北京航空航天大学计算流体力学大作业

合集下载

流体力学大作业

流体力学大作业

一.选择题1.牛顿内摩擦定律适用于()。

A.任何流体B.牛顿流体C.非牛顿流体2.液体不具有的性质是()。

A.易流动性B.压缩性C.抗拉性D.粘滞性3连续介质假定认为流体()连续。

A.在宏观上B.在微观上C.分子间D.原子间4.在国际单位制中流体力学基本量纲不包括()。

A.时间B.质量C.长度D.力.5.在静水中取一六面体,作用在该六面体上的力有()A.切向力、正压力B.正压力 C.正压力、重力 D.正压力、切向力、重力6.下述哪些力属于质量力 ( )A.惯性力B.粘性力C.弹性力D.表面张力 E.重力7.某点存在真空时,()()A.该点的绝对压强为正值B.该点的相对压强为正值 c.该点的绝对压强为负值D.该点的相对压强为负值8.流体静压强的()。

A.方向与受压面有关 B.大小与受压面积有关 B.大小与受压面方位无关9.流体静压强的全微分式为()。

A.B.C.10.压强单位为时,采用了哪种表示法()。

A.应力单位B.大气压倍数C.液柱高度11.密封容器内液面压强小于大气压强,其任一点的测压管液面()。

A.高于容器内液面B.低于容器内液面C.等于容器内液面12.流体运动的连续性方程是根据()原理导出的。

A.动量守恒B. 质量守恒C.能量守恒D. 力的平衡13. 流线和迹线重合的条件为()。

A.恒定流B.非恒定流C.非恒定均匀流14.总流伯努利方程适用于()。

A.恒定流B.非恒定流C.可压缩流体15. 总水头线与测压管水头线的基本规律是:()、()A.总水头线总是沿程下降的。

B.总水头线总是在测压管水头线的上方。

C.测压管水头线沿程可升可降。

D.测压管水头线总是沿程下降的。

16 管道中液体的雷诺数与()无关。

A. 温度B. 管径C. 流速D. 管长17.. 某圆管直径d=30mm,其中液体平均流速为20cm/s。

液体粘滞系数为0.0114cm3/s,则此管中液体流态为()。

A. 层流B. 层流向紊流过渡C.紊流18.等直径圆管中紊流的过流断面流速分布是() A呈抛物线分布 B. 呈对数线分布 C.呈椭圆曲线分布 D. 呈双曲线分布19.等直径圆管中的层流,其过流断面平均流速是圆管中最大流速的()A 1.0倍 B.1/3倍 C. 1/4倍 D. 1/2倍20.圆管中的层流的沿程损失与管中平均流速的()成正比.A. 一次方B. 二次方C. 三次方D. 四次方21..圆管的水力半径是 ( )A. d/2B. d/3C. d/4D. d/5.22谢才公式中谢才系数的单位是() A. 无量纲 B. C. D. .23. 判断层流和紊流的临界雷诺数是()A.上临界雷诺数B.下临界雷诺数C.上下临界雷诺数代数平均D.上下临界雷诺数几何平均24.. 对于管道无压流,当充满度分别为()时,其流量和速度分别达到最大。

《计算流体力学》作业答案

《计算流体力学》作业答案

计算流体力学作业答案问题1:什么是计算流体力学?计算流体力学(Computational Fluid Dynamics,简称CFD)是研究流体力学问题的一种方法,它使用数值方法对流体流动进行数值模拟和计算。

主要包括求解流体运动的方程组,通过空间离散和时间积分等计算方法,得到流体在给定条件下的运动和相应的物理量。

问题2:CFD的应用领域有哪些?CFD的应用领域非常广泛,包括但不限于以下几个方面:1.汽车工业:CFD可以用于汽车流场的模拟和优化,包括空气动力学性能和燃烧过程等。

