初中数学方程与不等式知识点复习汇总
初中方程与不等式知识点归纳

初中方程与不等式知识点归纳方程和不等式在初中数学中属于重要的知识点,并且在解决实际问题时具有广泛的应用。
本文将对初中阶段学习的方程与不等式的相关知识进行归纳总结,帮助同学们更好地理解和掌握这些概念。
1. 方程的基本概念与解法方程是一个包含未知数的等式,可以通过求解未知数的值来满足等式的成立。
在解方程的过程中,我们常常运用逆运算,将方程化简为等效的形式,直到找到未知数的值。
常见的方程解法有以下几种:- 同加同减法:在方程两边同加/同减相同的数,使得一边变为0,将方程化简为更简单的形式。
- 同乘同除法:在方程两边同乘/同除相同的数,使得一边消去未知数的系数或者项,将方程化简为更简单的形式。
- 移项法:将方程中的含有未知数的项移到方程的一边,其余项移到另一边,使得方程的形式变为"未知数=已知数"的形式。
2. 一次方程与一元一次不等式一次方程是指未知数的最高次数为1的方程,一元一次不等式是指未知数的最高次数为1的不等式。
在解一次方程和一元一次不等式时,我们可以通过移项法以及同加同减法、同乘同除法等运算来求解。
3. 二次方程与一元二次不等式二次方程是指未知数的最高次数为2的方程,一元二次不等式是指未知数的最高次数为2的不等式。
解二次方程和一元二次不等式的方法包括因式分解法、配方法、二次根式法和图像法等。
其中,因式分解法适用于方程能够被因式分解的情况,而配方法则适用于无法直接因式分解的情况。
4. 绝对值方程与绝对值不等式绝对值方程是指未知数中含有绝对值符号的方程,绝对值不等式是指未知数中含有绝对值符号的不等式。
解绝对值方程和绝对值不等式的方法包括分情况讨论法以及绝对值的定义法。
在分情况讨论法中,我们将绝对值符号内的表达式分为正数和负数两种情况进行讨论,从而得到方程或不等式的解集。
5. 实际问题与方程不等式的应用方程和不等式在解决实际问题时具有广泛的应用。
在实际问题中,我们可以通过列方程或不等式,将问题中的已知条件与未知数建立联系,并求解出未知数的值。
初中数学方程与不等式知识点总结

初中数学方程与不等式知识点总结方程和不等式是初中数学中的重要内容,它们在解决实际问题和数学运算中都有着广泛的应用。
接下来,让我们一起系统地梳理一下这部分的知识点。
一、方程(一)一元一次方程1、定义:只含有一个未知数,并且未知数的最高次数是 1 的整式方程叫做一元一次方程。
一般形式为:$ax + b = 0$($a \neq 0$,$a$,$b$为常数)。
2、解法:(1)移项:把含未知数的项移到方程的一边,常数项移到方程的另一边。
(2)合并同类项:将同类项进行合并,化简方程。
(3)系数化为 1:方程两边同时除以未知数的系数,得到方程的解。
例如:解方程$3x + 5 = 14$移项得:$3x = 14 5$合并同类项得:$3x = 9$系数化为 1 得:$x = 3$(二)二元一次方程组1、定义:由两个含有两个未知数,且未知数的次数都是 1 的整式方程组成的方程组叫做二元一次方程组。
2、解法:(1)代入消元法:将一个方程中的某个未知数用含有另一个未知数的代数式表示出来,然后代入另一个方程,消去一个未知数,得到一个一元一次方程,解这个一元一次方程,求得一个未知数的值,再将其代入原方程组中的一个方程,求得另一个未知数的值。
例如:解方程组$\begin{cases}x + y = 5 \\ x y = 1\end{cases}$由第一个方程得:$x = 5 y$,将其代入第二个方程得:$5 y y = 1$$5 2y = 1$$-2y =-4$$y = 2$将$y = 2$代入$x = 5 y$得:$x = 3$所以方程组的解为$\begin{cases}x = 3 \\ y = 2\end{cases}$(2)加减消元法:当两个方程中同一未知数的系数相等或互为相反数时,将两个方程的两边分别相加或相减,消去这个未知数,得到一个一元一次方程,解这个一元一次方程,求得一个未知数的值,再将其代入原方程组中的一个方程,求得另一个未知数的值。
中考数学第一轮复习方程与不等式知识总结

中考数学第一轮复习方程与不等式知识总结一、方程基础概念方程是数学中用于描述两个数学表达式之间相等关系的一种形式。
它通常由未知数、已知数和运算符号组成。
在中考数学中,方程是解决问题的重要工具之一。
