温度传感器特性论文

温度传感器特性论文
温度传感器特性论文

摘要

本课题通过实验对不同类型的半导体PN结器件进行正向压降与温度特性的测量,获取实验数据,通过整理、分析、比较、综合实验数据,从中比较各器件灵敏度,线性度的优劣,为温度传感器选择提供依据。主要分析了不同型号的二极管的温度特性,不同型号的四种温度传感器的探究,各种型号的不同参数在一定的条件下随温度的变化关系,主要测量的传感器有:铂电阻;半导体热敏电阻;PN结; AD590等。

关键词

铂电阻;半导体热敏电阻;PN结;(AD590);温度传感器

绪言

传统的温度计在测量的过程中,往往有一定的限制性,不容易测量,而且很容易产生误差,测量结果往往不准确。在有些医疗和工业复杂的环境中,传统的温度计无法完成测量任务。而温度传感器的出现,对温度的测量带来了一定的便利性和可操作性。

温度传感器是检测温度的器件,被广泛用于工农业生产、科学研究和生活等领域,其种类多,发展快。温度传感器一般分为接触式和非接触式两大类。

接触式温度传感器有热电偶、热敏电阻以及铂电阻等,利用其产生的热电动势或电阻随温度变化的特性来测量物体的温度,被广泛用于家用电器、汽车、船舶、控制设备、工业测量、通信设备等.另外,还有一些新开发研制的传感器,例如,有利用半导体PN 结电流/电压特性随温度变化的半导体集成传感器;有利用光纤传播特性随温度变化或半导体透光随温度变化的光纤传感器;有利用弹性表面波及振子的振荡频率随温度变化的传感器;有利用核四重共振的振荡频率随温度变化的NQR传感器;有利用在居里温度附近磁性急剧变化的磁性温度传感器以及利用液晶或涂料颜色随温度变化的传感器等。

非接触方式是通过检测光传感器中红外线来测量物体的温度,有利用半导体吸收光而使电子迁移的量子型与吸收光而引起温度变化的热型传感器.非接触传感器广泛用于接触温度传感器、辐射温度计、报警装置、来客告知器、火灾报警器、自动门、气体分析仪、分光光度计、资源探测等。

本实验将通过测量几种常用的接触式温度传感器的特征物理量随温度的变化,来了解这些温度传感器的工作原理。

目录

一.各种温度传感器的原理

1.1铂电阻 4

1.2半导体热敏电阻 4 1.3 PN结 5

1.4 D590 5

二.各温度传感器的实验研究 6

2.1实验情况介绍 6

2.2实验数据与数据分析 6

2.2.1 铂电阻随温度的变化关系 6

2.2.2 半导体热敏电阻随温度变化关系 7

2.2.3 PN结正向电压随温度变化关系 9

2.2.4 AD590输出电流与温度变化的关系 10

三.结论 11

四.参考文献 11

一.各种温度传感器的原理

1.1铂电阻

因其测量范围广,复现性好,性能稳定等优点而在中温(-200℃—650℃)范围内得到广泛应用。1 铂电阻的非线性特性铂电阻测温原理是:铂电阻的阻值与温度成一定的函数关系。在-200℃—0℃之间,其阻值与温度符合下面的函数关系:

Rt=R0[1+At+Bt2+C(t-100)t3]

在0—650℃之间,其阻值与温度符合下面的函数关系:

Rt=R0(1+At+Bt2)

其中Rt和R0分别表示铂电阻在t℃和0℃时的阻值,A=3.90802×10-3;

B=-5.80195×10-7,;C=-4.27350×10-12。

由此可见,在0℃—650℃之间存在非线性项。由可知,该函数曲线是一条单调上凸曲线,也即铂电阻的阻值与温度之间不是线性关系,这就要求我们在实际应用铂电阻时要考虑到铂电阻传感器的线性化校正问题。

1.2半导体热敏电阻

热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。

热电阻传感器主要是利用电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。在温度检测精度要求比较高的场合,这种传感器比较适用。目前较为广泛的热电阻材料为铂、铜、镍等,它们具有电阻温度系数大、线性好、性能稳定、使用温度范围宽、加工容易等特点。用于测量-200℃~+500℃范围内的温度。

热敏电阻是利用物质在温度变化时,其电阻也随着发生变化的特征来测量温度的。当阻值变化时,工作仪表便显示出阻值所对应的温度值。负温度系数热敏电阻非常适用于高精度温度测量。要确定热敏电阻周围的温度,可由公式:

T=1/(A0+A1(lnR T)+A3(lnRT3))

确定。其中,T为开氏温度;R T为热敏电阻在温度T时的阻值;而A0、A1和A3则是由热敏电阻生产厂商提供的常数。

1.3 PN结

PN结温度传感器则具有灵敏度高、线性好、热响应快和体积轻巧等特点,尤其是在温度数字化、温度控制以及用微机进行温度实时信号处理等方面,乃是其他温度传感器所不能相比的,其应用势必日益广泛。目前结型温度传感器主要以硅为材料,原因是硅材料易于实现功能化,即将测温单元和恒流、放大等电路组合成一块集成电路。其工作温度一般为-50℃—150℃,与其它温度传感器相比,测温范围的局限性较大,如果采用不同材料如锑化铟或砷化镓PN结可以展宽低温区或高温区的测量范围。八十年代中期我国就研制成功以Sic为材料的PN结温度传感器,其高温区可延伸到500℃,并荣获国际博览会金奖。二极管的pn结温度特性晶体管二极管的pn结正向压降与工作温度基本成线性下降关系已早为人们所知,其正向压降与工作温度之间的关系近似地可用式表示

VF=Vg0 - kTq[lnB +ylnT-lnI F]