2.航空航天工业:CFD可以用于飞机、火箭等流体动力学性能的预测和优化,包括机身、机翼的设计和改进等。

3.能源领域:CFD可以用于燃烧、热交换等能源领域的流体力学问题求解和优化。

4.管道流动:CFD可以用于石油、化工等行业的管道流动模拟和流体输送优化。

5.空气净化:CFD可以用于大气污染物的传输和分布模拟,以及空气净化设备的设计和改进。

6.生物医药:CFD可以用于生物流体输送和生物反应过程的模拟和分析,包括血液流动、药物输送等。

问题3:CFD的数值方法有哪些?CFD的数值方法一般包括以下几种:1.有限差分法(Finite Difference Method,FDM):将模拟区域划分为网格,并在网格上离散化流体运动的方程组,利用有限差分近似求解。

2.有限体积法(Finite Volume Method,FVM):将模拟区域划分为有限体积单元,通过对流体流量和通量的控制方程进行离散化,求解离散化方程组。

3.有限元法(Finite Element Method,FEM):将模拟区域划分为有限元网格,通过对流体运动方程进行弱形式的变分推导,将流动问题转化为求解线性方程组。

4.谱方法(Spectral Method):采用谱方法可以对流体运动方程进行高精度的空间离散,通常基于傅里叶变换或者基函数展开的方式进行求解。

5.计算网格方法(Meshless Methods):不依赖网格的数值方法,主要包括粒子方法(Particle Methods)、网格自适应方法(Gridless Method)等。

计算流体力学课程大作业

计算流体力学课程大作业

《计算流体力学》课程大作业——基于涡量-流函数法的不可压缩方腔驱动流问题数值模拟张伊哲 航博1011、 引言和综述2、 问题的提出,怎样使用涡量-流函数方法建立差分格式3、 程序说明4、 计算结果和讨论5、 结论1引言虽然不可压缩流动的控制方程从形式上看更为简单,但实际上,目前不可压缩流动的数值方法远远不如可压缩流动的数值方法成熟。

考虑不可压缩流动的N-S 方程:01()P t νρ∇⋅=⎧⎪∂⎨+∇⋅=-∇+∆⎪∂⎩U UUU f U (1.1)其中ν是运动粘性系数,认为是常数。

将方程组写成无量纲的形式:01()Re P t∇⋅=⎧⎪∂⎨+∇⋅=-∇+∆⎪∂⎩U UUU f U (1.2) 其中Re 是雷诺数。

从数学角度看,不可压缩流动的控制方程中不含有密度对时间的偏导数项,方程表现出椭圆-抛物组合型的特点;从物理意义上看,在不可压缩流动中,压力这一物理量的波动具有无穷大的传播速度,它瞬间传遍全场,以使不可压缩条件在任何时间、任何位置满足,这就是椭圆型方程的物理意义。

这就造成不可压缩的N-S 方程不能使用比较成熟的发展型...偏微分方程的数值求解理论和方法。

如果将动量方程和连续性方程完全耦合求解,即使使用显示的离散格式,也将会得到一个刚性很强的、庞大的稀疏线性方程组,计算量巨大,更重要的问题是不易收敛。

因此,实际应用中,通常都必须将连续方程和动量方程在一定程度上解耦。

目前,求解不可压缩流动的方法主要有涡量-流函数法,SIMPLE 法及其衍生的改进方法,有限元法,谱方法等,这些方法各有优缺点。

其中涡量-流函数法是解决二维不可压缩流动的有效方法。

作者本学期学习了研究生计算流体课程,为了熟悉计算流体的基本方法,选择使用涡量-流函数法计算不可压缩方腔驱动流问题,并且对于不同雷诺数下的解进行比较和分析,得出一些结论。