理解方程的定义、解的概念以及方程解的性质是后续学习的基础。
二、一元一次方程解法一元一次方程是只含有一个未知数,且未知数的次数为1的方程。
其一般形式为`ax + b = 0`(其中`a ≠0`)。
解一元一次方程的基本步骤包括:去分母、去括号、移项、合并同类项、系数化为1。
掌握这些步骤,能够高效地求解一元一次方程。
三、二元一次方程组二元一次方程组是由两个或两个以上含有两个未知数的一次方程组成的方程组。
解二元一次方程组的基本思想是通过消元法(代入消元法或加减消元法)将二元一次方程组转化为一元一次方程来求解。
掌握二元一次方程组的解法,对于解决实际问题具有重要意义。
四、一元二次方程公式法一元二次方程是只含有一个未知数,且未知数的最高次数为2的整式方程。
其一般形式为`ax^2 + bx + c = 0`(其中`a ≠0`)。
对于一元二次方程的求解,当判别式`Δ= b^2 - 4ac`大于或等于0时,可以使用公式法求解。
公式法求解一元二次方程的公式为`x = [-b ±√(Δ)] / (2a)`。
掌握公式法,能够准确地求解一元二次方程的根。
五、不等式与解集不等式是表示两个数学表达式之间不等关系的一种形式。
它通常用“<”、“>”、“≤”、“≥”等符号表示。
不等式的解集是指满足不等式的所有未知数的值的集合。
理解不等式的性质,掌握不等式解集的表示方法,是求解不等式的基础。
六、一元一次不等式解法一元一次不等式是只含有一个未知数,且未知数的次数为1的不等式。
解一元一次不等式的基本步骤与解一元一次方程类似,包括去分母、去括号、移项、合并同类项等。
但需要注意的是,在解不等式时,当两边同时乘以或除以一个负数时,不等号的方向会发生变化。
初中数学方程与不等式知识点总结

初中数学方程与不等式知识点总结方程与不等式是初中数学中重要的内容,是学习数学的基础知识之一。
本文将总结方程与不等式的基本概念、解题方法和常见应用,以帮助初中生更好地掌握这些知识点。
一、方程的基本概念与解法1. 方程的定义:方程是由等号连接的两个代数式构成的等式。
方程中未知量的值称为方程的解。
2. 一元一次方程:形如ax + b = 0的方程,其中a和b是已知数且a ≠ 0。
一元一次方程只有一个未知数。
3. 解一元一次方程的步骤:a) 将方程化简为形式ax = b;b) 通过等式两边的运算,将未知数的系数系数化为1;c) 通过等式两边的运算,求出未知数的值。
4. 一元二次方程:形如ax^2 + bx + c = 0的方程,其中a、b、c是已知数且a ≠ 0。
一元二次方程有一个未知数的平方项。
5. 解一元二次方程的步骤:a) 通过因式分解、配方法或求根公式将方程简化为形式(x - p)(x - q) = 0;b) 令(x - p)(x - q) = 0,解得x = p或x = q;c) 通过解方程求得的解,验证原方程的等式是否成立。
二、不等式的基本概念与解法1. 不等式的定义:不等号连接的两个代数式构成的式子。
不等式的解是使不等式成立的值或数值范围。
2. 一元一次不等式:形如ax + b > 0或ax + b < 0的不等式,其中a和b是已知数且a ≠ 0。
3. 解一元一次不等式的步骤:a) 将不等式化简为形式ax > b或ax < b;b) 通过对不等式两边的运算,得到未知数的范围。
4. 一元二次不等式:形如ax^2 + bx + c > 0或ax^2 + bx + c < 0的不等式,其中a、b、c是已知数且a ≠ 0。
5. 解一元二次不等式的步骤:a) 通过因式分解、配方法或求根公式将不等式简化为形式(ax - p)(ax - q) > 0或(ax - p)(ax - q) < 0;b) 列出不等式(ax - p)(ax - q) > 0或(ax - p)(ax - q) < 0的解集;c) 通过解不等式求得的解集,验证原不等式是否成立。
方程与不等式知识点

方程与不等式知识点一、方程的概念与性质方程是将含有未知数的等式称为方程。
一般形式为:P(x)=0,其中P(x)为多项式函数,x为未知数。
方程的次数是多项式中各项次数的最大值。
方程的性质有以下几个方面:1.方程的根:方程P(x)=0的解称为方程的根。
方程的根可以是实数也可以是复数。
2.方程的根与系数的关系:设方程P(x)=0的根为a,则P(a)=0,反之,如果P(a)=0,那么a就是方程P(x)=0的根。
