4、长方体和正方体的表面积例5
五年级下第2章长方体和正方体的表面积重难点易错点讲析课件

一个长方体的棱长和是72厘米,它的长是9厘米,宽是6厘 米,它的表面积是多少?
6cm 9cm 长+宽+高=72÷4=18(cm) 高:18-9-6=3(cm) 表面积(9×6+9×3+6×3)×2=198(cm2)
例3、一个长方体礼品盒长40cm,宽30cm,高20cm,按下图样 子用绳子捆起来(不计接头),一共用了多少厘米的绳子?
(1)下面这个正方体的展开图是( A )
C
C
A、
AB
C、
A
B
A
B、
B
C
D、 C
B
A
C AB
技巧:相对的两 个面一定不相邻; 相邻的两个面一 定不相对
老师 点睛
用展开图解决问题
(2)下面5种形状的硬纸板各有若干张,选择其中的哪几种, 每种选几张,正好可以围成一个长方体?( C )
①
②
③
④
⑤
A、①号2张,③号4张 B、①号2张,②号2张,③号2张 C、①号2张,③号2张,④号2张 D、①号2张,⑤号4张
提升点1:长方体和正方体的特征
1、判断题: (1)有6个面、12条棱、8个顶点的几何体,不是长方体就是正方体。( ╳ ) (2)长方体至少有4条棱相等,最多有8条棱相等。( √ )
正方形
(3)一个长方体如果有两个相对的面是正方形,则其余4个面是面积相等 的长方形。( √ )
正方形 (4)一个正方体的棱长是2dm,它的棱长是2dm,它的棱长总和与表面积相等。
24
15
面积=24×15=360cm2 面积=8×5=40cm2
24
面积 宽 长
24=1×24 24=2×12 24=3×8 24=4×6
15
长方体和正方体的表面积 - 答案

长方体和正方体的表面积答案典题探究例1.一个正方体的棱长总和是24米,它的表面积是24平方米.正确.考点:长方体和正方体的表面积.分析:根据题意可得出正方体的棱长为24÷12=2米,有表面积公式计算可得出结论.解答:解:24÷12=2(米),2×2×6=24(平方米),所以原题说法正确.故答案为:正确.点评:此题考查了正方体的表面积公式的应用,可以先借助公式计算出正确答案,再进行判断.例2.棱长为6cm的正方体的体积和表面积相等.错误.(判断对错)考点:长方体和正方体的表面积;长方体和正方体的体积.专题:立体图形的认识与计算.分析:根据正方体的表面积公式:s=6a2,正方体的体积公式:v=a3,因为表面积和体积不是同类量,无法进行比较.由此解答.解答:解:表面积:6×6×6=216(平方厘米);体积:6×6×6=216(立方厘米);因为表面积和体积不是同类量,无法进行比较.故答案为:错误.点评:此题解答关键是明确:只有同类量才能进行比较大小,不是同类量无法进行比较.例3.一个正方体棱长扩大2倍,则表面积扩大4倍,体积扩大8倍.考点:长方体和正方体的表面积;长方体和正方体的体积.分析:根据正方体表面积扩大的倍数是棱长扩大倍数的平方,体积扩大的倍数是棱长扩大倍数的立方求解即可.解答:解:一个正方体棱长扩大2倍,则表面积扩大2×2=4倍,体积扩大2×2×2=8倍.故答案为:4,8.点评:考查了正方体的体积,正方体的表面积和正方体棱长的关系,是基础题型,比较简单.例4.一个长方体的棱长总和是108厘米,它的长、宽、高的比为4:3:2,这个长方体的表面积是468平方厘米.考点:长方体和正方体的表面积;按比例分配应用题.分析:根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等,6个面都是长方形(特殊情况有两个相对的面是正方形),相对的面的面积相等;已知一个长方体的棱长总和是108厘米,它的长、宽、高之比是4:3:2,首先根据按比例分配的方法分别求出长、宽、高;再根据长方体的表面积公式解答.解答:解:4+3+2=9(份),长:108÷4×=27×=12(厘米),宽:108÷4×=27×=9(厘米),高:108÷4×=27×=6(厘米);表面积:(12×9+12×6+9×6)×2,=(108+72+54)×2,=234×2,=468(平方厘米);答:这个长方体的表面积是468平方厘米.故答案为:468平方厘米.点评:此题主要考查长方体的特征和表面积的计算,以及了解和掌握长方体的表面积公式:S=2(ab+ah+bh);解题的关键是根据按比例分配的方法求出长、宽、高.例5.一块长方形铁皮(如图),长25厘米,宽15厘米,从四个角分别剪去边长2厘米的小正方形,然后把四周折起来,做成没有盖子的铁盒,请你帮忙计算一下:做这样一个盒子至少需要多少铁皮?铁盒的容积是多少?考点:长方体和正方体的表面积;长方体和正方体的体积.专题:压轴题.