Review on the Modeling of Electrostatic MEMS
高密度阳极铝电解槽电

第 54 卷第 2 期2023 年 2 月中南大学学报(自然科学版)Journal of Central South University (Science and Technology)V ol.54 No.2Feb. 2023高密度阳极铝电解槽电−热场耦合仿真研究魏兴国1,廖成志1,侯文渊1, 2,段鹏1,李贺松1(1. 中南大学 能源科学与工程学院,湖南 长沙,410083;2. 中北大学 能源与动力工程学院,山西 太原,030051)摘要:在铝电解槽中,阳极炭块内存在的气孔会降低炭块的导电和导热性能,并且增加炭渣,降低电流效率,导致炭耗和直流电耗升高。
通过浸渍工艺得到的高密度阳极可以有效地降低炭块的气孔率。
为了探究高密度阳极铝电解槽的电−热场变化和影响,基于ANSYS 软件建立高密度阳极铝电解槽的电−热场耦合计算模型。
研究结果表明:铝电解槽高密度阳极炭块的平均温度上升8.73 ℃,热应力增加,但形变量减小;侧部槽壳的平均温度下降28.59 ℃,热应力和形变量均降低,有利于保持槽膛内形稳定;热场变化主要与阳极炭块物性改变有关;槽电压降低49.16 mV ,主要与炭块物性改变和电解质电阻率降低有关;高密度阳极电流全导通时间缩短3.39 h ,可有效减弱换极产生的负面影响,阳极使用寿命可延长4 d ,炭耗降低10.3 kg/t ;铝电解槽反应能耗占比增加0.62%,电流效率提高1.69%,直流电耗降低270 kW·h/t 。
关键词:铝电解槽;高密度阳极;电−热场;耦合仿真中图分类号:TF821 文献标志码:A 文章编号:1672-7207(2023)02-0744-10Simulation study of electric-thermal field coupling in high-densityanode aluminum electrolyzerWEI Xingguo 1, LIAO Chengzhi 1, HOU Wenyuan 1, 2, DUAN Peng 1, LI Hesong 1(1. School of Energy Science and Engineering, Central South University, Changsha 410083, China;2. School of Energy and Power Engineering, North University of China, Taiyuan 030051, China)Abstract: In aluminum electrolytic cells, porosity in anode carbon blocks can reduce the electrical and thermal conductivity of the blocks and increase carbon slag, reduce current efficiency and lead to higher carbon consumption and DC power consumption. High-density anodes obtained by impregnation process can effectively reduce the porosity of carbon blocks. In order to investigate the electric-thermal field variation and the causes of influence in the high-density anode aluminum electrolyzer, a coupled electric-thermal field calculation model of收稿日期: 2022 −07 −11; 修回日期: 2022 −08 −20基金项目(Foundation item):国家高技术研究发展项目(2010AA065201);中南大学研究生自主探索创新项目(2021zzts0668)(Project(2010AA065201) supported by the National High-Tech Research and Development Program of China; Project (2021zzts0668) supported by the Independent Exploration and Innovation of Graduate Students in Central South University)通信作者:李贺松,博士,教授,博士生导师,从事铝电解研究;E-mail:****************.cnDOI: 10.11817/j.issn.1672-7207.2023.02.032引用格式: 魏兴国, 廖成志, 侯文渊, 等. 高密度阳极铝电解槽电−热场耦合仿真研究[J]. 中南大学学报(自然科学版), 2023, 54(2): 744−753.Citation: WEI Xingguo, LIAO Chengzhi, HOU Wenyuan, et al. Simulation study of electric-thermal field coupling in high-density anode aluminum electrolyzer[J]. Journal of Central South University(Science and Technology), 2023, 54(2): 744−753.第 2 期魏兴国,等:高密度阳极铝电解槽电−热场耦合仿真研究the high-density anode aluminum electrolyzer was established based on ANSYS software. The results show that the average temperature of the anode carbon block increases by 8.73 ℃ when the high-density anode is put on the tank, and the thermal stress increases but the deformation variable decreases. The average temperature of the side shell decreases by 28.59 ℃, and the thermal stress and deformation variable both decrease,which helps to protect the inner shape of the tank chamber stable. The change of the thermal field is mainly related to the change of the physical properties of the anode carbon block. The cell voltage decreases by 49.16 mV which is mainly related to the change of carbon block physical ploperties and the decrease of electrolyte resistivity, respectively. The reduction of 3.39 h in the full conduction time of high-density anode current can effectively reduce the negative effects of electrode change, and the anode service life can be extended by 4 d. The carbon consumption is reduced by 10.3 kg/t. The reaction energy consumption of aluminum electrolyzer is increased by 0.62%, the current efficiency is increased by 1.69%, and the DC power consumption is reduced by 270 kW·h/t.Key words: aluminum electrolyzer; high-density anode; electric-thermal field; coupling simulation作为铝电解槽的核心部件,阳极炭块在反应过程中被不断消耗,其品质直接影响着各项经济技术指标[1]。
关于电力的博士英文作文