式中:T和V F分别为工作温度和该温度下的二极管正向压降; Vg0 为材料在外推0下的禁带宽度;k为波尔兹曼常数:1 380 6 6 2× 10 - 2 3J/K;q为电子电荷:1 6 0 2 1892× 10 - 19C;B为由材料参数和工艺参数决定的与温度无关的器件常数;y为与迁移率有关的常数;I F 为通过二极管的工作电流。

1.4 AD590

AD590温度传感器输出电流特性研究 AD590温度传感器是由多个参数相同的三极管和电阻组成。当器件两端加有某一定直流工作电压时(一般工作电压在4.5V~20.0V范围内)。它的输出电流I与温度满足如下关系:

式中:I为输出电流,为摄氏温度,单位℃。A 为摄氏零度时的电流值,其值恰好与冰点的热力学温度273K相对应。B为斜率,单位℃-1,即如果该温度传感器的温度升高或降低1℃,传感器的输出电流增加或减少1。

二.各温度传感器的实验研究

2.1实验情况介绍

在实验前,连好电路图,在对实验装置逐渐加温,由于实验条件的限制,将各装置加热到120度左右,探究室温到120度之间其物理特性的变化趋势。不过实验中会有一定的误差存在,有些是实验仪器和设备造成的不可避免的。有些则是环境影响所致。无法避免。所以在一定的误差范围内,实验结果是正确的。

2.2实验数据与数据分析

2.2.1 铂电阻随温度的变化关系

数据记录表:

电阻与温度的关系图:

通过处理实验数据,可以得到,铂电阻随温度变化的线性关系非常好。其线性关系满足:

R=0.3824T+100.64

所以,只要测得某时刻铂电阻的阻值,就对应唯一的确定的温度:

T=(R-100.64)/0.3824

用铂电阻支撑的温度传感器,实验的温度范围内,电阻与温度的变换咸行性关系非常强,测量温度时,其测量值也比较准确。而且他的适用范围也比较广。

2.2.2 半导体热敏电阻随温度变化关系

数据记录表:

数据处理:

通过对实验数据的处理,可以分析出半导体热敏电阻随温度的变化与乘幂回归的你和形势最好的,在较低温度时,其电阻随温度的变化关系满足

R=9.3365 2.0241

T

只要在某时刻测得他的电阻,就可以求得此时的温度:

T=[ln(R/9.3365)]/ln(-2.0241)

用这种元件制成的温度计,测量温度比较简便易于操作,而且对复杂环境的适应性也非常好。偏差是实验中的误差引起的不可避免。

2.2.3 PN结正向电压随温度变化关系

原始数据记录表:

原始数据曲线图:

在室温到100摄氏度内PN结正向电压随温度的变化:

在一定的条件下PN结正向电压随温度变化关系图:

对实验的数据处理和分析可以发现在一定的温度范围内,PN结正向电压随温度的变化有非常好的线性关系。有很好的拟合性。满足:

U=-0.0019T+0.7528(V)

所以只要测得PN结在某时的电压,就可以求得此时所对应的温度

T=(U-0.7528)/(-0.0019)

利用其制成的温度传感器再次线性变化范围内,精度和准确度都是相当高的。

2.2.4 AD590输出电流与温度变化的关系

原始数据记录表:

正向电流随文对变化表(串联电阻为:1KΩ)

AD590正向电流随温度变化的关系:

实验数据表明,AD590温度传感器在实验中的温度范围内,正向电流随温度的变化呈线性关系。而且由作图可以得出,线性曲线与趋势线拟合性非常高。满足关系式

I=0.001T+0.2721

只要测得某时刻的电流,就可以由上式求得此刻的温度:

T=(I-0.0271)/I

用这种元件制成的温度计,在此温度变化范围内,测得的温度比传统的温度计测得的温度相比,准确度也相当的高。对测量带来了一定的便利性,易于操作,而且易于测量一些复杂环境下的温度。

三.结论

在实验中AD590温度传感器、铂电阻温度传感器在实验的温度范围内,正向电流及电阻随温度变化有很好的线性关系,而PN结温度传感器正向电压与温度的线性关系只在较小的温度范围内可以使用,交织AD590温度传感器、铂电阻温度传感器而言适用范围较小。半导体热敏电阻随温度变化的乘幂关系旨在较低温度下使用,才可以保证其精度。适用范围也比较小。

在工业和一些其他的应用中,使用温度传感器测量温度,比传统的温度计测量不仅在精确度上相当高,而且操作也非常的便利,测量非常的方便。测量误差小。随着科技的发展,必将有越来越多的各种不同类型的温度传感器在工业和生活中应用。

四.参考文献

张兆奎.大学物理实验(第二版).高等教育出版社.

常健生等.检测与转换技术.机械工业出版社.

百度文库:https://www.360docs.net/doc/0011611432.html,/webpage/paper/200808/200808261534530000

温度传感器特性论文

摘要 本课题通过实验对不同类型的半导体PN结器件进行正向压降与温度特性的测量,获取实验数据,通过整理、分析、比较、综合实验数据,从中比较各器件灵敏度,线性度的优劣,为温度传感器选择提供依据。主要分析了不同型号的二极管的温度特性,不同型号的四种温度传感器的探究,各种型号的不同参数在一定的条件下随温度的变化关系,主要测量的传感器有:铂电阻;半导体热敏电阻;PN结; AD590等。 关键词 铂电阻;半导体热敏电阻;PN结;(AD590);温度传感器

