行的主元素变为0。

3. 重复第2步,直到所有的主元素都变成1,并且每个主元素所在的列的其他元素都变为0。

4. 反向代入,从最后一行开始,依次回代求解未知数的值。

二、矩阵的逆矩阵法矩阵的逆矩阵法是利用矩阵的逆矩阵来求解线性方程组。

以下是逆矩阵法的步骤:1. 对于线性方程组Ax=b,如果矩阵A可逆,将方程组两边同时左乘A的逆矩阵AI,得到x=A^(-1)b。

2. 通过求解矩阵A的逆矩阵来得到未知数向量x的值。

3. 如果矩阵A不可逆,那么线性方程组没有唯一解,可能有无穷多解或者无解。

三、克拉默法则克拉默法则是另一种解决线性方程组的方法,它利用行列式的性质来求解未知数的值。

以下是克拉默法则的步骤:1. 对于线性方程组Ax=b,令|A|=D,其中D表示矩阵A的行列式。

2. 分别计算将矩阵A的第i列替换为常数列b所得到的行列式|A_i|。

3. 未知数向量x的第i个分量可以通过x_i = |A_i|/D来得到。

克拉默法则的优点是简单直观,但是当方程组的规模很大时,计算行列式将变得非常复杂。

四、矩阵的广义逆法矩阵的广义逆法是一种应对方程组无解或者有无穷多解的情况的方法。

对于线性方程组Ax=b,如果矩阵A不可逆,我们可以通过求解广义逆矩阵A^+来得到一个特解x_0。

1. 分别计算A^+ = (A^T·A)^(-1)·A^T和x_0 = A^+·b。

线性方程组的求解方法

线性方程组的求解方法

线性方程组的求解方法线性方程组是数学中的基础概念,广泛应用于各个领域,如物理、经济学、工程学等。

解决线性方程组的问题,对于推动科学技术的发展和解决实际问题具有重要意义。

本文将介绍几种常见的线性方程组的求解方法,包括高斯消元法、矩阵法和迭代法。

一、高斯消元法高斯消元法是求解线性方程组的经典方法之一。

它的基本思想是通过一系列的行变换将方程组化为阶梯形或行最简形,从而得到方程组的解。

首先,将线性方程组写成增广矩阵的形式,其中增广矩阵是由系数矩阵和常数向量组成的。

然后,通过行变换将增广矩阵化为阶梯形或行最简形。

最后,通过回代法求解得到方程组的解。

高斯消元法的优点是简单易懂,容易实现。

但是,当方程组的规模较大时,计算量会很大,效率较低。

二、矩阵法矩阵法是求解线性方程组的另一种常见方法。

它的基本思想是通过矩阵运算将方程组化为矩阵的乘法形式,从而得到方程组的解。

首先,将线性方程组写成矩阵的形式,其中矩阵是由系数矩阵和常数向量组成的。

然后,通过矩阵运算将方程组化为矩阵的乘法形式。

最后,通过求逆矩阵或伴随矩阵求解得到方程组的解。

矩阵法的优点是计算效率高,适用于方程组规模较大的情况。

但是,对于奇异矩阵或非方阵的情况,矩阵法无法求解。

三、迭代法迭代法是求解线性方程组的一种近似解法。

它的基本思想是通过迭代计算逐步逼近方程组的解。

首先,将线性方程组写成矩阵的形式,其中矩阵是由系数矩阵和常数向量组成的。

然后,选择一个初始解,通过迭代计算逐步逼近方程组的解。

最后,通过设定一个误差限,当迭代结果满足误差限时停止计算。

迭代法的优点是计算过程简单,适用于方程组规模较大的情况。

但是,迭代法的收敛性与初始解的选择有关,有时可能无法收敛或收敛速度较慢。

综上所述,线性方程组的求解方法有高斯消元法、矩阵法和迭代法等。

每种方法都有其适用的场景和特点,选择合适的方法可以提高计算效率和解决实际问题的准确性。

在实际应用中,根据问题的具体情况选择合适的方法进行求解,能够更好地推动科学技术的发展和解决实际问题。

线性方程组的求解方法

线性方程组的求解方法

线性方程组的求解方法线性方程组求解是数学中非常重要的一部分,它用于模拟现实世界中存在的很多问题。

线性方程组可以描述很多不同的系统,例如电路、化学反应、经济问题等等。

直接求解线性方程组并不困难,但是随着方程的数量增加,计算的难度和时间也会增涨。

因此,寻找有效的方法来求解线性方程组是非常重要的。

在本文中,我们将学习几种不同的线性方程组求解方法。

1. 高斯消元法高斯消元法是最基本的求解线性方程组的方法之一。

它的基本思想是利用不同的线性组合把方程组中的未知数消去,从而化简为一个简单的三角形式。

例如,需要求解以下方程组:x + y + z = 62x + 5y – z = 42x + 3y + 8z = 27通过高斯消元法,我们可以将方程组化简为以下形式:x + y + z = 60.5y – 1.5z = 10 + 0.5z = 3由此我们可以得到z=6,再代入上一步的式子求y,最后得到x 的值。

虽然该方法简单,但是对于规模较大的方程组,计算的复杂性会显著增加。

2. 克拉默法克拉默法是一种求解线性方程组的方法,适用于方程组的系数矩阵可逆的情况。

该方法通过求解每个未知数的行列式来求得方程组的解。

例如,需要求解以下方程组:x + y = 52x – 3y = 1使用克拉默法可得:x = (5 × (-3) – 1 × (–1)) / (1 × (-3) – 2 × 1) = -17/5y = (1 × 1 – 5 × 2) / (1 × -3 – 2 × 1) = -3/5虽然该方法可以精确地求解线性方程组,但是它的计算复杂度和计算时间都很高。

3. LU分解法LU分解法是将线性方程组的系数矩阵分解为下三角矩阵L和上三角矩阵U的乘积,以此来求解方程组。

该方法可以大大简化计算的复杂度,特别是在需要多次求解同一组系数矩阵的情况下。

例如,需要求解以下方程组:2x + y + z = 8-3x - 4y + z = -16-2x + y + 2z = -6使用LU分解法可将系数矩阵分解为以下两个矩阵:L =1 0 0-1.5 1 0-1 1 -1U =2 1 10.5 -5/3 2/30 0 -1然后将矩阵相乘,就可以解出方程组的解。