本文接下来的内容安排为:第2节提出不可压缩方腔驱动流问题,并分析该问题怎样使用涡量-流函数方法建立差分格式、选择边界条件。

计算流体力学大作业

计算流体力学大作业

计算液体力学基础及应用课程期末作业-----程序调试最终版学号:134212059 姓名:徐影ContentsCFD模型示意图一、拟一维喷管理论解求解二、拟一维喷管的CFD求解三、理论值与CFD解的对比CFD模型示意图两圆弧直径为10米,喉部直径为0.59米,长为3米clear all;I=imread('xuying.png'); imshow(I)一、拟一维喷管理论解求解喷管内马赫数的变化公依赖于面积比A/A0,所以可以将Ma作为x的函数1.2.采用隐函数绘图给出理论的马赫数解gamma=1.4;h0=59/100;% 取学生学号后两位数的十分之一作喉部直径syms x Ma A_x y;% xz为x坐标,Ma为马赫数A_x=((10.59-2*sqrt(25-(x-1.5)^2))/0.59)^2;% A_x为面积系数figure('Color',[1 1 1]);set(gcf,'position',[0,0,1.5*468,468]);plot_Ma=A_x^2-(2/(gamma+1)+(gamma-1)/(gamma+1)*y^2)^((gamma+1)/(gamma-1))/y^2;subplot(1,2,1);gca=ezplot(plot_Ma,[0,3]);xlabel('x');ylabel('马赫数');title('采用隐函数求解的马赫数结果');grid on; % 得到两条曲线,由递增规律选取上升曲线段,从该曲线上得到一系列点的坐标为[x0,Ma0]load tk.mat;x_0=tk(:,1);Ma_0=tk(:,2);% 这里load的数据采用某算法从上面出的图取点拟合得到,用到polyval和polyfit函数subplot(1,2,2);plot(x_0,Ma_0);xlabel('x');ylabel('马赫数');title('马赫数的理论解');grid on;求出马赫数后,压力、密度、温度的变化都是Ma的函数,求出理论值并绘图1.2.3.p_0=(1+(gamma-1)/2*Ma_0.^2).^(-gamma/(gamma-1));rho_0=(1+(gamma-1)/2*Ma_0.^2).^(-1/(gamma-1));t_0=(1+(gamma-1)/2*Ma_0.^2).^-1;figure('Color',[1 1 1]);set(gcf,'position',[0,0,1.5*468,1.5*468]);subplot(3,1,1);plot(x_0,p_0);title('压力比理论值');xlabel('x');ylabel('p');grid on; subplot(3,1,2);plot(x_0,rho_0);title('密度比理论值');xlabel('x');ylabel('rho');grid on; subplot(3,1,3);plot(x_0,t_0);title('温度比理论值');xlabel('x');ylabel('T');grid on;二、拟一维喷管的CFD求解clear all;L=3;N=31;dx=L/(N-1);x=linspace(0,L,N);C=0.5;n=2000;student_num=59;A=((10+student_num/100-2*((25-((x-1.5).^2))).^0.5)/(student_num/100)).^2;%面积比A/A_0与x坐标的关系第一步,密度比、温度比、速度比的初始条件设定1.2.3.Rou=1-0.3146*x;rhobi=zeros(1,n);T=1-0.2314*x;V=(0.1+1.09*x).*sqrt(T);P_rou_t=zeros(size(Rou));P_v_t=zeros(size(Rou));P_T_t=zeros(size(Rou));P_rou_t_2=zeros(size(Rou));P_v_t_2=zeros(size(Rou));P_T_t_2=zeros(size(Rou));第二步,预估步第三步,并求Δt,求rou, V, T的预测量1.2.3.第四步,修正步第五步,求平均时间导数1.2.3.最后,得到t+Delta t时刻流动参数的修正值为1.2.3.第七步,边界条件处理for j=1:ntemp=Rou(16);% 第二步,预估步for i=2:30P_rou_t(i)=-V(i)*((Rou(i+1)-Rou(i))/dx)-Rou(i)*((V(i+1)-V(i))/dx)-Rou(i)*V(i)*((log(A(i+1))-log(A(i)))/dx);P_v_t(i)=-V(i)*((V(i+1)-V(i))/dx)-((T(i+1)-T(i))/dx+((Rou(i+1)-Rou(i))/dx)*T(i)/Rou(i))*1/1.4;P_T_t(i)=-V(i)*((T(i+1)-T(i))/dx)-0.4*T(i)*(((V(i+1)-V(i))/dx)+V(i)*((log(A(i+1))-log(A(i)))/dx));end% 第三步,并求Δt,求rou, V, T的预测量dt=C*(dx./(V(2:30)+sqrt(T(2:30))));dt=min(dt);Rou1(2:30)=Rou(2:30)+P_rou_t(2:30).*dt;V1(2:30)=V(2:30)+P_v_t(2:30).*dt;T1(2:30)=T(2:30)+P_T_t(2:30).