绪言 传统的温度计在测量的过程中,往往有一定的限制性,不容易测量,而且很容易产生误差,测量结果往往不准确。在有些医疗和工业复杂的环境中,传统的温度计无法完成测量任务。而温度传感器的出现,对温度的测量带来了一定的便利性和可操作性。 温度传感器是检测温度的器件,被广泛用于工农业生产、科学研究和生活等领域,其种类多,发展快。温度传感器一般分为接触式和非接触式两大类。 接触式温度传感器有热电偶、热敏电阻以及铂电阻等,利用其产生的热电动势或电阻随温度变化的特性来测量物体的温度,被广泛用于家用电器、汽车、船舶、控制设备、工业测量、通信设备等.另外,还有一些新开发研制的传感器,例如,有利用半导体PN 结电流/电压特性随温度变化的半导体集成传感器;有利用光纤传播特性随温度变化或半导体透光随温度变化的光纤传感器;有利用弹性表面波及振子的振荡频率随温度变化的传感器;有利用核四重共振的振荡频率随温度变化的NQR传感器;有利用在居里温度附近磁性急剧变化的磁性温度传感器以及利用液晶或涂料颜色随温度变化的传感器等。 非接触方式是通过检测光传感器中红外线来测量物体的温度,有利用半导体吸收光而使电子迁移的量子型与吸收光而引起温度变化的热型传感器.非接触传感器广泛用于接触温度传感器、辐射温度计、报警装置、来客告知器、火灾报警器、自动门、气体分析仪、分光光度计、资源探测等。 本实验将通过测量几种常用的接触式温度传感器的特征物理量随温度的变化,来了解这些温度传感器的工作原理。

DS18B20温度传感器实验

DS18B20温度传感器实验Proteus仿真原理图: DS18B20内部结构:

/************************* 源程序 ****************************/ #include #include #define uint unsigned int #define uchar unsigned char #define delayNOP() {_nop_();_nop_();_nop_();_nop_();} sbit DQ = P3^3; sbit LCD_RS = P2^0; sbit LCD_RW = P2^1; sbit LCD_EN = P2^2; uchar code Temp_Disp_Title[]={"Current Temp : "}; uchar Current_Temp_Display_Buffer[]={" TEMP: "}; uchar code Temperature_Char[8] = { 0x0c,0x12,0x12,0x0c,0x00,0x00,0x00,0x0 0 }; uchar code df_Table[]= { 0,1,1,2,3,3,4,4,5,6,6,7,8,8,9,9 }; uchar CurrentT = 0; uchar Temp_Value[]={0x00,0x00}; uchar Display_Digit[]={0,0,0,0}; bit DS18B20_IS_OK = 1; void DelayXus(uint x) { uchar i; while(x--) { for(i=0;i<200;i++); } } bit LCD_Busy_Check(){ bit result; LCD_RS = 0; LCD_RW = 1; LCD_EN = 1; delayNOP(); result = (bit)(P0&0x80); LCD_EN=0; return result; } void Write_LCD_Command(uchar cmd) { while(LCD_Busy_Check()); LCD_RS = 0; LCD_RW = 0; LCD_EN = 0; _nop_(); _nop_(); P0 = cmd; delayNOP(); LCD_EN = 1; delayNOP(); LCD_EN = 0; }

嵌入式课程设计温度传感器-课程设计(1)

@ 嵌入式系统原理与应用 课程设计 —基于ARM9的温度传感器· 学号:01** 班级:**************1班 姓名:李* 指导教师:邱* 、

课程设计任务书 班级: ************* 姓名: ***** 设计周数: 1 学分: 2 指导教师: 邱选兵 $ 设计题目: 基于ARM9的温度传感器 设计目的及要求: 目的: 1.熟悉手工焊锡的常用工具的使用及其维护与修理。 2.基本掌握手工电烙铁的焊接技术,能够独立的完成简单电子产品的安装与焊 接。熟悉电子产品的安装工艺的生产流程。 3.熟悉印制电路板设计的步骤和方法,熟悉手工制作印制电板的工艺流程,能 够根据电路原理图,元器件实物设计并制作印制电路板。 4.* 5.熟悉常用电子器件的类别、型号、规格、性能及其使用范围,能查阅有关的 电子器件图书。 6.能够正确识别和选用常用的电子器件,并且能够熟练使用普通万用表和数字 万用表。 7.掌握和运用单片机的基本内部结构、功能部件、接口技术以及应用技术。 8.各种外围器件和传感器的应用; 9.了解电子产品的焊接、调试与维修方法。 要求: 1.学生都掌握、单片机的内部结构、功能部件,接口技术等技能; 2.根据题目进行调研,确定实施方案,购买元件,并绘制原理图,焊接电路板, 调试程序; 3.} 4.焊接和写汇编程序及调试,提交课程设计系统(包括硬件和软件);. 5.完成课程设计报告 设计内容和方法:使用温度传感器PT1000,直接感应外部的温度变化。使用恒流源电路,保证通过PT1000的电流相等,根据PT1000的工作原理与对应关系,得到温度与电阻的关系,将得到的电压放大20倍。结合ARM9与LCD,将得到的

单线数字温度传感器DSB原理及其应用

单线数字温度传感器DS18B20原理及其应用 DALLAS最新单线数字温度传感器DS18B20简介新的"一线器件"体积更小、适用电压更宽、更经济Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持"一线总线"接口的温度传感器。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。DS18B20、DS1822 "一线总线"数字化温度传感器同DS1820一样,DS18B20也支持"一线总线"接口,测量温度范围为-55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。DS1822的精度较差为±2°C 。现场温度直接以"一线总线"的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。而且新一代产品更便宜,体积更小。DS18B2 0、DS1822 的特性DS18B20可以程序设定9~12位的分辨率,精度为±0.5°C。可选更小的封装方式,更宽的电压适用范围。分辨率设定,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。DS18B20的性能是新一代产品中最好的!性能价格比也非常出色!DS1822与DS18B20软件兼容,是DS18B20的简化版本。省略了存储用户定义报警温度、分辨率参数的EEPROM,精度降低为±2°C,适用于对性能要求不高,成本控制严格的应用,是经济型产品。继"一线总线"的早期产品后,DS1820开辟了温度传感器技术的新概念。DS18B20和DS1822使电压、特性及封装有更多的选择,让我们可以构建适合自己的经济的测温系统。 1. DS18B20的新性能 (1) 可用数据线供电,电压范围:3.0~5.5V; (2) 测温范围:-55~+125℃,在-10~+85℃时精度为±0.5℃; (3) 可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃; (4) 12位分辨率时最多在750ms内把温度值转换为数字; (5) 负压特性:电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。 2. DS18B20的外形和内部结构 DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如下: 图(1)DS18B20外形图 引脚定义: (1) DQ为数字信号输入/输出端; (2) GND为电源地;