线性方程组的几种求解方法

线性方程组的几种求解方法

线性方程组的几种求解方法1.高斯消元法高斯消元法是求解线性方程组的一种常用方法。

该方法的基本思想是通过对方程组进行一系列简化操作,使得方程组的解易于求得。

首先将方程组表示为增广矩阵,然后通过一系列的行变换将增广矩阵化为行简化阶梯形,最后通过回代求解出方程组的解。

2.列主元高斯消元法列主元高斯消元法是在高斯消元法的基础上进行改进的方法。

在该方法中,每次选取主元时不再仅仅选择当前列的第一个非零元素,而是从当前列中选取绝对值最大的元素作为主元。

通过选取列主元,可以避免数值稳定性问题,提高计算精度。

3.LU分解法LU分解法是一种将线性方程组的系数矩阵分解为一个下三角矩阵L 和一个上三角矩阵U的方法。

首先进行列主元高斯消元法得到行阶梯形矩阵,然后对行阶梯形矩阵进行进一步的操作,得到L和U。

最后通过回代求解出方程组的解。

4.追赶法(三角分解法)追赶法也称为三角分解法,适用于系数矩阵是对角占优的三对角矩阵的线性方程组。

追赶法是一种直接求解法,将系数矩阵分解为一个下三角矩阵L和一个上三角矩阵U,然后通过简单的代数运算即可求得方程组的解。

5.雅可比迭代法雅可比迭代法是一种迭代法,适用于对称正定矩阵的线性方程组。

该方法的基本思想是通过不断迭代求解出方程组的解。

首先将方程组表示为x=Bx+f的形式,然后通过迭代计算不断逼近x的解。

6.高斯-赛德尔迭代法高斯-赛德尔迭代法是雅可比迭代法的改进方法。

该方法在每一次迭代时,使用已经更新的解来计算新的解。

相比于雅可比迭代法,高斯-赛德尔迭代法的收敛速度更快。

7.松弛因子迭代法松弛因子迭代法是一种对高斯-赛德尔迭代法的改进方法。

该方法在每一次迭代时,通过引入松弛因子来调节新解与旧解之间的关系。

可以通过选择合适的松弛因子来加快迭代速度。

以上是一些常用的线性方程组求解方法,不同的方法适用于不同类型的线性方程组。

在实际应用中,根据问题的特点和要求选择合适的求解方法可以提高计算的效率和精度。

线性方程组三种求解方法

线性方程组三种求解方法

线性方程组三种求解方法
线性方程组是由一组线性方程所组成的集合,它是计算机科学中最基本的抽象模型之一。

线性方程组的求解有多种方法,最常用的方法有三种:高斯消元法,全选主元法和乘法因子法。

高斯消元法是一种消除法。

它能将线性方程组变换成求解矩阵的方法,将线性方程组中的未知数从一个方程参与到另一个方程,以实现变量间的互换,当这种变形在线性方程的个数和方程式的系数不相等的时候,系数矩阵就得到了转换,最后实现方程的求解。

由于本质上利用线性变换方法,有可能不能够求解它,而异常解会出现,所以不适合解决线性方程组。

全选主元法是一种消元法,也是线性方程组求解的重要方法。

全选主元法的基本思路是:从一个给定的方程组开始,选出一个最大的系数做主元,将这个未知数代入另一个方程,不断地进行计算,直到求出所有的未知数的值,最后得到相应的解。

全选主元法的优点是计算次数少,能够求出超定方程组的解。

乘法因子法是一种简化法,也是解高维度方程组的有效方法,它是一种缩减矩阵法,把一组方程简化成新形式,其思路是把一个系数矩阵和它的乘法因子矩阵相乘,乘法因子矩阵通过消去系数矩阵中一些行和一些列,来使原始方程组变得简洁,使得求解系数矩阵变得可能,最后可以实现方程组的求解。

总的来说,三种线性方程组的求解方法都有其优势,它们都是有效的解决方案,根据实际情况应用不同的方法可以求出合适的解,同时,在计算机应用中,更多的方法也在发展和探索当中。