分析:求做这样一个盒子至少需要多少铁皮,用长方形铁皮的面积减去四个边长2厘米的正方形的面积;计算铁盒的容积,需要求出盒子的长、宽,长方形铁皮的长、宽都要减去两个2厘米即是盒子的长、宽,高是2厘米.根据长方体的容积公式解答.解答:解;25×15﹣2×2×4,=375﹣16,=359(平方厘米);(25﹣2﹣2)×(15﹣2﹣2)×2,=21×11×2,=462(立方厘米);答:做这样一个盒子至少需要359平方厘米铁皮,铁盒的容积是462立方厘米.点评:此题这样考查长方体的表面积和体积的计算,在计算长方体的表面积的时候,一定要分清求几个面的面积,根据公式解答即可.演练方阵A档(巩固专练)一.选择题(共15小题)1.一个正方体油桶的底面积是9平方厘米,它的表面积是()A.81cm2B.18cm2C.54cm2考点:长方体和正方体的表面积.专题:立体图形的认识与计算.分析:根据正方体的表面积公式:s=6a2,用正方体的底面积乘6即可.解答:解:9×6=54(平方厘米),答:它的表面积是54平方厘米.故选:C.点评:此题主要考查正方体的表面积公式的灵活运用.2.一个正方体的棱长是5厘米,它的表面积是()A.25平方厘米B.200平方厘米C.125立方厘米D.150平方厘米考点:长方体和正方体的表面积.专题:立体图形的认识与计算.分析:正方体的表面积=棱长×棱长×6,正方体的棱长已知,代入公式即可求解.解答:解:5×5×6=25×6=150(平方厘米);答:正方体的表面积是150平方厘米.故选:D.点评:此题主要考查正方体表面积的计算方法.3.东东从拼好的长方体中拿走了一块(如图),它的表面积()A.比原来大B.比原来小C.不变考点:长方体和正方体的表面积.专题:立体图形的认识与计算.分析:据此即可解答问题.从正方体顶点处拿掉一个小正方体,减少三个面的同时又增加三个面,所以表面积不变;据此解答.解答:解:从正方体顶点处拿掉一个小正方体,减少三个面的同时又增加三个面,所以表面积不变.故选:C.点评:该题主要考查正方体的表面积和立方体的切拼问题.4.一根长方体木料,长是8分米,宽是2分米,高是4分米,这根长方体木料的表面积是()平方分米.A.64 B.56 C.112考点:长方体和正方体的表面积.分析:根据长方体的表面积公式计算即可求得这根长方体木料的表面积.解答:解:(8×2+8×4+2×4)×2,=(16+32+8)×2,=56×2,=112(平方分米);答:这根长方体木料的表面积是112平方分米.故选:C.点评:考此题查了长方体的表面积,长方体的表面积公式:S=2(ab+ah+bh),是基础题.5.把三个棱长是1cm的正方体拼成一个长方体,表面积减少了()cm2.A.2B.4C.6D.8考点:长方体和正方体的表面积.专题:立体图形的认识与计算.分析:由题意可知:三个棱长都是1cm的正方体拼成一个长方体后,减少了4个面,每个面的面积可求,从而可以求出减少的面积.解答:解:1×1×4=4(平方厘米)答:表面积减少了4平方厘米.故选:B.点评:解答此题的关键是明白:三个棱长都是1cm的正方体拼成一个长方体后,减少了4个面.6.一个长方体水池,长20米,宽10米,深2米,占地()平方米.A.200 B.400 C.520考点:长方体和正方体的表面积.专题:压轴题.分析:求占地面积也就是求长方体的底面积,利用长方形的面积公式计算.解答:解:20×10=200(平方米);答:占地200平方米.故选:A.点评:此题考查的目的是理解水池的占地面积,实际就是求长方体的底面积,根据长方形的面积公式计算解答.7.把正方体的棱长扩大4倍,它的表面积扩大()A.4倍B.8倍C.12倍D.16倍考点:长方体和正方体的表面积.分析:根据正方体的表面积的计算方法,正方体的表面积=棱长×棱长×6,再根据积的变化规律,积扩大的倍数等于因数扩大倍数的乘积;由此解答.解答:解:根据积的变化规律,把正方体的棱长扩大4倍,它的表面积扩大:4×4=16倍;故选:D.点评:此题主要根据正方体的表面积的计算方法和积的变化规律解决问题.8.(•高邮市)有两盒滋补品,用下面三种方式包装,你认为最省包装纸的是()A.B.C.考点:长方体和正方体的表面积.专题:压轴题.分析:由题意可知,哪种方式包装的表面积最小,则最省包装纸.解答:解:假设每盒滋补品三种面的面积分别为1、2、3,则A的表面积=3×4+2×2+1×4=20;B的表面积=3×2+2×4+1×4=18;C的表面积=3×4+2×4+1×2=22;所以B种包装最省包装纸.故选:B.点评:解答此题的关键是,看哪种方式包装的表面积最小,则最省包装纸.9.(•江都市)如图上画了长方体的长、宽、高,这个长方体左面的面积是()A.15平方厘米B.12平方厘米C.20平方厘米D.