关于电力的博士英文作文Electricity is such a crucial aspect of our modern lives, often taken for granted. It powers our homes, offices, and entire cities, making life easier and more efficient. Think about it, without electricity, we'd be back in the dark ages!In the field of research, electricity is a never-ending source of fascination. As a doctoral student, I'm always amazed by the complexities of electrical systems and how they interact with each other. It's like a puzzle that keeps getting more challenging but also more rewarding to solve.One of the coolest things about electricity is its versatility. It can be harnessed from various sources like wind, solar, and even water. This means we have the potential to create a sustainable energy future, reducing our dependence on fossil fuels. It's a pretty exciting thought, don't you think?But with all this progress, there are still challenges to overcome. Electrical safety is a big one. We need to ensure that our systems are designed and maintained properly to prevent accidents and protect people from harm. It's a responsibility we can't afford to take lightly.And let's not forget about the future of electricity. With new technologies and advancements, we're constantly pushing the boundaries of what's possible. Imagine a world where electricity is even more efficient, reliable, and environmentally friendly. It's a vision that we're working hard to realize, and.。
静电成像方式英语作文

静电成像方式英语作文Title: The Principle and Applications of Electrostatic Imaging。
Electrostatic imaging, a technique utilized in various fields including medical diagnostics, security screening, and scientific research, relies on the manipulation of electrostatic forces to generate images. This essay delves into the principle behind electrostatic imaging, its applications, and the advancements in this technology.### Principle of Electrostatic Imaging。
Electrostatic imaging operates on the fundamental principle of electrostatic attraction and repulsion. It involves the creation of an electric field between acharged object and a grounded substrate. When an object is charged, the electric field interacts with nearby particles, causing redistribution of charges and resulting invariations in the electric potential across the surface. Bymeasuring these potential differences, an image of theobject's surface or internal structure can be reconstructed.### Components of Electrostatic Imaging Systems。
电催化实验英文作文

电催化实验英文作文I was in the lab today, conducting an electrocatalysis experiment. It was quite exciting to see the reactions taking place right in front of me. The equipment was buzzing with energy, and I could feel the electricity in the air.The results were promising, with the electrodes showing significant activity. I couldn't help but feel a sense of accomplishment as I watched the data come in. It's moments like these that remind me why I love being a scientist.As I carefully monitored the experiment, I couldn't help but marvel at the power of electrocatalysis. It's amazing how a small change in voltage can have such a big impact on the reaction. It's like unlocking a whole new world of possibilities.I made a few adjustments to the parameters and observed how they affected the outcome. It was fascinating to seehow each tweak could lead to a different result. It really highlighted the importance of precision in scientific research.After a few hours of experimentation, I finally reached a breakthrough. The reaction was more efficient than ever before, and I couldn't wait to share my findings with my colleagues. It's moments like these that make all the hard work and late nights worth it.Overall, it was a successful day in the lab. I learned a lot about electrocatalysis and made some significant progress in my research. I can't wait to see where this experiment takes me next. Science truly is a never-ending journey of discovery.。
高压静电技术及其在肉类和果蔬保鲜中的应用进展

姜晓晨,霍英娇,董士远. 高压静电技术及其在肉类和果蔬保鲜中的应用进展[J]. 食品工业科技,2023,44(17):447−453. doi:10.13386/j.issn1002-0306.2022110063JIANG Xiaochen, HUO Yingjiao, DONG Shiyuan. Research Progress in the Application of High Voltage Electrostatic Technology in Meat, Fruit, and Vegetable Preservation[J]. Science and Technology of Food Industry, 2023, 44(17): 447−453. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110063· 专题综述 ·高压静电技术及其在肉类和果蔬保鲜中的应用进展姜晓晨,霍英娇,董士远*(中国海洋大学食品科学与工程学院,山东青岛 266000)摘 要:高压静电技术具有能耗低、不影响食品品质等优点,已逐渐成为当前食品贮藏与保鲜领域的研究热点。
本文系统综述了高压静电技术的作用机理及其在肉类和果蔬保鲜中的应用现状,重点从酶活改变、跨膜电位和冰晶形成等方面综述其保鲜作用机理,同时从降低呼吸强度、减少汁液流失、抑制微生物生长等方面综述其保鲜应用效果,并对其发展趋势进行了讨论和展望,以期为高压静电技术的工业化应用提供参考。