线性方程组的解法

线性方程组的解法

线性方程组的解法线性方程组是数学中常见的问题,解决线性方程组可以帮助我们求解各种实际问题。

在本文中,我们将介绍几种常见的求解线性方程组的方法。

一、高斯消元法高斯消元法是最常见、最简单的一种求解线性方程组的方法。

该方法的基本思想是通过一系列的行变换将线性方程组化为简化的梯形方程组,并进一步求解出方程组的解。

具体的步骤如下:1. 将线性方程组写成增广矩阵的形式。

2. 选取矩阵中的一个元素作为主元,将主元所在的行进行换位,使主元尽可能地靠近对角线。

3. 使用消元法,通过将主元下方的所有元素消为零,将矩阵化为简化的梯形矩阵。

4. 从最后一行开始,逆推求解出每个未知数的值。

高斯消元法的优点是简单易懂,适用于一般的线性方程组。

然而,该方法在涉及大规模矩阵的情况下计算量较大,效率相对较低。

二、矩阵的逆和逆矩阵法矩阵的逆和逆矩阵法是通过求解矩阵的逆矩阵来求解线性方程组的方法。

这种方法需要先求出矩阵的逆矩阵,然后利用逆矩阵和增广矩阵相乘得到方程组的解。

具体的步骤如下:1. 将线性方程组写成增广矩阵的形式。

2. 求解增广矩阵的逆矩阵。

3. 将逆矩阵与增广矩阵相乘,得到方程组的解。

矩阵的逆和逆矩阵法的优点是适用于包含多个方程组的情况,且相对于高斯消元法在计算大型矩阵时具有更高的效率。

然而,该方法要求矩阵可逆,且逆矩阵存在才能得到准确的解。

三、克拉默法则克拉默法则是一种基于行列式的方法,用于求解含有n个未知数的n个线性方程组的解。

该方法通过求解方程组的行列式来得到各个未知数的解。

具体的步骤如下:1. 将线性方程组写成矩阵形式,并求出系数矩阵的行列式D。

2. 分别将系数矩阵的每一列替换成常数项的列向量,分别求出替换后的矩阵的行列式D1、D2...Dn。

3. 通过D1/D、D2/D...Dn/D得到方程组的解。

克拉默法则的优点是对于小规模的线性方程组简单易懂,但对于大规模的线性方程组计算量较大,效率较低。

总结:以上介绍了几种常见的线性方程组的求解方法,包括高斯消元法、矩阵的逆和逆矩阵法,以及克拉默法则。

线性方程组的解法

线性方程组的解法一、引言线性方程组是数学中的重要概念,广泛应用于各个领域,包括物理学、经济学、工程学等。

解决线性方程组有多种方法,本文将介绍常见的三种解法:高斯消元法、矩阵法和克拉默法。

二、高斯消元法高斯消元法是一种基于矩阵变换的解法,可以将线性方程组转化为简化行阶梯形矩阵,从而快速求解解向量。

具体步骤如下:1. 将线性方程组写成增广矩阵形式;2. 选择一个非零首元,在该列中其余元素乘以某个系数并相减,使得除首元外该列其他元素变为零;3. 重复第二步,直至将矩阵转化为简化行阶梯形矩阵;4. 从简化行阶梯形矩阵中读出解。

三、矩阵法矩阵法是一种基于矩阵运算的解法,将线性方程组转化为矩阵形式,并求解矩阵的逆矩阵,从而得到解向量。

具体步骤如下:1. 将线性方程组写成矩阵形式;2. 求解矩阵的逆矩阵;3. 用逆矩阵乘以等号右边的向量,得到解向量。

四、克拉默法克拉默法是一种利用行列式性质求解线性方程组的方法,适用于方程组个数与未知数个数相等的情况。

具体步骤如下:1. 将线性方程组写成矩阵形式;2. 计算行列式的值;3. 分别用等号右边的向量替换矩阵中对应的列,再求解行列式的值;4. 将第三步得到的值除以第二步得到的值,得到解向量。

五、比较与应用场景1. 高斯消元法在实际计算中具有高效性和稳定性,适用于任意线性方程组求解;2. 矩阵法需要先求解矩阵的逆矩阵,计算过程相对复杂,适用于方程组个数与未知数个数相等的情况;3. 克拉默法计算过程较为复杂,不适用于大规模方程组的求解,但对于小规模方程组求解比较便捷。