*dt;V1(1)=V(1);T1(1)=T(1);Rou1(1)=Rou(1);% 第四步,修正步%for i=2:30P_rou_t_2(i)=-V1(i)*((Rou1(i)-Rou1(i-1))/dx)-Rou1(i)*((V1(i)-V1(i-1))/dx)-Rou1(i)*V1(i)*((log(A(i))-log(A(i-1)))/dx); P_v_t_2(i)=-V1(i)*((V1(i)-V1(i-1))/dx)-((T1(i)-T1(i-1))/dx+((Rou1(i)-Rou1(i-1))/dx)*T1(i)/Rou1(i))*1/1.4;P_T_t_2(i)=-V1(i)*((T1(i)-T1(i-1))/dx)-0.4*T1(i)*(((V1(i)-V1(i-1))/dx)+V1(i)*((log(A(i))-log(A(i-1)))/dx));end% 第五步,求平均时间导数P_rou_av=(P_rou_t+P_rou_t_2)/2;P_v_av=(P_v_t+P_v_t_2)/2;P_T_av=(P_T_t+P_T_t_2)/2;% 最后,得到t+Delta t时刻流动参数的修正值为Rou(2:30)=Rou(2:30)+P_rou_av(2:30).*dt;T(2:30)=T(2:30)+P_T_av(2:30).*dt;V(2:30)=V(2:30)+P_v_av(2:30).*dt;P(2:30)=Rou(2:30).*T(2:30);% 第七步,边界条件处理V(1)=2*V(2)-V(3);V(31)=2*V(30)-V(29);Rou(31)=2*Rou(30)-Rou(29);T(31)=2*T(30)-T(29);p=Rou.*T;Ma=V./sqrt(T);rhobi(j)=abs((temp-Rou(16))/temp); % 计算后一次时间步与前一时间步之间的密度比的变化情况,以此检验CFD过程收敛性质end最终结果的绘图figure('Color',[1 1 1]);set(gcf,'position',[0,0,1.2*468,1.5*468]);subplot(3,1,1);plot(1:n,rhobi);xlabel('x');ylabel('Ma');title('相对密度比');grid on;% 密度比收敛情况绘图subplot(3,1,2);plot(x,Ma);title('喷管内马赫数分布');xlabel('x');ylabel('Ma');grid on;% 马赫数CFD值绘图subplot(3,1,3);plot(x,p);title('喷管内压力分布');xlabel('x');ylabel('p');grid on; % 压力分布CFD值绘图shu=[x;A;Ma;V;T;p;Rou];显示各参量最终计算结果fprintf('%6s\t%12s\t%12s\t%12s\t%12s\t%12s\t%12s\r\n','x','A/A_0','Ma','v/v_0','T/T_0','p/p_0','rho')% 依次显示坐标点、形状参数、马赫数、速度、温度、压力的结果fprintf('%6.1f\t%12.4f\t%12.4f\t%12.4f\t%12.4f\t%12.4f\t%12.4f\r\n',shu)x A/A_0 Ma v/v_0 T/T_0 p/p_0 rho0.0 3.1709 0.1859 0.1859 1.0000 1.0000 1.00000.1 2.8156 0.2124 0.2121 0.9975 0.9915 0.99390.2 2.5056 0.2389 0.2383 0.9956 0.9847 0.98900.3 2.2361 0.2711 0.2700 0.9922 0.9728 0.98050.4 2.0030 0.3056 0.3038 0.9885 0.9602 0.97140.5 1.8022 0.3451 0.3422 0.9834 0.9433 0.95910.6 1.6303 0.3882 0.3838 0.9775 0.9234 0.94470.7 1.4844 0.4364 0.4298 0.9700 0.8989 0.92670.8 1.3617 0.4891 0.4794 0.9611 0.8701 0.90540.9 1.2600 0.5469 0.5331 0.9502 0.8362 0.88001.0 1.1771 0.6096 0.5903 0.9374 0.7974 0.85071.1 1.1116 0.6776 0.6508 0.9224 0.7536 0.81701.2 1.0620 0.7507 0.7142 0.9051 0.7053 0.77921.3 1.0273 0.8289 0.7800 0.8855 0.6532 0.73761.4 1.0068 0.9119 0.8475 0.8636 0.5982 0.69271.5 1.0000 0.9998 0.9160 0.8394 0.5416 0.64521.6 1.0068 1.0921 0.9849 0.8132 0.4847 0.59601.7 1.0273 1.1887 1.0534 0.7853 0.4288 0.54611.8 1.0620 1.2893 1.1210 0.7559 0.3753 0.49641.9 1.1116 1.3934 1.1869 0.7255 0.3250 0.44802.0 1.1771 1.5009 1.2507 0.6943 0.2788 0.40152.1 1.2600 1.6113 1.3119 0.6629 0.2371 0.35762.2 1.3617 1.7245 1.3705 0.6315 0.2001 0.31682.3 1.4844 1.8398 1.4258 0.6006 0.1678 0.27952.4 1.6303 1.9576 1.4782 0.5702 0.1400 0.24552.5 1.8022 2.0764 1.5269 0.5408 0.1163 0.21512.6 2.0030 2.1983 1.5732 0.5122 0.0962 0.1879。