关键词:高压静电技术,保鲜,肉类,果蔬,机理本文网刊:中图分类号:TS251.5;TS255.3 文献标识码:A 文章编号:1002−0306(2023)17−0447−07DOI: 10.13386/j.issn1002-0306.2022110063Research Progress in the Application of High Voltage ElectrostaticTechnology in Meat, Fruit, and Vegetable PreservationJIANG Xiaochen ,HUO Yingjiao ,DONG Shiyuan *(College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China )Abstract :High voltage electrostatic technology has the advantages of low energy consumption and no influence on food quality. It has gradually become a research hotspot in the field of food storage and preservation. This paper systematically reviewed the mechanism of high voltage electrostatic technology and its application status in meat, fruit, and vegetable preservation. The mechanism of the preservation effect of high voltage electrostatic technology is mainly reviewed in terms of enzyme activity transformation, transmembrane potential, and ice crystal formation, respectively. Its preservation effect is also reviewed regarding reducing respiration intensity, reducing drip loss, and inhibiting microbial growth. And the development trends of high voltage electrostatic technology are also discussed and predicted. This paper aims to provide a reference for applying high voltage electrostatic technology in the food industry.Key words :high voltage electrostatic technology ;preservation ;meat ;fruits and vegetables ;mechanism肉类和果蔬的营养成分丰富,是人体必需的蛋白质、维生素以及矿物质的重要来源[1],但在加工、贮藏、运输和销售过程中,由于机械损伤、自身生理代谢、微生物侵染等因素,会造成食品变色、失水及腐败变质等,从而降低其商品价值,造成经济损失,且存在较大的食品安全风险[2−3]。
两类锂离子电池电化学机理模型的数值分析

收稿日期:2023-03-20;修订日期:2023-05-19作者简介:杜开承(1997 ),男,硕士研究生,主要从事微分方程建模与应用研究㊂基金项目:江西省教育厅教学改革项目(yjsjg1202007)㊂第41卷㊀第4期2023年8月江㊀㊀西㊀㊀科㊀㊀学JIANGXI㊀SCIENCEVol.41No.4Aug.2023㊀㊀doi :10.13990/j.issn1001-3679.2023.04.004两类锂离子电池电化学机理模型的数值分析杜开承,欧阳旺林,洪保昌(东华理工大学理学院,330013,南昌)摘要:在新能源锂离子电池领域,已有研究学者构造了若干种电池的电化学机理模型㊂为了分析相关物理化学过程,得到电池相关有效性质,基于DFN 模型讨论电池的物理化学机制,使用了降阶简化后的单颗粒模型进行模拟研究㊂先采用不同的参数对单颗粒模型进行模拟,之后分析各个相关物理量,与DFN 模型进行比较,得出精度控制良好一致性的范围,分析了模型预测的差异性㊂通过电池机理模型的研究,可获得电池的状态估计,这能够更好地认识电池㊂关键词:锂离子电池;电化学机理模型;DFN 模型;微分方程建模;数值分析中图分类号:TQ1321㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀文章编号:1001-3679(2023)04-634-09Numerical Analysis of Electrochemical Mechanism Models forTwo Types of Lithium -ion BatteriesDU Kaicheng,OUYANG Wanglin,HONG Baochang(School of Science,East China University of Technology,330013,Nanchang,PRC)Abstract :In the field of new energy lithium -ion batteries,several models of the electrochemical mechanism of batteries have been constructed by researchers.In order to analyze the relevant physi-cochemical processes and obtain the applicable operational properties of the battery,this paper dis-cusses the physicochemical mechanism of the battery based on the DFN model,and uses a reduced -order simplified single -particle model for simulation studies.Different parameters are utilized to simulate the single -particle model first,and after that,each relevant physical quantity is analyzed and compared with the DFN model to derive the range of moral consistency in accuracy control and analyze the differences of the model.Through the study of the battery mechanism model,the state estimation of the battery can be achieved,which enables a better understanding of the battery.Key words :Lithium -ion battery;electrochemical mechanism model;DFN model;differential equa-tion modeling;numerical analysis0㊀引言目前,储能科学与技术中新能源电池是研发重点,需要构造一个电池模型,对其采取一系列的分析,数学建模和数值模拟在电池的设计和性能评估中得到了越来越多的应用㊂为了理解和预测这些电池的电化学行为,人们建立了各种捕捉局部输运现象的机理模型,即在电池的不同功能层,像电极集流体㊁电极和隔膜等组成单元层[1]进行分析㊂本质上,这些电化学模型通常考虑电荷㊁物质和能量守恒以及相关的边界条件和本构关系㊂这些详细的模型解决了局部输运现象㊁电化学和热产生,包含了空间和时间上耦合的非线性偏微分方程系统㊂由于数学上的复杂性,这些模型都是针对电池分离夹层[2]或具有几何线状的单元开发的,如圆形和方形单元[3]㊂尽管这些简单的几何形状可以将维数降至一维空间域,但控制方程仍然是耦合的偏微分方程㊂许多研究人员试图在这方面提高求解模型的计算效率[2,4-5]㊂到目前为止,将这些机理模型应用于具体电池,在计算上是困难的㊂因此,之后发展了简化模型㊂Guo 和White[6]使用经验模型中的等效电路模型来模拟电池,又如Lee等[7]提出了一种多尺度的方法来解决计算算法㊂Somasundaram等[8]㊁Xu等[9]及An等[10-11]模拟了特定电池的整体电化学-热行为㊂他们有一个共同点是都选择在二维截面上做模拟,这是出于解决模拟的精度和解决计算的复杂度需要㊂虽然现代计算能力已经能够解决二维电化学-热耦合模型,但这些模型还不适合广泛的参数化研究[12],以优化电池设计和性能㊂这种的输运模型通常由高度耦合的偏微分方程组成,因此在计算上具有挑战性㊂在前人的基础上,本文对模型方程进行数值求解㊂1㊀问题提出最常见到的锂电池主要由3部分组成:由金属氧化物制成的正极㊁石墨成分的负极以及正负极之间有隔膜层㊂对于隔膜层,它只允许自由离子通过,对电子是绝缘的,材料都浸入在电解液中㊂电池充电时,正极里面处于栅栏位置的金属离子运输嵌入到负极的栅格里㊂化学反应产生的电子通过外电路从正极进入负极,放电时化学反应过程相反㊂电池的物化性质由电压㊁电流㊁锂离子浓度等参量决定㊂本文要解决的问题:一是在不同参数下计算状态物理量随时间的变化规律,分析相关的物理过程;二是以DFN模型和单颗粒模型进行数值模拟和对比分析㊂2㊀模型建立下面考虑一个电池模型,相关参数见表1㊁表2[13-17]㊂表1 相关基本符号的说明关键符号说明关键符号说明C容量(A㊃h)ΔC容量损失(A㊃h) D e液相中的扩散系数(m2/s)ΔQ电量损失(A㊃h) D s固相中的扩散系数(m2/s)αc阴极交换系数E电动势,也即开路电压(V)αa阳极交换系数F法拉第常数(C/mol)δ厚度(m)I电流(A)εe液相体积分数R气体常数(J/(mol K))εf填料(Filler)体积分数R s固相颗粒的半径(m)εs固相体积分数SOC电池荷电状态κ电解液离子电导率(S/m) T温度(K)ηact反应活化过电势(V) U