无法确定考点:长方体和正方体的表面积.专题:压轴题.分析:由图意可知:左面的长和宽分别为4厘米和3厘米,于是利用长方形的面积公式即可求解.解答:解:4×3=12(平方厘米),故选:B.点评:弄清楚左面的长和宽是正确解答本题的关键.10.(•淳安县)一个棱长2厘米的正方体,挖掉一个棱长1厘米的小正方体后(如图),它的表面积()A.增大了B.减少了C.不变D.无法断定考点:长方体和正方体的表面积.专题:立体图形的认识与计算.分析:根据正方体的特征,6个面都是正方形,6个面的面积都相等,正方体的表面积=棱长×棱长×6;从一个棱长2厘米的正方体,挖掉一个棱长1厘米的小正方体,因为这个小正方体在顶点上,有3个1平方厘米的把外露,挖掉一个棱长1厘米的小正方体后,又露出与原来相同的3个面,所以表面积不变.解答:解:2×2×6=24(平方厘米);答:它的表面积不变,还是24平方厘米.故选:C.点评:此题考查的目的是使学生理解掌握正方体的特征及表面积的计算方法.11.(•恭城县)棱长是6cm的正方体,它的体积和表面积相比()A.体积大B.表面积大C.一样大D.无法比较考点:长方体和正方体的表面积;长方体和正方体的体积.分析:根据体积和表面积的意义进行解答,进而得出结论.解答:解:体积和表面积的意义不同:正方体的体积是正方体所占空间的大小,它的单位是立方米、立方分米、立方厘米;而表面积是指正方体六个面的总面积,它的单位是平方米、平方分米、平方厘米;所以棱长是6cm的正方体,它的体积和表面积没有可比行,无法比较;故选:D.点评:解答此题应根据体积和表面积的意义进行分析即可.12.(•张家港市)把2个棱长4厘米的正方体木块粘合成一个长方体,这个长方体的表面积是()A.160平方厘米B.128平方厘米C.192平方厘米D.172平方厘米考点:长方体和正方体的表面积.分析:由“把2个棱长4厘米的正方体木块粘合成一个长方体”可知,两个正方体共有12个面,粘合成长方体后,减少了2个面,即还剩10个面,求这10个面的面积就是长方体的表面积.解答:解:4×4×10=160(平方厘米);故答案为:A.点评:解答此题的关键是明白,粘合成长方体后,减少了2个面,即还剩10个面.13.(•靖江市)棱长是a米的正方体,它的表面积是()平方米.A.12a B.a3C.6a2D.a2考点:长方体和正方体的表面积.专题:立体图形的认识与计算.分析:根据正方体的特征:它的6个面是完全相同的正方形.由正方体的表面积公式:s=6a2,据此解答.解答:解:棱长是a米的正方形,它的表面积是6a2平方米;故选:C.点评:此题考查的目的是掌握正方体的特征和表面积的计算方法.14.(•新邵县)一个正方体的棱长是a分米,它的表面积是()平方分米.A.a2B.4a2C.6a2考点:长方体和正方体的表面积.分析:正方体的表面积=棱长×棱长×6,由此可以解决问题.解答:解:正方体的表面积=a×a×6=6a2;故答案为:C.点评:此题考查了正方体表面积公式的应用.15.(•雁江区)两块同样的肥皂用三种包装,第()种包装更省包装纸.A.B.C.考点:长方体和正方体的表面积.分析:根据把两个相同的长方体拼成一个大长方体,表面积都减少两个面,求哪种包装最省包装纸,只要减少两个最大的面(两个最大的面重合)即可.解答:解:由分析知,求哪种包装最省包装纸,只要减少两个最大的面(两个最大的面重合)即可;由图可知A种包装最省纸;故选:A.点评:解答此题要明确:把两个相同的长方体拼成一个大长方体,表面积减少了两个面的面积.二.填空题(共13小题)16.把底面积为25平方厘米的两个相同的正方体,拼成一个长方体,则长方体的表面积是250平方厘米.考点:长方体和正方体的表面积.分析:两个相同的正方体,拼成一个长方体,则长方体的表面积=两个正方体的表面积的和﹣2个面的面积.解答:解:25×6×2﹣25×2=300﹣50=250(平方厘米);答:长方体的表面积是250平方厘米.故答案为:250.点评:考查了正方体的表面积公式:正方体的表面积=一个面的面积×6.本题关键是明白两个相同的正方体,拼成一个长方体,长方体的表面积=两个正方体的表面积的和﹣2个面的面积.17.用铁皮做一个无盖的长方体油箱,要求做一个油箱至少需要多少铁皮,是求油箱的A,要求油箱能装多少升汽油,是求油箱的DA、表面积B、底面积C、体积D、容积.考点:长方体和正方体的表面积;长方体和正方体的体积.专题:立体图形的认识与计算.分析:做一个长方体的油箱(无盖),要求至少需要多少铁皮,就是求这个长方体油箱的5个面要用多少(面积单位)的铁皮,实际上就是求这个油箱的表面积.体积是物体所占空间的大小,容积是指容器所能容纳物质的体积,所以容积体积不是一回事.