15春北航《流体力学》在线作业一满分答案

15春北航《流体力学》在线作业一满分答案

奥鹏15春北航《流体力学》在线作业一一、单选题(共20 道试题,共80 分。

)1. 水力最优断面是()。

A. 造价最低的渠道断面B. 壁面粗糙系数最小的断面C. 对一定的流量具有最大断面积的断面D. 对一定的面积具有最小湿周的断面正确答案:D2. 比较重力场(质量力只有重力) 中,水和水银所受单位质量力Z水和Z汞的大小()。

A. Z水<Z汞B. Z水=Z汞C. Z水>Z汞D. 不定正确答案:B3. 圆管紊流阻力平方区的沿程摩阻系数λ( )。

A. 与雷诺数Re有关B. 与Re和管长l有关C. 与Re 和ks/d有关D. 与管壁相对粗糙ks/d有关正确答案:D4. 堰流流量Q与堰上全水头H0的关系是()。

A. 1/2次方的关系B. 1次方的关系C. 3/2次方的关系D. 2次方的关系正确答案:C5. 渗流模型与实际渗流相比较( ).A. 流量相同B. 流速相同C. 各点压强不同D. 渗流阻力不同正确答案:A6. 均匀流是()。

A. 当地加速度为零B. 迁移加速度为零C. 向心加速度为零D. 合加速度为零正确答案:B7. 长管并联管道各并联管段的()。

A. 水头损失相等B. 水力坡度相等C. 总能量损失相等D. 通过的水量相等正确答案:A8. 并联管道1、2,两管的直径相同,沿程阻力系数相同,长度L2=3L1,通过的流量为()。

A. Q1=Q2B. Q1=1.5Q2C. Q1=1.73Q2D. Q1=3Q2正确答案:C9. 理想流体的特征是()。

A. 粘度是常数B. 不可压缩C. 无粘性D. 符合pv=RT正确答案:C10. 堰流的水力现象是( ).A. 缓流穿过障壁B. 缓流溢过障壁C. 急流穿过障壁D. 急流溢过障壁正确答案:B11. 在水力学中常遇到的质量力有()。

A. 重力和惯性力B. 重力和压力C. 切力和惯性力D. 切力和压力正确答案:A12. 恒定流是()。

A. 流动随时间按一定规律变化B. 流场中任意空间点的运动要素不随时间变化C. 各过流断面的速度分布相同D. 各过流断面的压强相同正确答案:B13. 金属压力表的读值是()。

计算流体力学大作业

计算流体力学大作业

1 提出问题[问题描述]Sod 激波管问题是典型的一类Riemann 问题。

如图所示,一管道左侧为高温高压气体,右侧为低温低压气体,中间用薄膜隔开。

t=0 时刻,突然撤去薄膜,试分析其他的运动。

Sod 模型问题:在一维激波管的左侧初始分布为:0 ,1 ,1111===u p ρ,右侧分布为:0 ,1.0 ,125.0222===u p ρ,两种状态之间有一隔膜位于5.0=x 处。