n负极电势ηelectrolyte电解液导致的过电势(V) U p正极电势θ固相锂离子分数c e液相锂离子浓度分布(mol/m3)上下标c s固相锂离子浓度分布(mol/m3)M主反应i0交换电流密度(A/m2)max最大j f局部电流体密度(A/m3)mean表面n循环次数N负极r球坐标系下半径r坐标位置(m)P正极t时间(s)sep隔膜x x坐标位置(m)surf表面ρ密度(kg/m3)0初值情况σ固相材料电导率(S/m)eff有效φs固相电势分布ref参考φe液相电势分布surf表面j n孔壁流量(mol/s/m3)t+迁移数㊃536㊃第4期㊀㊀㊀㊀㊀㊀杜开承等:两类锂离子电池电化学机理模型的数值分析表2 电池结构仿真参数/常数参数/常数单位负极隔膜正极A m20.10.10.1εe0.310.3δm100∗10-625∗10-6100∗10-6 c e,0mol/m3100010001000 D e m2/s 2.7877∗10-10 2.7877∗10-10 2.7877∗10-10 Brugg 1.5 1.5 1.5F C/mol9.6487∗104t+0.40.40.4R s m10∗10-610∗10-6εf0.100.2εs1-εe-εf01-εe-εf c s,max mol/m3 2.4983∗104 5.1218∗104 c s,0mol/m3 1.9624∗104 2.0046∗104 D s m2/s 3.9∗10-14 1.0∗10-13 k A∗m2.5/mol1.59.6487∗10-6 2.89461∗10-6 R SEIΩ/m25∗10-31∗10-3σS/m10010R J/(mol K)8.314T K298I A C-rate∗30㊀㊀另外,电解质电导率为[18]κ=0.0911+1.9101∗10-3c e-1.052∗10-6 c2e+0.1554∗10-9c3e(1)负电极平衡电位U n[18]为U n=0.194+1.5exp(-120θn)+0.0351tanh((θn -0.286)/0.083)-0.0045tanh((θn-0.849)/ 0.119)-0.035tanh((θn-0.9233)/0.05)-0.0147tanh((θn-0.5)/0.034)-0.102tanh((θn -0.194)/0.142)-0.022tanh((θn-0.9)/ 0.0164)-0.011tanh((θn-0.124)/0.0226)+ 0.0155tanh((θn-0.105)/0.029).(2)正电极平衡电位U p[18]为U p=2.16216+0.07645tanh(30.834-54.4806θp)+2.1581tanh(52.294-50.294θp) -0.14169tanh(11.0923-19.8543θp) +0.2501tanh(1.4684-5.4888θp)+0.2531tanh ((0.56478-θp)/0.1316)-0.02167tanh((θp -0.525)/0.006)(3)在DFN模型中,控制方程主要是由各守恒方程组成的[14]㊂1)固相正负极材料中离子的质量守恒方程,满足扩散方程∂c s∂t=1r2∂∂r D s r2∂c s∂r()(4)边界条件为c s t=0=c s,0,D s∂c s∂rr=0=0,D s r2∂c s∂rr=R s=-jS a F,S a=3εsR s(5) 2)液相中的离子的质量守恒方程∂(εl c l)∂t= ㊃(D eff l c l)+1-t+F㊃j,D eff l=εbrugg lD l(6)3)电池固液相界面上的电化学反应速率方程㊃636㊃江㊀西㊀科㊀学2023年第41卷j=S a j0(exp(aF RTη)-exp(-aF RTη)),j0=k (c s,max-c s,surf)αcαs,surf cαeη=ϕs-ϕl-j SaR f-U j,eq,j=n,p(7)对于电池的物理化学机制可以用DFN模型表述,它是一个准二维模型,简化相关细节后可以得到单颗粒模型㊂电池机理模型的研究可以更好地认识电池,提高状态估计㊂本文主要对锂离子电池的单颗粒模型和DFN模型进行电池模拟,并对2个电池模拟模型进行分析比较,得出一些需要的电池状态估计,以便于数据判断和数值分析㊂3㊀模型求解3.1㊀模型简化依据以下5条假设对模型进行简化:1)正负电极活性材料简化为半径相同球形颗粒;2)电池内除了固相和液相,不产生其他气体;3)电化学反应仅发生在横轴方向;4)不需要考虑双电层效应影响;5)电池液相体积分数没有变化㊂在准二维模型基础上简化相关项,可得到的单粒子模型㊂考虑到不同电池的粒子参数是不同的,所以通过定义一些无量纲数,对模型相关参数进行无量纲化,微分方程转化为无量纲形式,用多项式逼近的方法去计算各个物理量的值㊂其次,选择有限差分的方法进行求解,求解中进行时间以及空间的差分,选择隐格式求解方法㊂对于化简后的模型,认为电池内部固相和液相分布变化很小,可以忽略,正负电极各处的固相电势相等,各处液相浓度值均为一个常量㊂由假设可知一个电极内各处的反应离子流密度也相等㊂主反应速率由电流的平均密度代替,反应速率与电流密度的关系如下[18]j f,p(t)=I(t)Aδp,j f,n(t)=I(t)Aδn(8)由于j f,p㊁j f,n可以直接根据流过电池的电流得到,根据固相颗粒锂离子扩散偏微分方程可将固相扩散相关的各参数进行无量纲化㊂如下所示R=r Rs ,τ=D s t R2s.(9)C(τ,R)=C s(t,r)t=τRs2Ds,r=RR sC s,0,J(τ)=j n(t)t=τR2s2R sD s C s,0(10)则固相扩散偏微分方程可以转化成下式∂Cτ,R()∂t=1R2∂∂R D s R2∂Cτ,R()∂R()(11)初值条件和边界条件C(τ,R)τ=0=1㊀,㊀∂C(τ,R)∂R R=0=0,∂C(τ,R)∂R R=1=-J(τ)(12)模型的求解考虑到决定均衡电势U ref为颗粒表面锂离子浓度,因此对于固相扩散求解来讲,颗粒中锂离子浓度具体分布情况并不重要,固相扩散过程求解最重要的是求颗粒表面锂离子浓度,使用四次多项式近似方法来进行求解[18]㊂dc s,meandt=-j fεs F,c s,surf-c s,mean=-R2s j f15D sεs F(13)将该方程转化成无量纲形式有dc s,meandt=-3J(τ),ddτQ(τ)+30Q(τ)+45J(τ)=0,35(C surf(τ)-C mean(τ))-8Q(τ)=-J(τ)(14)得到的相关变化量图像如图1㊁图2㊂22.22.42.62.833.23.43.605001000150020002500300035004000时间t/s无量纲Li表面和平均浓度×10无量纲Li浓度图1㊀无量纲Li+表面和平均浓度变化量205001000150020002500300035004000时间t/s负极无量纲Li表面和平均浓度×10无量纲Li浓度0.60.811.21.41.61.8图2㊀负极无量纲Li+表面和平均浓度变化量如采用有限差分方法,那么将固相颗粒的半径R离散为m+1点,分别为0=r0<r1<r2<<r m=L-;令r i=ih;其中i=0,1, ,m;h=L-/m㊂㊃736㊃第4期㊀㊀㊀㊀㊀㊀杜开承等:两类锂离子电池电化学机理模型的数值分析将时间离散成N +1个点,分别为0=t 0<t 1<t 2< <t n ,令t j =jτ;j =0,1, ,N ;h =t N /N ,下面采用隐式迭代格式c j +1i -c j iτ=D s r i∗c j +1i +1-c j +1ih+r 2i ∗c j +1i +1-2c j +1i +c j +1i -1h 2(15)令s 1=τ∗r 2ih2,s 2=τ∗D s h ∗r i,于是有-s ∗1c j +1i -1+(1+2∗s 1+s 2)c j +1i -(s 1+s 2)c j +1i +1=c j i(16)可证明以上方法是条件稳定的,同时收敛阶为o (τ+h 2)㊂类似地可以把初边值条件离散得c 0i=1,c j +11-c j +10h =0,c j +1N -c j +1N -1h=0(17)图3从左到右依次为外部终端电压,正颗粒和负颗粒的表面浓度随时间变化图㊂可以看到,在正负极表面浓度随时间变化时,电池模拟终端电压在临界时间后效果下降明显,正负极表面浓度线性变化明显㊂3.2㊀求解简化模型的相关状态量得到正负表面锂离子浓度以后,便可以计算电池的电动势E (t )=U ref p (c s ,surf ,p (t )c s ,max,p)-U ref n (c s ,surf ,n (t )c s ,max,n)(18)同样也可以根据BV 方程得到电池正负极活化过电势㊂BV 方程如下j f (x ,t )=2a s i 0sinhαFRT ηact(x ,t )()(19)其中ηact (x ,t )为电池锂离子嵌入和脱嵌主反应活化过电势,紧接着可以得到电池两端的电势Φ+s ㊁Φ-s ㊂5001000150020002500Time/s3.13.23.33.43.53.63.7T e r m i n a l v o l t a g e /V N e g a t i v e p a r t i c l e s u r f a c e c o n c e n t r a t i o n 0.20.30.40.50.60.70.8P o s i t v e p a r t i c l e s u r f a c e c o n c e n t r a t i o n0.600.650.700.750.800.850.900.9505001000150020002500Time/s5001000150020002500Time/s图3㊀正负颗粒表面浓度随时间变化图㊀㊀Φ+s=2RT F sinh -1I (t )2a +L +r eff㊀c +ec+s ,max -c +ss ()c+ss()+U +c +ss()+R +f I (t )a +L +(20)Φ-s=2RTF sinh -1I (t )2a -L -r eff㊀c -e c -s ,max-c -ss ()c -ss ()+U -c -ss()+R -f I (t )a -L-.