求油箱能装多少升汽油,是求油箱的容积.解答:解:做一个长方体的油箱,要求至少需要多少铁皮,这是求油箱的表面积.求油箱能装多少升汽油,是求油箱的容积.故选:A、D.点评:本题主要是考查体积、容积的意义,面积的意义.注意,求这个油箱能装多少油,是求它的容积,它有多大,求它的体积,求用多少铁皮是求它的表面积.18.一个底面半径2cm,高10cm的圆柱的表面积是150.72平方厘米.考点:长方体和正方体的表面积.专题:立体图形的认识与计算.分析:首先明确条件,已知“圆柱的底面半径是2厘米,高是10厘米”,根据公式表面积=底面积×2+侧面积,解答即可.解答:解:3.14×22×2+2×3.14×2×10=25.12+125.6=150.72(平方厘米)答:这个圆柱的表面积是150.72平方厘米.故答案为:150.72.点评:理解和掌握圆柱体的表面积计算公式是解题的关键.19.一个长方体它的底面是正方形,面积是25平方厘米,它的一个侧面的面积是30平方厘米.这个长方体的表面积是170平方厘米.考点:长方体和正方体的表面积.专题:立体图形的认识与计算.分析:一个底面是正方形的长方体,它的底面积是25平方厘米,可求出这个正方形的边长是5厘米,用30除以5,可求出这个长方体的高,再根据长方体表面积公式计算即可.解答:解:因这个长方体的底面是正方形,且面积是25平方厘米,可知这个正方形的边长是5厘米.30÷5=6(厘米)5×5×2+5×6×4=50+120=170(平方厘米)答:这个长方体的表面积是170平方厘米.点评:本题的关键是求出这个长方体底面的边长和它的高.然后再根据表面积公式进行计算.20.一个棱长为9分米的正方体的表面积是486平方分米,把它削成一个最大的圆锥,体积是190755立方厘米.考点:长方体和正方体的表面积;圆锥的体积.专题:立体图形的认识与计算.分析:(1)正方体的棱长已知,利用正方体的表面积S=6a2,即可求得其表面积.(2)由题意可知:这个最大圆锥的底面直径和高都应等于正方体的棱长,利用圆锥的体积V=Sh,即可求出这个圆锥的体积.解答:解:(1)9×9×6=81×6=486(平方分米)答:这个正方体的表面积是486平方分米.(2)×3.14×()2×9=9.42×(4.5)2=190.755(立方分米)=190755(立方厘米)答:体积是190755立方厘米.故答案为:729、190755点评:此题主要考查正方体的表面积和圆锥的体积的计算方法,关键是明白:这个最大圆锥的底面直径和高都应等于正方体的棱长,解答时要注意单位的换算.21.正方体棱长总和是24厘米,它的表面积是24平方厘米,体积是8立方厘米.考点:长方体和正方体的表面积;正方体的特征;长方体和正方体的体积.专题:立体图形的认识与计算.分析:正方体的棱长总和=棱长×12,棱长总和除以12 即可求出棱长.再根据表面积公式:s=6a2,体积公式:v=a3把数据分别代入公式解答解答:解:棱长:24÷12=2(厘米),表面积:2×2×6=24(平方厘米),体积:2×2×2=8(立方厘米);答:它的表面积是24平方厘米,体积是8立方厘米.故答案为:24平方厘米,8立方厘米.点评:此题主要考查正方体的棱长总和公式、表面积公式、体积公式的灵活运用.22.鲜奶盒长6.3厘米,宽4厘米,高10.5厘米.将24盒鲜奶盒包装成一箱,纸箱使用的纸最少是2070.6平方厘米.考点:长方体和正方体的表面积.分析:要使用的纸最少,必须使纸箱的容积最大,如何才能使纸箱的容积最大,它的长宽高越接近.24合装一箱,可设计成2×3×4排放,长6.3×3=18.9厘米,宽4×4=16厘米,高10.5×2=21厘米;然后根据:长方体的表面积=(长×宽+长×高+宽×高)×2;由此列式解答.解答:解:包装箱的长、宽、高分别是;长:6.3×3=18.9(厘米),宽:4×4=16(厘米),高:10.5×2=21(厘米);包装箱的表面积是:(18.9×16+18.9×21+16×21)×2,=(302.4+396.9+336)×2,=1035.3×2,=2070.6 (平方厘米);答:纸箱使用的纸最少是2070.6平方厘米.故答案为:2070.6.点评:此题属于长方体的表面积的实际应用,关键是如何设计使用的纸最少,必须使纸箱的容积最大,也就是它的长宽高越接近.容积最大,用纸最少;再根据长方体的表面积公式解答.23.(•温江区模拟)把两个棱长是2厘米的正方体拼成一个长方体,则长方体的表面积是40平方厘米.考点:长方体和正方体的表面积.专题:立体图形的认识与计算.分析:把两个棱长2厘米的正方体拼成一个长方体后,减少了两个面的面积,也就是两个正方体10个面的面积,正方体的棱长已知,从而可以求出这个长方体的表面积.