隔膜突然去掉,试给出在14.0=t 时刻Euler 方程的准确解,并给出在区间10≤≤x 这一时刻u p , ,ρ的分布图。

2 一维Euler 方程组分析可知,一维激波管流体流动符合一维Euler 方程,具体方程如下: 矢量方程:0U ft x∂∂+=∂∂ (0.1)分量方程:连续性方程、动量方程和能量方程分别是:222,,p u ρ()()()()2000u tx u u pt x x u E p E tx ρρρρ∂⎧∂+=⎪∂∂⎪⎪∂∂∂⎪++=⎨∂∂∂⎪⎪∂+⎡⎤∂⎣⎦+=⎪∂∂⎪⎩ (0.2)其中 22v u E c T ρ⎛⎫=+ ⎪⎝⎭对于完全气体,在量纲为一的形式下,状态方程为:()2p T Ma ργ∞=(0.3)在量纲为一的定义下,定容热容v c 为:()211v c Ma γγ∞=- (0.4)联立(1.2),(1.3),(1.4)消去温度T 和定容比热v c ,得到气体压力公式为:()2112p E u γρ⎛⎫=-- ⎪⎝⎭(0.5)上式中γ为气体常数,对于理想气体4.1=γ。

3 Euler 方程组的离散3.1 Jacibian 矩阵特征值的分裂Jacibian 矩阵A 的三个特征值分别是123;;u u c u c λλλ==+=-,依据如下算法将其分裂成正负特征值:()12222k k k λλελ±±+=(0.6)3.2 流通矢量的分裂这里对流通矢量的分裂选用Steger-Warming 分裂法,分裂后的流通矢量为()()()()()()()12312322232121212122f u u c u c u u c u c w γλλλργλλλγλλγλ⎛⎫⎪-++ ⎪=-+-++ ⎪ ⎪ ⎪-+-+++ ⎪⎝⎭+++++++++++(0.7)()()()()()()()12312322232121212122f u u c u c u u c u c w γλλλργλλλγλλγλ⎛⎫⎪-++ ⎪=-+-++ ⎪ ⎪ ⎪-+-+++ ⎪⎝⎭-----------(0.8)其中:()()()223321c w γλλγ±±±-+=- c 为量纲为一的声速:22Tc Ma ∞=(0.9)联立(1.3),(1.9)式,消去来流马赫数得:ργp c =3.3 一阶迎风显示格式离散Euler 方程组 10n n i i x i x i U U f f t xδδ+-++--++=∆∆ (0.10)得到()()n+1nj j 11U =U j j j j t f f f f x++---+∆⎡⎤--+-⎣⎦∆ 算法如下:① 已知初始时刻t=0的速度、压力及密度分布000,,j j j u P ρ,则可得到特征值分裂值0k λ±,从而求出流通矢量0j f ±;② 应用一阶迎风显示格式可以计算出1t t =∆时刻的组合变量1j U ,从而得到1t t =∆时刻的速度、压力及密度分布111,,j j j u P ρ;③ 利用1t t =∆时刻的速度、压力及密度分布111,,j j j u P ρ可得特征值分裂值1k λ±,从而求出流通矢量1j f ±;④ 按照步骤2的方法即可得到2t t =∆时刻的速度、压力及密度分布222,,j j j u P ρ;⑤ 循环以上过程即可得到()1t n t =+∆时刻的速度、压力及密度分布n+1n+1n+1,,j j j u P ρ。

计算流体力学大作业报告

计算流体力学大作业报告

课程综合作业课程名称: _________ 计算流体力学 ___________专业班级: _______________ 研究方向:_______________ 学生姓名: ________________ 学号:________________完成日期: _______________________________________计算流体力学课程综合报告1. 简介计算流体动力学(Computational Fluid Dynamics ,简称CFD是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。

其基本思想为: 把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值。

CFD可以看作是在流动基本方程(质量守恒方程、动量守恒方程、能量守恒方程)控制下对流动的数值模拟。

通过这种数值模拟,我们可以得到极其复杂问题的流场内各个位置上的基本物理量(速度、压力、温度、浓度等)的分布,以及这些物理量随时间的变化情况,确定旋涡分布特性、空化特性及脱流区等。