DS18B20温度传感器设计

智能化仪器及原理应用课程设计 设计题目: DS18B20数字温度计的设计专业班级: 10自动化1 班 姓名: 组员: 指导老师: 日期:2012-11-26

目录 一、摘要 (2) 二、方案论证 (2) 三、电路设计 (2) 1、设备整机结构及硬件电路框图 (2) 2、单片机的选择 (3) 3、温度显示电路 (3) 4、温度传感器 (4) 5、软件设计 (6) 6、系统所运用的功能介绍: (8) 四、系统的调试及性能分析: (8) 附件:DS18B20温度计C程序 (9)

一、摘要 本设计的主要内容是应用单片机和温度传感器设计一个数字温度表,DS18B20是一种可组网的高精度数字温度传感器,由于其具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠。本设计基于数字温度传感器DS18B20,以AT89C51片机为核心设计此测试系统,具有结构简单、测温精度高、稳定可靠的优点。可实现温度的实时检测和显示,本文给出了系统的硬件电路详细设计和软件设计方法,经过调试和实验验证,实现了预期的全部功能。 二、方案论证 方案一: 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D 转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D 转换电路,感温电路比较麻烦。 方案设计框图如下: 方案二:考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。 从以上两种方案,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。 三、电路设计 1、 设备整机结构及硬件电路框图 根据设计要求与设计思路,设计硬件电路框图如下图所示, 4位数码管显示器系统中AT89C51成对DS18B20初始化、温度采集、温度转换、温度数码显示。 本装置详细组成部分如下: a. 主控模块:AT89C51片机; b. 传感器电路:DS18B20温度传感器;

温度传感器课程设计

: 温度传感器课程设计报告 专业:电气化 年级: 13-2 学院:机电院 { 姓名:崔海艳 学号:35 … ^ -- 目录

1 引言 (3) 2 设计要求 (3) 3 工作原理 (3) 4 方案设计 (4) … 5 单元电路的设计和元器件的选择 (6) 微控制器模块 (6) 温度采集模块 (7) 报警模块 (9) 温度显示模块 (9) 其它外围电路 (10) 6 电源模块 (12) 7 程序设计 (13) — 流程图 (13) 程序分析 (16) 8. 实例测试 (18) 总结 (18) 参考文献 (19) \

。 1 引言 传感器是一种有趣的且值得研究的装置,它能通过测量外界的物理量,化学量或生物量来捕捉知识和信息,并能将被测量的非电学量转换成电学量。在生活中它为我们提供了很多方便,在传感器产品中,温度传感器是最主要的需求产品,它被应用在多个方面。总而言之,传感器的出现改变了我们的生活,生活因使用传感器也变得多姿多彩。 温度控制系统广泛应用于社会生活的各个领域,如家电、汽车、材料、电力电子等,常用的控制电路根据应用场合和所要求的性能指标有所不同,在工业企业中,如何提高温度控制对象的运行性能一直以来都是控制人员和现场技术人员努力解决的问题。这类控制对象惯性大,滞后现象严重,存在很多不确定的因素,难以建立精确的数学模型,从而导致控制系统性能不佳,甚至出现控制不稳定、失控现象。传统的继电器调温电路简单实用,但由于继电器动作频繁,可能会因触点不良而影响正常工作。控制领域还大量采用传统的PID控制方式,但PID控制对象的模型难以建立,并且当扰动因素不明确时,参数调整不便仍是普遍存在的问题。而采用数字温度传感器DS18B20,因其内部集成了A/D转换器,使得电路结构更加简单,而且减少了温度测量转换时的精度损失,使得测量温度更加精确。数字温度传感器DS18B20只用一个引脚即可与单片机进行通信,大大减少了接线的麻烦,使得单片机更加具有扩展性。由于DS18B20芯片的小型化,更加可以通过单跳数据线就可以和主电路连接,故可以把数字温度传感器DS18B20做成探头,探入到狭小的地方,增加了实用性。更能串接多个数字温度传感器DS18B20进行范围的温度检测 2 设计要求

温度传感器论文..

温度传感器设计论文题目:基于DS18B20温度传感器的智能测温仪学院:物理与电子工程学院 专业: 姓名: 学号: 目录 目录------------------------------------------------------------------------------1 摘要------------------------------------------------------------------------------2 一、传感器概诉---------------------------------------- ---------------------3 1、传感器及温度传感器发展现状-------------------------------------3 2、主要元器件介绍-------------------------------------------------------3 二、课程设计主要内容----------------------------------- -----------------6 1、课程设计名称----------------------------------------------------------6 2、设计要求、目的及意义----------------------------------------------6 三、设计达到的指标---------------------------------- ---------------------7