六、总结线性方程组的解法有多种,本文介绍了高斯消元法、矩阵法和克拉默法三种常见方法。

应根据具体情况选择合适的方法来求解线性方程组,以达到高效、准确的目的。

对于大规模方程组的计算,高斯消元法更具优势;对于方程组个数与未知数个数相等的情况,矩阵法和克拉默法更适用。

随着数学计算方法的不断发展,越来越多的解法将出现,为解决复杂的线性方程组提供更多选择。

求解线性方程组

求解线性方程组线性方程组是数学中的一类重要方程组,它可用于描述许多实际问题。

解线性方程组的目标是找到满足所有方程条件的未知数的值。

本文将介绍解线性方程组的基本方法和步骤。

方法一:高斯消元法高斯消元法是解线性方程组最常用的方法之一。

它的基本思想是通过一系列行变换将线性方程组化简为阶梯形或行最简形。

以下是高斯消元法的步骤:1. 将线性方程组表示为增广矩阵的形式,其中未知数的系数构成方程组的系数矩阵A,常数构成列向量B。

2. 利用行变换,将增广矩阵化简为阶梯形矩阵。

行变换包括互换两行、某一行乘以非零常数、某一行乘以非零常数后加到另一行上。

3. 根据化简后的阶梯形矩阵,可以直接读出方程组的解。

如果存在零行,即无解;如果存在形如0 = c(c为非零常数)的方程,即无解;其他情况下,解的个数等于未知数的个数减去方程数的个数。

方法二:矩阵求逆法矩阵求逆法也是一种求解线性方程组的方法。

它的基本思想是通过求解系数矩阵的逆矩阵,进而得到方程组的解。

以下是矩阵求逆法的步骤:1. 将线性方程组表示为矩阵方程的形式:AX = B,其中A为系数矩阵,X为未知数的列向量,B为常数的列向量。

2. 检查系数矩阵A是否可逆。

若可逆,则方程组有唯一解;若不可逆,则方程组可能没有解或有无穷多个解。

3. 若A可逆,计算系数矩阵的逆矩阵A^(-1)。

4. 解方程组的解为X = A^(-1) * B。

需要注意的是,矩阵求逆法只适用于方程组的系数矩阵可逆的情况。

方法三:克拉默法则克拉默法则是一种基于行列式的求解线性方程组的方法。

它的基本思想是根据克拉默法则公式,求解未知数的值。

以下是克拉默法则的步骤:1. 将线性方程组表示为矩阵方程的形式:AX = B,其中A为系数矩阵,X为未知数的列向量,B为常数的列向量。

2. 计算系数矩阵A的行列式值D,即|A|。

3. 对每个未知数,将系数矩阵的列向量替换为方程组常数向量,得到新的矩阵A_i。

4. 计算新的矩阵A_i的行列式值D_i。

解线性方程组的方法

解线性方程组的方法线性方程组是数学中常见的一类方程组,它由一组线性方程组成,常用形式为:a₁₁x₁ + a₁₂x₂ + … + a₁ₙxₙ = b₁a₂₁x₁ + a₂₂x₂ + … + a₂ₙxₙ = b₂⋮aₙ₁x₁ + aₙ₂x₂ + … + aₙₙxₙ = bₙ其中,a₁₁, a₁₂, …, a₁ₙ, a₂₁, a₂₂, …, aₙₙ为已知系数,b₁,b₂, …, bₙ为已知常数,x₁, x₂, …, xₙ为未知数。

解线性方程组的方法有多种,下面将详细介绍其中的几种常用方法。

1. 列主元高斯消元法列主元高斯消元法是一种经典的解线性方程组的方法。

它的基本思想是通过消元将线性方程组转化为三角形式,然后逐步回代求解未知数。

具体步骤如下:(1)将系数矩阵按列选择主元,即选取每一列中绝对值最大的元素作为主元;(2)对系数矩阵进行初等行变换,使主元所在列下方的元素全部变为零;(3)重复上述步骤,直到将系数矩阵化为上三角矩阵;(4)从最后一行开始,逐步回代求解未知数。

2. Cramer法则Cramer法则是一种基于行列式的解线性方程组的方法。

它利用克拉默法则,通过求解线性方程组的系数矩阵的行列式和各个未知数对应的代数余子式的乘积,进而得到方程组的解。

具体步骤如下:(1)计算线性方程组的系数矩阵的行列式,若行列式为零,则方程组无解,否则进行下一步;(2)分别将每个未知数对应的列替换为常数向量,并计算替换后的系数矩阵的行列式;(3)将第二步计算得到的行列式除以第一步计算得到的行列式,得到各个未知数的解。

需要注意的是,Cramer法则只适用于系数矩阵为非奇异矩阵的情况。

3. 矩阵求逆法矩阵求逆法是一种利用矩阵求逆运算解线性方程组的方法。

它将线性方程组转化为矩阵形式,通过求解系数矩阵的逆矩阵,然后与常数向量相乘得到未知数向量。

具体步骤如下:(1)将线性方程组的系数矩阵记为A,常数向量记为b,未知数向量记为x;(2)判断A是否可逆,若A可逆,则进行下一步,否则方程组无解;(3)求解系数矩阵的逆矩阵A⁻¹;(4)计算未知数向量x = A⁻¹b。

