固体材料结构基础共39页
材料科学基础__固体材料的结构

体心立方的间隙
四面体间隙 由两个体心原子和两个顶角原子所 围成大小rB=0.291R, 有 12 个。
28
体心立方晶格原子堆垛顺序
堆垛方式: ABABAB …的顺序堆垛 bcc结构金属: α-Fe、δ-Fe、Cr、Mo、W、V等
29
体心立方晶格的 ABAB 密堆结构
30
体心立方晶格(特征)
c)高分子材料:长链分子内部以共价键结合,链与链之 间则为范德华力或氢键
d)复合材料:三种或三种以上
离子键能最高,共价键能次之,金属键能第三,范德瓦耳斯键最弱
12
2.2 金属及合金相的晶体结构
金属在固态下一般都是晶体。决定晶体结构的内在因素 是原子,离子,分子间键合的类型及键的强弱。金属晶体 是以金属键结合,其晶体结构比较简单,常见的有:
电子浓度值值大易形成化合物;电子浓度小易形成固溶体。
47
置换固溶体示意图
48
置换固溶体大小溶质原子引起的点阵畸变
溶入同量溶质原子时,△R越大,引起的晶格畸变越大, 畸变能越高,极限溶解度就越小
49
4) 间隙固溶体
? 间隙固溶体的的溶质原子是一些原子半径小于0.1nm 的非 金属元素(如C、N、O、、H、B)。
4. 组织——在一定的外界条件下,一定成分的合金可能由不 同成分,结构和性能的合金相组成,这些相的总体变称为 合金的组织。
40
合金相的分类
1. 固溶体:是一种组元(溶质)溶解在另一种组元中(溶 剂,一般为金属中)。
固溶体特点:溶剂的点阵类型不变,溶质原子或是代替部 分溶剂 原子(置换式固溶体),或是进入溶剂组元的 间隙(间隙式固溶体)
b)形成有限固溶体时,溶质与溶剂的晶体结构相同,则 固溶度较不同结构时大,否则,反之。
材料科学基础 第二章 固体材料的结构

第二章固体材料的结构固体材料的各种性质主要取决于它的晶体结构。
原子之间的作用结合键与晶体结构密切相关。
通过研究固体材料的结构可以最直接、最有效地确定结合键的类型和特征。
固体材料主要包括:金属、合金、非金属、离子晶体、陶瓷研究方法:X光、电子、中子衍射——最重要、应用最多§2-1 结合键结合键——原子结合成分子或固体的结合键决定了物质的物理、化学、力学性质。
一切原子之间的结合力都起源于原子核与电子间的静电交互作用(库仑力)。
不同的结合键代表了实现结构)的不同方式。
一、离子键典型的金属与典型的非金属元素就是通过离子键而化合的。
从而形成离子化合物或离子晶体由共价键方向性特点决定了的SiO2四面体晶体结构极性共价键非极性共价键五、氢键含有氢的分子都是通过极性共价键结合,极性分子之间结合成晶体时,通过氢键结合。
例如:H 2O ,HF ,NH 3等固态冰液态水§2-2 金属原子间的结合能一、原子作用模型固态金属相邻二个原子之间存在两种相互作用:a) 相互吸引——自由电子吸引金属正离子,长程力;b) 相互排斥——金属正离子之间的相互排斥,短程力。
平衡时这二个力相互抵消,原子受力为0,原子处于能量最低状态。
此时原子间的距离为r0。
§2-3 合金相结构基本概念♦合金——由两种或两种以上的金属或金属非金属元素通过化学键结合而组成的具有金属特性的材料。
♦组元、元——组成合金的元素。
♦相——具有相同的成分或连续变化、结构和性能的区域。
♦组织——合金发生转变(反应)的结果,可以包含若干个不同的相,一般只有一到二个相。
♦合金成分表示法:(1) 重量(质量)百分数A-B二元合金为例m B——元素B的重量(质量m A——元素A的重量(质量合金中的相分为:固溶体,化合物两大类。
固溶体金属晶体(溶剂)中溶入了其它元素(溶质)后,就称为固溶体。
一、固溶体的分类:♦按溶质原子在溶剂中的位置分为:置换固溶体,间隙固溶体♦按溶解度分为:有限固溶体,无限固溶体♦按溶质原子在溶剂中的分布规律分为:有序固溶体,无序固溶体置换固溶体:溶质原子置换了溶剂点阵中部分溶剂原子。
固体材料的结构基础知识