解答:解:2×2×10=4×10=40(平方厘米)答:这个长方体的表面积是40平方厘米.故答案为:40.点评:解答此题的关键是:弄清楚长方体的表面积和两个正方体的表面积的关系.24.(•岚山区模拟)把表面积是54平方厘米的正方体等分成两个长方体,每个长方体的表面积是36平方厘米.考点:长方体和正方体的表面积.专题:立体图形的认识与计算.分析:由“一个正方体的表面积是54平方厘米”可以求出正方体的1个面的面积,也能求出正方体的棱长;分成的长方体的长和宽都等于正方体的棱长,高等于棱长的一半,从而可以分别求出每个长方体的表面积.解答:解:54÷6=9(平方厘米)又因3×3=9(厘米)所以正方体的棱长是3厘米;则长方体的长、宽、高分别为3、3、1.5厘米,长方体的表面积:(3×3+1.5×3+3×1.5)×2=18×2=36(平方厘米)答:每个长方体的表面积是36平方厘米.故答案为:36平方厘米.点评:解答此题的关键是先求出正方体的棱长,再据分成的长方体的长和宽都等于正方体的棱长,高等于棱长的一半,即可逐步求解.25.一个正方体木块的棱长为a厘米,把它锯成两个长方体,这两个长方体的棱长总和是20a厘米,表面积总和是8a2平方厘米.考点:长方体和正方体的表面积.分析:锯成两个长方体后,长方体的棱长就变成了分别为a厘米、a厘米、a厘米;表面积比原来多了两个面的面积,即有8个面的面积.解答:解:棱长总和:(a+a+a)×4×2=20a(厘米),表面积:a×a×8=8a2(平方厘米),答:这两个长方体的棱长总和是20a厘米,表面积总和是8a2平方厘米.故答案为:20a,8a2.点评:此题要注意锯开后增加的棱长的长度,以及原正方体的棱长的变化.26.(•北京)一个正方体的棱长为acm,它的棱长总和是12a厘米,它的表面积是6a2平方厘米,它的体积是a3立方厘米.考点:长方体和正方体的表面积;长方体和正方体的体积.专题:立体图形的认识与计算.分析:根据正方体的特征,12条棱的长度都相等,正方体的棱长总和=棱长×12;再根据正方体的表面积公式:s=6a2,体积公式:v=a3,把数据代入公式解答即可.解答:解:一个正方体的棱长为acm,棱长和=12a(厘米)表面积是:6×a×a=6a2(平方厘米)体积是:a×a×a=a3(立方厘米).答:它的棱长和是12a厘米,表面积是6a2平方厘米,体积是a3立方厘米.故答案为:12a厘米、6a2平方厘米、a3平方厘米.点评:掌握正方体的特征、棱长和、表面积和体积公式是解题的关键.27.(•满洲里市)在一个长方体中(如图)知道了后面的面积大小还要知道宽的长度,就可以求体积了;同样知道了横截面积,还知道长的长度,也可以求体积.如果告诉你这个长方体是一个玻璃鱼缸,长是8分米、宽是5分米、高是5分米,那么这个玻璃鱼缸的棱长之和是72分米,而且做这个鱼缸至少需要170平方分米的玻璃材料,另外如果在这个鱼缸内放入3分米高的水,这些水有120升;再放入几条金鱼后水面上升1.2厘米,这些金鱼的体积是4800立方厘米.考点:长方体和正方体的表面积;长方体和正方体的体积.专题:立体图形的认识与计算.分析:(1)在一个长方体中知道了后面的面积大小,也就知道了长方体的长和高,要求体积,还要知道宽度;(2)知道了横截面积,也就知道了长方体的高和宽,要求体积,还要知道长度;(3)因为长方体中长、宽、高各有4条棱,因此玻璃鱼缸的棱长之和是(长+宽+高)×4,代入数据计算即可;(4)此题是求这个长方体鱼缸的表面积,假若鱼缸无盖,需要玻璃材料为8×5+(5×5+5×8)×2,计算即可;(5)在这个鱼缸内放入3分米高的水,要求水的体积.已知长是8分米、宽是5分米,根据长方体的体积计算公式解答即可;(6)根据题意,水面上升的体积,就是金鱼的体积.解答:解:(1)在一个长方体中知道了后面的面积大小还要知道(宽)的长度,就可以求体积了;(2)知道了横截面积,还知道(长)的长度,也可以求体积;(3)(8+5+5)×4=18×4=72(分米);答:这个玻璃鱼缸的棱长之和是72分米.(4)8×5+(5×5+5×8)×2,=40+65×2,=40+130,=170(平方分米);答:做这个鱼缸至少需要170平方分米的玻璃材料.(5)8×5×3=120平方分米=120(升);答:这些水有120升.(6)1.2厘米=0.12分米,8×5×0.12=4.8(立方分米)=4800(立方厘米);答:这些金鱼的体积是4800立方厘米.故答案为:宽,长,72,170,120,4800.点评:解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.28.(•静宁县模拟)一个正方体的棱长总和48厘米,它的棱长是4厘米,表面积是96平方厘米,体积是64立方厘米.