四、传感器设计原理------------------------------------ -------------------7 1、三个重要组成部分----------------------------------------------------7 2、DS1802工作原理------------------------------------------------------7 3、DS1802内部结构图---------------------------------------------------8 4、程序流程图--------------------------------------------------------------9 5、proteus仿真原理图----------------------------------------------------9 五、实验过程------------------------------------------ -----------------------10 1、前期准备-----------------------------------------------------------------10 2、课程设计过程-----------------------------------------------------------10 3、个人主要工作及遇到问题--------------------------------------------11 六、数据分析与结论------------------------------ --------------------------11 七、课程设计总结、思考与致谢-------------------------------- ---------12 八、参考文献------------------------------------------------- ----------------14 九、附录--------------------------------------------------

基于数字温度传感器的数字温度计

黄河科技学院《单片机应用技术》课程设计题目:基于数字温度传感器的数字温度计 姓名:时鹏 院(系):工学院 专业班级: 学号: 指导教师:

黄河科技学院课程设计任务书 工学院机械系机械设计制造及其自动化专业S13 级 1 班 学号1303050025 时鹏指导教师朱煜钰 题目:基于数字温度传感器的数字温度计设计 课程:单片机应用技术课程设计 课程设计时间2014年10月27 日至2014年11 月10 日共2 周 课程设计工作容与基本要求(设计要求、设计任务、工作计划、所需相关资料)(纸不够可加页)

课程设计任务书及摘要 一、课程设计题目:基于数字温度传感器的数字温度计 二、课程设计要求 利用数字温度传感器DS18B20与单片机结合来测量温度。利用数字温度传感器DS18B20测量温度信号,计算后在LED数码管上显示相应的温度值。其温度测量围为-55℃~125℃,精确到0.5℃。数字温度计所测量的温度采用数字显示,控制器使用单片机AT89C51,温度传感器使用DS18B20,用3位共阳极LED 数码管以串口传送数据,实现温度显示。 三、课程设计摘要 DS18B20是一种可组网的高精度数字式温度传感器,由于其具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠。本文结合实际使用经验,介绍了DS18B20数字温度传感器在单片机下的硬件连接及软件编程,并给出了软件流程图。 该系统由上位机和下位机两大部分组成。下位机实现温度的检测并提供标准RS232通信接口,芯片使用了ATMEL公司的AT89C51单片机和DALLAS公司的DS18B20数字温度传感器。上位机部分使用了通用PC。该系统可应用于仓库测温、楼宇空调控制和生产过程监控等领域。 四、关键字:单片机温度测量DS18B20 数字温度传感器AT89C51

温度传感器论文

温度传感器 专业 班级 学生姓名 学号

目录 引言 (4) 1综述 (4) 2方案设计 (5) 2 元器件介绍 (5) 2.118B20的性能特点 (5) 2.218B20的工作原理及应用 (5) 2.3 AT89S52的介绍 (6) 3 总体设计 (8) 3.1 原理图 (8) 3.2 实验步骤 (9) 4 总结 (9) 引言 温度是一种最基本的环境参数,日常生活和工农业生产中经常要检测温度。传统的方式是采用热电偶或热电阻,但是由于模拟温度传感器输出为模拟信号,必须经过 AI D转换环节获得数字信号后才能与单片机等微处理器接口,使得硬件电路结构复杂,制作成本

较高。近年来,美国DALLAS公司生产的DSI8B20为代表的新型单总线数字式温度传感器以其突出优点广泛使用于仓储管理、工农业生产制造、气象观测、科学研究以及日常生活中。DSI8B20集温度测量和 A/D转换于一体,直接输出数字量,传输距离远,可以很方便地实现多点测量,硬件电路结构简单,与单片机接口几乎不需要外围元件。文章将介绍DS18B2的结构特征及控制方法,给出以此传感器和 AT89S52单片机构成的最小温度测量报警系统。 1602液晶也叫1602字符型液晶它是一种专门用来显示字母、数字、符号等的点阵型液晶模块它有若干个5X7或者5X11等点阵字符位组成,每个点阵字符位都可以显示一个字符。每位之间有一个点距的间隔每行之间也有也有间隔起到了字符间距和行间距的作用,正因为如此所以他不能显示图形.通过At89S52控制1602液晶的输出,将所测得的温度显示出来 一、综述 目前,国际上新型温度传感器正从模拟式想数字式、集成化向智能化及网络化的方向发展。 温度传感器按传感器与被测介质的接触方式可分为两大类:一类是接触式温度传感器,一类是非接触式温度传感器。接触式温度传感器的测温元件与被测对象要有良好的热接触,通过热传导及对流原理达到热平衡。这种测温方法精度比较高,并可测量物体内部的温度分布。但对于运动的、热容量比较小的及对感温元件有腐蚀作用的对象,这种方法将会产生很大的误差。 非接触测温的测温元件与被测对象互不接触。常用的是辐射热交换原理。此种测稳方法的主要特点是可测量运动状态的小目标及热容量小或变化迅速的对象,也可测量温度场的温度分布,但受环境的影响比较大 21世纪后,智能温度传感器正朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展 二、方案设计 2 元器件介绍 2.1SI8B20性能特点 美国DALLAS半导体公司的DS18B20是世界上第一片支持“单总线”接口的数字式温度传感器,能够直接读取被测物的温度值。它具有TO-92、TSOC、SOIC多种封装形式,可以适应不同的环境需求。其测量范围在-55~+125℃、-10℃~+85℃之内的测量精度可达±0 .5℃,稳定度为1%。通过编程可实现9、10、11、12位的分辨率读出温度数据,以上都