3.方程的解的性质:若a是方程P(x)=0的根,则(x-a)是P(x)的一个因式。
4.方程的根的个数:n次方程P(x)=0的解的个数至多为n个。
二、方程的解法1.一次方程的解法:设方程a1x+a0=0,其中a1≠0,则方程的解为x=-a0/a12.二次方程的解法:设方程ax^2 + bx + c = 0,其中a ≠ 0,则方程的解公式为x = (-b ± √(b^2 - 4ac))/(2a)。
3.高次方程的解法:对于高次方程,一般采用因式分解、配方法、卡尔丹法等方法求解。
三、不等式的概念与性质不等式是使用不等号连接的数学关系,在不等式中,未知数的取值满足特定的条件。
常见的不等式有大于等于(≥)、小于等于(≤)、大于(>)、小于(<)等。
不等式的性质有以下几个方面:1.不等式的解集:满足不等式所有条件的数值的集合称为不等式的解集。
2.在不等关系中,可以在两边同加或者同减一个数,可以在两边同乘或者同除正数,但是如果两边同乘或者同除负数的话,应该将不等号翻转。
3.对于不等式组的解集,满足所有不等式的解的交集称为不等式组的解集。
四、不等式的解法1.一次不等式的解法:将不等式变形,找到未知数的取值范围,得到的范围即是不等式的解。
2.二次不等式的解法:将二次不等式化为零,找到对应的方程,并求出方程的解,然后根据二次不等式表示的形式将解的范围确定下来。
3.绝对值不等式的解法:对于绝对值不等式,根据绝对值的性质,将不等式分成正负两种情况进行求解。
初中数学方程与不等式之不等式与不等式组知识点总复习

初中数学方程与不等式之不等式与不等式组知识点总复习不等式是数学中常见的一种关系表示方法,它表示两个数之间的大小关系。
不等式与方程类似,都是用符号表示数与数之间的关系,但不等式还表示了数之间的大小关系。
一、不等式的基本概念1.不等式的定义:不等式是用大于号(>)、小于号(<)、大于等于号(≥)、小于等于号(≤)、不等于号(≠)等符号表示两个数之间的大小关系,两个数之间用不等号连接。
2.不等式的解集:对于一个不等式,使得不等式成立的实数称为该不等式的解。
不等式的解集是使不等式成立的实数集合。
3.不等式的解集表示方法:可以用区间、集合表示解集。
二、不等式的性质1.不等式的传递性:如果a>b,b>c,那么a>c。
2.不等式的加法性:如果a>b,则a+c>b+c。
3.不等式的减法性:如果a>b,则a-c>b-c。
4. 不等式的乘法性:如果a>b,c>0,则ac>bc;如果a>b,c<0,则ac<bc。
5.不等式的除法性:如果a>b,c>0,则a/c>b/c;如果a>b,c <0,则a/c<b/c。
6.不等式的乘方性:如果a>b,c>1,则a^c>b^c。
三、一元一次不等式1.一元一次不等式的解:要求解一元一次不等式,可以通过移项、化简、取相反数等方法得到解。
2.一元一次不等式的解集表示:可以用区间表示解集。
四、一元二次不等式1.一元二次不等式的解:要求解一元二次不等式,可以通过变形、化简、配方法等方法得到解。
2.一元二次不等式的解集表示:可以用区间表示解集。
五、不等式组1.不等式组的定义:不等式组是由若干不等式组成的集合,一般形式为x<a,x>b等。
2.不等式组的解:不等式组的解是指同时满足不等式组中所有不等式的变量取值。
3.不等式组的解集表示方法:可以用图像表示解集。
六、利用不等式解决实际问题1.利用不等式解决实际问题时,首先需求出问题的数学模型,然后建立不等式,最后求出不等式的解集并解释答案的意义。
综上所述,不等式与不等式组是中学数学中的重要内容,掌握解不等式的方法和技巧对于解决实际问题非常有帮助。
初中数学方程与不等式知识点归纳

初中数学方程与不等式知识点归纳数学中的方程和不等式是初中阶段数学学习中重要且基础的概念。
方程和不等式是代数学习的核心内容,对于学生培养逻辑思维和解决问题的能力起到重要的作用。
本文将围绕初中数学方程与不等式的知识点进行归纳和总结。
1. 方程的概念与解的含义:在数学中,方程是描述两个数或多个数之间关系的等式。
方程中包含未知数,我们通过解方程来求得未知数的值。
解方程的过程就是找出能使方程成立的未知数的值。
方程的解是指使方程等式成立的未知数的值。
方程的解可以有一个或多个,也可以没有解。
当方程的解存在时,我们称方程有解;当方程的解不存在时,我们称方程无解。