还可据此算出相关的其他物理星,如旋转式流体机械的转矩、水力损失和效率等。

此外,与CAD联合,还可进行结构优化设计等。

2. 计算流体动学的特点:①流动问题的控制方程一般是非线性的,自变量多,计算域的几何形状和边界条件复杂,很难求得解析解,而用CFD方法则有可能找出满足工程需要的数值解。

②可利用计算机进行各种数值试验,例如,选择不同流动参数进行物理方程中各项有效性和敏感性试验,从而进行方案比较。

③它不受物理模型和实验模型的限制,省钱省时,有较多的灵活性,能给出详细和完整的资料,很容易模拟特殊尺寸、高温、有毒、易燃等真实条件和实验中只能接近而无法达到的理想条件。

④数值解法是一种离散近似的计算方法,依赖于物理上合理、数学上适用、适合于在计算机上进行计算的离散的有限数学模型,且最终结果不能提供任何形式的解析表达式,只是有限个离散点上的数值解,并有一定的计算误差。

计算流体力学大作业sod激波管

计算流体力学大作业sod激波管

Байду номын сангаас

Γ
S
无源:SΦ=0;稳态:非稳态项=0,简化为:
d u d Γ d
dx dx dx
方程离散化
对简化后的控制方程在目标节点所在的控制容积内积分:
e
w
du
dx
dx
e
w
d dx
Γ
d
dx
dx
扩散项采用中心差分,得:
u
e
u w
Γe x
E
P
Γe x
P W
PE
WP
记对流强度F=ρu,扩散传导性D=Γ/Δx。Fe=(ρu)e,Fw=(ρu)w;De=Γe/ΔxPE, Dw=Γw/ΔxWP。针对本问题,采用均匀网格,Fe=Fw=ρu,De=Dw=Γ/Δx。代入 上式,得到:
300 continue write(4,*)bb-deltx/2,upfai(M) close(unit = 4)
(3)网格数n=20;u=2.0m/s(Pe=1.0,F=2.0,D=2.0)
离散方程满足守恒性、有界 性和输运性三个物理特征。数据 显示,混合格式的结果与中心差 分的结果一致,相较于一阶上风 格式误差较小,因为该情况下扩 散占的比重较对流大,一阶上风 会过高估计上游信息对下游的影 响。
1.内节点法:
(1)网格数n=5;u=0.1m/s(Pe=0.2,F=0.1,D=0.5)
节点 位置
表1 u=0.1m/s,Δx=0.2m结果对比表
数值解与误差率
解析解
中心差分
误差率
一阶上风 误差率
混合
误差率
1
x=0.1
0.9388
0.9421
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图 72 温度场
图 73 马赫数分布
图 74 流线图
(2)动车行驶速度为 300km/h(83.33m/s):
图 75 残差曲线
图 76 压力场
图 77 温度场
图 78 马赫数分布
图 79 流线图
(3)动车行驶速度为 380km/h(105.56m/s):
图 80 残差曲线
图 81 压力场
图 82 温度场
2、结构网格划分
2.1、远场边界条件
图 2 整体网格
图 3 动车周围网格
图 4 动车头部网格
图 5 动车尾部网格
2.2、隧道边界条件
图 6 整体网格
图 7 动车周围网格
图 8 动车头部网格
图 9 动车尾部网格
3、计算结果
3.1、远场边界条件
3.1.1、基于压力算法
(1)动车行驶速度为 150km/h(41.67m/s):
图 91 远场边界条件下阻力随车速的变化曲线
4.3.3 隧道和远场的阻力对比
图 92 基于压力算法的隧道与远场阻力对比
图 93 基于密度算法的隧道与远场阻力对比
图 21 压力场
图 22 温度场
图 23 马赫数分布
图 24 流线图
(4)动车行驶速度为 486km/h(135m/s):
图 25 残差曲线
图 26 压力场
图 27 温度场
图 28 马赫数分布
图 29 流线图
3.1.2 基于密度的算法
(1)动车行驶速度为 150km/h(41.67m/s):
图 30 残差曲线
图 42 温度场
图 43 马赫数分布
图 44 流线图
(4)动车行驶速度为 486km/h(135m/s):
图 45 残差曲线
图 46 压力场
图 47 温度场
图 48 马赫数分布
图 49 流线图
3.2 隧道边界条件
3.2.1 基于压力算法
(1)动车行驶速度为 150km/h(41.67m/s):