温度传感器实验

DH-SJ5温度传感器设计性实验装置 使 用 说 明 书 杭州大华科教仪器研究所 杭州大华仪器制造有限公司

一、温度传感器概述 温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量。测温传感器就是将温度信息转换成易于传递和处理的电信号的传感器。 一、测温传感器的分类 1.1电阻式传感器 热电阻式传感器是利用导电物体的电阻率随温度而变化的效应制成的传感器。热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。它分为金属热电阻和半导体热电阻两大类。金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即 R t =R t0[1+α (t-t 0)] 式中,R t 为温度t 时的阻值;R t0为温度t 0(通常t 0=0℃)时对应电阻值;α为温度系数。 半导体热敏电阻的阻值和温度关系为 t B t Ae R = 式中R t 为温度为t 时的阻值;A 、B 取决于半导体材料的结构的常数。 常用的热电阻有铂热电阻、热敏电阻和铜热电阻。其中铂电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 金属铂具有电阻温度系数大,感应灵敏;电阻率高,元件尺寸小;电阻值随温度变化而变化基本呈线性关系;在测温范围内,物理、化学性能稳定,长期复现性好,测量精度高,是目前公认制造热电阻的最好材料。但铂在高温下,易受还原性介质的污染,使铂丝变脆并改变电阻与温度之间的线性关系,因此使用时应装在保护套管中。用铂的此种物理特性制成的传感器称为铂电阻温度传感器,利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω,电阻变化率为0.3851Ω/℃,TCR=(R 100-R 0)/(R 0×100) ,R 0为0℃的阻值,R 100为100℃的阻值,按IEC751国际标准,温度系数TCR=0.003851,Pt100(R 0=100Ω)、Pt1000(R 0=1000Ω)为统一设计型铂电阻。铂热电阻的特点是物理化学性能稳定。尤其是耐氧化能力强、测量精度高、应用温度范围广,有很好的重现性,是中低温区(-200℃~650℃)最常用的一种温度检测器。 热敏电阻(Thermally Sensitive Resistor,简称为Thermistor),是对温度敏感的电阻的总称,是一种电阻元件,即电阻值随温度变化的电阻。一般分为两种基本类型:负温度系数热敏电阻NTC (Negative Temperature Coefficient )和正温度系数热敏电阻PTC (Positive Temperature Coefficient )。NTC 热敏电阻表现为随温度的上升,其电阻值下降;而PTC 热敏电阻正好相反。 NTC 热敏热电阻大多数是由Mn(锰)、Ni(镍)、Co(钴)、Fe(铁)、Cu(铜)等金属的氧化物经过烧结而成的半导体材料制成。因此,不能在太高的温度场合下使用。不竟然,其使用范围有的也可以达到了-200℃~700℃,但一般的情况下,其通常的使用范围在-100℃~300℃。 NTC 热敏热电阻热响应时间一般跟封装形式、阻值、材料常数(热敏指数)、热时间常数有关。材料常数(热敏指数)B 值反映了两个温度之间的电阻变化,热敏电阻的特性就是由它的大小决定的,B 值(K )被定义为:2 12 1212111lg lg 3026.211ln ln T T R R T T R R B --?=--= ; R T1:温度 T 1(K )时的零功率电阻值;R T2 :温度 T 2(K )时的零功率电阻值;T 1,T 2 :

温度传感器课程设计

温度传感器课程设计报告 专业:电气化___________________ 年级:13-2 学院:机电院 姓名:崔海艳 ______________ 学号:8021209235 目录 1弓I言................................................................... ..3

2设计要求................................................................. ..3 3工作原理................................................................. ..3 4 方案设计 ................................................................ ..4 5单元电路的设计和元器件的选择.............................................. ..6 5.1微控制器模块........................................................... .6 5.2温度采集模块...................................................... .. (7) 5.3报警模块.......................................................... .. (9) 5.4 温度显示模块..................................................... .. (9) 5.5其它外围电路........................................................ (10) 6 电源模块 (12) 7程序设计 (13) 7.1流程图............................................................... (13) 7.2程序分析............................................................. ..16 8.实例测试 (18) 总结.................................................................... ..18 参考文献................................................................ ..19

温度传感器论文..

温度传感器设计论文题目:基于DS18B20温度传感器的智能测温仪 学院:物理与电子工程学院 专业: 姓名: 学号:

目录 目录------------------------------------------------------------------------------1 摘要------------------------------------------------------------------------------2 一、传感器概诉-------------------------------------------------------------3 1、传感器及温度传感器发展现状-------------------------------------3 2、主要元器件介绍-------------------------------------------------------3 二、课程设计主要内容----------------------------------------------------6 1、课程设计名称----------------------------------------------------------6 2、设计要求、目的及意义----------------------------------------------6 三、设计达到的指标-------------------------------------------------------7 四、传感器设计原理-------------------------------------------------------7 1、三个重要组成部分----------------------------------------------------7 2、DS1802工作原理------------------------------------------------------7 3、DS1802内部结构图---------------------------------------------------8 4、程序流程图--------------------------------------------------------------9 5、proteus仿真原理图----------------------------------------------------9 五、实验过程-----------------------------------------------------------------10 1、前期准备-----------------------------------------------------------------10 2、课程设计过程-----------------------------------------------------------10 3、个人主要工作及遇到问题--------------------------------------------11 六、数据分析与结论--------------------------------------------------------11 七、课程设计总结、思考与致谢-----------------------------------------12 八、参考文献-----------------------------------------------------------------14 九、附录-----------------------------------------------------------------------15

DS18B20温度传感器实验

DS18B20温度传感器实验 TEMP1 EQU 5AH ;符号位和百位公用的存放单元TEMP2 EQU 5BH ;十位存放单元 TEMP3 EQU 5CH ;个位存放单元 TEMP4 EQU 5DH ; TEMP5 EQU 5EH TEMP6 EQU 5FH ;数据临时存放单元 TEMP7 EQU 60H TEMP8 EQU 61H ORG 0000H AJMP MAIN