2. 方程的分类:根据方程中的未知数的个数和方程中各项的次数,方程可分为一元一次方程、一元二次方程等多种形式。
- 一元一次方程:一元一次方程是指只有一个未知数,且未知数的最高次数是一次的方程。
一元一次方程的一般形式为ax + b = 0,其中a和b是已知的实数,a ≠ 0。
解一元一次方程的方法主要有消元法、代入法等。
- 一元二次方程:一元二次方程是指只有一个未知数,且未知数的最高次数是二次的方程。
一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b和c为已知的实数,a ≠ 0。
解一元二次方程的方法主要有配方法、因式分解法和求根公式法等。
3. 不等式的概念与解的含义:不等式是使用不等号描述两个数或多个数之间的大小关系。
不等式中也包含未知数,我们通过解不等式来确定未知数的可能范围。
不等式的解是指使不等式成立的未知数的值所在的范围。
解不等式可以是一个数轴上的一个区间,也可以是具有特定条件的数轴上的多个区间。
4. 不等式的分类:根据不等式中未知数的个数和不等式中的项的次数,不等式可分为一元一次不等式、一元二次不等式等多种形式。
- 一元一次不等式:一元一次不等式是指只有一个未知数,且未知数的最高次数是一次的不等式。
一元一次不等式的解有一个或一个以上的实数解。
方程和不等式知识点总结

方程和不等式知识点总结一、一元一次方程和一元一次不等式1. 一元一次方程一元一次方程是指未知数的次数为一次的方程,一般形式为ax+b=0,其中a和b是已知数,x是未知数。
解一元一次方程的常用方法有整理法、等价变形法和代入法。
整理法是指将方程中含有未知数的项移到一个方程的一侧,不含未知数的项移到另一侧,以此来简化方程的形式;等价变形法是指通过一些等价变形,使方程的解易于得到;代入法是指将一个变量表示成另一个变量的函数,然后将它代入方程中,从而解得未知数的值。
解得一元一次方程的解后,需要进行检验,以确保解是正确的。
2. 一元一次不等式一元一次不等式是指未知数的次数为一次的不等式,一般形式为ax+b>0或ax+b<0。
解一元一次不等式的方法与解一元一次方程类似,但是要注意当不等式中含有乘法或除法时,对不等式两边的符号要进行取反。
二、一元二次方程和不等式1. 一元二次方程一元二次方程是指未知数的次数为二次的方程,一般形式为ax^2+bx+c=0,其中a、b和c是已知数,x是未知数。
解一元二次方程的常用方法有配方法、公式法和因式分解法。
配方法是指通过变形,使得方程左侧成为一个完全平方的形式,然后通过提取平方根的方法解得未知数的值;公式法是指利用求根公式x=(-b±√(b^2-4ac))/2a,解得方程的根;因式分解法是指将方程右侧化成(product-sum)型的二项式,然后再通过整理方程的形式来解得未知数的值。
2. 一元二次不等式一元二次不等式是指未知数的次数为二次的不等式,一般形式为ax^2+bx+c>0或ax^2+bx+c<0。
解一元二次不等式的方法和解一元二次方程类似,但是要注意当不等式中含有乘法或除法时,对不等式两边的符号要进行取反。
三、二元一次方程和不等式1. 二元一次方程二元一次方程是指含有两个未知数的方程,一般形式为ax+by=c。
解二元一次方程的方法有代入消元法、加减消元法和等价变形法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方程与不等式是初中数学学习的巨头,属于基础知识的进阶,难度相对于基础有所提高,并且是今后学习的重中之重,为今后函数等学习奠基。
方程是解决问题的必要手段,必须要学好,我们首先来看中考数学方程与不等式复习要求。
1、一元一次方程
了解一元一次方程及其相关概念,掌握等式的性质,了解解方程的基本目标,熟悉解一元
一次方程的一般步骤,掌握一元一次方程的解法.
掌握列一元一次方程解实际问题中的基本方法,熟悉列一元一次方程解实际问题中的基
本步骤.'
2.二元一次方程组.
了解二元一次方程组及其相关概念,能设两个未知数并列方程组表示实际问题中的两种
相关的等量关系;了解解二元一次方程组的基本目标,体会"消元"思想,掌握解二兀一次方
程组的代入法和加减法,能根据二元一次方程组的具体形式选择适当的解法;进一步认识利
用二元一次方程组解决问题的基本过程,体会数学的应用价值,提高分析问题、解决问题的能
力.
3.不等式与不等式组.