结构材料的失效
材料的磨损:在机件表面互相接触并作相 对运动产生摩擦的过程中,会有微小颗粒 从表面不断分离出来形成尺寸和形状不同 的磨屑,使材料逐渐损失,导致机件尺寸 变化和质量的损失,这种表面损伤的现象 即为磨损。 磨损的分类:黏着磨损、磨料磨损、腐蚀 磨损及疲劳磨损。
27
结构材料的失效
材料的腐蚀:腐蚀就是物质表面因发生化 学或电化学反应而受到破坏的现象。分为 化学腐蚀和电化学腐蚀。
(4)离子键合的材料具有较高的对称性、结构稳定、熔点较高、 硬度大、膨胀系数较小而脆性较大。
(5)离子晶体材料中没有自由电子,所以,通常是电或热的不良 导体是绝缘体,但是,在高温下可以是借助离子本身在晶体中 的运动而导电。
11
(2)共价健
12
共价健的意义及其特点: (1)通过共享电子对的结合使相邻原子键合起来的形式称为共价
间则为范德华键或氢键。
18
1.2.2 键合的本质及其性能 (1) 原子间斥力和引力
19
原子间距(r0) : 两原子在某距离下吸引力和排斥力相等,此时, 该两原子便被稳定在此相对位置上,这一距离r0 称为原子的平衡距离,简称原子间距。 结合能(E): 原子在平衡距离下的作用能称为原子的结合能。 结合能的大小相当于把两原子分开所需要作的功, E越大,原子的结合也就越稳定。 一般而言: 离子键、共价健的E值最大;金属键的次之;而范 德华的E最小。
15
(4)范德华键 意义及其特点:
范德华键力是一种因电偶极矩的感应作用而产生的 键合现象; 除高分子外,键的结合力不如化学键牢固,也无饱 和性和方向性。
16
(5)氢键 意义及其特点:
依靠原子或分子的偶极矩引力而形成,但是氢原子 起到了关键作用; 具有明显的饱和性和方向性,结合力大于范德华键, 主要存在于分子内或分子间,如高分子材料中存在 着大量的氢键。
材料科学基础第二章 固体材料的结构

第二章固体材料的结构固体材料的宏观使用性能(包括力学性能、物理性能和化学性能)和工艺性能(如铸造性能、压力加工性能、机加工性能、焊接性能、热处理性能等)取决于其微观的化学成分、组织和结构,化学成分不同的材料具有不同的性能,而相同成分的材料经不同处理使其具有不同的组织、结构时,也将具有不同的性能。
而在化学成分、组织和结构中,晶体结构又是最关键的因素。
因此,要正确地选择性能符合要求的材料或研制具有更好性能的材料,首先要熟悉和控制其晶体结构。
除了实用意义外,研究固体材料的结构还有很大的理论意义。
§2.1 基础知识原子结构影响原子结合的方式,而根据原子结合方式又可以将材料分成金属、陶瓷和聚合物,并得出关于这三种材料的宏观物理性能、化学性能及力学性能的一些普遍性结论。
2.1.1原子结构大家都知道原子是由电子及其所围绕的原子核组成的。
原子核内有中子和带正电的质子,因此原子核带正电荷。
通过静电吸引,带负电荷的电子被牢牢地束缚在原子核周围。
每26个电子和质子所带的电荷q为l.6×10-19C。
因为原子中电子和质子的数目相等,所以从整体说来,原子是电中性的。
元素的原子序数等于原子中的电子或质子数。
因此,有26个电子和26个质子的铁原子,其原子序数为26。
原子的大部分质量集中在原子核内。
每个质子和中子的质量大致为l.67×10-24g,但是每个电子的质量只有9.11×10-28 g。
原子质量M等于原子中质子和中子之和的平均数,是原子数量为阿伏伽德罗数N A的质量。
N A=6.02×1023/ mol是一摩尔物质内原子或分子的数目。
因此,原子质量的单位是g / mol。
原子质量的另一个单位是原子质量单位,它是碳12质量的1/12。
原子核内含有不同中子数的相同元素的原子称为同位素,它们有着不同的原子质量。
这种元素的原子质量是一些不同同位素质量的平均值,因此原子质量可能不是一个整数。
固体材料结构基础