考点:长方体和正方体的表面积;长方体和正方体的体积.分析:正方体有12个棱长,有一个正方体的棱长总和是48厘米,可以求得棱长,根据正方体的表面积=棱长×棱长×6;体积=棱长×棱长×棱长可以解决问题.解答:解:48÷12=4厘米,4×4×6=96平方厘米,4×4×4=64立方厘米;故答案为:4厘米;96平方厘米;64立方厘米.点评:此题考查了正方体棱长,表面积,体积的综合运算.B档(提升精练)一.选择题(共15小题)1.(•岚山区模拟)把一个棱长为a的正方体,任意截成两个长方体,这两个长方体表面积之积是()A.a×a×6 B.a×a×7 C.a×a×8 D.无法确定考点:长方体和正方体的表面积.专题:立体图形的认识与计算.分析:应明确把一个正方体,分割成两个长方体,增加两个面,增加的两个面的面积为:a×a×2=2a2平方厘米;然后根据“正方体的表面积=棱长×棱长×6”计算出原来正方体的表面积,加上增加的面积即可.解答:解:a×a×6+a×a×2=6×a×a+2×a×a=8×a×a故选:C.点评:解答此题应明确把一个正方体分割成2个长方体,增加两个面,进而根据“正方体的表面积=棱长×棱长×6”计算出原来正方体的表面积,加上增加的面积即可.2.(•陆良县)如图是一个长3厘米,宽与高都是2厘米的长方体,在它的上面挖掉一个棱长为1厘米的小正方体,这时它的表面积是()平方厘米.A.32 B.34 C.不能计算考点:长方体和正方体的表面积;简单的立方体切拼问题.专题:立体图形的认识与计算.分析:由图意可知:在它的上面挖掉一个棱长为1厘米的小正方体,则增加了小正方体的2个面的面积,于是利用正方体的表面积加上小正方体的2个面的面积,问题即可得解.解答:解:3×2×4+2×2×2+(2÷2)×(2÷2)×2,=24+8+2,=34(平方厘米);答:这时它的表面积是34平方厘米.故选:B.点评:弄清楚在它的上面挖掉一个棱长为1厘米的小正方体,面的增加或减少情况,是解答本题的关键.3.(•上海)如图中两个物体的表面积比较,结果是()A.甲>乙B.甲<乙C.甲=乙考点:长方体和正方体的表面积.分析:由图可知,乙物体是从长方体甲一个顶点处去掉了一个小正方体,减去3个面又增加了3个面,所以表面积不变,由此即可得答案.解答:解:甲物体从一个顶点处去掉了一个小正方体得到了乙物体,体积减少,但表面积不变.故选:C.点评:此题主要理解从长方体一个顶点处去掉小正方体后,体积虽然减少,但是表面积没减少.4.(•团风县模拟)一根长方体木料,长2米,宽和厚都是5米,把它锯成1米长的两段,表面积增加了()平方米.A.50 B.40 C.25考点:长方体和正方体的表面积.分析:把它锯成1米长的两段,表面积增加了两个边长为5米的正方形面,由此可以解决问题.解答:解:5×5×2=50平方米;故选A.点评:此题注意锯成两段后增加的是两个面的面积.5.(•中山模拟)把一个正方体的棱长扩大20%,它的表面积就扩大()A.20% B.40% C.44% D.120%考点:长方体和正方体的表面积;百分数的实际应用.。
人教版同步教参数学五年级下册——长方体和正方体:2.长方体和正方体的表面积

第二章 长方体和正方体2.长方体和正方体的表面积【知识梳理】1.长方体、正方体的展开图。
高图一 图二(1)图一中,①上、下两个面的面积相等,每个面的长和宽分别是长方体的长和宽,面 积等于长乘宽;②前、后两个面的面积相等,每个面的长和宽分别是长方体的长和 高,面积等于长乘高;③左、右两个面的面积相等,每个面的长和宽分别是长方体 的宽和高,面积等于宽乘高。
(2)图二中,正方体的每个面都是正方形,边长是正方体的棱长,每个面的面积都相等,都等于棱长乘棱长。
要点提示:长方体和正方体展开图的形状不是唯一的,上图只是其中一组。
2. 长方体、正方体表面积的意义。
(1)长方体的表面积:长方体6个面的总面积就是长方体的表面积。
(2)正方体的表面积:正方体6个面的总面积就是正方体的表面积。
3.长方体表面积的计算公式。
(1)长方体的表面积=长×宽×2+长×高×2+宽×高×2(2)长方体的表面积=(长×宽+长×高+宽×高)×2用字母表示长方体表面积的计算公式:(1)s=2ab+2ah+2bh(2)s=(ab+ah+bh)×2(注:s 表示长方体的表面积,a 、b 、h 分别表示长方体的长、宽、高。
)4.长方体表面积的计算公式。
正方体的表面积=棱长×棱长×6用字母表示正方体表面积的计算:s=6a2。
(注:s表示正方体的表面积,a表示正方体的棱长。
)5.拓展提高。
如果正方体的棱长扩大到原来的n倍,它的表面积就扩大到原来的n2倍。