了解一元一次不等式及其相关概念,能够列出不等式或不等式组表示问题中的不等关
系;掌握不等式的T性,质-,熟悉解一元一次不等式的一般步骤,掌握一元一次不等式的解法,并
能在数轴上表示出解集;了解不等式组及其相关概念,会解由两个一元一次不等式组成的不
等式组,并会用数轴确定解集;会利用不等式解决简单的实际问题·
4.一元二次方程.
认识一元二次方程及其有关概念,抓住"降次''这一基本策略,掌握配方法、公式法和因
式分解法等一元二次方程的基本解法,会列一元二次方程解决实际问题,体会一元二次方程
的数学模型作用,进一步提高在实际问题中运用方程这种重要数学工具的基本能力·
(一)方程和不等式的基本概念
1.方程.(1)等式和方程;(2)方程的解;(3)解方程
2.等式性质.性质1:等式两边都加上(或减去)同
等式;
性质2:等式两边都乘(或除以)同一个数(除数不能是O)
3.不等式.(1)不等式;(2)不等式的解集;(3)解不等式·
4.不等式的基本性质,性质1:不等式的两边都加上(或减去)同
不等号的方向不变;
性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变
性质3:不等式两边都乘(或除以)同一个负数,不等号的方向改变
(二)方程和不等式的解法.。
1.方程的解法.'
(1)一元一次方程.任何一个一元一次方程,总可以通过变形化为:一=6(o≠o)的形式.
元一次方程有唯一解z=鲁("to).
(2)一元二次方程.任何关于z的一元二次方程,都可以化成:一2+h+c=o(。
≠o)的形
一元二次方程的解法有以下几种.
①直接开平方法:这种方法用于解不含
当詈≤o时,则x='√一詈;当詈>o时,则方程无实根·
②配方法:通过配方,将方程ax2+bx+c=0(n≠O)化为(z+m)2=n的形式,然后借助
直接开平方法解决.
注意:当配方后式子(x+m)2;n中,rt<0时,方程无解.
③公式法:用配方法可以得到ax2+bx+c=o(o≠o)的求根公式是
z:-生掣丝(b24ac,>O),.
④因式分解法:若方程一2+h+c=o能分解为两个一次因式的乘积,则令每一个因式
为零,使得原方程"降次",转化为两个一次方程,然后解两个一无一次方程,即可求得原方程
的根.
一元二次方程的根的判别式』在一元二次方程的求根公式*=二吐号;÷二二堑(62-4ac
>10)中,令△=b2-4ac,A就是根的判别式.
当△>O时,方程有两个不相等的实数根;
当A=0时,方程有两个相等的实数根;
当△<0时,方程没有实数根.、
(3)分式方程:分母里含有未知数的方程叫做分式方程
解分式方程的一般步骤是:①去分母;②解所得的整式方程;③验根:将所得的根代人到
原方程的公分母中去,若使公分母的值为零就是增根,应该舍去-
若方程是特殊类型的分式方程,可用"换元法"来解.
(4)二元一次方程组:由几个一次方程组成并含有两个未知数的方程组,叫做二元一次
方程组.二元一次方程组的解法有代人消元法和加减消元法.
2,不等式的解法.
(1)一元一次不等式:任何一元一次不等式,都可以通过变形化为:ax>6(。
≠o)的形式·
一元一次不等式的解法:当n>0时,原不等式的解集为x>号;当。
<0时,原不等式的
(2)一元一次不等式组:儿个含有相同未知数的一元一次不等式所组成的不等式组,叫
做一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做不等式组的解集,解不等式组时,可以把每个不等式的解集在数轴上表示出来,这样它们的公共部分便能较容易地得出来了.两个一元一次不等式组成的不等式组的解集有如下四种情况:
(三)列方程(组)解应用题
在列方程(组)解应用题的过程中,关键是根据题目所给条件,找出数量之间的等量关
系,再列一个或几个等式(即方程或方程组).
列方程(组)解应用题的一般步骤是:
1.审题.就是弄清题意,弄清问题中有哪几种量,其中哪儿个量是已知的,哪几个量是未
知的,它们彼此之间遵循哪些数量关系.
2.设元.选择一个或几个未知数,用字母来表示.根据题中给出的数量关系,用所设未知
数盼代数式表示其他的未知量.设未知数的方法有三种:直接设未知数、间接设未知数、设辅
助未知数.究竟设什么未知数,要因题而异,酌情处理.未知数设出后,可以看成已知数,参与
分析和计算.此外,设未知数时还应注明单位.
3.列方程(方程组).根据题目所给条件(包括已知量,已经假设的未知量及数量关系),
找出等量关系,列出方程或方程组.。
4.解方程或方程组.
5-检验和答话.检验所得的解是否合理,并注意问题的实际意义,然后作答.。