线性方程组的解法

线性方程组的解法线性方程组是数学中重要的概念,它是由一系列线性方程组成的方程组。

解决线性方程组的问题在实际应用中具有重要意义,因为它们可以描述许多自然和社会现象。

本文将介绍几种常见的线性方程组的解法,包括高斯消元法、矩阵法以及向量法。

一、高斯消元法高斯消元法是解决线性方程组的常用方法之一。

它通过对方程组进行一系列的消元操作,将方程组转化为简化的等价方程组,从而求得方程组的解。

步骤如下:1. 将线性方程组写成增广矩阵的形式,即将所有系数按照变量的次序排列,并在最后一列写上等号右边的常数。

2. 选取一个主元素,通常选择第一列第一个非零元素作为主元素。

3. 消去主元素所在的列的其他非零元素,使得主元素所在列的其他元素都变为零。

4. 选取下一个主元素,继续重复消元操作,直到将所有行都消为阶梯形。

5. 进行回代,从最后一行开始,求解每个变量的值,得到线性方程组的解。

二、矩阵法矩阵法是另一种解决线性方程组的常用方法。

它将线性方程组写成矩阵形式,通过矩阵的运算求解方程组的解。

步骤如下:1. 将线性方程组写成矩阵形式,即系数矩阵乘以未知数向量等于常数向量。

2. 对系数矩阵进行行变换,将系数矩阵化为行阶梯形矩阵。

3. 根据行阶梯形矩阵,得到线性方程组的解。

三、向量法向量法是解决线性方程组的一种简洁的方法。

它将线性方程组转化为向量的内积形式,通过求解向量的内积计算方程组的解。

步骤如下:1. 将线性方程组写成向量的内积形式,即一个向量乘以一个向量等于一个数。

2. 根据向量的性质,求解向量的内积,得到线性方程组的解。

以上是几种常见的线性方程组的解法。

在实际应用中,根据具体情况选择适合的解法,以高效地求解线性方程组的解。

通过掌握这些解法,可以更好地解决与线性方程组相关的问题,提高问题的解决能力。

结论线性方程组是数学中重要的概念,解决线性方程组的问题具有重要意义。

通过高斯消元法、矩阵法和向量法等解法,可以有效求解线性方程组的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10.3 稠密线性方程组的求解
10.3.1 有回代的高斯消去法 10.3.2 无回代的高斯-约旦法 10.3.3 迭代求解的高斯-赛德尔法
有回代的高斯消去法
算法基本原理
求解过程分为消元和回代两个阶段,消元是将系数矩阵 A化为上三角阵T,然后对TX=c进行回代求解。 消元过程中可以应用选主元方法,增加算法的数值稳定 i 性。 下面是消元过程图:
计算精度要求
Gaussian elimination: more accurate, more expensive Conjugate gradients: less accurate, less expensive
计算环境要求
architecture, available languages, compiler quality libraries?
j i 1 k xik 1 (1 ) xik (bi aij x k a x ij j ) / aii j j i j i
2014-5-5 25
第十章 线性方程组的求解
10.1 三角形方程组的求解 10.2 三对角方程组的求解 10.3 稠密线性方程组的求解 10.4 稀疏线性方程组的求解
10.4 稀疏线性方程组的求解
10.4.1 线性方程组的并行化方法 10.4.2 稀疏线性方程组的迭代解法 10.4.3 高斯-赛德尔迭代法的并行化
2014-5-5 22
10.3 稠密线性方程组的求解
10.3.1 有回代的高斯消去法 10.3.2 无回代的高斯-约旦法 10.3.3 迭代求解的高斯-赛德尔法
迭代求解的高斯-赛德尔法
串行算法原理
k 1 i
1 k 1 k x aij x j aij x j bi aii j i j i 如果对某个k, 给定的误差允许值c有