如正方体的棱长扩大到原来的3倍,它的表面积就扩大到原来的9倍。
6.温馨提示:在实际生活中,并不是所有的长方体形状的物体都有6个面,如长方体形状的鱼缸、游泳池等只有5个面,长方体形状的烟囱、通风管等只有4个面。
【诊断自测】1.填空。
(1)一个长方体的长是15cm,宽是4cm,高是6cm,这个长方体的表面积是()cm2。
五年级长方体和正方体巧算表面积含参考答案

五年级长⽅体和正⽅体巧算表⾯积含参考答案长⽅体和正⽅体(巧算表⾯积)例题讲学例1 两个棱长是2厘⽶的⼩正⽅体可以拼成⼀个长⽅体,这个长⽅体的表⾯积是多少?【40】【思路点拨】先根据题意画图:从图上可以清楚地看出:两个正⽅体原先各有当把它们拼起来时就少了2个正⽅形的⾯。
这时,求长⽅体的表⾯积只相当于求(12-2=)10个正⽅形的⾯积;还可以这样想:当两个正⽅体拼成⼀个长⽅体时,求长⽅体的表⾯积,我们可以先分别求出这个长⽅体的长、宽、⾼,再求出它的表⾯积。
当物体拼合时表⾯积之和少了,可以根据⽤原来的⾯从⽽求出拼合后物体的⾯积数量,然后求出表⾯积。
2.还可以求出拼成后⼤物体的长、宽、⾼,再根据物体形状直接求表⾯积。
同步精练1. 把两个棱长是3厘⽶的⼩正⽅体拼成⼀个长⽅体,这个长⽅体的表⾯积是多少?2.把底⾯积是36平⽅厘⽶的两个正⽅体⽊块拼成⼀个长⽅体,长⽅体的表⾯积是多少?3.把三个完全相同的正⽅体拼成⼀个长⽅体,这个长⽅体的表⾯积是350平⽅厘⽶。
每个正⽅体的表⾯积是多少平⽅厘⽶?例2 把⼀个长、宽、⾼分别是7厘⽶、6厘⽶、5厘⽶的长⽅体截成两个长⽅体,使这两个长⽅体表⾯积之和最⼤,这时表⾯积之和是多少平⽅厘⽶?【(7x6+7x5+6x5)x2+7x6x2=298】【思路点拨】把长⽅体截成两个长⽅体后,两个长⽅体表⾯积之和等于原长⽅体表⾯积再加上两个截⾯的⾯积。
这个长⽅体⼏个⾯中,上、下⾯的⾯积最⼤,所以要看哪个⾯的⾯积最⼤,于是本题就按平⾏于上、下⾯的⽅式去截,才使表⾯积之和最⼤。
每⼀种截法都会产⽣不同的⾯,所以判断怎么样截是解决问题的关键。
同步精练1. 把⼀个长10厘⽶、宽8厘⽶、⾼6厘⽶的长⽅体⽊料截成两个完全⼀样的长⽅体,怎样截才能使截成之后,得到两个长⽅体的表⾯积之和最⼤?最⼤是多少?【536】2.把两个长3厘⽶、宽2厘⽶、⾼1厘⽶的长⽅体拼成⼀个表⾯积最⼤的长⽅体,这个长⽅体的表⾯积是多少平⽅厘⽶?【40】3.把两个长6厘⽶、宽4厘⽶、⾼3厘⽶的长⽅体拼成⼀个⼤长⽅体,这个⼤长⽅体的表⾯积的最⼤值与最⼩值相差多少?【192】-【168】=【24】例3 求出下⾯⽴体图形的表⾯积。
长方体和正方体的总棱长、表面积和体积公式

长方体和正方体的总棱长、表面积和体积公式
长方体和正方体都有:12条棱、6个面、8个顶点
长方体的总棱长= (长+宽+高)× 4 (单位:长度单位)
正方体的总棱长= 棱长× 12 (单位:长度单位)
长方体的表面积 =(长×宽 + 长×高 + 宽×高)×2
(单位:平方单位)
长方体的体积 = 长×宽×高
V = abh (单位:立方单位)
正方体的表面积 = (棱长×棱长)×6(单位:平方单位)
正方体的体积 = 棱长×棱长×棱长
V= a3 (单位:立方单位)长方体(或正方体)的体积= 底面积×高
V=sh (单位:平方单位)
无盖的盒子的表面积=长×宽 +(长×高 + 宽×高)×2(只算一个底面)
例如:教室粉刷墙面,求总面积,应用以上公式计算。
测量不规则物体的体积用排水法:
水面上升的高度×容器底面积 = 物体的体积如有侵权请联系告知删除,感谢你们的配合!。
长方体和正方体的表面积和体积ppt课件

左、右两个面的长是( )、宽是( )。
前、后两个面的长是( )、宽是( )。
说一说
正方体有几个 面?
这几个面之间 有什么关系?
你知道吗?
8厘米
4厘米
长方体有几个面?
这几个面之间有什么 关系? 5厘米 它们可以分成几组?
如果告诉我们这个长方体的长、宽、高, 你能想办法算出做这样的一个长方体纸盒 至少要用多少平方厘米硬纸板吗?
对称
旋转
平移
因数与 倍数
图形的 变换
长方体和 正方体
空间与图形
体积和 容积
分数基 本性质
综合
运用
五
解决
打
年 级 数
问题
电
话
学
下
册
内
容
本册教学总目标及要求:
1、理解分数的意义和基本性质,会比较分数的大小,会把假分 数化成带分数或整数,会进整数、小数的互化,能够比较熟练地 进行约分和通分。
2、掌握因数和倍数、质数和合数、奇数和偶数等概念,以及2、 3、5的倍数的特征;会求100以内的两个数的最大工公因数和最 小公倍数。
一起来学习……
重点、难点
长方体正方体的特征, 长方体及正方体表面积和体积计算公式 表面积和体积公式的应用
你还记得吗?