(21)其中,U +(c +ss),U -(c -ss)为电池正负级两端的额定电压㊂反应活化过电势为下式η+act(x ,t )=2RTF sinh -1(I (t )2a +L +reff㊀c +e(c+s ,m ax-c +ss)c+ss).(22)η-act (x ,t )=2RTF sinh -1(I (t )2a -L -reff㊀c -e(c-s ,m ax-c -ss)c-ss)(23)则电池的外部电压为V (t )=Φ+s -Φ-s (24)由以上计算公式,可以通过软件代码实现得到相关状态图㊂5001000150020002500300035004000时间t/s3.653.73.753.83.853.93.9544.054.14.15电池外部电压电压/V图4㊀电池外部电压㊃836㊃江㊀西㊀科㊀学2023年第41卷5001000150020002500300035004000时间t/s电势/V-0.02-0.015-0.01-0.00500.0050.010.015电池两端和内部电势图5㊀电池两端和内部电势5001000150020002500300035004000时间t/s电压/V00.510.522.533.544.5图6㊀电池正负极固相电势5001000150020002500300035004000电压/V电池两端和内部电势-0.04-0.0200.020.040.060.08时间t/s图7㊀电池两端和内部电势变化量5001000150020002500300035004000电压/V电池外部电压2.42.62.833.23.43.63.844.2时间t/s图8㊀电池外部电压变化量5001000150020002500300035004000电池荷电状态-0.7-0.6-0.5-0.4-0.3-0.2-0.10S O C 值时间t/s图9㊀电池荷电状态变化量根据模型,以及相关的推导过程,在选取了一定的参数之后,就得到了以下物理量随时间的变化规律,比如无量纲Li +表面浓度变化量㊁负极无量纲Li +表面浓度变化量㊁电池两端和内部电势变化量㊁电池外部电压变化量㊁电池荷电状态变化量㊂由于DFN 模型包含的物理量很多,为了简便求解DFN 模型,采用无量纲化形式㊂3.3㊀DFN 模型无量纲化过程上标∗表示基准值,则电池系统全局方程为x =L +x ∗,t =τd t ∗,D e =D e ,typ D ∗e ,κe =κe ,typ κ∗e ,I=I typ I ∗,Φ-s =RT F Φ-∗s ,Φ+s =U +ref -U -ref ()+RT F Φ+∗s(25)正负电极和隔膜层r =Rr ∗,c s =c s ,max c ∗s ,j n=I typaL j ∗n ,j 0=I typaL j ∗0,M =M typ M ∗,ηs =RT F η∗s,U =U ref +RT FU ∗,i s =I typ i ∗s(26)c e =c e ,typ c k e ,N e=D e ,typ c e ,typL +N ∗e ,Φe=-U -ref +RTFΦ∗e ,i e =I typ i ∗e(27)这里还确定了如下一组无量纲参数,参数的选取适用于该计量比,即负极初始化学计量比为0.8㊁正极初始化学计量比为0.6㊁截止电压为3.2V的电池㊂典型的无量纲参数值如表3所示㊂考虑到不同电池的粒子参数,如粒径是不同的,将上式的缩放比例代入模型中,得到DFN 模型方程的无量纲形式㊂DFN 模型的若干个守恒式的无量纲形式如下㊂电荷守恒∂i e (x ,t )∂x =j n (x ,t )(28)∂Φe ∂x =-i e κ^e+2RTF 1-t 0c()1+d ln f d ln c e ()∂ln c e ∂x(29)I -i e =-λ∂Φs ∂x(30)质量守恒C e εe γe ∂c e ∂t =-γe ∂N e ∂x +C e ∂i e∂x(31)N e =-εbrugg D e c e ()∂c e ∂x +C e t +γe i e(32)㊃936㊃第4期㊀㊀㊀㊀㊀㊀杜开承等:两类锂离子电池电化学机理模型的数值分析表3㊀典型的无量纲参数值,其中C =I /24A /m 2参数表达式含义Ω-ΩsepΩ+LL /L +区域长度和单位长度之比0.44440.11110.4444C τ/τd 固体扩散比和放电时间尺度0.1134C 0.0442Cc r τr ∗/τd反应和放电时间比例0.0375C1.5C λ(RT /F )/(I typ L +/σ)固体中的热电压和典型欧姆降之比475.791/C47.5791/Ca a ∗R 颗粒半径与表面积密度的乘积1.81.5γc max /c n ,max 固体中最大锂浓度比12.0501c 0c 0/c max 固体中初始锂浓度与最大锂浓度之比0.80.6C e τe /τd电解质传输和放电时间刻度的比率4.19ˑ10-3Cγe c e ,typ /c -max负极固体中的最大锂浓度与典型电解质浓度之比0.04κ^e(RT /F )/(I typ L +/κe ,typ )电解液中热电压与典型欧姆降之比5.2337/C㊀㊀C∂c s∂t =1r 2∂∂r r2∂c s∂r ()(33)j n =j 0sinh ηs /2()(34)j 0=γC rc s ()1/2(1-c )1/2c e ()1/2r =1(35)ηs =Φs -Φe -U c s r =1()(36)边界条件i-∗ex ∗=0=i+∗ex ∗=1=0(37)c -∗e x ∗=L -∗=csep ∗e x ∗=L -∗(38)N -∗e x∗=L∗=N sepp∗ex ∗=L ∗(39)c sep∗ex ∗=1-L sep ∗=C+∗ex ∗=1-L sep∗(40)N sep ∗ex ∗=1-Lsep∗=N +∗e x ∗=1-L sep∗(41)∂c ∗s ∂r ∗r ∗=0=0,-aγC ∂c ∗s∂r ∗r∗=1=j∗n(42)㊀㊀Φ∗sx ∗=0=0(43)初始条件c s (x ,r ,0)=c s ,0(44)c ∗e (x ∗,0)=1(45)然后,对该DFN 模型的无量纲形式进行计算分析,可以求解出不同物理量随时间的变化情况㊂3.4㊀DFN 模型的扩散方程无量纲形式的求解及模型比较参考单颗粒模型的数值形式,求解DFN 模型方程,用有限差分方法进行求解㊂分别对单颗粒模型和DFN 模型物理量进行比较㊂通过Py-BaMM 软件包得到图10~图13㊂在选取参数一致的情况下,根据时间变化比较SPM 模型和DFN 模型,图10为上述2个模型终端电压的变化比较㊂1002003004005006007003.13.23.33.43.53.63.7Doyle-Fuller-Newman model Single Particle ModelT e r m i n a l v o l t a g e /VTime/s图10㊀电池模型终端电压变化图时间分别取0s㊁304.7s 和601.78s 的电池模型参数变化情况,分别见图11㊁图12㊁图13㊂4㊀结论DFN 模型从电池机理建模出发,拥有较高的精度,但部分状态变量难以精确测量,因而简化模型研究比较重要㊂两组模型预测结果之间有良好的一致性㊂同样也有3个关键差异性:第1个是负极的电势,第2个是后期的电解质浓度,第3个是电解质电势㊂负极电势的差异是由于精度太小,实际上差异并不是很大;后期电解质浓度的差异大概率是由于电压曲线的差异;造成这种差异最大的原因是方程的非线性程度㊁复杂性程度㊂对于单颗粒及DFN 模型,实际上求解的是单个粒子的运动轨迹㊂单颗粒模型忽略了电池内部固相和液相电势分布,同时也无法得到反应电流密度的分布情况,因此其模型精度难以得到保证㊂与准二维模型相比,单粒子模型复杂度大大降低,㊃046㊃江㊀西㊀科㊀学2023年第41卷该模型的缺陷是在中高倍率工况下精度较低㊂04080x/μm16080x/μm160x/μm200600300Time/sCurrent/APositive particle surface concentration/mol m Electrolyte concentration/mol.m Negative particle surface concentration/mol.m t0.005000100001500020000500100015002000300003500040000450002.002.252.502.753.003.253.503.754.00Positive electrode potential/VTerminal voltage/VElectrolyte potential/V4080x/μm16080x/μm160x/μm2000600300Time/s-0.00014-0.00010-0.00008-0.00006-0.00004-0.000020.00000-0.00012-0.45-0.40-0.35-0.30-0.25-0.20 3.13.23.33.43.53.63.7Doyle-Fuller-Newman model Single Particle Model3.13.23.33.43.53.63.7Negative electrode potential/V图11㊀初始时刻电池模型物化参数变化图4080x/μm16080x/μm160x/μm200600300Time/sCurrent /APositive particle surface concentration /mol m Electrolyte concentration/mol.m Negative particle surface concentration/mol.m t304.705000100001500020000500100015002000300003500040000450002.002.252.502.753.003.253.503.754.00Positive electrode potential/VTerminal voltage/VElectrolyte