[111]
[110]
晶面及其表示方法
空间点阵的结点可以从各个方向被划分为 许多组平行且等距的平面点阵。这些平面 点阵所处的平面称为晶面 晶面具有两个特点
晶面族一经划定,所有结点都全部包含在晶 面族中而无一遗漏 一族晶面平行且两两等距,这是空间点阵周 期性的必然结果
晶面可以采用一组密勒指数 (h1, h2, h3) 来 表示
2.1 固体材料的分类
固体材料可以按照其中原子的排列的有 序程度分为晶态和非晶态两大类。
一个明显的弯曲标志着随着温 第二种方式:快速冷却时可 当温度足够低时将发生从液体到 之后过冷液体凝固 度的下降体系中发生了相变: 以获得过冷液体 固体的转变。液体可以通过两种 形成非晶态固体。 在沸腾温度处首先发生气相到 方式固化。 液相的转变。
点阵 + 基元 = 晶体结构
在空间点阵中,分布在同一直线上的结点构成一 个行列 行列。很显然,任意两个结点就可以决定一个 行列 行列。行列中两个相邻结点间的距离称为结点间 结点间 距 。连接分布在同一平面内的结点即构成一个面 面 网 (图 A)。连接分布在三维空间内的结点就构成 图 了空间点阵 (图B)。其实,由三个不共面的行列就 空间点阵 图 可以构成一个空间点阵。
材料科学基础 固体材料的结构

z
z
+
y
+
y x
+
-
+y x
- -y +
z
Yp Yd xz x
+
Y
Yp y
Y d yz
核外电子空间运动状态的描述 2、波函数的径向部分图示
氢原子的量子力学模型
电子云 为了形象化地表示出电子的概率密度分布,可以将其 看作为带负电荷的电子云。 电子出现概率密度大的地方,电子云浓密一些,电子 出现概率密度小的地方,电子云稀薄一些。 因此,电子云的正确意义并不是电子真的象云那样分 散,不再是一个粒子,而只是电子行为统计结果的一种 形象表示。 电子云图象中每一个小黑点表示电子出现在核外空间 中的一次概率,概率密度越大,电子云图象中的小黑点 越密。
核外电子运动状态的描述
当l=0时,m可取0,即只有一种运动状态,s轨道, 一种。 当l=1时,m可取-1,0,1即有三种运动状态,p轨道, 三种。 当l=2时,m可取-2,-1,0,1,2即有五种运动状态,d轨 道,五种。
核外电子运动状态的描述
自旋磁量子数ms 经实验证明,电子有自旋运动,自旋角动量Ms由自旋 量子数ms决定,ms只有两个数值,+1/2、-1/2。 综上所述,有了四个量子数可以定出电子在原子核外 的运动状态,根据四个量子数数值间的关系则可算出各 电子层中可能有的运动状态数。一个电子的一种运动状 态需要用四个量子数来确定。
y
2 2
+
x
+
z
+
y
-
+
+ y x++源自+y-
y
端点联系起来的空间构成一曲面,曲面内根据 Yp Yp Yp z y x Y的正负标记正号或负号。并称它为原子轨道 的角度部分图。
材料基础固体材料的晶体结构共143页文档

60、生活的道路一旦选定,就要勇敢地础固体材料的晶体结构
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
材料科学基础-固体的结构

固体结构(Solid Structure)
第一节 晶体学基础
(Basis Fundamentals of crystallography) 固体物质按组成原子或分子排列特点分为: 晶体:原子或离子、分子在三维空间呈周期性、规则排列的固体。 非晶体:原子或离子分子呈无规则排列的固体。 晶体不同于非晶体的两大特点:固定的熔点,各向异性。
②已知两个晶向[u1v1w1]和[u2v2w2],求出由其确定的晶面 (hkl)。
h : k : l (v1w2 v2 w1 ) : ( w1u2 w2u1 ) : (u1v2 u2v1 )
③判断空间两个晶向或两个晶面是否相互垂直。 ④判断某一晶向是否在某一晶面上(或平行于该晶面)。 ⑤已知晶带轴,判断哪些晶面属于该晶带。
30
第二章
固体结构
3)三轴与四轴坐标系确定的晶面指数和晶向指数转换: ①晶面指数转换 由(hkl)转为(hkil),加上一个指数i=-(h+k)。
由(hkil)转换为(hkl),去掉指数i 。
②晶向指数转换 由(U V W)转换为(uvtw)
U=u-t V=v-t 由(uvtw)转换为 (U V W)
例如:
(110) [110]
(111) [111]
24
第二章
固体结构
3、六方晶系的晶面指数和晶向指数 六方晶系的晶面指数和晶向指数也可用三轴坐标确定。通常取a1, a2, c为晶轴,a1和a2之间的夹角为120,c轴与a1和a2垂直。 用三轴坐标系标定六方晶系的晶面指数和晶向指数时,对于同一 晶面族的晶面或同一晶向族的晶向,其指数不类同,从它们的晶面指 数上反映不出六个晶面的等价关系。 如六个柱面分别为: (100), (010), ( 110), ( 100), (010), (110)