3cm
5cm
4cm
(1)这个长方体的长、宽、高各是
多少?
(2)哪些面的面积相等?
你还记得吗?
3cm
5cm
4cm
(3)这个长方体上、下两个面的长是 ( )、宽是( )。
3、理解分数加、减法的意义,掌握分数加、减法,会解决有关 分数加、减法简单实际问题。
4、知道体积和容积的意义及度量单位,会进行单位之间的换算, 感受有关体积和容积之间的实际意义。
2019五年级下册数学专项训练长方体和正方体的表面积例题解析_人教新课标精品教育.doc

表面积本讲主要讲授长方体和正方体的表面积的计算。
通过对本讲内容的学习,使学生掌握以下知识和技能:1、理解长方体和正方体表面积的意义,掌握长方体表面积的计算方法。
2、培养抽象概括能力、推理能力和思维的灵活性,发展空间观念。
长方体和正方体的表面积定义:长方体或正方体6个面的总面积,叫做它的表面积。
长方体的表面积(有六个面)=长×宽×2+长×高×2+宽×高×2=(长×宽+长×高+宽×高)×2(因为长方体相对的面完全相同)正方体的表面积(有六个面)=棱长×棱长×6(因为正方体的六个面完全相同)在解决一些问题时,要充分考虑实际情况,想清楚要算几个面。
在解答时,可以把这几个面的面积分别算出来,再相加,也可以先算出六个面的面积总和,再减去不需要的那个(些)面。
一个抽屉有5个面,分别是前面、后面、左面、右面、底面。
所以做这样一个抽屉所需要的木板,只要算出这5个面的面积就可以了。
通风管顾名思义是通风用的,没有上面和底面。
所以只要算四个侧面就可以了。
(1)具有六个面的长方体或正方体物品:油箱、罐头盒、纸箱子等;(2)具有五个面的长方体或正方体物品:水池、鱼缸等;(3)具有四个面的长方体或正方体物品:水管、烟囱等。
【试题来源】【题目】1.长方体或正方体,叫做它的表面积。
2.用字母a、b、c分别表示长方体的长、宽、高,S表示表面积,那么S=。
3.正方体6个面的面积都。
【答案】1.6个面的总面积;2.2(ab+ac+bc);3.相等【解析】长方体和正方体的表面积的相关概念。
【知识点】表面积【适用场合】当堂例题【难度系数】1【试题来源】【题目】1.用字母a表示正方体的棱长,S表示面积,S=。
2.一个长方体硬纸盒,长12cm,宽6cm,高3cm,作一个这样的纸盒需要平方厘米硬纸板。
【答案】1.6a2;2.252【解析】1.正方体的表面积公式。
五年级奥数巧求表面积例题、试题及答案

巧求表面积教学目标掌握长方体和正方体的特征、表面积和体积计算公式,并能运用公式解决一些实际问题。
教学过程一、例题讲解我们已经学习了长方体和正方体,知道长方体或正方体六个面面积的总和叫做长方体或正方体的表面积。
如果长方体的长用a 表示、宽用b 表示、高用h 表示,那么,长方体的表面积=(ab +ah +bh )×2。
如果正方体的棱长用a 表示,则正方体的表面积=6a 2。
对于由几个长方体或正方体组合而成的几何体,或者是一个长方体或正方体组合而成的几何形体,它们的表面积又如何求呢?涉及立体图形的问题,往往可考查同学们的看图能力和空间想象能力。
小学阶段遇到的立体图形主要是长方体和正方体,这些图形的特点都是可以从六个方向去看,特别是求表面积时,就是上下、左右和前后六个方向(有时只考虑上、左、前三个方向)的平面图形的面积的总和。
有了这个原则,在解决类似问题时就十分方便了。
例1 在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体(下图),求这个立体图形的表面积.( 例1图) (例2图)分析 我们把上面的小正方体想象成是可以向下“压缩"的,“压缩"后我们发现:小正方体的上面与大正方体上面中的阴影部分合在一起,正好是大正方体的上面。
这样这个立体图形有表面积就可以分成这样两部分:上下方向:大正方体的两个底面;侧面: 小正方体的四个侧面 大正方体的四个侧面。
解:上下方向:5×5×2=50(平方分米) 侧面:5×5×4=100(平方分米)4×4×4=64(平方分米) 这个立体图形的表面积为:50+100+64=214(平方分米)答:这个立体图形的表面积为214平方分米。
例2 下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为21厘米的正方体小洞,第三个正方体小洞的挖法与前两个相同,棱长为14厘米.那么最后得到的立体图形的表面积是多少平方厘米?分析 这道题的难点是洞里的表面积不易求.在小洞里,平行于上下表面的所有面的面积和等于边长为1厘米的正方形的面积,这个边长为1厘米的正方形再与图中阴影部分的面积合在一起正好是边长为2厘米的正方体的上表面的面积。