ORG 0020H

MAIN: MOV SP,#70H LCALL INT ;调用DS18B20初始化函数 MAIN1: LCALL GET_TEMP ;调用温度转换函数 LCALL CHULI ;调用温度计算函数 LCALL DISP ;调用温度显示函数 AJMP MAIN1 ;循环 INT: L0: SETB P3.7 ;先释放DQ总线 MOV R2,#250 ;给R2赋延时初值,同时可让DQ保持高电平2us L1: CLR P3.7 ;给DQ一个复位低电平 DJNZ R2,L1 ;保持低电平的时间至少为480us SETB P3.7 ;再次拉高DQ释放总线 MOV R2,#25 L2: DJNZ R2,L2 ;保持15us-60us CLR C ORL C,P3.7 ;判断是否收到低脉冲 JC L0

MOV R6,#100 L3: ORL C,P3.7 DJNZ R6,L3 ;存在低脉冲保持保持60us-240us ; JC L0 ;否则继续从头开始,继续判断 SETB P3.7 RET ;调用温度转换函数 GET_TEMP: CLR PSW.4 SETB PSW.3 ;设置工作寄存器当前所在的区域 CLR EA ;使用DS18B20前一定要禁止任何中断LCALL INT ;初始化DS18B20 MOV A,#0CCH ;送入跳过ROM命令 LCALL WRITE MOV A,#44H ;送入温度转换命令 LCALL WRITE LCALL INT ;温度转换完成,再次初始化18b20 MOV A,#0CCH ;送入跳过ROM命令 LCALL WRITE MOV A,#0BEH ;送入读温度暂存器命令 LCALL WRITE

温度传感器课程设计报告1

温度传感器的特性及应用设计 集成温度传感器是将作为感温器件的晶体管及其外围电路集成在同一芯片上的集成化温度传感器。这类传感器已在科研,工业和家用电器等方面、广泛用于温度的精确测量和控制。 1、目的要求 1.测量温度传感器的伏安特性及温度特性,了解其应用。 2.利用AD590集成温度传感器,设计制作测量范围20℃~100℃的数字显示测温装置。 3.对设计的测温装置进行定标和标定实验,并测定其温度特性。 4.写出完整的设计实验报告。 2、仪器装置 AD590集成温度传感器、变阻器、导线、数字电压表、数显温度加热设备等。 3、实验原理 AD590 R=1KΩ E=(0-30V) 四、实验内容与步骤 ㈠测量伏安特性――确定其工作电压范围 ⒈按图摆好仪器,并用回路法连接好线路。 ⒉注意,温度传感器内阻比较大,大约为20MΩ左右,电源电 压E基本上都加在了温度传感器两端,即U=E。选择R4=1KΩ,温度传感器的输出电流I=V/R4=V(mV)/1KΩ=│V│(μA)。

⒊在0~100℃的范围内加温,选择0.0 、10.0、20.0……90.0、100.0℃,分别测量在0.0、1.0、2.0……25.0、30.0V时的输出电流大小。填入数据表格。 ⒋根据数据,描绘V~I特性曲线。可以看到从3V到30V,基本是一条水平线,说明在此范围内,温度传感器都能够正常工作。 ⒌根据V~I特性曲线,确定工作电压范围。一般确定在5V~25V为额定工作电压范围。 ㈡测量温度特性――确定其工作温度范围 ⒈按图连接好线路。选择工作电压为10V,输出电流为I=V/R4=V(mV)/1KΩ=│V│(μA)。 ⒉升温测量:在0~100℃的范围内加热,选择0.0 、10.0、 20.0……90.0、100.0℃时,分别同时测量输出电流大小。将数据填入数据表格。 注意:一定要温度稳定时再读输出电流值大小。由于温度传感器的灵敏度很高,大约为k=1μA/℃,所以,温度的改变量基本等于输出电流的改变量。因此,其温度特性曲线是一条斜率为k=1的直线。 ⒊根据数据,描绘I~T温度特性曲线。 ⒋根据I~T温度特性曲线,求出曲线斜率及灵敏度。 ⒌根据I~T温度特性曲线,在线性区域内确定其工作温度范围。 ㈢实验数据: ⒈温度特性

数字温度传感器课程设计论文

目录课题要求: 4 1.原理分析 4 2.方案选择 4 3.元器件选择 5 3.1单片机 5 3.2温度传感器 7 3.3 显示屏 8 3.4 蜂鸣器 9 3.5其他元件 9 4.proteus原理图绘制 9 4.1设计步骤 9 4.2 设计过程 9 4.2.1单片机系统模块 10 4.2.2晶体振荡模块 10 4.2.3扬声器报警模块 11 4.2.4温度传感器模块 12

4.2.5液晶显示模块 13 5.综合调试 16 6.总结 17 附录1 18 附录2 21 附录3 23 附录4 24 基于数字温度传感器的数字温度计设计报告 课题要求: 利用数字温度传感器DS18B20与单片机结合来测量温度。利用数字温度传感器DS18B20测量温度信号,计算后在LED数码管上显示相应的温度值。其温度测量范围为?55℃~125℃,精确到0.5℃。数字温度计所测量的温度采用数字显示,控制器使用单片机AT89C51,测温传感器使用DS18B20,,实现温度显示。 1. 原理分析(刘星) 采用AT89C51单片机作为控制核心对温度传感器DS18B20控制,读取温度信号并进行计算处理,并送数码管显示。 采用数字温度芯片 DS18B20 测量温度,输出信号全数字化。便于单片机处理及控制,省去传统的测温方法的很多外围电路。且该芯片的物理化学性很稳定,它