②求解: xj=a’j,n+1/a’jj
2014-5-5
20
无回代的高Leabharlann -约旦法 SIMD-CREW上的并行算法
(1)处理器: n2+n个处理器, 这些处理器排成n×(n+1)的矩阵,
处理器编号为Pik, i=1~n, k=1~n+1 (2)并行化分析 ①消元的并行化: // O(n) for j=1 to n-1, each Pik Par-do //第j次消元 Pij(i<>j): aij <— 0 Pik(i<>j, k=j+1~n+1): aik <— aik-ajk(aij/ajj) end for ②求解: for each Pjj(j=1~n) Par-do: xj <— aj,n+1/ajj //O(1) (3)时间分析: t(n)=O(n), p(n)=O(n2), c(n)=O(n3) 成本最优?
2014-5-5 13
②重复①最终可得: case 1: g1x1+h1x2 =b1 f2x1+g2x2+h2x3 =b2 f3x2 +g3x3+h3x4=b3 f4x3 +g4x4 =b4 可以分别得到 g1x1+h1x2 =b1 或 f2x1+g2x2 =b2
解得 x1,x2 或 x1, x2, x3 ③回代求解x
图10.1
2014-5-5
18
10.3 稠密线性方程组的求解
10.3.1 有回代的高斯消去法 10.3.2 无回代的高斯-约旦法 10.3.3 迭代求解的高斯-赛德尔法
无回代的高斯-约旦法
串行算法原理
①消元: 通过初等行变换,将(A,b)化为主对角线矩阵, (方便起见, 记b为A的第n+1列)
①消元 ②回代 注:由于三对角的 方程组的特殊性, 一次消元或一次 回代,只涉及邻 近一个方程,故 难以并行化。
已消为 0 的元素
i
不变化的元素
i
主元aii
待改变的元素 待消为 0 的元素
11
2014-5-5
10.2 三对角方程组的求解
10.2.1 直接求解法 10.2.2 奇偶规约法
三对角方程组的直接求解法
并行计算
第三篇 并行数值算法
第八章 基本通讯操作 第九章 稠密矩阵运算 第十章 线性方程组的求解 第十一章 快速傅里叶变换
第十章 线性方程组的求解
10.1 三角形方程组的求解 10.2 三对角方程组的求解 10.3 稠密线性方程组的求解 10.4 稀疏线性方程组的求解
10.1 三角形方程组的求解
可并行化
2014-5-5
7
上三角方程组的求解
上三角方程组的回代解法并行化
(2)SIMD-CREW上的并行回代算法 - 划分: p个处理器行循环带状划分 - 算法 P 1 Begin P j for i=n downto 1 do xi=bi/aii for all Pj, where 1≤j≤p do P1 for k=j to i-1 step p do P j bk=bk-akixi aki=0 endfor endfor endfor End // p(n)=n, t(n)=n
x1 x x 2 , xn
2014-5-5
b1 b b 2 bn
5
10.1 三角形方程组的求解
10.1.1 基本术语 10.1.2 上三角方程组的求解
上三角方程组的求解
上三角方程组的回代解法并行化
(1)SISD上的回代算法 Begin (1)for i=n downto 1 do (1.1)xi=bi/aii (1.2)for j=1 to i-1 do bj=bj-ajixi aji=0 endfor endfor End