potential/V4080x/μm16080x/μm160x/μm2000600300Time/s-0.00014-0.00010-0.00008-0.00006-0.00004-0.000020.00000-0.00012-0.45-0.40-0.35-0.30-0.25-0.20 3.13.23.33.43.53.63.7Doyle-Fuller-Newman model Single Particle Model3.13.23.33.43.53.63.7Negative electrode potential/V图12㊀选取的中间时刻电池模型物化参数变化图4080x/μm16080x/μm160x/μm200600300Time/sCurrent/APositive particle surface concentration /mol m Electrolyte concentration/mol.m Negative particle surface concentration/mol.m t601.785000100001500020000500100015002000300003500040000450002.002.252.502.753.003.253.503.754.00Positive electrode potential/VTerminal voltage/VElectrolyte potential/V4080x/μm16080x/μm160x/μm2000600300Time/s-0.00014-0.00010-0.00008-0.00006-0.00004-0.000020.00000-0.00012-0.45-0.40-0.35-0.30-0.25-0.20 3.13.23.33.43.53.63.7Doyle-Fuller-Newman model Single Particle Model3.13.23.33.43.53.63.7Negative electrode potential/V图13㊀选择的最后一个时刻电池模型物化参数变化图㊃146㊃第4期㊀㊀㊀㊀㊀㊀杜开承等:两类锂离子电池电化学机理模型的数值分析参考文献:[1]㊀HARIHARAN K S,TAGADE P,RAMACHANDRANS.Mathematical Modeling of Lithium Batteries:fromElectrochemical Models to State Estimator Algorithms[M].Green Energy and Technology,Springer Interna-tional Publishing,2018.[2]SHARMA A K,BASU S,HARIHARAN K S,et al.Aclosed form reduced order electrochemical model forlithium-ion cells[J].Electrochem,2019,166(6):91-97.[3]SONG J H,YOU S J,JEON D H.Numerical model-ing and experimental vali-dation of pouch-type lithium-ion battery[J].Journal of Applied Electrochemistry,2014,44(9):1013-1023.[4]WANG C Y,GU W B,LIAW B Y.Micro-macro-scopic coupled modeling of batteries and fuel cells:I.Model development[J].Journal of the ElectrochemicalSociety,1998,145(10):3407-3417.[5]NORTHROP P W C,RAMADESIGAN V,DE S,etal.Coordinate transformation,orthogonal collocation,model reformulation and simulation of electrochemical-thermal behavior of lithium-ion battery stacks[J].Journal of the Electrochemical Society,2011,158(12):A1461-A1477.[6]GUO M,WHITE R E.Mathematical model for a spi-rally-wound lithium-ion cell[J].Power Sources,2014,250(2):220-235.[7]LEE K J,SMITH K,PESARAN A,et al.Three di-mensional thermal,electrical,and electrochemical-coupled model for cylindrical wound large format lithi-um-ion batteries[J].Power Sources,2013,241(2):20–32.[8]SOMASUNDARAM K,BIRGERSSON E,MUJUM-DAR A S.Thermal-electrochemical model for passivethermal management of a spiral-wound lithium-ionbattery[J].Power Sources,2012,203(3):84–96.[9]XU M,ZHANG Z,WANG X,et al.Two-dimension-al electrochemical-thermal coupled modeling of cylin-drical LiFePO4batteries[J].Power Sources,2014,256(2):233–243.[10]AN Z,JIA L,WEI L,et al.Numerical modeling andanalysis of thermal behavior and Li+transport charac-teristic in lithium-ion battery[J].Heat Mass Transf.,2018,127(2):1351–1366.[11]AN Z,JIA L,WEI L,et al.Investigation on lithium-ion battery elec-trochemical and thermal characteristicbased on electrochemical-thermal coupled model[J].Appl.Therm,2018,137(2):792–807. [12]BEJAN.Convection Heat Transfer,Fourth Edition[M].John Wiley&Sons,Ltd,2013. [13]韩雪冰.车用锂离子电池机理模型与状态估计研究[D].北京:清华大学,2014.[14]崔鹰飞.基于电化学模型的锂离子电池荷电状态估计方法研究[D].北京:北京航空航天大学,2017.[15]杨继玺,蒋超宇,杨学平.电池管理系统里的电池健康评估和寿命预测[J].时代汽车,2021(5):139-140.[16]王义军,左雪.锂离子电池荷电状态估算方法及其应用场景综述[J].电力系统自动化,2022,46(14):193-207.[17]冯能莲,汪君杰,雍加望.基于放电过程的锂离子电池剩余寿命预测[J].汽车工程,2021,43(12):1825-1831.[18]MARQUIS S G,SULZER V,TIMMS R,et al.An as-ymptotic derivation of a single particle model with elec-trolyte[J].Journal of The Electrochemical Society,2019,166(15):A3693-A3706.[19]韩嵩.电动汽车锂离子电池建模与状态估计方法研究[D].淮南:安徽理工大学,2021.㊃246㊃江㊀西㊀科㊀学2023年第41卷。
电解锰的研究现状英文作文

电解锰的研究现状英文作文英文:As of now, the research on electrolytic manganese is at a very exciting stage. Scientists and researchers are constantly exploring new ways to improve the production and application of electrolytic manganese.One of the major areas of research is focused onfinding more efficient and environmentally friendly methods of producing electrolytic manganese. For example, researchers are looking into using renewable energy sources such as solar or wind power to power the electrolytic process, thus reducing the carbon footprint of the production process.Another area of research is the development of new applications for electrolytic manganese. For instance, there is growing interest in using electrolytic manganese in the production of high-strength steel, as it can improvethe strength and durability of the steel.Furthermore, researchers are also studying thepotential health benefits of electrolytic manganese. Some studies have suggested that manganese may play a role in supporting bone health and reducing the risk of osteoporosis.Overall, the research on electrolytic manganese is diverse and dynamic, with new breakthroughs and discoveries being made regularly.中文:截至目前,电解锰的研究处于一个非常令人兴奋的阶段。