能用做工业测温元件,此元件线形较好。在0—100摄氏度时,最大线形偏差小于1摄氏度。DS18B20的最大特点之一采用了单总线的数据传输,由数字温度计 DS18B20 和微控制芯片AT89C51 构成的温度测量装置,它直接输出温度的数字信号,可直接与计算机连接。这样,测温系统的结构就比较简单,体积也不大。采用AT89C51 单片机控制,软件编程的自由度大,可通过编程实现各种各样的算术算法和逻辑控制而且体积小,硬件实现简单,安装方便。用 AT89C51 芯片控制温度传感器DS18B20 进行实时温度检测并显示,能够实现快速测量环境温度,并可以根据需要设定上下限报警温度。该系统扩展性非常强,它可以在设计中加入时钟芯片 DS1302以获取时间数据,在数据处理同时显示时间,并可以利用 AT24C16 芯片作为存储器件,以此来对某些时间点的温度数据进行存储,利用键盘来进行调时和温度查询,获得的数据可以通过 MAX232 芯片与计算机的 RS232 接口进行串口通信,方便的采集和整理时间温度数据。 ⒉ 方案选择(刘星) 按照系统设计功能的要求,确定系统由3个大的模块组成:主控制器、测温电路和显示电路。由AT89C51单片机组成硬件设计,AT89C51的EA接高电平,其外围电路提供能使之工作的晶振脉冲、复位按键,四个I/O分别接8路的单列IP 座方便与外围设备连接。当AT89C51芯片接到来自温度传感器的信号时,其内部程序将根据信号的类型进行处理,并且将处理的结果送到显示模块,发送控制信号控制各模块。 ⒊ 元器件选择(黄学然) 3.1单片机 AT89C51芯片:

ATC温度传感器设计

电子系统综合设计报告姓名: 学号: 专业: 日期:2011-4-13 南京理工大学紫金学院电光系

摘要 本次课程设计目的是设计一个简易温度控制仪,可以在四联数码管上显示测得的温度。主要分四部份电路:OP07放大电路,AD转换电路,单片机部分电路,数码管显示电路。设计文氏电桥电路,得到温度与电压的关系,通过控制电阻值改变温度。利用单片机将现在温度与预设温度进行比较,将比较结果在LED数码管上显示,同时实现现在温度与预设温度之间的切换。 关键词放大电路转换电路控制电路显示 目录 1 引言 (3) 1.1 系统设计 (3) 1.1.1 设计思路 (3) 1.1.2 总体方案设计 (3) 2 单元模块设计 (4) 2.1 各单元模块功能介绍及电路设计 (4) 2.1.1 温度传感器电路的设计 (4) 2.1.2 信号调理电路的设计 (4) 2.1.3 A/D采集电路的设计 (4) 2.1.4 单片机电路 (4) 2.1.5 键盘及显示电路的设计 (4) 2.1.6 输出控制电路的设计 (5) 2.2元器件的选择 (5) 2.3特殊器件的介绍 (5) 2.3.1 OP07A (5) 2.3.2 ADC0809 (6) 2.3.3 ULN2003 (7) 2.3.4 四联数码管(共阴) (7) 2.4各单元模块的联接 (8) 3.1开发工具及设计平台 (9) 3.1.1 Proteus特点 (9) 3.1.2 Keil特点 (9) 3.1.3 部分按键 (10) 4 系统测试 (14) 5 小结和体会 (16) 6 参考文献 (17)

1 引言 电子系统设计要求注重可行性、性能、可靠性、成本、功耗、使用方便和易维护性等。总体方案的设计与选择:由技术指标将系统功能分解为:若干子系统,形成若干单元功能模块。单元电路的设计与选择:尽量采用熟悉的电路,注重开发利用新电路、新器件。要求电路简单,工作可靠,经济实用。 1.1 系统设计 1.1.1 设计思路 本次实验基于P89L51RD2FN的温控仪设计采用Pt100温度传感器。 1.1.2 总体方案设计 设计要求 1.采用Pt100温度传感器,测温范围 -20℃ --100℃; 2.系统可设定温度值; 3.设定温度值与测量温度值可实时显示; 4.控温精度:±0.5℃。

实验三 热电阻、热点偶测温特性实验

实验三热电阻、热电偶测温特性实验 一、实验目的:了解热电阻的特性与应用,了解热电偶测量温度的性能与应用范围。。 二、基本原理: 1、热电阻: 利用导体电阻随温度变化的特性,热电阻用于测量时,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。常用铂电阻和铜电阻在0-630.74℃以内,电阻Rt与温度t的关系为: R t=R0(1+A t+B t2) R0系温度为0℃时的电阻。本实验R0=100℃,A t=3.9684×10-2/℃,B t=-5.847×10-7/℃2,铂电阻现是三线连接,其中一端接二根引线主要为消除引线电阻对测量的影响。 2、热电偶 当两种不同的金属组成回路,如二个接点有温度差,就会产生热电势,这就是热电效应。温度高的接点称工作端,将其置于被测温度场,以相应电路就可间接测得被测温度值,温度低的接点就称冷端(也称自由端),冷端可以是室温值或经补偿后的0℃、25℃。 三、需用器件与单元:加热源、K型热电偶(红+,黑-)、P t100热电阻、温度控制单元、温度传感器实验模板、数显单元、万用表,热电偶K型、E 型、加热源。 四、实验步骤: (一)热电阻: 1、注意:首先根据实验台型号,仔细阅读“温控仪表操作说”,学会基 本参数设定。 2、将热电偶插入台面三源板加热源的一个传感器安置孔中。将K型热电偶自由端引线插入主控面板上的热电偶EK插孔中,红线为正极,黑色为负极,注意热电偶护套中已安置了二支热电偶,K型和E型,它们热电势值不同,从热电偶分度表中可以判别K型和E型(E型热电势大)热电偶。E型(蓝+,绿-);k型(红+,黑-) 3、将加热器的220V电源插头插入主控箱面板上的220V控制电源插座上。

相关文档
最新文档