图 50 残差曲线
图 31 压力场
图 32 温度场
图 33 马赫数分布
图 34 流线图
(2)动车行驶速度为 300km/h(83.33m/s):
图 35 残差曲线
图 36 压力场
图 37 温度场
图 38 马赫数分布
图 39 流线图
(3)动车行驶速度为 380km/h(105.56m/s):
图 40 残差曲线
图 41 压力场
图 62 温度场
图 63 马赫数分布
图 64 流线图
(4)动车行驶速度为 486km/h(135m/s):
图 65 残差曲线
图 66 压力场
图 67 温度场
图 68 马赫数分布
图 69 流线图
3.2.2 基于密度算法
(1)动车行驶速度为 150km/h(41.67m/s):
图 70 残差曲线
图 71 压力场
图 10 残差曲线
图 11 压力场
图 12 温度场
图 13 马赫数分布
Байду номын сангаас图 14 流线图
(2)动车行驶速度为 300km/h(83.33m/s):
图 15 残差曲线
图 16 压力场
图 17 温度场
图 18 马赫数分布
图 19 流线图
(3)动车行驶速度为 380km/h(105.56m/s):
图 20 残差曲线
计算流体力学大作业 1
学号: 姓名:孔维鹏 指导老师:
2015 年 6 月 24 日
动车表面流场模拟
1、题目
图 1 动车示意图
流体属性: 空气静温������ = 298������, 静压������ = 101500������������, 气体常数 R=287、 比热比γ = 1.4, 只 计算层流。 1、 动车行驶速度分别为: 150、 300、 380、 486km/h(41.67m/s,83.33m/s,105.56m/s,135m/s); 2、分别计算开放空间(上远场边界)和 5m 高度隧道内(上壁面边界); 3、分别采用基于密度的算法和基于压力的算法。 输出结果: 1、要求在 Tecplot 中显示温度场、压力场、马赫数分布、流线图; 2、分析上远场与上壁面边界下流场的差别。 3、比较采用基于密度的算法和基于压力的算法的收敛情况。 4、分析动车的阻力随行驶速度的变化规律。
图 51 压力场
图 52 温度场
图 53 马赫数分布
图 54 流线图
(2)动车行驶速度为 300km/h(83.33m/s):
图 55 残差曲线
图 56 压力场
图 57 温度场
图 58 马赫数分布
图 59 流线图
(3)动车行驶速度为 380km/h(105.56m/s):
图 60 残差曲线
图 61 压力场
4.2、比较采用基于密度的算法和基于压力的算法的收敛情况
在实际计算过程中,基于压力的算法比较容易收敛;而基于密度的算法需要不断调整 courant number,并且收敛速度也比较慢。
4.3 动车阻力随车速的变化
4.3.1 隧道
车速 基于压力 基于密度 41.67m/s 62280.012N 61456.885N 83.33m/s 242083.6N 208441.43N 105.56m/s 387461.82N 367325.66N 135m/s 629425.65N 644875.54N
图 83 马赫数分布
图 84 流线图
(4)动车行驶速度为 486km/h(135m/s):
图 85 残差曲线
图 86 压力场
图 87 温度场
图 88 马赫数分布
图 89 流线图
4、结果分析 4.1、分析上远场与上壁面边界下流场的差别
在上壁面边界情况下,动车顶部与上壁面形成一个类似于收缩-扩张喷管形式的截面, 空气在这一区域加速比较明显,各参数变化比较剧烈;而在上远场边界条件下,这一截面相 对于列车尺寸较大,空气在这一区域变化情况不太明显。在列车后部,由于空气在上壁面边 界下速度比上远场情况下大, 上壁面条件下列车后部的压强也低于上远场条件, 形成的漩涡 影响范围也较大。
图 90 隧道边界条件下阻力随车速的变化情况
4.3.2 远场
车速 基于压力 基于密度 41.67m/s 2536.1566N 2738.9675N 83.33m/s 10562.03N 10960.626N 105.56m/s 16961.983N 14939.568N 135m/s 27733.404N 24428.899N
相关文档
最新文档