Al2O3

第15卷第2期2024年4月有色金属科学与工程Nonferrous Metals Science and EngineeringVol.15,No.2Apr. 2024Al 2O 3/LiAlO 2协同提升LiNi 0.92Co 0.04Mn 0.04O 2正极材料循环稳定性的研究牛小伟*1,2, 李妍泽2(1.河南省轨道交通智能安全工程技术研究中心, 郑州 450018; 2.郑州铁路职业技术学院, 郑州 450052)摘要:锂离子电池 (LIBs ) 是最普遍的储能设备之一,高镍LiNi 0.92Co 0.04Mn 0.04O 2正极因其放电比容量高而备受关注,然而,在长循环的过程中,由于正极表面的活性物质发生了化学和结构变化,LIBs 的能量存储能力会随着循环的进行而减弱。
理解和缓解这些退化机制是减少容量衰退的关键,从而提高锂离子电池的循环寿命。
包覆是常见的改性手段,可改善高镍LiNi 0.92Co 0.04Mn 0.04O 2正极界面稳定性并降低表面降解的程度。
但是,常规包覆方法形成的包覆层的厚度和均匀性难以调控,为了改进此问题,本研究建立了一种Al 2O 3/LiAlO 2薄膜,对LiNi 0.92Co 0.04Mn 0.04O 2具有协同改性效应,可形成厚度均匀的双包覆层,增强正极材料的循环性能和结构稳定性。
研究结果表明,Al 2O 3/LiAlO 2双包覆层可以有效抑制不可逆相变,提高材料的结构稳定性。
改性的材料展现出优异的循环稳定性,在2.75~4.40 V 电压范围内循环200圈,放电比容量为141.2 mAh/g ,容量保持率高达76.1%。
本研究为商业化正极材料界面的改性提供了新的思路。
关键词:锂离子电池;均匀性;Al 2O 3/LiAlO 2双包覆层;容量保持率中图分类号:TG132;TM912 文献标志码:AStudy on improving the cycling stability of LiNi 0.92Co 0.04Mn 0.04O 2 cathodematerial by synergistic Al 2O 3/LiAlO 2NIU Xiaowei *1, 2, LI Yanze 2(1. Henan Intelligent Safety Engineering Research Center for Rail Transit , Zhengzhou 450018, China ;2. Zhengzhou Railway Vocational Technical College , Zhengzhou 450052, China )Abstract: Lithium-ion batteries (LIBs) are one of the most common energy storage devices, and the high nickel LiNi 0.92Co 0.04Mn 0.04O 2 positive electrode has attracted much attention due to its high specific discharge capacity. However, the energy storage capacity of LIBs will be weakened with the cycle due to the chemical and structural changes of active substances on the surface of the positive electrode during the long cycle. Understanding and mitigating these degradation mechanisms is key to reducing capacity degradation and improving the cycle life of lithium-ion batteries. Coating is a common modification method, which can improve the stability of high nickel LiNi 0.92Co 0.04Mn 0.04O 2 positive electrode interface and reduce the surface degradation degree. However, the thickness and uniformity of the coating layer formed by conventional coating methods are difficult to regulate. In order to improve this problem, the co-modification effect of the Al 2O 3/LiAlO 2 thin film on LiNi 0.92Co 0.04Mn 0.04O 2 was reported收稿日期:2023-01-12;修回日期:2023-04-24基金项目:国家自然科学基金青年基金资助项目(62003313)通信作者:牛小伟(1988— ),讲师,主要从事轨道车辆新能源材料的开发与研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. Introduction Micro-Electro-Mechanical Systems (MEMS) are an electromechanical integrated system where the feature size of components and the actuating range are within the micro-scale. Unlike traditional mechanical processing, manufacturing of MEMS device uses the semiconductor production process, which can be compatible with an integrated circuit, and includes surface micromachining and bulk micromachining. Due to the increasingly mature process technology, numerous sophisticated micro structural and functional modules are currently available. Therefore, greater optimized performance of the devices has been developed. Electrostatic-driven MEMS devices have advantages of rapid response,
Abstract: Electrostatic-driven microelectromechanical systems devices, in most cases, consist of couplings of such energy domains as electromechanics, optical electricity, thermoelectricity, and electromagnetism. Their nonlinear working state makes their analysis complex and complicated. This article introduces the physical model of pull-in voltage, dynamic characteristic analysis, air damping effect, reliability, numerical modeling method, and application of electrostatic-driven MEMS devices. Keywords: electrostatics; electromechanics; MEMS; pull-in voltage
ቤተ መጻሕፍቲ ባይዱ
* Author to whom correspondence should be addressed; E-Mail: ychu@.tw. Received: 9 March 2010; in revised form: 18 May 2010 / Accepted: 24 May 2010 / Published: 21 June 2010
Wan-Chun Chuang 1, Hsin-Li Lee 2, Pei-Zen Chang 1 and Yuh-Chung Hu 3,*
1
2
3
Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan; E-Mails: d96543004@.tw (W.-C.C.); changpz@.tw (P.-Z.C.) MicroSystems Technology Center, Industrial Technology Research Institute, Taipei, Taiwan. E-Mail: SonyLee@.tw (H.-L.L.) Department of Mechanical and Electromechanical Engineering, Center of Green Technology, National ILan University, ILan, Taiwan
Sensors 2010, 10
6150
lower power consumption, and integrated circuit standard process compatibility. Among the present MEMS devices, many are electrostatic-driven MEMS devices, such as capacitive pressure sensors [1], comb drivers [2], micropumps [3], inkjet printer head [4], RF switches [5], and vacuum resonators [6]. Due to its simplicity of design and process, as well as convenience of integration with the integrated circuit processes to form a single-chip system, the electrostatic principle is commonly employed in sensing of MEMS or drive modules. However, due to the interaction between electrostatic force and structural behavior, namely the electromechanical coupling effects due to the coupling of multiple physical fields, such as stress fields and electrical fields, and since the system is nonlinear, instability of the pull-in often results, which leads to failures including stick, wear, dielectric changing, and breakdowns. Many studies have focused on common applications of electrostatic principle in MEMS devices, including: the instability when pull-in phenomenon occurs [7-37]; the deformation characteristic of microstructures subjected to electrostatic loads [18,38-41]; shape and position of drive electrodes [42-45]; dynamic response and optimization of electrostatic loads [46-57]; air damping effect [58-66], analysis method of chaos and bifurcation in electrostatic-driven systems [67,68], such as finite element method (FEM), finite difference method (FDM), and finite cloud meshless method (FCM) [68-73]; simulation software and systems of simulated dynamic behaviors, such as ANSYS, ABAQUS, COULOMB, MEMCAD, and macro models [69,72,74-78]; effects of routing parameters (voltage and temperature) on electrostatic force [79]; inherent nonlinear stiffness softening effect [70,80-82]; device reliability related failure modes and mechanisms; material selection; and reasonable design [8,32,38,83-92]. Without a thorough understanding of the effects of electrostatic force in MEMS systems, many practical phenomena, such as instability, nonlinearity and reliability, would have no scientific explanation. Thus, it is impossible to effectively explore and use the potential of MEMS technology. Under such circumstances, it is important and indispensable to study electro-mechanics of a micron scale structure under electrostatic loads. Accurate modeling the electrostatic microstructures is very challenging in virtue of the mechanical-electrical coupling effect and the nonlinearity of the structure and electrostatic force. Effects such as the non-ideal boundary conditions, fringing fields, pre-deformation due to the initial stresses, and non-homogeneous structures further complicate the modeling, as shown in Figure 1. A review paper [46] provided an overview of the fundamental research on nonlinear behaviors of electrostatic-driven microresonators, including direct and parametric resonances, parametric amplification, impacts, self-excited oscillations, and collective behaviors, such as localization and synchronization, which arise in coupled resonator arrays. Another review paper [56] presented an overview of the existing techniques before 2005 applied to the MEMS electrostatic actuation modeling and their dynamic behavior of the electromechanical system. A complete idealized model based on Euler-Bernoulli beam of an electrostatically actuated uniform beam is presented. Firstly, the energy expressions of the corresponding mechanical and electrical energy are derived. The kinetic energy and the bending and membrane strain energy are considered in the mechanical model. The fringing field is considered in the potential energy of electrostatic model. Two basic damping forces in MEMS, namely structural and viscous damping, are considered as well. The structural damping comes from the molecular interaction in the material due to deformation while the viscous damping comes from fluid that surrounds the moving microstructure. There are two types of viscous damping, namely couette