奇偶规约求解法(可并行化)
三对角方程可以写成如下形式 fixi-1+gixi+hixi+1=bi i=1~n f1=hn=0 串行算法描述
①利用上下相邻方程消去偶序号方程中的奇下标变量: f2i-1x2i-2+g2i-1x2i-1+h2i-1x2i =b2i-1 f2ix2i-1 + g2ix2i + h2ix2i+1 =b2i f2i+1x2i +g2i+1x2i+1+h2i+1x2i+2 = b2i+1 2i-1方程乘上某个数消去2i方程中的f2ix2i-1项, 2i+1方程乘上某个数 消去2i方程中的h2ix2i+1项, 使2i方程变为 αix2i-2+βix2i+γix2i+2=ηi i=1,2,…,n/2
Begin
(1)oldi xi0, newi xi0 (2)生成进程i (3)进程i repeat (i) oldi newi (ii)newi (bi-∑k<iaik×oldk-∑k>iaik×oldk)/aii until ∑i=1~n| oldi - newi |<c xi newi End
10.1.1 基本术语 10.1.2 上三角方程组的求解
基本术语
线性方程组的定义和符号
a1,1x1 + a1,2x2 + … + a1,nxn = b1 a2,1x1 + a2,1x2 + … + a2,nxn = b2 an,1x1 + an,1x2 + … + an,nxn = bn
记为 AX=b a11 a12 a1n a a a 22 2n A 21 , a a a n2 nn n1
2014-5-5 29
10.4 稀疏线性方程组的求解
10.4.1 线性方程组的并行化方法 10.4.2 稀疏线性方程组的迭代解法 10.4.3 高斯-赛德尔迭代法的并行化
稀疏线性方程方程的迭代解法
迭代解法
(1) Jacobi: xik 1 (bi aij x k j ) / aii
行 1 j 1+p j+p
2014-5-5
8
第十章 线性方程组的求解
10.1 三角形方程组的求解 10.2 三对角方程组的求解 10.3 稠密线性方程组的求解 10.4 稀疏线性方程组的求解
10.2 三对角方程组的求解
10.2.1 直接求解法 10.2.2 奇偶规约法
三对角方程组的直接求解法
Gauss消去法(难以并行化)
不变化的元素
i
主元行
待改变的元素 已消为 0 的元素
待消为 0 的元素
2014-5-5
图10.1
17
有回代的高斯消去法
并行化分析
消元和回代均可以并行化; 选主元也可以并行化; 消元过程的并行化图示:处理器按行划分
i
不变化的元素 已消为 0 的元素
i
主元行
可并行化部分
待改变的元素
待消为 0 的元素
a11 a21 an1 a12 a1n a22 a2 n an 2 ann a1,n 1 a2,n 1 an ,n 1 a11 a22 ann ,n 1 a1 ,n 1 a2 ,n 1 an
j i j i j i 1 k (2) Gauss Seidel: xik 1 (bi aij x k a x ij j ) / aii j
(3) JOR : (4) SOR :
xik 1 (1 ) xik (bi aij x k j ) / aii
2014-5-5 28
线性方程方程的并行化方法
求解方法的并行化
相关文档
最新文档